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Abstract

This paper presents a new coupled fixed-point theorem for a pair of set-valued mappings
acting on the Cartesian product of (m1, m2)- and (n1, n2)-quasi-metric spaces. Within the
general, non-symmetric quasi-metric setting, we establish the existence of an approximate
coupled fixed point. Moreover, under the additional assumption of q0-symmetry, we
guarantee the existence of a coupled fixed point. Together, these results extend and unify
several known theorems in fixed-point theory for quasi-metric and asymmetric spaces.
We illustrate the obtained results regarding fixed points when the underlying space is
equipped with a graph structure and, thus, sufficient conditions are found to guarantee the
existence of a subgraph with a loop with a length greater than or equal to 2.

Keywords: coupled fixed point; set-valued mapping; quasi-metric space; q0-symmetry;
approximate fixed point; nonlinear analysis
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1. Introduction
A central tool for analyzing mappings between metric spaces is Banach’s contraction

principle [1], which guarantees the existence of a fixed point for a contractive mapping.
Such mappings occur across both pure and applied mathematics; recent examples include
advances inn systems of nonlinear matrix equations [2] and studies of market equilibrium
in oligopoly settings [3]. The classical theorem of Banach [1] has spawned an enormous
variety of generalizations—too many to list comprehensively—so we focus on those most
relevant to our investigation.

One line of generalization alters the underlying space. Working in b-metric spaces [4],
modular function spaces [5], partially ordered metric spaces [6], or quasi-metric spaces [7]
allows one to relax the usual completeness assumptions; see also [8–10] for developments
within quasi-metric frameworks. A second direction alters the notion of a fixed point. In-
stead of a point x ∈ X satisfying x = Tx, one considers a bivariate mapping T : X × X → X
and calls an ordered pair (x, y) ∈ X × X a coupled fixed point of T if x = T(x, y) and
y = T(y, x) [11]. In [11], the setting is a normed space partially ordered by a cone; subse-
quently, this cone-ordered normed framework was replaced by a partially ordered metric
space in [6]. Since the appearance of [6], the concept of coupled fixed points has been
extensively studied. A known limitation of this framework is that a coupled fixed point
(x, y) often collapses to the diagonal, i.e., x = y, because the definition effectively solves
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the symmetric pair of equations x = T(x, y) and y = T(y, x). To address genuinely non-
symmetric systems, ref. [12] proposed modifying the notion by replacing a single bivariate
self-map with an ordered pair of mappings F, G : X × X → X and declaring (x, y) to be a
coupled fixed point of (F, G) when

x = F(x, y) and y = G(x, y).

This formulation arises naturally in studies of market equilibria for duopoly models [3].
Observe that when G(x, y) = F(y, x), one recovers the classical coupled fixed-point notion
from [6,11].

Another influential direction equips the underlying space with a graph structure,
a viewpoint initiated in [13]. Following their work, a growing body of literature has
developed fixed point resulting in graph-based settings, including multi-valued mappings
in b-metric spaces [14], mappings in metric spaces endowed with a directed graph [15],
multi-valued mappings in cone metric spaces with a directed graph [16], and monotone
mappings in modular function spaces [17].

It is worth mentioning that the first systematic investigation, which introduced the
term “quasi-metric spaces,” can be found in [18].

2. Materials and Methods
We begin by recalling the fundamental concepts and notation used in the theory of

quasi-metric spaces. Throughout, N and R denote the sets of natural numbers and real
numbers, respectively. We use the capital Latin letters X, Y, and Z for arbitrary sets, while
the lowercase letters x, y, z, u, v, w represent elements of these sets.

Our presentation follows the treatments in [7–10], whose terminology and notation
are mutually consistent and will be adopted here.

Definition 1 ([7]). Let X be a nonempty set, q1, q2 ≥ 1, and the mapping d : X × X → [0, ∞), satis-
fying the following for all x, y, z ∈ X:

• (identity axiom): d(x, y) = 0 if and only if x = y for any x, y ∈ X
• (relaxed triangle inequality): there holds the inequality

d(x, y) ≤ q1d(x, z) + q2d(z, y)

The function d(·, ·), which satisfies the identity axiom and the relaxed triangle inequality, is called a
(q1, q2)-quasi-metric.

If in Definition 1 we set q1 = q2 = 1, we obtain the classical definition of a quasi-
metric space introduced in [18], though with different notation. If q1 = q2 > 1 we get
the quasi-b-metric space introduced in [19]. Although the definitions of (q1, q2)-quasi-
metric spaces appear more general than that of quasi-b-metric space, they coincide. The
results formulated in the context of (q1, q2)-quasi-metric spaces enable a better estimate of
convergence and therefore are preferred in investigations.

Definition 2 ([7]). Let X be a nonempty set, q1, q2 ≥ 1 and a mapping, and d : X × X → [0, ∞)

be a (q1, q2)-quasi-metric. If d(·, ·) satisfies

• (symmetry axiom): d(x, y) = d(y, x) for every x, y ∈ X

then d(·, ·) is referred to as a symmetric (q1, q2)-quasi-metric.

It is possible to relax the symmetry axiom.
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Definition 3 ([7]). Let X be a nonempty set, q1, q2 ≥ 1, and the mapping d : X × X → [0, ∞) be
a (q1, q2)-quasi-metric. If d(·, ·) satisfies

• (weaker symmetry axiom) there exists q0 ≥ 1 so that the inequality d(x, y) ≤ q0d(y, x) holds
for all x, y ∈ X

then it is referred to as a q0-symmetric (q1, q2)-quasi-metric.

Let X be a nonempty set, let q1, q2 ≥ 1, and let d : X × X → [0, ∞). If d is a
(q1, q2)-quasi-metric, we refer to (X, d) as a (q1, q2)-quasi-metric space. If, in addition,
d(x, y) = d(y, x) for all x, y ∈ X, then (X, d) is called a symmetric (q1, q2)-quasi-metric
space. If d satisfies the weaker symmetry condition d(x, y) ≤ q0 d(y, x) for some q0 > 0,
we call (X, d) a q0-symmetric (q1, q2)-quasi-metric space. In particular, when q0 = 1 and
q1 = q2 > 1, a symmetric (q1, q1)-quasi-metric space is precisely a b-metric space. Extensive
historical notes, including interesting and little-known references as well as up-to-date
results, can be found in [20].

Note that for q0 = 1, any q0-symmetric (q1, q2)-quasi-metric space becomes symmetric;
and for q0 = q1 = q2 = 1, (X, d) is a (standard) metric space. Given any quasi-metric d, its
conjugate d(x, y) := d(y, x) is a (q2, q1)-quasi-metric.

Definition 4 ([7]). A (q1, q2)-quasi-metric space (X, d) is said to be weakly symmetric whenever
the following holds:

• (weakly symmetry axiom): if limn→∞ d(ξ, xn) = 0 implies limn→∞ d(xn, ξ) = 0.

Any q0-symmetric (q1, q2)-quasi-metric space is weakly symmetric. The converse fails.

Definition 5 ([7]). Let (X, d) be a (q1, q2)-quasi-metric space.

• An open ball centered at a point x0 ∈ X with radius r > 0 is defined by

B(x0, r) = {x ∈ X : d(x0, x) < r}.

• A closed ball centered at x0 with radius r > 0 is given by

B[x0, r] = {x ∈ X : d(x0, x) ≤ r}.

A subset U ⊂ X is considered open if for every u ∈ U there exists ε > 0 such that
B(u, ε) ⊂ U. A family of open sets determines a topology on any (q1, q2)-quasi-metric
space (X, d). As usual, a set is closed if its complement is open.

A sequence {xn}∞
n=1 ⊂ X is said to converge to x0 ∈ X in the (q1, q2)-quasi-metric

space (X, d) if for every ε > 0 there is N ∈ N such that xn ∈ B(x0, ε) for all n ≥ N; we write
limn→∞ xn = x0. It is straightforward to verify that, in a (q1, q2)-quasi-metric space, this is
equivalent to limn→∞ d(x0, xn) = 0.

In a weakly symmetric (q1, q2)-quasi-metric space, every convergent sequence has a
unique limit. By contrast, uniqueness of limits may fail in a general (q1, q2)-quasi-metric
space (see, e.g., [9], where Examples 3.5 and 3.6 are some examples of quasi-metric spaces
where some convergent sequences have a continuum of limits, and [18]).

Definition 6 ([7]). A sequence {xn} in a (q1, q2)-quasi-metric space (X, d) is called a fundamental
sequence, or a Cauchy sequence, if for every ε > 0 there is an N such that for all m > n ≥ N, we
have d(xm, xn) < ε.

A ( q1, q2 )-quasi-metric space ( X, d ) is said to be complete if each of its fundamental sequences
has a limit.
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When q1 = q2, the pair (X, d) specializes to a quasi-metric space, which—depending
on the context—is also termed a b-metric space [4,21]. The framework of (q1, q2)-quasi-
metric spaces was introduced in [7] and further developed in [8–10] in connection with
covering mappings, where sufficient conditions were obtained for the existence of coinci-
dence points of two mappings (one a covering map and the other Lipschitz) defined in
(q1, q2)-quasi-metric spaces.

In what follows we work exclusively within the class of (q1, q2)-quasi-metric spaces;
whenever q0-symmetry is needed, this assumption will be stated explicitly.

Assume that X and Y are endowed with the same quasi-metric d. For a point x ∈ X
and a subset A ⊆ X, define

dist(x, A) := inf
a∈A

d(x, a),

with the convention dist(x, ∅) = +∞. For ε ≥ 0, the ε-neighborhood of A is

A(ε) := { x ∈ X : dist(x, A) ≤ ε }.

A set-valued mapping F : X ⇒ Y assigns to each x ∈ X a (possibly empty) subset
F(x) ⊂ Y. Its graph and inverse are, respectively,

Gr(F) := {(x, y) ∈ X × Y : y ∈ F(x)}, F−1(y) := {x ∈ X : y ∈ F(x)}.

We say F is closed-valued if F(x) is closed in Y for every x ∈ X, and closed if Gr(F)
is a closed subset of X × Y. Every closed mapping is closed-valued, though the converse
need not hold.

As an immediate consequence of Lemma 1, if p1 = p2 and q1 = q2, then (X1 × X2, d)
is a

(
p1, p2

)
-quasi-metric space with respect to d.

Let X be a (q1, q2)-quasi-metric space, F : X ⇒ X a set-valued mapping, and ε > 0. A
point x ∈ X is called a fixed point of F if x ∈ F(x); the set of all fixed points is

FixF := { x ∈ X : x ∈ F(x) }.

An approximate (or ε–) fixed point of F is a point x with dist(x, F(x)) ≤ ε. The
corresponding set is

FixF(ε) := { x ∈ X : dist(x, F(x)) ≤ ε }.

For completeness, we also recall the extension of the coupled fixed-point notion to
multi-valued maps.

Definition 7 ([22]). A point (x, y) ∈ X × X is said to be a coupled fixed point of the set-valued
map F : X × X ⇒ X if x ∈ F(x, y) and y ∈ F(y, x).

Subsequently, Definition 7 was extended to encompass an ordered pair of multi-valued
mappings, leading to a notion of coupled fixed points for (F1, F2).

Definition 8 ([23]). A point (x, y) ∈ X × X is said to be a generalized coupled fixed point of the
ordered pair of set-valued maps F1 : X × Y ⇒ X and F2 : X × Y → Y, provided that x ∈ F1(x, y)
and y ∈ F2(x, y).

3. Results
In this section, let (X, d) and (Y, σ) be two quasi-metric spaces. We consider an

ordered pair of set-valued mappings, F1 : X × Y ⇒ X and F2 : X × Y ⇒ Y, and we are
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interested in the existence of a generalized coupled fixed point of (F1, F2), that is, a pair
(x, y) ∈ X × Y satisfying

x ∈ F1(x, y) and y ∈ F2(x, y).

In parallel with the usual notion of an approximate fixed point for a single multi-
valued map, we will also introduce an approximate coupled fixed point adapted to the
ordered pair (F1, F2).

Definition 9. Let ε, µ > 0. An approximate or ε, µ-fixed point of the ordered pair F = (F1, F2) is
a point (x, y) such that dist(x, F1(x, y)) ≤ ε and dist(y, F2(x, y)) ≤ µ. A set of such points is
denoted by

FixF(ε, µ) := {x ∈ X, y ∈ Y : dist(x, F1(x, y)) ≤ ε, dist(y, F2(x, y)) ≤ µ}.

Definition 10. Let F1 : X × Y ⇒ X and F2 : X × Y ⇒ Y. A sequence (xk, yk) ∪ X × Y is called
a sequence of successive approximations of (F1, F2) if xk+1 ∈ F1(xk, yk) and yk+1 ∈ F2(xk, yk) for
all k ∈ N.

Theorem 1. Let (X, d) be a (m1, m2)-quasi-metric space, (Y, σ) be a (n1, n2)-quasi-metric space
with constants m1, m2, n1, n2 ≥ 1, and q1 = max{m1, n1}, q2 = max{m2, n2}. Let U be an open
subset of X; V be an open subset of Y; x̄ ∈ U; ȳ ∈ V; and F1 : X ×Y ⇒ X and F2 : X ×Y ⇒ Y be
set-valued mappings. Suppose there exist constants α, β > 0 and λ ∈ (max{α, β}, 1/q2) such that

(a) dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ)) <
1 − q2λ

q1
min

{
dist(x̄, X \ U), dist(ȳ, Y \ V)

}
,

(b) dist(x, F1(x, y)) + dist(y, F2(x, y)) ≤ αρ(u, x) + βσ(v, y)
for all (x, y), (u, v) ∈ U × V such that x ∈ F1(u, v), y ∈ F2(u, v), and

αd(u, x) < dist(x, X\U), βσ(v, y) < dist(y, Y\V).

Then there is a sequence (xk, yk) ⊂ X × Y of successive approximations of (F1, F2), starting
from (x̄, ȳ), such that the following hold:

(A) For every ε > 0, µ > 0, (xk, yk) ∈ Fix F(ε, µ) ∩ U × V.

d(x̄, xk) + σ(ȳ, yk) ≤
q1

1 − q2λ

(
dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ))

)
(B) If, moreover, X and Y are complete, both F1 and F2 have closed graphs in X × Y × X and

X ×Y ×Y, respectively, and if X is p0-symmetric and Y is q0-symmetric, respectively, then
there exist the elements x∗ ∈ X and y∗ ∈ Y such that {xk}∞

k=0 converges to x∗, {yk}∞
k=0

converges to y∗, and
(x∗, y∗) ∈ Fix (F1 × F2) ∩ (U × V),

d(x̄, x∗) + σ(ȳ, y∗) ≤ q1

1 − q2λ

(
dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ))

)
.

Proof. Let us choose x and y values that satisfy the assumptions (a) and (b). For brevity,
we denote S(x, y) = dist(x, F1(x, y)) + dist(y, F2(x, y)).

We distinguish two cases: S(x, y) = 0 and S(x, y) > 0.
If S(x, y) = 0, then (x, y) is the generalized coupled fixed point, and the proof is finished.
Let us assume that S(x, y) > 0.
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According to (a), there is l > 0 such that the following inequalities hold:

q1

1 − q2λ
S(x, y) < l < min{dist(x, X \ U), dist(y, Y \ V)}. (1)

Through induction, we construct two sequences, {xk}∞
k=0 and {yk}∞

k=0, starting with

x0 = x and y0 = y.

From (1) we can pick up x1 ∈ F1(x0, y0) and y1 ∈ F2(x0, y0), satisfying

q1

1 − q2λ
(d(x0, x1) + σ(y0, y1)) < l.

Thus, we can write the following chain of inequalities:

d(x0, x1) + σ(y0, y1) <
(1 − q2λ)l

q1
<

1 − q2λ

q1
min{dist(x0, X \ U), dist(y0, Y \ V)}. (2)

Since q1 ≥ 1 and q2λ ∈ (0, 1), it follows that

d(x0, x1) < dist(x0, X \ U) and σ(y0, y1) < dist(y0, Y \ V),

and hence, x1 ∈ U, y1 ∈ V.
Using the relaxed triangular inequality and the inclusions x1 ∈ U and y1 ∈ V, we get

dist(x0, X \ U) ≤ q1d(x0, x1) + q2dist(x1, X \ U)

and
dist(y0, Y \ V) ≤ q1σ(y0, y1) + q2dist(y1, Y \ V).

In order to fit the next inequalities into the text field let us use the notation
ρn = d(xn, xn+1) + σ(yn, yn+1), we can write the chain of inequalities

ρ0 < (1−q2λ)l
q1

< 1−q2λ
q1

min{dist(x0, X \ U), dist(y0, Y \ V)}

≤ 1−q2λ
q1

min{(q1d(x0, x1) + q2dist(x1, X \ U), q1σ(y0, y1) + q2dist(y1, Y \ V)}

≤ 1−q2λ
q1

q1ρ0 +
1−q2λ

q1
q2 min{dist(x1, X \ U), dist(y1, Y \ V)}.

Thus, the following holds:

(1 − (1 − q2λ))ρ0 <
1 − q2λ

q1
q2 min{dist(x1, X \ U), dist(y1, Y \ V)}

Consequently we end with the following inequality, keeping in mind the assumptions
q1 ≥ 1 and q2λ ∈ (0, 1):

λ(d(x0, x1) + σ(y0, y1)) < 1−q2λ
q1

min{dist(x1, X \ U), dist(y1, Y \ V)}

< min{dist(x1, X \ U), dist(y1, Y \ V)}.

Since λ > max{α, β}, we have

αd(x0, x1) < dist(x1, X\U),

βσ(y0, y1) < dist(y1, Y\V).
(3)
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Using (b) and (2), we get

dist(x1, F1(x1, y1)) + dist(y1, F2(x1, y1)) ≤ αd(x0, x1) + βσ(y0, y1)

< λ(d(x0, x1) + σ(y0, y1))

< lλ (1−q2λ)
q1

(4)

Hence,

S(x1, y1) < min
{

1−q2λ
q1

dist(x1, X \ U), 1−q2λ
q1

dist(y1, Y \ V), lλ 1−q2λ
q1

}
. (5)

From (4) and (5), it follows that the possibility of choosing x2 ∈ F1(x1, y1) and
y2 ∈ F2(x1, y1) simultaneously satisfies

ρ1 < min
{

λρ0,
1 − q2λ

q1
dist(x1, X \ U),

1 − q2λ

q1
dist(y1, Y \ V), lλ

1 − q2λ

q1

}
.

Let us denote ρn,m = d(xn, xm) + σ(yn, ym) and

Wn = min{dist(xn, X \ U), dist(yn, Y \ V)}.

Thus, ρn = ρn,n+1. It is easy to observe that for any x > 1 and a ∈ (0, 1), the inequality
(x + a) 1−a

x < 1 holds. By using the relaxed triangular inequality and the last observation
with x = q1 and a = λq2 we get an upper estimate:

ρ0,2 ≤ q1d(x0, x1) + q2d(x1, x2) + q1σ(y0, y1) + q2σ(y1, y2)

= q1(d(x0, x1) + σ(y0, y1)) + q2(d(x1, x2) + σ(y1, y2))

= (q1 + λq2)ρ0

< (q1 + λq2)
1−q2λ

q1
W0 < W0

= min{dist(x0, X \ U), dist(y0, Y \ V)}.

Hence, x2 ∈ U and y2 ∈ V.
The inequality

ρ1 < 1−q2λ
q1

W1

≤ 1−q2λ
q1

min{q1d(x1, x2) + q2dist(x2, X \ U)), q1σ(y1, y2) + q2dist(y2, Y \ V))}

≤ 1−q2λ
q1

q1(d(x1, x2) + σ(y1, y2)) +
1−q2λ

q1
q2W2

yields

λρ1 <
1 − q2λ

q1
W2.

Combining the conditions xn and yn for n = 0, 1, 2, we will choose {xn}∞
n=3 and

{yn}∞
n=3 as the remaining sequences to verify the following assumptions:

(xn, yn) ∈ U × V, (6)

xn ∈ F1(xn−1, yn−1)

yn ∈ F2(xn−1, yn−1),
(7)

d(xn−1, xn) + σ(yn−1, yn) < λ(d(xn−2, xn−1) + σ(yn−2, yn−1)), (8)
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and

λ(d(xn−1, xn) + σ(yn−1, yn)) <
1 − q2λ

q1
min{dist(xn, X \ U), dist(yn, Y \ V)}. (9)

Suppose that {xk}n
k=0 and {yk}n

k=0 have been defined to satisfy (6)–(9). We will show
that we can choose xn+1 and yn+1 values that will verify the same conditions.

From (9), we get

S(xn, yn) ≤ αd(xn−1, xn) + βσ(yn−1, yn)

< λρn−1 < λnρ0

< lλn 1−q2λ
q1

and hence,

S(xn, yn) <
1 − q2λ

q1
min{dist(xn, X \ U), dist(yn, Y \ V), lλn}.

Thus, we can choose xn+1 ∈ F1(xn, yn) and yn+1 ∈ F2(xn, yn) so that

ρn < min
{

λρn−1,
1 − q2λ

q1
dist(xn, X \ U),

1 − q2λ

q1
dist(yn, Y \ V), lλn 1 − q2λ

q1

}
.

We estimate

ρ0,n+1 = d(x0, xn+1) + σ(y0, yn+1)

≤ q1d(x0, x1) + q2d(x1, xn+1) + q1σ(y0, y1) + q2σ(y1, yn+1)

= q1(d(x0, x1) + σ(y0, y1)) + q2(d(x1, xn+1) + σ(y1, yn+1))

= q1(d(x0, x1) + σ(y0, y1))

+q1q2(d(x1, x2) + σ(y1, y2)) + q2
2(d(x2, xn+1) + σ(y2, yn+1))

≤ · · · ≤ q1(d(x0, x1) + σ(y0, y1))∑n
j=0(q2λ)j

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

= q1(d(x0, x1) + σ(y0, y1))
1−(q2λ)n+1

1−q2λ < q1
1−q2λ (d(x0, x1) + σ(y0, y1))

< q1
1−q2λ · 1−q2λ

q1
min{dist(x0, X \ U), dist(y0, Y \ V)}

= min{dist(x0, X \ U), dist(y0, Y \ V)}.

Hence,

d(x0, xn+1) + σ(y0, yn+1) < min{dist(x0, X \ U), dist(y0, Y \ V)}. (10)

Thus, xn+1 ∈ U and yn+1 ∈ V. Also, the chain of inequalities

ρn = d(xn, xn+1) + σ(yn, yn+1)

< 1−q2λ
q1

min{dist(xn, X \ U), dist(yn, Y \ V)}

≤ 1−q2λ
q1

min{q1d(xn, xn+1) + q2dist(xn+1, X \ U)), q1σ(yn, yn+1) + q2dist(yn+1, Y \ V))}

≤ 1−q2λ
q1

q1(d(xn, xn+1) + σ(yn, yn+1))

+ 1−q2λ
q1

q2 min{dist(xn+1, X \ U), dist(yn+1, Y \ V)},

leads to the inequality

λ(d(xn, xn+1) + σ(yn, yn+1)) <
1 − q2λ

q1
min{dist(xn+1, X \ U), dist(yn+1, Y \ V)}.
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Through induction, the sequences {xk}∞
k=0 and {yk}∞

k=0 are constructed, satisfying
(6)–(9).

For all m > n, the following holds:

ρn,m = d(xn, xm) + σ(yn, ym)

≤ q1
(
d(xn, xn+1) + σ(yn, yn+1)

)
+ q1q2(d(xn+1, xn+2) + σ(yn+1, yn+2))

+ · · ·+ q1qm−n−1
2

(
d(xm−1, xm) + σ(ym−1, ym)

)
= q1λn(d(x0, x1) + σ(y0, y1))

)
∑m−n−1

j=0 (q2λ)j

= q1λn(d(x0, x1) + σ(y0, y1))
)
· 1−(q2λ)m−n

1−q2λ .

Hence,

d(xn, xm) + σ(yn, ym) ≤ q1λn(d(x0, x1) + σ(y0, y1))
)
· 1 − (q2λ)m−n

1 − q2λ
. (11)

(A) By putting n = 0 in (11), and from (2), we get the inequality for every m ∈ N:

d(x0, xm) + σ(y0, ym) < l < min{dist(x0, X \ U), dist(y0, Y \ V)}. (12)

Thus, we conclude that xm ∈ U and ym ∈ V. We have the chain of inequalities

limm→∞ S(xm, ym) = limm→∞(dist(xm, F1(xm, ym)) + dist(ym, F2(xm, ym))

≤ limm→∞(d(xm, xm+1) + σ(ym, ym+1))

≤ limm→∞ λ(d(xm−1, xm) + σ(ym−1, ym))

. . . . . . . . . . . . . . . . . . . . . . . . .

≤ limm→∞ λm(d(x0, x1) + σ(y0, y1)) = 0.

Hence, for every ε, µ > 0, there is M ∈ N so that for every m ≥ M, the following holds:
(xm, ym) ∈ FixF(ε, µ).

Moreover, from (12) and d(x̄, xm) + σ(ȳ, ym) < l, we determine that

d(x̄, xm) + σ(ȳ, ym) ≤
q1

1 − q2λ

(
dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ))

)
. (13)

(B) Let X and Y be complete, and let them be p0-symmetric and q0-symmetric, respec-
tively. Let Gr(F1) and Gr(F2) be closed. Let us assume that c0 = max{p0, 1/p0, q0, 1/q0}.

We have proven in (11) that for any ε > 0, there is N ∈ N so that for all N ≤ n < m
the following inequality holds:

d(xn, xm) + σ(yn, ym) < ε.

Since we have assumed that the two quasi-metric spaces are p0- and q0-symmetric, we
can write the inequality d(xm, xn) + σ(ym, yn) ≤ c0(d(xn, xm) + σ(yn, ym)) ≤ c0ε. Therefore,
both sequences {xn}∞

n=0 and {yn}∞
n=0 are Cauchy ones in the considered quasi-metric

spaces. According to the assumption that both spaces are complete, it follows that
limn→∞ xn → x∗ ∈ X and limn→∞ yn → y∗ ∈ Y. Passing to the limit for m → ∞ in
(12) gives us

d(x0, x∗) + σ(y0, y∗) ≤ l < min{dist(x0, X\U), dist(y0, Y\V)},
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and consequently, x∗ ∈ U and y∗ ∈ V. Once again applying m → ∞ in (13), we get

d(x0, x∗) + σ(y0, y∗) ≤ q1

1 − q2λ
(dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ))).

From (xn−1, yn−1, xn) ∈ Gr(F1), (xn−1, yn−1, yn) ∈ Gr(F2), based on the closeness
of Gr(Fi), with i = 1, 2, to limn→∞ xn = x∗ and limn→∞ yn = y∗, we conclude that the
inclusions x∗ ∈ F1(x∗, y∗) ∩ U and y∗ ∈ F2(x∗, y∗) ∩ V hold true.

4. Application
We follow the notation and terminology from [13].
Let (Z, d) be a (q1, q2)-quasi-metric space and G be a weighted directed graph with a

set of vertices V(G) = Z and an edge set E(G) ⊆ Z × Z, where the weights of the edges
will be calculated as the quasi-metric distance between their endpoints. We set the edge
weight w(u, v) := d(u, v) for each (u, v) ∈ E(G).

A subgraph of G is called a graph (V′, E′) such that V′ ⊆ V(G), E′ ⊆ E(G), and for
each edge (x, y) ∈ E′, it holds that x, y ∈ V′.

If x and y are vertices of G, then a path of length n, where n ∈ N∪ {0}, is a sequence
of vertices {xi}n

i=0 such that

x0 = x, xn = y, (xi−1, xi) ∈ E(G) for i = 1, 2, . . . , n.

In what follows “path” means a directed path of length ≥1. We assume in the set of all
“paths” that there are no loops (or self-loops), i.e., an edge that connects a vertex to itself.

A graph is said to be connected if there is a path between any two vertices. Given that
G̃ is connected, G is weakly connected. Here, G̃ is the underlying undirected graph.

If the edge set E(G) of a graph G is symmetric, then the component of G containing
a vertex x is defined as the subgraph Gx that includes all vertices and edges that lie on a
path starting from x. For a general directed graph, strongly connected components play
the analogous role.

According to [x]G, we will denote the equivalence class induced by the relation R,
defined on V(G) as

yRz if there is a path in G from y to z.

Note that R need not be symmetric; for an equivalence relation one may use paths in
both directions.

It follows that V(Gx) = [x]G. We will assume that (z, z) ̸∈ E(G), i.e., there is no path
with a length 1 from z to z.

Let us define a multi-valued map H : V(G) ⇒ V(G) that assigns to any z ∈ V(G) the
set of all z′ such that there exists a directed path of length ≥1 from z to z′. If z ∈ Hz, then z
is a fixed point for the multi-valued map H, and there is a path from z to z, i.e., the relation
zRz holds.

Let G′ = (V′, E′) be a subgraph of G. Based on the distance between v ̸∈ V′ and V′,
we assume the directed shortest-path distance

dist(v, V′) := inf

{
k

∑
i=1

w(ui−1, ui) : v = u0 → u1 → · · · → uk, uk ∈ V′, k ≥ 1

}
,

and will denote it as dist(v, V′). If no such directed path exists, set dist(v, V′) := +∞.
If there is not any v′ ∈ V′ so that (v, v′) ∈ E(G), then we will assume that

dist(v, V′) = +∞. If we assume that a graph G is connected, then for any v ∈ V and



Mathematics 2025, 13, 3242 11 of 14

V′ ⊂ V, the following holds: dist(v, V′) < +∞ (for the undirected distance in G̃, weak
connectivity suffices; for the directed distance above, strong connectivity yields finiteness).

Let (X, d) be a (m1, m2)-quasi-metric space, and let (Y, σ) be a (n1, n2)-quasi-metric
space with constants m1, m2, n1, n2 ≥ 1 and q1 = max{m1, n1}, q2 = max{m2, n2}. Let us
assume that Z = X × Y and endow Z with the (q1, q2)-quasi-metric

ρ((x1, x2), (y1, y2)) = d(x1, y1) + σ(x2, y2).

When Z = X × Y with quasi-metric ρ, we use the graph weight w(u, v) := ρ(u, v) for
(u, v) ∈ E(G).

Let us assume that

F1(x, y) := { x′ ∈ X : ∃ y′ ∈ Y with (x′, y′) ∈ H(x, y) },

which is the projection of H on X, and

F2(x, y) := { y′ ∈ Y : ∃ x′ ∈ X with (x′, y′) ∈ H(x, y) },

which is the projection of H on Y. Thus, we can consider Hz = H(x, y) = (F1(x, y), F2(x, y))
for z = (x, y) ∈ Z = X × Y.

Definition 11. Let (X, d) be a (m1, m2)-quasi-metric space, and let (Y, σ) be a (n1, n2)-quasi-
metric space with constants m1, m2, n1, n2 ≥ 1 and q1 = max{m1, n1}, q2 = max{m2, n2}. Let
us assume that Z = X × Y and endow Z with the (q1, q2)-quasi-metric ρ. Let the graph G be a
directed graph, consisting of vertices V(G) = Z and edges E(G). Let H : V(G) ⇒ V(G) be a
multi valued map that assigns to every z ∈ V(G) all z′ ∈ V(G) such that there is a path from z
to z′. Let us denote as F1 the projection of H onto X, and as F2 its projection onto Y, as explicitly
defined above. We will call the map H = (F1, F2) a path map for the graph G.

Theorem 2. Let (X, d) be a complete, p0-symmetric (m1, m2)-quasi-metric space, and let (Y, σ)

be a complete, q0-symmetric (n1, n2)-quasi-metric space with constants m1, m2, n1, n2 ≥ 1 and
q1 = max{m1, n1}, q2 = max{m2, n2}. Let G be a directed graph on X × Y with edge set E(G).
Let H : V(G) ⇒ V(G) be a multi-valued map that assigns to every z ∈ V(G) all z′ ∈ V(G)

such that there is a path from z to z′. Let us denote as F1 the projection of H onto X, and as F2 its
projection onto Y, i.e., H(z) = H(x, y) = (F1(x, y), F2(x, y)), and assume that the maps F1 and
F2 have closed graphs in X × Y × X and X × Y × Y, respectively.

Let U ⊂ X be an open subset, V ⊂ Y be an open subset, x̄ ∈ U, and ȳ ∈ V. Suppose there
exist constants α, β > 0 and λ ∈ (max{α, β}, 1/q2) such that

(a) dist(x̄, F1(x̄, ȳ)) + dist(ȳ, F2(x̄, ȳ)) <
1 − q2λ

q1
min{dist(x̄, X \ U), dist(ȳ, Y \ V)},

(b)
dist(x, F1(x, y)) + dist(y, F2(x, y)) ≤ αd(u, x) + βσ(v, y) (14)

for all (x, y), (u, v) ∈ U × V such that

x ∈ F1(u, v), y ∈ F2(u, v)

and
αd(u, x) < dist(x, X\U), βσ(v, y) < dist(y, Y\V).
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Then there exist elements x∗ ∈ X and y∗ ∈ Y such that the sequence {xk}∞
k=0 converges to

x∗, and the sequence {yk}∞
k=0 converges to y∗ and

(x∗, y∗) ∈ (F1(x∗, y∗), F2(x∗, y∗)) ∩ (U × V) = H(x∗, y∗) ∩ (U × V),

i.e., there exists a directed path of length ≥ 1 connecting z∗ = (x∗, y∗) with z∗.

Graph-Theoretic Interpretation of the Assumptions

(i) If E(G) is generated by the one-step multimap (F1, F2) via z → z′ whenever
z′ ∈ (F1 × F2)(z), then sequences of successive approximations zk+1 ∈ (F1 × F2)(zk) are
precisely directed paths in G. (ii) Condition (a) guarantees that the path starting at (x̄, ȳ)
remains in U × V: the “margin to the boundary” dominates the first step and, due to the
relaxed triangle inequality, all subsequent steps. (iii) Condition (b) encodes a contractive
behavior along the path: the one-step error is bounded by αd(u, x) + βσ(v, y), and choosing
λ ∈ (max{α, β}, 1/q2) yields geometric decay of consecutive increments. (iv) Complete-
ness of (X, d) and (Y, σ) together with p0- and q0-symmetry ensures the Cauchy path
converges to some z∗ = (x∗, y∗) ∈ U × V. (v) Closedness of the graphs of F1 and F2 turns
the limit into a fixed point, z∗ ∈ (F1 × F2)(z∗), which in graph language is a self-reachable
node (a directed cycle of positive length).

5. Discussion
The results obtained in this paper demonstrate how the concept of coupled fixed

points can be meaningfully extended to the framework of (q1, q2)-quasi-metric spaces. In
particular, the use of approximate coupled fixed points addresses the limitations that occur
when an exact solution can not be obtained. The notion of generalized coupled fixed points
for ordered pairs of maps, proposed in [12] and further developed in [23] for multi-valued
maps and in [3] in an investigation of market equilibrium in oligopoly markets, excludes the
often appearing diagonal case for the solutions. The obtained result shows that asymmetry
does not lead to fixed-point results in the classical sense, but only approximate ones. By
introducing q0-symmetry as an auxiliary condition, the theorems unify existing results from
symmetric and b-metric contexts while allowing for genuinely non-symmetric systems.

We note that fixed-point results have recently been applied in fields not traditionally
associated with them: fixed points of principal bundles over algebraic curves [24]; fixed
points in Higgs bundles over a compact and connected Riemann surface [25,26] and
the Hitchin integrable system [25]; and fixed points with applications to physics [27].
Following the important observations in [13] regarding the relation between fixed points
in partially ordered metric spaces and metric spaces equipped with a graph, one aspect
of this work that we would like to point out is the graph-theoretic interpretation of multi-
valued maps, which translates analytic assumptions into conditions guaranteeing the
existence of directed cycles. This establishes a bridge between nonlinear analysis and
discrete mathematics, extending earlier graph-based studies of fixed points [13,15–17].
This perspective is particularly relevant for applications in networked systems, where
asymmetry and directionality are inherent.

The broader significance of these contributions lies in their potential applications. The
proposed ideas suggest that the applications of coupled and tripled fixed points presented
in [3,23] can be extended in economics and game theory, as quasi-metric asymmetry
naturally models situations with unequal information or sequential decision-making. In
applied sciences, coupled fixed-point results underpin the analysis of nonlinear matrix
equations and ecosystem dynamics [2,23]. The flexibility of the quasi-metric setting thus
enlarges the scope of problems for which rigorous existence results can be established.
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We would like to highlight an important observation from [28], which establishes a
connection between coupled fixed points and fixed points. As noted in [28], the ordered
pair (x, y) is a coupled fixed point for a mapping F : X × X → X if and only if it is a fixed
point of the operator T(x, y) =

(
F(x, y), F(y, x)

)
. This idea was further developed in [29],

where generalized coupled fixed points, i.e., solutions to the systems x = F(x, y) and
y = G(x, y), were associated with fixed points of the operator T(x, y) =

(
F(x, y), G(x, y)

)
.

However, due to the nature of the conditions involved in the study of multi-valued maps,
additional results concerning the geometry of the Cartesian product of two quasi-metric
spaces are required in order to extend these techniques by applying the result from [30].

Lemma 1 ([30]). Let (X1, d1) be a symmetric (p1, q1)-quasi-metric space, and let (X2, d2) be
a (p2, q2)-quasi-metric space. Then, the Cartesian product X1 × X2 endowed with the metric
d((x1, y1), (x2, y2)) = d1(x1, x2) + d2(y1, y2) is a (max{p1, p2}, max{q1, q2})-quasi-metric
space for d(·, ·).

This observation poses an open question for further investigations in multi-valued
maps in the different types of quasi-metric spaces.

6. Conclusions
This paper established new coupled fixed-point theorems for ordered pairs of set-

valued mappings in (q1, q2)-quasi-metric spaces. The main contributions can be summa-
rized as follows: (i) we introduce approximate coupled fixed points, which provide tools for
situations where exact solutions may not exist; (ii) under q0-symmetry and completeness
assumptions, the existence of exact coupled fixed points is guaranteed, extending and
unifying several known results in fixed-point theory; (iii) we establish a graph-theoretic
formulation offering a combinatorial interpretation of the analytic conditions and ensuring
the existence of cycles in associated graphs.

These contributions form a foundation for further research. Promising directions
include extension to stochastic and fuzzy quasi-metric environments, the development
of computational methods based on successive approximations, and the exploration of
applications in economics, networked systems, and nonlinear analysis.
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