
Academic Editors: Raymond Lee and

Ioannis Tsoulos

Received: 24 August 2025

Revised: 26 September 2025

Accepted: 7 October 2025

Published: 10 October 2025

Citation: Wang, X. Multi-Form

Information Embedding Deep Neural

Network for User Preference Mining.

Mathematics 2025, 13, 3241. https://

doi.org/10.3390/math13203241

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Multi-Form Information Embedding Deep Neural Network for
User Preference Mining
Xuna Wang

School of Economics and Management, Nanjing Forestry University, Nanjing 210037, China; xuna616@njfu.edu.cn

Abstract

User preference mining uses rating data, item content or comments to learn additional
knowledge to support the prediction task. For the use of rating data, the usual approach is
to take rating matrix as data source, and collaborative filtering as the algorithm to predict
user preferences. Item content and comments are usually used in sentiment analysis or
as auxiliary information for other algorithms. However, factors such as data sparsity,
category diversity, and numerical processing requirements for aspect sentiment analysis
affect model performance. This paper proposes a hybrid method, which uses the deep
neural network as the basic structure, considers the complementarity of text and numeric
data, and integrates the numeric and text embedding into the model. In the construction
of text-based embedding, extracts the text summary of each text-based review, and uses
the Doc2vec to convert the text summary into multi-dimensional vector. Experiments on
two Amazon product datasets show that the proposed model consistently outperforms
other baseline models, achieving an average reduction of 15.72% in RMSE, 24.13% in MAE,
and 28.91% in MSE. These results confirm the effectiveness of our proposed method for
learning user preferences.

Keywords: user preference; numeric; text; neural networks

MSC: 68T07

1. Introduction
The exponential growth of online platforms has created an unprecedented challenge in

personalized recommendation systems. With billions of users generating massive amounts
of heterogeneous data daily, accurately mining user preferences has become critical for
enhancing user experience and platform engagement [1].

Traditional user preference mining methods primarily rely on single-type data
sources [2], such as rating data or textual reviews, which often fail to fully utilize the rich
information embedded in multi-source heterogeneous data. Existing research demonstrates
that user preference expressions typically manifests in multiple forms of data: numerical
data (such as ratings, click counts, browsing duration, etc.) can quantify user behavioral
intensity, while textual data (such as reviews, tags, descriptions, etc.) can reveal semantic
features and emotional tendencies of user preferences. However, how to effectively fuse
these heterogeneous data to obtain more accurate user preference representations still faces
numerous challenges.

Current multimodal fusion methods generally suffer from noise interference when
processing textual data [3]. User reviews often contain substantial redundant information
irrelevant to core preferences. This noisy text not only fails to contribute effective preference

Mathematics 2025, 13, 3241 https://doi.org/10.3390/math13203241

https://doi.org/10.3390/math13203241
https://doi.org/10.3390/math13203241
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-5882-9562
https://doi.org/10.3390/math13203241
https://www.mdpi.com/article/10.3390/math13203241?type=check_update&version=2

Mathematics 2025, 13, 3241 2 of 18

information but may also mislead the model’s learning process, reducing the accuracy
of preference mining. Furthermore, existing methods lack deep theoretical analysis and
effective technical approaches in fusion strategies for numerical and textual embeddings,
making it difficult to fully leverage the complementary advantages of different modal data.

To address these issues, this paper proposes the Multi-form information Embedding
Neural Network (MENN), a deep learning model for mining user preferences. The main
contributions of this method include: First, a hybrid method is established to learn user
preference knowledge from numerical embedding and textual embedding. Second, in the
process of constructing a textual embedded vector, we develop a novel way to weed out
the redundant texts which do not contribute to the main intent of the user reviews and may
confound the model results. Third, noting the complementarity of textual and numerical
data, the textual embedding and numerical embedding are fused into a joint embedding
representation vector to facilitate analysis of the model.

2. Related Works
This study proposes a deep neural network method that effectively integrates het-

erogeneous information, specifically numerical embeddings and textual embeddings, for
user preference mining. Focusing on the core aspects of this research, we explain related
works from three perspectives: predicting user preferences using rating data, predicting
user preferences using text data, and user preference mining based on deep learning.

2.1. Using Rating Data to Predict User Preferences

Collaborative Filtering (CF) is one of the most widely used methods in recommen-
dation systems, predicting user preferences by analyzing the user-item rating matrix [4].
Its core assumption is that if two users have similar rating patterns for certain items, their
preferences for other items are likely to be similar. CF methods generate recommendations
by finding similar users or items, with user similarity typically measured using Pearson
correlation coefficient and cosine similarity [5]. In recent years, improving the accuracy of
rating predictions has become a research focus, and modeling rating preference behavior
significantly impacts recommendation performance. Rating data contains user preferences
and forms the basis for user preference analysis [6]. However, the number of rating datasets
is limited, generating rating data incurs costs, and data sharing may violate user privacy.
Therefore, many studies attempt to create comprehensive datasets through data genera-
tion and use synthetic datasets to evaluate models [7]. Since synthetic datasets are based
on original datasets, they inevitably bear the characteristics of the original datasets [8].
Moreover, it is unclear whether unknown datasets used for model training and testing will
exhibit different characteristics in actual situations and lead to different model outcomes.
Thus, a relatively reasonable measure is to increase the categories and dimensions of the
data, such as adding comment text corresponding to the numerical data.

2.2. Using Text Data to Predict User Preferences

The core of using natural language processing techniques to predict user preferences
lies in employing sentiment analysis methods to deeply explore the emotional tendencies
and personal preferences contained in user reviews [9]. The application value of sentiment
analysis in recommendation systems has been widely recognized, as user-generated text
reviews constitute a vast repository of emotional opinions about products and services.
Deep learning models such as Convolutional Neural Networks (CNN), Recurrent Neu-
ral Networks (RNN), and Bidirectional Long Short-Term Memory Networks (Bi-LSTM)
have demonstrated excellent performance in sentiment prediction tasks for product re-
views. Furthermore, the advent of pre-trained language models like BERT has significantly

Mathematics 2025, 13, 3241 3 of 18

enhanced the accuracy of text sentiment analysis. In specific scenarios of e-commerce
recommendations, models based on Transformers can effectively parse the complex se-
mantics in user reviews, providing more precise sentiment judgments for product rating
predictions. Notably, compared to rating data, text reviews carry richer semantic informa-
tion [6], offering more detailed, comprehensive, and reliable insights into user preferences
for recommendation systems, thereby aiding in constructing more refined representations
of user preferences [9].

2.3. User Preference Mining Based on Deep Learning

Deep learning technology has catalyzed transformative advancements in the field
of user preference mining by leveraging hierarchical feature learning capabilities to au-
tomatically discover complex user-item interaction patterns. Through multi-layer neural
network architectures with increasing levels of abstraction, deep learning models can learn
sophisticated representations that capture both explicit and implicit preference signals,
effectively modeling the inherent nonlinearities and high-order interactions present in user
behavior data. These deep hidden neural architectures demonstrate exceptional capabilities
across diverse recommendation scenarios, including automated extraction of latent user
profiles and item embeddings, comprehensive understanding of complex nonlinear user-
item dependencies, efficient scalability for large-scale product recommendation systems,
and accurate prediction of sequential user actions in session-based recommendation appli-
cations [10]. Currently, mainstream deep learning recommendation models employ various
architectures, such as multilayer perceptrons, convolutional neural networks, recurrent
neural networks, and the more advanced Transformer models. In recent years, graph
neural networks have become a key technological breakthrough, regarded as a core tool
for solving real-world problems such as recommendation systems, drug development,
and traffic prediction [11]. Additionally, user preference mining methods that incorporate
refined sentiment analysis have made significant progress. These methods leverage the
powerful feature learning capabilities of deep neural networks to excel in accurately ex-
tracting user features and handling complex emotional expressions, effectively enhancing
model performance [12].

Existing research either focuses on deep exploration of a single modality or uses
simple concatenation or weighted summation for fusion. This study proposes a hybrid
approach that achieves deeper cross-modal information interaction within a unified frame-
work by establishing a collaborative learning mechanism for numerical and text embed-
dings, surpassing the limitations of traditional methods that process rating data and text
data independently.

3. Approach
On online user preference mining, in addition to numerical rating information, text-

based reviews are another good means to mine user preferences. The user’s textual
comments on the item complement the numerical rating, reflecting the user’s preference
for the product. Therefore, this paper considers the joint effects of numerical embedding
and textual embedding on deep neural networks. At the same time, by taking the summary
of the user comments as the data embedding bridge, it effectively avoids the possible
interference of some ambiguous and irrelevant sentences in the original comment corpus
on the final results of the model. In what follows, we examine the model’s overall structure,
the numerical information embedding, and the textual information embedding and the
individual user preference.

Mathematics 2025, 13, 3241 4 of 18

3.1. Model Structure

Figure 1 shows the overall architecture of the proposed model. Using a deep neural
network architecture, both numerical embedding and textual embedding are considered in
the embedding layer of the model. The data used for numerical embedding includes user
ID and item ID. The textual embedding uses textual comment data, which correspond to
the user IDs and item IDs. The label value of the model adopts the corresponding user’s
rating value on the item. The size of the label reflects the user’s preference for the product.
The larger the label value, the more the user prefers the product. Numerical embedding
learns the representation of user preference items through user and item information, while
textual embedding learns user preference through textual comment information. Since
numerical embedding and textual embedding are complementary, text embedding explains
the reasons why users rate the items in greater depth. Combining numerical embedding
and text embedding improves the performance of the model in predicting user preferences.

Figure 1. Structure of research approach.

Further, the proposed method does not simply divide the comment text into words
and then map the words onto the data lexicon and embed them into the model. In the
actual text comment section, each comment reflects the user’s preference for a certain
product. Since we focus on extracting user preferences from the comments, compared to
the complicated user comment text, the summary of the comment text clarifies the main
idea of the comment, and removes other sentences that are not related to the main idea
of the text, so it is conducive for reflecting user preferences. Therefore, the first step of
textual embedding for us is to obtain a summary of the comment based on the user’s
textual comments. Then, the Doc2vec algorithm is used to convert the summary into a
multi-dimensional vector, which represents the user’s text comment information about the
item. After obtaining the multi-dimensional vector of the textual comment, it is combined
with the numerical embedding vector to embed the deep neural network for model training.
This approach considers the relationship between user comments and scoring values, as
well as the context between words in the comment text, and uses basic knowledge about
users and items in the training of the model.

In short, the proposed method comprises three steps. The first step constructs the
numerical embedding of the model. The second step builds the textual embedding of the
model. The third step combines the numerical embedding with textual embedding to form

Mathematics 2025, 13, 3241 5 of 18

a new embedding layer. This embedding layer data is fed to the DNN model for training
to predict the user’s preference.

3.2. Numeric Information Embedding

Figure 2 shows how the user and item information are converted into the embedded
vectors. This section describes how to convert numerical information into embedding
vectors, a process consisting of two stages: encoding the numeric data and then converting
it into embedding vectors.

Figure 2. Numerical information embedding process.

3.2.1. Encoding of Numeric Information

Encoding numeric data is an important part of numeric information embedding. In
machine learning applications, features are sometimes not always continuous, and for such
features, it is often necessary to digitize them. For example, a field with an attribute of
“region” may contain “Asia, Europe, US”. To digitize such information, the most direct
way is to serialize each feature as a value, namely, converting the three features contained
in the “region” field into [0,1,2]. However, such feature processing cannot be fed directly
into the machine learning algorithm. Hence, if such a numeric feature processing method
is used in the model calculation, it will affect the model’s performance. In this case, the
value “0,1,2” represents three features. If they are applied directly to the computation,
the value of the numeric features will affect the result. For example, the commonly used
distance or similarity calculation is based on Euclidean distance, rather than directly using
a single value.

One-Hot encoding is a way to extend the value of discrete features to Euclidean space.
The first step of information coding is to number the users and items; each user and item
generating a unique ID number. Second, One-Hot encoding is used to convert the user and
item information into multi-dimensional vectors whose dimensions relate to the number
of users and items. One-Hot encoding, or one-bit effective encoding, uses N-bit status
registers to encode the N states. Each state has a registered bit, and only one bit is valid
at a time. The One-Hot encoding of the user and the item requires that they be mapped

Mathematics 2025, 13, 3241 6 of 18

to integer values separately. Each integer is represented as a binary vector, except that
the value at the position of the integer index is marked as 1, and the value of the other
position is 0.

3.2.2. Convert Numeric Information to Embedding Vectors

The One-Hot encoding of the users and items is converted into multi-dimensional
vectors to facilitate the model computation. With more users and items, the vector dimen-
sion after One-Hot encoding increases. For example, when the number of users is 105, its
dimensions of the encoded vector exceed 105, with most vector elements being 0. Clearly,
the encoded data is too sparse, which causes it to overuse resources. As such, an embedding
layer needs to be introduced to map the high-dimensional sparse coding vectors to the
low-dimensional dense feature representation vector. We use a fully connected layer for
the embedding layer, and set the dimension of the embedding vector, that is, how many
“factors” do each user and item need to assign, which will affect the vector representation
of the user and item. The encoded vectors of the user and the item are transformed into
embedded vectors through a full connection layer, and each embedded vector is updated
during model training.

In the numerical data embedding, we used numerical data including user ID, item ID,
and user rating. The rating is the label of the deep neural network model. Each record in
the original dataset contains the user ID and the item ID, and the user of record i is given as
ui, i ∈ {1, 2, 3, . . . , M}. The item information of record j is denoted by ij, j ∈ {1, 2, 3, . . . , M}.
Suppose the dataset has M records. In the original dataset, a user may correspond to
multiple items, and a item may also correspond to multiple users. So, the number of users
and items is not equal to the size of the dataset M. If the size of the users is K and the size
of the item is V, then the vector dimensions of the users and items after numerical coding
are K and V, respectively, with ui = [ui1, ui2, ui3, . . . , uiK] and ij = [ij1, ij2, ij3, . . . , ijV]. Two
parallel embedding layers are used for the user and item embedding. The user and item
embedding vectors are then combined at the top layer to yield a new joint embedding
vector. In this process, if the user’s input is ui (ui is a multi-dimensional vector), then
the output of the multiple neurons in the user’s embedded layer can be represented by
Equation (1):

y(1)i = σ(W(1)ui + b(1))
y(2)i = σ(W(2)ui + b(2))

...

y(λ)i = σ(W(λ)ui + b(λ))

(1)

where y(1)i , y(2)i and y(λ)i represent the output results of different neurons in the embedded
layer after the input ui is processed by the embedded layer, and λ is the number of neurons
in the user’s embedded layer. σ denotes the activation function, W(1), W(2) and W(λ)

are the corresponding weights of the different neurons, while b(1), b(2) and b(λ) are the
bias quantities.

3.3. Textual Information Embedding
3.3.1. Summarization of Comment Text

First, we generate a summary of the user comments. The underlying assumption is
that the summary represents the user’s feelings about an item, which potentially reflects
the user’s preference of the item. The summary is designed to transform the comments
into short texts containing key information, and its generation method can be divided into
an extraction method and an abstraction method. The abstractive summary rephrases the
key topics of a document using terms that do not appear in the source document. It allows

Mathematics 2025, 13, 3241 7 of 18

new words and phrases to be generated to form a summary. The abstractive summary
method allows new words or phrases to be included, and the summary expression has
a higher flexibility. However, due to the complexity and diversity of natural language
expressions, some identical words can be combined into several sentences with different
meanings. Though the words that form a sentence and the order of the words are similar,
sometimes the difference in punctuation or the position of the punctuation may invoke a
completely different expressive meaning in the sentence. In the analysis of user preferences,
if the abstractive summary generates new words, but the sentence composed of these
words does not fully express the original text, or due to differences in grammar, syntax, or
punctuation cause a part of the sentence to deviate from the original meaning, this situation
will lead to biased results. On the other hand, the extractive summarization method relies
on the original text. Extractive summarization depends on mining the features from source
sentences and paragraphs and putting them into the classification model to determine
whether the input sentence should be placed in the summary. Although the flexibility of
the summarization is low, this method has a low error rate in grammar and syntax, which
ensures that the generated summary can express the intent of the original text. This way of
text summarization has a very good auxiliary role in mining user preferences.

When generating the comment summaries, the “TextRank” algorithm is used to
construct undirected weight edges by taking sentences as nodes and using the similarity
between sentences as edges. We iteratively update the node values using the weights of
the edges and finally select the N nodes with the highest scores as the generated summary.
The “TextRank” algorithm is an extraction method for unsupervised text summarization,
applying the following steps. First, split the textual comment into single sentences. Second,
find the vector representation for each sentence using word vector conversion, find the
similarity between the sentence vectors and place it in the similarity matrix. The similarity
matrix is transformed into a graph with sentences as nodes and similarity scores as edges,
which are used to calculate the sentence scores. Finally, a fixed number of highly ranked
sentences form a summary of the text comments. The expression for TextRank is stated as:

WS(Vi) = (1 − d) + d ∗ ∑
Vj∈In(Vi)

wij

∑
Vk∈Out(vj)

wjk
WS(Vj) (2)

In Equation (2), d denotes the damping coefficient, d ∈ [0, 1]. The left side of Equation (2)
is the weight of a sentence, and the sum on the right side indicates the degree of contribution
of adjacent sentences to the target sentence. The numerator wij represents the similarity of
the two sentences, the denominator is the sum of the weights, while WS(Vj) represents the
weight of iteration j, and Equation (2) is an iterative process. In principle, “TextRank” is
used to obtain the importance of a sentence in the entire article.

3.3.2. Convert Summarization to Embedding Vectors

To ensure that the user’s preferences expressed in the comment are correctly identi-
fied and modeled, we apply the paragraph vector embedding technique of the Doc2vec
algorithm after obtaining the summary of the comment [13], to transform the generated
summary text into a vector representation. The algorithm uses a neural network to predict
the subsequent words in the sentence through the training of the input words and sen-
tences, so as to obtain the sentence representation vector. Therefore, after all the comment
summaries are generated, they will be treated as new separate documents, and the Doc2vec
algorithm is used to convert the independent documents into vector representations. The
transformation into vector representations is convenient for different operations on them,
and it aids further analysis of the comments represented by these real value vectors.

Mathematics 2025, 13, 3241 8 of 18

The Doc2vec model is inspired by the Word2vec model, which is an unsupervised
learning algorithm used to predict vectors to represent different documents. Word2vec is a
model for learning semantic knowledge from a large number of the textual corpus in an
unsupervised way. Word2vec maps each word to a vector space through an embedded
space and to make semantically similar words closer together in that space. Word2vec
models mainly include “Skip-Gram” and “CBOW”, in which Skip-Gram model predicts
the context for a given input word, while CBOW predicts the input word for a given
context. Similarly to the Word2vec model, Doc2vec has two methods during training:
“PV-DM” model (Distributed Memory Model of Paragraph Vectors), and “PV-DBOW”
model (Distributed Bag of Words of paragraph vector). The “PV-DM” model predicts the
input for a given context, while “PV-DBOW” predicts the context for a given input.

Similarly to the word vector technique, the paragraph vector technique involves
predicting the words that appear next. The Doc2vec model maps each word and each
paragraph to a separate vector represented by column matrices W and D, respectively.
During the training process, Doc2vec samples fixed length words from one sentence, among
which one of the words is the prediction word and the other words are used as input words.
The input of the model is the word vector corresponding to the input and the sentence vector
corresponding to this sentence. The input vector of the model is processed to form a new
vector, and the new vector is used to train the model to predict the words in the window.
Unlike Word2vec, Doc2vec adds sentence vectors to the input layer. The model intercepts
a part of the words in the sentence during each training, so the sentence vector of the
input layer is shared in several trainings of the same sentence. After repeated training, not
only the trained word vectors but also the trained sentence vectors are obtained. Sentence
vectors have been trained many times, and the subject of vector expression is becoming
more accurate. Taking the form of “PV-DM” as an example, Figure 3 shows the model
architecture of Doc2vec studied in this paper.

Figure 3. Model architecture of Doc2vec.

As shown in Figure 3, the input data of the model is the sequence of words obtained
by sliding sampling and the ID numbers of the sentences. These textual data are converted
into multi-dimensional numerical vectors through the mapping layer. In the hidden layer,
the subsequent words in the sentence are predicted by connecting the input of the previous
layer or taking the average of the paragraph and the word representation vector of the
previous layer. For a single document formed by each user comment text, the input word
vector and sentence vector will be processed by the hidden layer activation function to
obtain the desired output. After training, the weights of the hidden layer are used to
represent the vectors involved in the words and paragraphs. Such operations are important
for the model to learn the overall performance of user preferences from the comment text.

Mathematics 2025, 13, 3241 9 of 18

3.4. Individual User Preference Extraction

After obtaining the textual embedding and numerical embedding data, the two types
of embedding vectors are merged to form a new embedding vector, indicating that textual
comments and numerical data are complementary in the analysis of a user’s preferences,
and the two collectively affect the user’s preferences. Given the convenience of the on-
line platform in disseminating and exchanging information, a user’s preference may be
influenced by users who have previously commented on the network in addition to their
own internal factors. Moreover, the user’s preference may be related to temporal factors.
The farther away from the user’s current comment time, the smaller the impact on the
user’s preference. Therefore, this paper selects the deep neural networks (DNN) model
as the basic architecture and sends the new joint embedding vector to the DNN model for
training. The final output represents the user’s preference for a certain item.

4. Experimentation
We employ the Tensorflow and Keras frameworks to conduct a series of experiments.

The following contents are carried out using the dataset adopted in the experiment, baseline
comparison methods, relevant parameter setting, evaluation metrics, and experimental
effect comparison.

4.1. Datasets

We select the data of the Amazon platform, which provides not only a large number
of numerical data, but also the textual review of the users on the corresponding products
(http://jmcauley.ucsd.edu/data/amazon/, accessed on 30 January 2021). During the data
sampling phase, we employed a stratified random sampling strategy based on the distri-
bution of ratings. As the original dataset is excessively large, for the sake of experimental
efficiency, we extracted 50,000 samples from each of the “Electronic” and “Book” Amazon
datasets, totaling 100,000 samples. This method ensures that our smaller subset aligns with
the original dataset’s user rating tendencies. In the data preprocessing phase, we focused on
standardization, as well as cleaning punctuation and stop words. Standardization involved
converting all text to lowercase and removing HTML tags. The cleaning process eliminated
all punctuation and used the standard English stop word list provided by the NLTK library
to filter out high-frequency but low-information words. Table 1 describes the variables used
in these two datasets, and Table 2 presents the detailed statistical information of the data.

Table 1. Description of the variables in the datasets.

Variable Type Description

Reviewer ID String ID of the reviewer
Asin String ID of the product

Reviewer Name String Name of the reviewer
Review text String Text of the review

Overall Float Rating of the product

Table 2. Detailed statistical information of the datasets.

Statistic ‘Electronics’ Dataset ‘Book’ Dataset

Total Reviews 50,000 50,000
Unique Users 43,152 47,881
Unique Items 934 1,012

The fields contained in these two datasets are “reviewer ID” (ID of the reviewer),
“asin” (ID of the product), “reviewer Name” (name of the reviewer), “helpful” (helpfulness

http://jmcauley.ucsd.edu/data/amazon/

Mathematics 2025, 13, 3241 10 of 18

rating of the review), “review Text” (text of the review), and “overall” (rating of the
product). We supply the data of “reviewer ID”, “asin”, “overall”, and “review Text” to
the proposed model. Among them, “reviewer ID”, “asin”, and “overall” are numerical
data, representing the users’ ratings on the corresponding products, while “review Text”
is textual data, representing the users’ specific evaluations of the products. In each round
of experimentation, we randomly select 80% of the data as the training set, 10% as the
validation set, and the other 10% as the test set. After using the training data for model
training, the trained model is used in the test set to evaluate model performance.

4.2. Baseline Methods

To validate the effectiveness of the proposed method in this paper, we selected a series
of representative baseline methods for experimental comparison. This set of baselines
covers multiple dimensions: it includes classic models like Factorization Machines (FM)
and Deep Neural Networks (DNN) for feature interaction and nonlinear learning, as well as
advanced models like Deep Factorization Machine (DeepFM) and MLP_NLP that represent
current trends in efficiently integrating heterogeneous features. Additionally, to examine
our model’s performance from more perspectives, we incorporated the Time Effect Collab-
orative Filtering (TECF) model, which specifically addresses the temporal dynamics of user
preferences, and the Stacked Autoencoder as a representative of unsupervised representa-
tion learning. These methods were chosen to cover a range from classic recommendation
algorithms to cutting-edge deep learning models, aiming to comprehensively evaluate our
model’s performance.

FM: The factorization machine model constructs the feature combinations by finding
the inner product of the hidden variables of each dimension feature. The core idea of FM
is to learn a low-dimensional latent vector for each feature and use the inner product of
these vectors to efficiently model second-order interactions between all feature pairs. This
effectively addresses the feature combination explosion problem encountered by traditional
polynomial models when handling large-scale sparse data. In this study, we chose FM as
a baseline model for the following reasons: our proposed model aims to capture higher-
order nonlinear feature interactions through deep networks, while FM focuses on explicit
second-order interactions. Therefore, directly comparing with FM can clearly demonstrate
the effective gains of our model in learning complex higher-order relationships [14].

DNN: DNN forms the foundation of deep learning technology, enabling the automatic
learning and extraction of complex nonlinear relationships from data through a network
structure with multiple hidden layers. In this study, we use DNN as a baseline model for the
following reasons: since our proposed model is a deep learning architecture itself, a basic
DNN model serves as the most direct and fair comparison. By comparing performance with
the DNN, we can clearly assess the real performance improvements brought by specific
modules we designed, such as text processing and feature fusion mechanisms, thereby
strongly demonstrating the innovative value of our model architecture [15].

DeepFM: DeepFM is an advanced recommendation model that combines the advan-
tages of Factorization Machines (FM) and Deep Neural Networks (DNN) through a clever
end-to-end parallel architecture. In this model, the FM component efficiently learns low-
order (especially second-order) explicit feature interactions, while the DNN component
delves into complex and implicit nonlinear relationships hidden in the data. Both com-
ponents share the same feature embedding layer, greatly enhancing the model’s learning
efficiency and expressive power. In this study, DeepFM is chosen as the baseline model
primarily due to its successful integration of different levels of feature interactions, which
directly aligns with our research goal of integrating heterogeneous features (text and nu-
merical data). By comparing performance with DeepFM, we can clearly evaluate whether

Mathematics 2025, 13, 3241 11 of 18

our proposed integration strategy offers superiority over this established interaction fusion
paradigm [16].

TECF: The TECF model is designed to capture the dynamic evolution of user inter-
ests. It builds upon traditional collaborative filtering by introducing a time decay factor,
assigning different weights to users’ historical interactions. Behaviors closer to the cur-
rent time are considered more reflective of users’ true interests and are thus given higher
weights. In this study, TECF is chosen as a baseline model to examine the effectiveness of
our method from a completely different perspective. By comparing it with TECF, we can
assess whether the user preference representation derived from a deep understanding of
content can outperform a model specifically designed to handle temporal dynamics. This
comparison helps to comprehensively validate our model’s ability to capture users’ core,
stable preferences and demonstrates that the textual information we introduce provides
fundamental value beyond simple temporal patterns [17].

Stacked Autoencoder: The Stacked Autoencoder is a classic unsupervised deep
learning model, formed by stacking multiple autoencoders layer by layer. Each layer
learns a compressed representation of the output from the previous layer and attempts to
reconstruct its input. In this study, the Stacked Autoencoder is chosen as a baseline model
primarily to evaluate whether our model, which utilizes label information for end-to-end
learning, can learn feature representations that are superior to the high-quality features
extracted solely from the data’s inherent structure [18].

MLP_NLP: MLP_NLP is a deep learning architecture that combines natural language
processing techniques with a multilayer perceptron to process and utilize text information.
The core idea is to use NLP methods to convert unstructured data, such as user text reviews,
into numerical vectors, which are then sent to a deep neural network for training. In this
study, MLP_NLP is chosen as the baseline model primarily because it represents a classic
paradigm of applying deep learning to natural language processing tasks. One of the
core innovations of our proposed new model lies in the way it processes text data and
integrates it with numerical features. By comparing it with MLP_NLP, we can evaluate the
performance improvements brought by our proposed method [19].

4.3. Parameter Details

In the proposed model, the dimension of the embedded layer is 32, i.e., the DNN
layer has 32 neurons, the activation function selects “Relu”, the optimizer adopts “Adam”,
the loss function selects the “cross entropy” function, the training epoch of the model is
10, and the number of training samples per batch is 1000. Additionally, early stopping is
employed during training to prevent overfitting. The parameters to convert the comment
text summary into a vector are set as follows: the dimension of the feature vector is 100,
the window size is 10 (the window size indicates the maximum distance between the
current word and the predicted word in a sentence), “min_count” is 5 (the minimum word
counting is used to truncate the dictionary, words with a frequency less than this value is
discarded), the value of alpha is 0.01 (alpha represents the initial learning rate), the value
of the sampling threshold is 1 × 10−5, “workers” (it represents the number of parallelism
used to control training) is set as 1, and the training period is set at 50.

To facilitate the comparison of the model experimental effects, all the baseline models,
DeepFM, DNN, FM, Stacked Autoencoder, MLP_NLP use the optimizer “Adam” in the
training process, and the loss function uses the “cross entropy” function, the model training
epoch is 10, and the number of training samples per batch is 1000. The TECF model adopts
the item-based collaborative filtering algorithm. The Stacked Autoencoder uses two stacked
coding layers, the number of coding layer neurons is set to 32 and 16, respectively, and the
activation function uses the “Relu” function. The number of neurons in the decoding layer

Mathematics 2025, 13, 3241 12 of 18

is set to 6. That is, when the value of user ratings is expressed as an integer from 0 to 5,
the feature vector dimension obtained by “one-hot” coding is adopted, and the activation
function of this layer uses the sigmoid function. In the DeepFM model, the number of
hidden factors in the quadratic part of FM is set to 100, and the number of hidden layers in
the DNN is set to 2. These two hidden layers have 32 and 16 neurons, respectively, and the
activation function is set to “Relu”, the number of neurons in the output layer of the DNN
is set to 6, and the activation function is “sigmoid”. Finally, combining the DNN and the
FM, the final output layer dimension is 6, and the activation function is “sigmoid”. The
DNN model has an input layer, two hidden layers and an output layer. The input layer is
used to input numeric data representing the users and corresponding items. The hidden
layers map these data to multi-dimensional vectors. The dimensions of the two hidden
layers are 32 and 16, respectively, and the activation function is “Relu”. The number of
neurons in the output layer is 6, and the activation function adopts the “sigmoid” function.
The number of hidden factors in the FM model is set to 100. The MLP_NLP model sets
an embedding layer, which is used to convert text data into a multi-dimensional vector,
and the dimension of the multi-dimensional vector is set to 32. At the same time, the
model sets two hidden layers, the number of neurons in the two hidden layers is 32 and 16,
respectively, and the activation function is “relu”. The number of neurons in the output
layer is 6, and the activation function selects the “sigmoid” function.

All experiments were conducted on a system equipped with an Intel Core i9 CPU (Intel
Corporation, Santa Clara, CA, USA) and an NVIDIA GeForce RTX 3090 GPU (NVIDIA
Corporation, Santa Clara, CA, USA). The models were implemented in Python 3.6, with
key libraries including NumPy 1.21.2, Pandas 1.4.3, Scikit-learn 1.1.1, and Gensim 4.2.0
for Doc2Vec text vectorization. For each model, we conducted systematic grid searches,
primarily tuning the learning rate, batch size, hidden layer dimensions, and dropout
rate. Each model was evaluated by averaging at least five independent runs to ensure
result stability.

4.4. Evaluation Metrics

The Mean Absolute Error (MAE), Mean Square Error (MSE), and Root Mean Square
Error (RMSE) are commonly used metrics to evaluate model performance. MAE measures
the average value of the absolute error, which reflects the error between the predicted and
the actual values. MAE is as follows.

MAE =
1
m

m

∑
i=1

|yi − ŷi| (3)

MSE sums the square of the difference between the predicted value and the actual
value and then averages the sum of the squares. RMSE is the square root of MSE. These two
indices are often used as the standard for measuring the prediction results of the model.
The MSE and RMSE are written as:

MSE =
1
m

m

∑
i=1

(yi − ŷi)
2 (4)

RMSE =

√
1
m

m

∑
i=1

(yi − ŷi)2 (5)

yi and ŷi represent the actual value and the predicted value, respectively, m represents
the number of real value or predicted value involved in the calculation, that is, the data
size of the test set.

Mathematics 2025, 13, 3241 13 of 18

4.5. Performance Comparison

Our experiments were conducted on Amazon’s “Electronic” and “Book” datasets. The
abstract of the comment text is extracted during the textual embedding process, and the
comment text is converted into an embedding vector according to the abstract. As the
abstract is a summary of the user comment text, it extracts the central idea of the comment
text. Therefore, embedding the text abstract into the model can not only improve the
performance of the model, but also avoids the effect of the redundant and complicated
text description on the model. The proposed method is a new DNN, based on multi-
form information embedding. For the ease of description, we will abbreviate it as the
MENN model.

Table 3 shows the performance of the various models on the “Electronic” and “Book”
datasets. The smaller the evaluation metrics MAE, MSE, and RMSE, the better the pre-
diction error of the model, indicating superior model performance. The best results of
the evaluation metrics are highlighted in bold. Clearly, the MAE, MSE, and RMSE of
FM and TECF are larger than those of the other models, suggesting that the performance
of FM and TECF in mining online user preferences is not as good as the other models.
This may be because these two models are not based on DNN, and DNN has powerful
feature representation capabilities. Next, the DeepFM model has poorer evaluation metrics.
Compared to TECF and FM, DeepFM partially incorporates DNN, which improves the
performance of the model to a certain extent. Though the DeepFM model uses DNN in
the model construction process, given the poor performance of the FM, the FM part of the
DeepFM model may still lower the overall model performance. The other DNN based
models, such as Stacked Autoencoder, DNN, MLP_NLP, and the MENN model, have
relatively better evaluation metrics, and the MENN model performs the best. Figures 4–6
show the improvement rate of the MENN model compared to the other models on the two
datasets “Electronic” and “Book”.

Table 3. Evaluation metrics for experimental models.

Metrics Dataset Autoencoder TECF DeepFM DNN FM MLP_NLP MENN

MAE
Electronic 0.5551 4.2575 3.7681 0.1911 4.1516 0.4879 0.168

Book 0.5924 4.4863 3.9426 0.2508 4.4727 0.452 0.1601

MSE
Electronic 0.5537 19.483 15.5055 0.1834 18.5569 0.2418 0.1359

Book 0.5803 21.0434 16.4629 0.2506 21.0192 0.2146 0.1461

RMSE
Electronic 0.7441 4.414 3.9377 0.4283 4.3078 0.4917 0.3686

Book 0.7618 4.5873 4.0574 0.5006 4.5847 0.4632 0.3822
The best results of the evaluation metrics are highlighted in bold.

Figure 4. MAE improvement rate for models in two datasets.

Mathematics 2025, 13, 3241 14 of 18

Figure 5. MSE improvement rate for models in two datasets.

Figure 6. RMSE improvement rate for models in two datasets.

In Figures 4–6, the abscissa represents the comparison between MENN and the other
baseline models, and the length of the ordinate represents the improvement ratio of the
MENN model compared with the other baseline models. The formula for the size of the
ordinate in Figure 4 can be expressed as

|MAE(measured model)− MAE(best model) |
MAE(measuredmodel)

∗ 100% (6)

The method for representing the ordinate of Figures 5 and 6 is similar to that of Figure 4,
except that the ordinate of Figure 5 measures MSE and the ordinate of Figure 3 measures
the RMSE. From Figures 4–6, clearly the performance improvement effect of MENN model
has reached 90% at the maximum and 10% at the minimum. Overall, the performance
improvement of MENN compared to TECF, DeepFM and FM models is the largest, which
is consistent with the earlier analysis. Second, MENN performs better than Autoencoder
and MLP_NLP. Although Autoencoder and MLP_NLP both belong to the DNN category in
terms of model construction, due to the difference in the internal operating mechanism of
the models, the effect of the models will be different. From the evaluation metrics, MENN
has the least improvement compared with DNN, followed by the MLP_NLP model. The
reason for this result is that although MENN, DNN and MLP_NLP belong to the DNN
category in the model architecture, the DNN in this experiment is mainly analyzed from
the perspective of numerical data embedding, while MLP_NLP uses NLP technology and
multi-layer perceptron model to analyze from the perspective of text-based data embedding.
Moreover, when processing the text data, MLP_NLP does not consider the possible adverse
effects of high-frequency redundant parts in the text corpus on the model effect. The MENN
model also considers the role of numeric data embedding and text data embedding. This
method effectively combines the advantages of these two embedding methods in model

Mathematics 2025, 13, 3241 15 of 18

feature learning. Therefore, compared with the advanced DNN and MLP_NLP, MENN has
better performance.

The performance improvement of the MENN method is primarily attributed to the
following factors: compared to traditional methods like FM and TECF, MENN leverages
a deep neural network architecture to capture more complex nonlinear feature interac-
tions, explaining the significant performance gap with these baseline models. While the
improvement over DNN and MLP_NLP is smaller, this reflects the incremental advantage
of multimodal fusion—MENN processes numerical and textual features simultaneously
through parallel embedding layers, preserving complementary information that single-
modality methods might miss, especially in capturing subtle user preferences. To validate
MENN’s performance compared to the best-performing baseline, we conducted paired
t-tests on results from five independent experiments. The test showed a p-value much less than
0.05 (p ≈ 0.001), indicating that the observed performance gains are statistically significant.

To explore the performance of the model under various dataset sizes, we merged
the two datasets “Electronic” and “Book” into an overall dataset. The number of records
randomly extracted from the overall dataset was 20,000, 40,000, 60,000, 80,000, and 100,000.
The performance of each model is analyzed under these five datasets. The performance of
the models is shown in Figures 7–9.

Figure 7. The MAE of models changes with dataset size.

Figure 8. The MSE of models changes with dataset size.

As can be seen from Figure 7 to Figure 9, the changes in MENN, DNN and MLP_NLP
are small as the dataset size increasing, and the advantage of these models are smaller
prediction errors and better performance. The evaluation metrics of Autoencoder fluctuate
slightly with dataset size. As the dataset increases, the Autoencoder’s prediction error
increases. When the dataset continues to increase, the Autoencoder’s prediction error

Mathematics 2025, 13, 3241 16 of 18

begins to decrease. Similarly, the evaluation metric values of the TECF model and the FM
model with the least satisfactory performance also appear to vary as increasing dataset size.
The fluctuation range of the prediction error of the DeepFM model is larger than that of
other models. It is plausible that the fluctuation of DeepFM model is not only affected by
the DNN model, but also by the FM model. Given the dual impact of the fluctuations of
the FM and the DNN, the fluctuation range of the DeepFM is slightly higher than other
models. In addition, looking at the trend in Figures 7–9, the error values of the Autoencoder,
MLP_NLP, DNN, and MENN models that are based on DNN are relatively close. The
evaluation metric values of these models are much smaller than TECF, FM, and DeepFM.
This phenomenon occurs because TECF and FM are not based on a DNN model, and
DeepFM uses a DNN architecture, offering better performance.

Figure 9. The RMSE of models changes with dataset size.

Figures 10 and 11 are visualizations of embedding text comment data on the two
datasets “Electronic” and “Book”, respectively. These three-dimensional visualizations
were generated using the t-SNE dimensionality reduction method. After summarizing
these text comment data into concise abstract text, the abstract text is converted into
feature vectors that can be embedded in the model. In practice, these feature vectors
are multi-dimensional vectors. To facilitate visual display, these text embedding vectors
are reduced to 3-D vectors. Each dot in the figure represents a 3-D vector, and this 3-D
vector represents a user’s comment record on the corresponding product, portraying it
an example of user comment text vector embedding. As shown in Figures 10 and 11, the
visual images of many users’ comments text are clustered together and very similar, which
means that the comment text they represent has similar meanings. In general, the user
preferences reflected by the user’s textual comments are consistent with the trend of the
user’s rating on the items. Users with a rating of 5 have a different comment tendency
compared to those with a rating of 1. This suggests that spatial distance influences the
user-generated text embedding vectors with different comment tendencies. Users with
similar preferences may have a similar comment tendency on the product, resulting in
the text embedding vectors generated being relatively similar in spatial distance and thus
clustered. When a user’s rating for an item is less than 3, the user’s preference on the item
is low. In Figures 10 and 11, blue dots are used to indicate the embedding of these users’
text comments. In the legend, “class 1” is used to represent such data. Conversely, when
the user’s rating for an item is greater than 3, the user prefers the corresponding item. The
red dots indicate the embedding of these users’ text comments. In the legend, “class 2” is
used to represent such data. Clearly, most text embedding vectors with similar degrees of
preference are clustered, indicating that the tendency of related text comments is relatively

Mathematics 2025, 13, 3241 17 of 18

close. The embedding vector formed by text comments can help DNN models better mine
user preferences.

Figure 10. Electronic vector.

Figure 11. Book vector.

5. Discussion
Through performance comparisons with other baseline models, it was found that the

proposed MENN model achieved better performance on both the “Electronic” and “Book”
datasets, validating the effectiveness of the text and numerical information embedding
deep neural network architecture. Traditional models like FM and TECF perform poorly in
handling complex user preference patterns due to their lack of deep feature representation
capabilities. Although DeepFM incorporates deep learning components, the limitations of
its FM part still restrict overall performance improvement. In contrast, models based purely
on DNN architectures (such as Stacked Autoencoders, DNN, and MLP_NLP) demonstrate
stronger feature learning capabilities. However, the MENN model further exploits the
synergistic effects of multimodal data through an effective parallel embedding strategy of
numerical and textual information, achieving significant performance improvements across
all evaluation metrics. This result not only demonstrates the superiority of deep neural
networks in user preference mining tasks but also highlights the critical role of multimodal
information fusion strategies in enhancing prediction accuracy, providing new technical
insights and empirical support for the field of user preference modeling.

6. Conclusions
This study proposes a multi-form information embedding deep neural network that

integrates numerical and textual data through parallel embedding architectures for en-
hanced user preference mining. The approach addresses single-modality limitations by
leveraging complementary behavioral and semantic information.

Experimental results demonstrate that the proposed MENN model significantly out-
performs baseline methods across multiple datasets. The key finding reveals that numerical
embeddings effectively capture behavioral patterns while textual embeddings provide
semantic context, with their synergistic fusion enabling comprehensive multi-dimensional
user preference modeling and superior predictive accuracy.

However, this study also has some limitations. The main issue lies in the performance
during cold-start scenarios. Although multimodal fusion helps alleviate data sparsity, the

Mathematics 2025, 13, 3241 18 of 18

prediction accuracy for new users and new items still needs improvement. Future research
can explore more effective solutions to the cold-start problem by leveraging “meta-learning.”

Funding: This work was supported by the National Natural Science Foundation of China (No. 72301143;
No. 72502110), China Postdoctoral Science Foundation General Project (No. 2025M770770).

Data Availability Statement: The data presented in this study are openly available at https://github.
com/helloworld1621/user (accessed on 6 October 2025).

Conflicts of Interest: The author declares no conflict of interest.

References
1. Gao, M.; Li, J.Y.; Chen, C.H.; Li, Y.; Zhang, J.; Zhan, Z.H. Enhanced multi-task learning and knowledge graph-based rec-ommender

system. IEEE Trans. Knowl. Data Eng. 2023, 35, 10281–10294. [CrossRef]
2. Cui, Y.; Yu, H.; Guo, X.; Cao, H.; Wang, L. RAKCR: Reviews sentiment-aware based knowledge graph convolutional networks for

Personalized Recommendation. Expert Syst. Appl. 2024, 248, 123403. [CrossRef]
3. Cheng, S.H.; Chen, W.Y.; Liu, W.L.; Zhou, L.; Zhao, H.L.; Kong, W.S.; Qu, H.; Fu, M.S. Dynamic training for handling textual label

noise. Appl. Intell. 2024, 54, 11161–11176. [CrossRef]
4. Alharbe, N.; Rakrouki, M.A.; Aljohani, A. A collaborative filtering recommendation algorithm based on embedding repre-

sentation. Expert Syst. Appl. 2023, 215, 119380. [CrossRef]
5. Kuo, R.J.; Li, S.S. Applying particle swarm optimization algorithm-based collaborative filtering recommender system consid-ering

rating and review. Appl. Soft Comput. 2023, 135, 110038. [CrossRef]
6. Zhu, B.; Guo, D.; Ren, L. Consumer preference analysis based on text comments and ratings: A multi-attribute decision-making

perspective. Inf. Manag. 2022, 59, 103626. [CrossRef]
7. Fonseca, J.; Bacao, F. Tabular and latent space synthetic data generation: A literature review. J. Big Data 2023, 10, 115. [CrossRef]
8. Gabryel, M.; Kocić, E.; Kocić, M.; Patora-Wysocka, Z.; Xiao, M.; Pawlak, M. Accelerating user profiling in e-commerce using

conditional GAN networks for synthetic data generation. J. Artif. Intell. Soft Comput. Res. 2024, 14, 309–319. [CrossRef]
9. Xiao, Y.; Li, C.; Thürer, M.; Liu, Y.; Qu, T. User preference mining based on fine-grained sentiment analysis. J. Retail. Consum. Serv.

2022, 68, 103013. [CrossRef]
10. Park, J.; Ahn, H.; Kim, D.; Park, E. GNN-IR: Examining graph neural networks for influencer recommendations in social media

marketing. J. Retail. Consum. Serv. 2024, 78, 103075. [CrossRef]
11. Wang, J.F.; Guo, Y.F.; Yang, L.; Wang, Y.H. Enabling Homogeneous GNNs to Handle Heterogeneous Graphs via Relation

Embedding. IEEE Trans. Big Data 2023, 9, 1697–1710. [CrossRef]
12. Bian, Y.; Ye, R.; Zhang, J.; Yan, X. Customer preference identification from hotel online reviews: A neural network based

fi-ne-grained sentiment analysis. Comput. Ind. Eng. 2022, 172, 108648. [CrossRef]
13. Hanifi, M.; Chibane, H.; Houssin, R.; Cavallucci, D. Problem formulation in inventive design using Doc2vec and Cosine Sim-ilarity

as Artificial Intelligence methods and Scientific Papers. Eng. Appl. Artif. Intell. 2022, 109, 104661. [CrossRef]
14. Qu, S.L.; Guo, G.B.; Liu, Y.; Yao, Y.; Wei, W. Fast discrete factorization machine for personalized item recommendation. Knowl.-

Based Syst. 2020, 193, 105470. [CrossRef]
15. Wang, R.Q.; Jiang, Y.L.; Lou, J.G. TDR: Two-stage deep recommendation model based on mSDA and DNN. Expert Syst. Appl.

2020, 145, 113116. [CrossRef]
16. Liu, W.; Zhang, Z.; Bai, Y.; Liu, Y.; Yang, A.; Li, J. A DeepFM-based non-parametric model enabled big data platform for predicting

passenger car sales in sustainable way. IEEE Trans. Intell. Transp. Syst. 2023, 24, 16018–16028. [CrossRef]
17. Li, D.; Wang, C.; Li, L.; Zheng, Z. Collaborative filtering algorithm with social information and dynamic time windows. Appl.

Intell. 2022, 52, 5261–5272. [CrossRef]
18. Wu, P.; Miao, Z.D.; Wang, K.; Gao, J.F.; Zhang, X.J.; Lou, S.W.; Yang, C.J. FA-SconvAE-LSTM: Feature-Aligned Stacked Convolu-

tional Autoencoder with Long Short-Term Memory Network for Soft Sensor Modeling. Eng. Appl. Artif. Intell. 2025, 150, 110535.
[CrossRef]

19. Çolhak, F.; Ecevit, M.İ.; Dağ, H.; Creutzburg, R. SecureReg: Combining NLP and MLP for Enhanced Detection of Malicious
Domain Name Registrations. In Proceedings of the 2024 International Conference on Electrical, Computer and Energy Tech-
nologies, Sydney, Australia, 25–27 July 2024; pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://github.com/helloworld1621/user
https://github.com/helloworld1621/user
https://doi.org/10.1109/TKDE.2023.3251897
https://doi.org/10.1016/j.eswa.2024.123403
https://doi.org/10.1007/s10489-024-05738-x
https://doi.org/10.1016/j.eswa.2022.119380
https://doi.org/10.1016/j.asoc.2023.110038
https://doi.org/10.1016/j.im.2022.103626
https://doi.org/10.1186/s40537-023-00792-7
https://doi.org/10.2478/jaiscr-2024-0017
https://doi.org/10.1016/j.jretconser.2022.103013
https://doi.org/10.1016/j.jretconser.2024.103705
https://doi.org/10.1109/TBDATA.2023.3313031
https://doi.org/10.1016/j.cie.2022.108648
https://doi.org/10.1016/j.engappai.2022.104661
https://doi.org/10.1016/j.knosys.2019.105470
https://doi.org/10.1016/j.eswa.2019.113116
https://doi.org/10.1109/TITS.2023.3303428
https://doi.org/10.1007/s10489-021-02519-8
https://doi.org/10.1016/j.engappai.2025.110535
https://doi.org/10.1109/ICECET61485.2024.10698551

	Introduction
	Related Works
	Using Rating Data to Predict User Preferences
	Using Text Data to Predict User Preferences
	User Preference Mining Based on Deep Learning

	Approach
	Model Structure
	Numeric Information Embedding
	Encoding of Numeric Information
	Convert Numeric Information to Embedding Vectors

	Textual Information Embedding
	Summarization of Comment Text
	Convert Summarization to Embedding Vectors

	Individual User Preference Extraction

	Experimentation
	Datasets
	Baseline Methods
	Parameter Details
	Evaluation Metrics
	Performance Comparison

	Discussion
	Conclusions
	References

