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Abstract: The advancement of Transformer models in computer vision has rapidly spurred
numerous Transformer-based object detection approaches, such as DEtection TRansformer.
Although DETR’s self-attention mechanism effectively captures the global context, it strug-
gles with fine-grained detail detection, limiting its efficacy in small object detection where
noise can easily obscure or confuse small targets. To address these issues, we propose Fuzzy
System DNN-DETR involving two key modules: Fuzzy Adapter Transformer Encoder
and Fuzzy Denoising Transformer Decoder. The fuzzy Adapter Transformer Encoder uti-
lizes adaptive fuzzy membership functions and rule-based smoothing to preserve critical
details, such as edges and textures, while mitigating the loss of fine details in global feature
processing. Meanwhile, the Fuzzy Denoising Transformer Decoder effectively reduces
noise interference and enhances fine-grained feature capture, eliminating redundant com-
putations in irrelevant regions. This approach achieves a balance between computational
efficiency for medium-resolution images and the accuracy required for small object detec-
tion. Our architecture also employs adapter modules to reduce re-training costs, and a
two-stage fine-tuning strategy adapts fuzzy modules to specific domains before harmoniz-
ing the model with task-specific adjustments. Experiments on the COCO and AI-TOD-V2
datasets show that FSDN-DETR achieves an approximately 20% improvement in average
precision for very small objects, surpassing state-of-the-art models and demonstrating
robustness and reliability for small object detection in complex environments.

Keywords: object detection; transformer; transfer learning; DEtection TRansformer; fuzzy
system; adapter

MSC: 68T07; 68T45

1. Introduction
Small object detection remains challenging in computer vision as Convolutional Neu-

ral Networks (CNNs) [1–4]—the leading approach for extracting spatial features—depend
on fixed components like anchor boxes and Non-Maximum Suppression (NMS), which limit
flexibility in dynamic environments, especially for small objects. Recently, Transformer-
based models like the DEtection TRansformer (DETR) [5–8] have introduced a new
paradigm by utilizing self-attention to capture global context, spurring diverse adaptations
for object detection [9–12].
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Despite advancements, small object detection remains challenging, particularly since
small objects in medium-resolution images occupy only a few pixels and are highly suscep-
tible to surrounding noise, leading to reduced detection accuracy [13]. While approaches
like super-resolution or the direct use of high-resolution images can improve pixel de-
tail for small objects, they also significantly increase computational demands, especially
with high-resolution feature maps, where costs grow exponentially [14–16]. These high-
resolution approaches often result in excessive computational redundancy, particularly in
irrelevant regions [17]. Furthermore, although DETR-based models are widely applied,
they still struggle to capture fine-grained details, making them sensitive to noise and
complex backgrounds, underscoring the need for more effective solutions in small object
detection [12].

Detecting small objects in images presents a significant challenge due to their limited
pixel information, making them highly susceptible to noise and background interference.
The difficulty is further compounded in complex and noisy environments, where small
objects are often obscured or confused with irrelevant details. Addressing this issue requires
a method capable of capturing fine-grained features while minimizing the impact of noise.
To this end, fuzzy logic offers an effective solution by handling uncertainty and imprecision
in data, particularly in object characteristics such as small shifts in position, scale variations,
and label ambiguities. By assigning a degree of fuzziness to each feature, fuzzy logic
enables the model to capture fine spatial features and better preserve small object details.
Motivated by these strengths, we propose Fuzzy System DNN-DETR (FSDN-DETR),
an enhanced model that integrates fuzzy logic into the DETR framework. In contrast
to existing DETR-based models, which rely solely on global attention mechanisms, our
approach introduces a fuzzy-based approach to improve local feature sensitivity and
robustness in challenging environments.

FSDN-DETR consists of two main components: the Fuzzy Adapter Transformer En-
coder (FATE) and the Fuzzy Denoising Transformer Decoder (FDTD). FATE introduces the
Fuzzy Attention Cross-Domain Module (FACM), which adjusts input features within the
pre-trained Vision Transformer (ViT) encoder using fuzzy rules and membership functions.
This module enhances the model’s ability to capture small variations in object position,
shape, and size, providing flexibility in handling the uncertainty of object boundaries.
FDTD, on the other hand, integrates a fuzzy attention mechanism that dynamically adapts
attention weights based on noise characteristics such as positional shifts and scaling dis-
tortions, enabling the model to focus more effectively on relevant object features while
suppressing noise.

To further optimize training, we employ a two-stage fine-tuning strategy. In the first
stage, only the fuzzy modules (FACM and FDTD) are fine-tuned while the pre-trained
ViT encoder and decoder are frozen. In the second stage, the entire model is unfrozen,
allowing it to adapt more efficiently to domain-specific features. This approach reduces
computational overhead while ensuring that the model benefits from both pre-training and
domain-specific fine-tuning. Our experimental results, illustrated in Figure 1, demonstrate
that FSDN-DETR outperforms existing methods in small object detection, especially when
trained with limited data, highlighting its robustness and efficiency in noisy environments.
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Figure 1. Small Object Detection Performance and Transfer Learning Capabilities of Differ-
ent Models. Pre-trained on COCO and Fine-tuned with Varying Percentages of AI-TOD-V2 Data.
The graph illustrates the Average Precision (AP) values across different training data usage percent-
ages, comparing models DINO-DETR, DQ-DETR, and FSDN-DETR in terms of AP for very tiny, tiny,
and medium object detection categories.

Our work makes key contributions in four main areas:

1. Innovative Fuzzy Logic Integration: Unlike traditional DETR models, which struggle
with fine-detail preservation, we integrate fuzzy logic into the DETR framework to
enhance small object detection. This approach captures fine-grained spatial features
and reduces uncertainty, improving detection accuracy in complex environments.

2. Improved Cross-Domain Adaptability: The Fuzzy Attention Cross-Domain Module
(FACM) dynamically adjusts the ViT encoder, enhancing domain-specific feature
learning and boosting robustness for cross-domain tasks.

3. Two-Stage Fine-Tuning Strategy: We propose a two-stage fine-tuning strategy that
optimizes fuzzy logic integration, improving cross-domain performance with minimal
computational cost.

4. Superior Small Object Detection Performance: Extensive experiments show that
FSDN-DETR outperforms existing models, especially in noisy and cluttered environ-
ments. It significantly improves fine-grained feature preservation and small object
detection accuracy compared to DETR-like models.

2. Related Work
In this section, we elaborate on the advancements in three key areas: (1) Deep learning-

based object detection, (2) Deep Neural Fuzzy Systems (DNFS), and (3) Adapter-Based
Approaches in Transfer Learning. We discuss the progress and contributions made within
each of these domains, highlighting their evolution and significance in the field.

2.1. Deep Learning-Based Object Detection

Deep learning has revolutionized the field of object detection [18], shifting from
traditional hand-crafted feature methods to more complex, data-driven approaches. In par-
ticular, CNNs and Vision Transformers (ViTs) have significantly advanced the accuracy
and efficiency of object detection, as discussed in the following sections on CNN-based and
ViT-based methods.
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2.1.1. CNN-Based Object Detection

In recent years, deep learning has emerged as a dominant approach in visual tasks.
A notable example of this is CNN-based object detection, which is typically classified into
two main categories: (1) two-stage detectors [19–22] and (2) single-stage detectors [23–25].
Two-stage detectors first generate region proposals, which are then classified and regressed.
In contrast, single-stage detectors integrate both tasks into a single network pass, thereby
achieving faster processing times.

The basic idea of two-stage detectors is based on the method of candidate region.
Early advancements were marked by Region-based Convolutional Neural Networks
(R-CNN) [19], which utilized a selective search for proposal generation and CNNs for
feature extraction, yielding notable accuracy improvements but suffering from inefficient
processing due to redundant feature computations. This inefficiency was mitigated by
SPPNet [20], which introduced spatial pyramid pooling to eliminate repeated feature ex-
tractions, significantly enhancing detection speed. Fast R-CNN and its successor [21,26]
refined this approach by integrating proposal feature extraction, classification, and cost-
free proposal generation through the Region Proposal Network (RPN), achieving notable
gains in both speed and accuracy. Subsequent enhancements focused on improving effi-
ciency [27,28], which streamlined computational processes for improved detection speed.
Further breakthroughs included the introduction of Feature Pyramid Networks (FPN) [22],
which utilized a top-down architecture with lateral connections to better leverage multi-
scale features, thereby enhancing detection performance across varying object sizes. As the
demand for real-time and computationally efficient models continued to grow, research
gradually shifted towards the development of single-stage object detectors. These models,
which bypass the proposal generation step by performing object classification and bound-
ing box regression in a single pass, have driven significant advances in detection speed and
efficiency, further propelling progress in the field.

One-stage object detectors are characterized by their unified framework, which per-
forms detection based on a regression approach. Typical algorithms, including YOLO [23],
SSD [24], and RetinaNet [25], have achieved significant improvements in inference speed
while maintaining competitive accuracy, making them particularly suitable for real-time
applications such as video processing [29–31]. The YOLO model, introduced in 2015, was
the first to demonstrate the feasibility of such an approach, achieving high speed and
moderate accuracy by simultaneously predicting bounding boxes and class probabilities.
However, early versions of YOLO faced challenges in detecting small objects due to their
reliance on coarse grid-based feature maps. Subsequent models, including YOLOv2 and
YOLOv3 [32,33], addressed these limitations with improved resolution and multi-scale
strategies, enhancing accuracy, especially for larger objects. Similarly, the Single Shot
MultiBox Detector (SSD) advanced one-stage detection by leveraging multi-scale feature
maps across different layers of the network, significantly improving detection accuracy.
Despite these advancements, one-stage detectors, such as YOLO and SSD, continued to
lag behind two-stage detectors in small object localization, primarily due to their lack of
fine-grained feature extraction. RetinaNet [25], proposed in 2017, introduced the focal
loss function to mitigate class imbalance, further bridging the gap between one-stage and
two-stage models by enhancing accuracy without sacrificing speed. However, challenges
remain in small object detection, as one-stage models still struggle to accurately localize
small objects.

To this end, our proposed model addresses these limitations by introducing a novel
feature extraction strategy and enhancing multi-resolution capabilities, which significantly
improve small object detection performance. By refining the network architecture to
better capture fine-grained details, our model achieves superior localization accuracy
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and robustness in small object detection, outperforming existing one-stage detectors and
offering a more effective solution for real-time applications requiring high precision.

2.1.2. ViT-Based Object Detection

Recent advances in Transformer-based models have enhanced object detection, lever-
aging self-attention mechanisms to capture global dependencies and improve accuracy.
Originally designed for Natural Language Processing, these models have proven effective
in vision tasks, but small object detection remains a challenge due to issues like occlusion,
low resolution, and noise. The DETR [9] addressed these by introducing an end-to-end
framework that eliminates traditional post-processing methods like NMS and anchor boxes.
However, DETR faced slow convergence and struggled with fine-grained details.

Building upon DETR’s framework, Deformable DETR [5] introduced a deformable
attention mechanism that targets specific sampling points, allowing the model to focus
on relevant parts of the image and improve both computational efficiency and spatial
precision. This modification greatly enhances the performance in detecting objects at
various scales, including smaller ones. Additionally, Efficient DETR [6] further refines the
attention mechanism by selecting top K positions from encoder predictions, optimizing
decoder queries, and improving overall efficiency.

Another significant improvement is DN-DETR [7], which addresses the issue of slow
training times in Transformer-based models by incorporating a denoising approach, which
introduces noise into the ground-truth labels and bounding boxes during training. This
accelerates learning, enhances robustness, and improves the model’s practical applicability.
Building on this, DINO-DETR [8] further advances the detection process by integrat-
ing contrastive denoising training, hybrid query selection, and dual forward prediction.
To tackle the detection of small objects, particularly in dense or cluttered environments,
DQ-DETR [12] introduced a dynamic query selection mechanism. By adjusting the number
and position of queries based on the complexity of each scene, DQ-DETR improves the de-
tection of small objects and reduces false positives, enhancing recall in dense environments.
However, this approach only partially addresses the challenges of small object detection,
and further improvements are needed to fully overcome issues such as occlusion and noise
in real-world scenarios.

These advancements demonstrate the strong synergy between ViT architectures and
DETR-based models, leading to significant improvements in object detection in terms
of accuracy, and robustness. However, despite these successes, small object detection
remains a persistent challenge due to issues such as occlusion, low resolution, and noise.
While existing Transformer-based models, including DETR and its derivatives, achieve
remarkable performance in general object detection, they still face difficulties in capturing
the fine-grained details of small objects in complex environments. Our model overcomes
these limitations by integrating fuzzy logic with the Transformer backbone, improving
the sensitivity to small, occluded, and noisy objects. This integration boosts the model’s
robustness and adaptability, particularly in dense or cluttered settings, offering a more
reliable solution for small object detection in real-world applications.

2.2. Deep Neural Fuzzy System

The DNFS represents a significant advancement by combining deep neural networks
(DNNs) with fuzzy systems, enhancing the handling of uncertainty and improving inter-
pretability [34–37]. Fuzzy systems, including fuzzy logic and neuro-fuzzy models, have
gained widespread adoption due to their effectiveness in environments where traditional
binary logic is impractical. They use fuzzy IF-THEN rules to represent knowledge, which
is particularly useful in uncertain or ambiguous settings. A key example is the Adaptive
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Neuro-Fuzzy Inference System (ANFIS) [38], introduced in 1993, which combines fuzzy
inference with neural networks to manage uncertainty more effectively.

Building on this, Talpur et al. [34] introduced a novel DNFS by integrating DNNs with
fuzzy systems, allowing the system to utilize fuzzy rules for improved decision-making.
Further advancements were made by Ali et al. [39], who introduced a Fuzzy Multilayer
Perceptron for skin lesion detection, demonstrating the effectiveness of fuzzy activation
functions in handling complex tasks. The integration of fuzzy logic with deep learning
models, such as CNNs, has enhanced model interpretability and performance, particularly
in image processing tasks. By incorporating fuzzy rules, these hybrid models address issues
of uncertainty, improving feature extraction and classification, as seen in video emotion
recognition and image classification.

The integration of fuzzy systems with ViTs has further advanced the field, with
Liu et al. [40] proposing a Fuzzy Transformer Fusion Network for medical image segmen-
tation, which outperformed state-of-the-art algorithms. This synergy has led to the devel-
opment of Fuzzy-ViT [41], an advanced DNFS designed to leverage large-scale visual data
for cross-domain transfer learning, particularly in uncertain and complex environments
such as medical applications.

Our research explores the integration of DNFS with a Transformer-based object detec-
tion model to improve their performance and generalization. By embedding fuzzy systems
into DETR, we enhance their ability to handle uncertainty, improve detection accuracy,
and enable better generalization in noisy, complex environments.

2.3. Adapter-Based Approaches in Transfer Learning

The rapid evolution of model architectures, coupled with the escalating demands on
scale and training costs, has introduced significant challenges in Transformer-based tasks.
As model size grows, the associated training difficulties become a substantial barrier to the
efficient deployment and optimization of these architectures. Recent advancements have
introduced several strategies to mitigate these challenges, including updating only newly
incorporated parameters or those specific to the model’s input, selectively modifying a small
subset of existing parameters, and employing low-rank factorization techniques to optimize
the weights subjected to updates. These approaches have been integrated into recent
research to develop unified parameter-efficient training frameworks that substantially
alleviate computational burdens [42,43].

Among these strategies, Adapter-based methods have gained considerable attention in
both computer vision [44,45] and natural language processing [45,46] due to their ability to
introduce task-specific parameters without requiring full model retraining, thus preserving
computational efficiency. In contrast to prompt-based techniques, which incorporate
trainable parameters into the input, Adapters enable localized fine-tuning of pre-trained
models, offering a more efficient solution for task adaptation [47–49]. Recently, parameter-
efficient techniques have been extended to models like CLIP, with a focus on improving
image-text alignment [50,51].

Building on this foundation, Chen et al. introduced Adapters in the ViT, demon-
strating their utility in fine-tuning large pre-trained models for downstream tasks [52].
This extension addresses the challenge of applying large models to specific tasks without
retraining the entire model, improving both adaptability and computational efficiency.
In 2023, the SAM-Adapter further advanced this concept by integrating domain-specific
information into the SAM model for image segmentation, overcoming the limitations of
conventional fine-tuning [53]. Despite these advancements, the issue of efficiently adapting
large models to complex tasks such as small object detection remains. Existing Adapter
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methods have yet to fully address the challenge of knowledge sharing across tasks in
multi-task scenarios, which is crucial for improving performance on low-resource datasets.

Our research tackles this gap by applying Adapter-based techniques to small object
detection in challenging environments. We demonstrate that enabling Adapters to share
information across tasks not only enhances performance but also reduces the number of
trainable parameters, making them a more efficient solution for complex visual tasks. This
extension of Adapter-based methods to small object detection highlights their potential
for overcoming existing limitations and provides a pathway for further advancing the
adaptability and efficiency of large-scale pre-trained models.

3. Methodology
This section delves into the methodology behind the FSDN-DETR model, designed to

address the challenges of object detection in complex and noisy environments. The model’s
robustness and adaptability are achieved through the integration of fuzzy logic systems and
DeNoising Anchor Boxes within the DN-DETR architecture. To provide a comprehensive
understanding of our approach, we will detail the model’s key components, starting with
an overview, followed by an in-depth discussion of the FATE, the FDTD, the loss function,
and the training strategy.

3.1. Overview

We propose the FSDN-DETR to address the challenges of object detection in complex
and noisy environments. This model introduces a novel integration of fuzzy logic systems
with DeNoising Anchor Boxes, strategically embedded into the DN-DETR architecture
via an adapter module. The aim is to enhance the model’s robustness and adaptability,
especially when processing uncertain and ambiguous features in the data. The FSDN-DETR
framework primarily comprises three key components: Linear Projection Flattened Patches,
the Fuzzy Adapter Transformer Encoder (FATE), and the Fuzzy Denoising Transformer
Decoder (FDTD), as illustrated in Figure 2.

Figure 2. Architecture of the FSDN-DETR Framework. The model leverages the FATE to enhance
feature representation and adaptability, while the FDTD mitigates noise and refines object detection
results. This integration aims to improve the robustness of object detection under complex and noisy
environmental conditions.
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The process begins with the input image, represented as I ∈ RC×H×W , where C, H,
and W denote the number of channels, height, and width, respectively. This image is
first passed through a linear projection layer, which divides it into a sequence of flattened
patches, denoted as Xp ∈ RN×D, where N = H×W

p2 is the total number of patches and D
is the dimensionality of the patch embedding. These patch embeddings are then used
to form a patch-based representation, which serves as the foundation for subsequent
transformations, facilitating the efficient processing of visual information.

Next, the patch embeddings are fed into the FATE module, where the features undergo
two parallel processes. The Transformer Encoder processes the input features Fe ∈ RN×D,
refining them with self-attention mechanisms. At the same time, the FACM transforms
the same feature set into a fuzzy domain, producing fuzzy-enhanced features Ff ∈ RN×D f ,
where D f represents the dimensionality of the fuzzy-enhanced features. The dual-path
processing within FATE combines the precise feature extraction of the Transformer with the
adaptive, uncertainty-handling capabilities of fuzzy logic, resulting in a richer and more
robust feature representation.

The refined feature maps Fe and Ff are then passed to the FDTD module, where they
are concatenated or selectively combined before being processed. The FDTD module incor-
porates DeNoising Anchor Boxes into the decoding process, applying these to the combined
feature map Fd ∈ RN×Dd , where Dd is the dimensionality after denoising. This crucial
step mitigates noise and enhances the clarity of object detection. The final output, Youtput,
consists of the predicted object classes and bounding boxes, providing improved accuracy
and robustness, particularly in environments with high levels of noise and ambiguity.

To optimize the performance of FSDN-DETR, we employ a gradually fine-tuned train-
ing strategy. During pre-training, specific components, such as the Transformer Encoder
within the FATE module are frozen, while the Fuzzy Attention Cross-Domain Module is
fine-tuned. Similarly, in the FDTD module, the Transformer Decoder is frozen, and the focus
is placed on fine-tuning the Fuzzy System Attention (FSA) module. This targeted approach
ensures that the model achieves superior performance across various object detection tasks,
enabling quick adaptation to new, specialized domains with minimal retraining.

3.2. Fuzzy Adapter Transformer Encoder

The FATE module, depicted in Figure 3, is a key component introduced after patch
embedding in the ViT, designed to direct input features to both the Transformer Encoder
and the FACM for robust cross-domain transfer learning. By incorporating the Fuzzy
System Transitioner (FST) and the Attention Mechanism Smoother (AMS) within the
FACM, FATE leverages fuzzy logic to address uncertainties and complexities inherent in
specialized domains. Building on established methods [41], this design enables fine-tuning
of the FACM while keeping the Transformer Encoder frozen. The FACM acts as an adapter,
allowing the Transformer Encoder to remain frozen during fine-tuning, with updates
focused on the FACM to tailor the model to the target domain. This strategy enhances the
model’s adaptability while retaining the pre-trained Encoder’s feature extraction strength,
making it an effective approach for adapting general vision models to specialized domains.
The following sections will further explore the Fuzzy System in FATE and the Adapter
Structure by FATE.
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Figure 3. FATE Module Architecture. FATE is introduced after the patch embedding stage in the
Vision Transformer and routes features to both the Transformer Encoder and the FACM. The FST and
AMS are integrated to handle uncertainties, facilitating robust cross-domain learning.

3.2.1. Adapter Structure by FATE

The FATE module integrates the FACM with the Transformer Encoder via an adapter
structure, enabling efficient transfer learning. This design allows the parameters of the
Transformer Encoder to remain frozen during fine-tuning, while the FACM is independently
adjusted to better suit the specific characteristics of the target domain. This approach
leverages the robust feature extraction capabilities of the pre-trained Transformer Encoder
while allowing the FACM to focus on domain-specific nuances for enhanced adaptability.

Let x represent the input features, which are passed through the Transformer Encoder
and FACM. The output from the Transformer Encoder can be denoted as T(x), while the
output from the FACM is denoted as F(x).

The adapter structure allows the FACM to be inserted into the Transformer Encoder
without modifying the core architecture. This design is crucial for transfer learning, where
the main backbone (the Transformer Encoder) is pre-trained on large-scale general datasets.
During domain-specific tasks, the FACM is fine-tuned, which is computationally more
efficient than retraining the entire model. This mechanism not only reduces computational
costs but also enhances the model’s performance by effectively transferring knowledge to
specialized domains.

The Transformer Encoder is designed to capture complex dependencies in input data
through several key components. At its core, the Multi-Head Attention (MHA) mechanism
enables the model to focus on different parts of the input sequence by computing attention
scores across multiple heads, capturing relationships between tokens through weighted
sums of query, key, and value representations. This allows the model to learn diverse
features from various input subspaces. Following MHA, Layer Normalization stabilizes
the training process by normalizing activations across features, addressing issues such as
vanishing or exploding gradients. The output is then refined through a Multi-Layer Percep-
tron (MLP) that applies non-linear transformations to produce higher-level representations.
The final output of the Transformer Encoder is given by the following:

T(x) = Encoder(x; θT), (1)



Mathematics 2025, 13, 287 10 of 25

where θT represents the parameters of the Transformer Encoder, which remain fixed during
the fine-tuning process.

The FATE incorporates the FACM through an adapter mechanism, enabling it to adapt
to domain-specific characteristics. The output of the FACM is expressed as follows:

F(x) = FACM(x; θF), (2)

where θF denotes the learnable parameters of the FACM, which are fine-tuned to align
with the specific requirements of the target domain. This allows the FACM to enhance the
model’s attention mechanism by incorporating fuzzy logic principles, which effectively
address domain-specific uncertainties and ambiguities in feature extraction.

The final output of FATE is obtained by combining the outputs of the Transformer
Encoder and the FACM, weighted by learnable factors α and β:

Y = α · T(x) + β · F(x), (3)

where α and β are parameters that control the contributions of the Transformer Encoder
and FACM, respectively. These factors are optimized during fine-tuning to strike a balance
between the generalization capabilities of the Transformer Encoder and the domain-specific
adaptability of the FACM. This weighted combination enables FATE to effectively leverage
both components, enhancing its overall performance for specialized tasks.

3.2.2. Fuzzy System in FATE

The Fuzzy System, embedded within the FACM in the FATE structure, plays a crucial
role in handling the complexities and ambiguities inherent in domain-specific datasets.
This system operates by transforming the feature space from the ViT backbone into a fuzzy
domain, thereby enriching the model’s ability to interpret uncertain and imprecise data.
Within the Fuzzy System, two key components are used: the FST and the AMS. The FST
facilitates the transformation of features into a fuzzy representation, allowing the model to
capture and process uncertainty. Meanwhile, the AMS smooths the attention mechanism,
ensuring that the model focuses more effectively on the most relevant features, further
enhancing its cross-domain transfer learning capabilities.

FST: The transformation process starts within the FST module, using a learnable fuzzy
rule base to adapt general features to domain-specific tasks. This rule base is mathematically
represented as follows:

wr ∈ RNr×D, (4)

where Nr denotes the number of fuzzy rules, and each row of wr corresponds to a distinct
fuzzy rule. This structure allows each rule to be applied to features, ensuring that the
feature space is transformed in alignment with the specific requirements of the domain.

A Gaussian activation function ϕ(wi
r, X) is employed to compute the similarity be-

tween input features and fuzzy rules, capturing spatial and semantic relevance. The mem-
bership degrees M are then aggregated across all fuzzy rules:

M =
Nr

∑
i=1

ϕ(wi
r, X). (5)

To normalize M within the range [0, 1], a sigmoid function ρ is applied:

Mnorm = ρ(M) =
1

1 + e−M . (6)
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In the Fuzzy Feature Transformer (FFT), the fuzzy system plays a pivotal role in
managing the uncertainty and complexity inherent in specialized datasets. By leveraging
a fuzzy rule base and membership function calculations, the FFT enhances the model’s
ability to interpret uncertain or imprecise data, which is especially valuable in domains
where feature ambiguity or noise is prevalent. To account for the varying significance of
different fuzzy rules, learnable weights α ∈ RNr are introduced. These weights enable the
model to adjust the influence of each rule, resulting in refined membership degrees Madj,
which are computed as follows:

Madj = Mnorm ⊙ α, (7)

where ⊙ denotes the Hadamard product. This adjustment ensures that the model focuses
on the most diagnostically relevant fuzzy rules.

AMS: The next stage, occurring within the AMS module, involves enriching the
feature representations by integrating fuzzy logic interpretations into the input features.
The adjusted membership values Madj are expanded to match the dimensions of the input
feature map, denoted x. The expansion is mathematically represented as follows:

Mexp = Exp(Madj, D), (8)

where Exp(·) is the dimension-expansion function. This alignment ensures that each feature
in x is appropriately scaled by its corresponding membership value. The transformed
features are then generated by element-wise multiplication:

Ft = x ⊙ Mexp. (9)

This operation embeds fuzzy logic into the feature space, resulting in a fuzzy-enhanced
feature representation, denoted Ft. Finally, the dimensions of Ft are reduced to preserve the
structural integrity of the original feature map:

xt = Red(Ft), (10)

where Red(·) represents the dimensionality-reduction function. This process ensures that
the data’s structural consistency is preserved while maintaining the fuzzy logic insights,
making xt more effective for handling complex, domain-specific challenges.

The refined fuzzy-transformed features xt are then passed through an attention mech-
anism to further enhance their relevance for classification tasks. This attention mechanism
is similar to those used in Transformer architectures and is crucial for identifying the most
significant features in the data. The queries (Q), keys (K), and values (V) are split into
multiple attention heads, enabling the model to capture intricate relationships within the
data. The splitting operation is expressed as follows:

{Qh, Kh, Vh} = SIH(Q, K, V, NH), (11)

where SIH(·) denotes the splitting function and NH represents the number of attention
heads. Within each attention head, the dot product of Qh and Kh is computed and scaled
by

√
dk, where dk is the dimensionality of the keys. This scaled product is passed through a

Softmax function to produce the attention matrix Ah:

Ah = Softmax

(
QhKT

h√
dk

)
. (12)
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This attention matrix helps the model focus on the most relevant features by guiding
it to prioritize significant aspects of the data. The final step involves applying the attention
matrix to the values Vh to compute a weighted sum, which results in the refined feature
set V′

h:
V′

h = AhVh, h ∈ {1, 2, . . . , NH}. (13)

The outputs from all attention heads are concatenated and passed through a linear trans-
formation with a weight matrix WO, aggregating the information into a coherent representation:

Xts = Concat(V′
1, V′

2, . . . , V′
NH

)WO. (14)

The final output, Xts, represents the smoothed and refined feature map after the fuzzy
transformation, optimized for domain-specific classification tasks. In this process, the opera-
tion Concat concatenates the transformed feature matrices V′

1, V′
2, . . . , V′

NH
along the feature

dimension, enhancing the model’s ability to capture a wider range of domain-specific
characteristics. The concatenated features are then projected using WO, further refining the
representation for the specific task. This dual-path feature aggregation strategy improves
the model’s capacity to handle complex, uncertain data, particularly in environments where
high precision is critical.

3.3. Fuzzy Denoising Transformer Decoder

The FDTD module, as shown in Figure 4, integrates an FSA mechanism within the
transformer decoder to enhance object detection in noisy environments. It uses fuzzy rules
and membership functions to assess noise impact and adaptively adjust attention scores
based on the level of distortion in the input queries. This allows the model to prioritize
cleaner, more reliable features, improving detection robustness. The effectiveness of this
approach depends on the interplay between key components, including the fuzzy rule base,
attention mechanism, transformer architecture, and loss function, all of which contribute to
enhanced noise handling and prediction accuracy.

Figure 4. FDTD Module Architecture. The FDTD integrates FSA in the transformer decoder
using adaptive attention scores based on noise levels to prioritize less noisy information, improving
detection robustness in noisy environments.

3.3.1. Adapter Structure by FDTD

The FDTD module integrates the FSA with the transformer decoder through an adapter
structure, facilitating the seamless interaction between fuzzy logic adjustments and the
robust query-based object detection capabilities of the DN-DETR decoder [7]. This decoder
explicitly formulates queries as box coordinates and processes inputs in two parts: the
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matching part, which uses learnable anchors to approximate ground truth box-label pairs
via bipartite graph matching, and the denoising part, which reconstructs noisy ground
truth objects by introducing grouped variations.

The FSA enhances the decoder’s performance in noisy environments by dynamically
adjusting attention scores. Specifically, fuzzy attention scores Afuzzy are computed as a
weighted sum of membership degrees:

Afuzzy =
Nr

∑
k=1

αk Mk, (15)

where Nr is the total number of fuzzy rules, αk denotes the activation strength of the k-th
rule, and Mk is its corresponding membership degree. These scores refine the Transformer
attention weights Atransformer through element-wise multiplication:

Aadj = Atransformer ⊙ Afuzzy, (16)

where ⊙ represents the Hadamard product. This mechanism allows the model to focus on
less noisy features, bridging the fuzzy system and the decoder for improved query-based
object detection.

To prevent information leakage during training, the decoder employs an attention
mask A, which enforces a separation between matching and denoising tasks. The mask is
defined as follows:

A = [aij]W×W , where W = P × M + N, (17)

ensuring that

aij =

1, if i and j belong to different groups or tasks,

0, otherwise.
(18)

Here, P is the number of denoising groups, M is the number of ground truth objects,
and N is the number of matching queries. This design prevents interactions between noisy
versions of the same object, reinforcing group separation.

The comprehensive attention matrix Acomprehensive combines the adjusted attention
weights with the attention mask as follows:

Acomprehensive = (Atransformer ⊙ Afuzzy)⊙ A, (19)

where Atransformer represents the attention weights from the Transformer model, Afuzzy

indicates the fuzzy adjustments, and A is the attention mask. This formulation effectively
integrates the Transformer’s attention, fuzzy logic-based refinements, and structural con-
straints, guiding the attention mechanism to enhance the model’s robustness to noise while
focusing on cleaner and more relevant data for accurate object detection.

3.3.2. Fuzzy System in FDTD

The FSA mechanism is the core component of the FDTD module and serves as an
adapter within the Transformer Decoder to enhance the model’s performance in noisy
environments. This mechanism dynamically adjusts attention weights based on fuzzy logic,
effectively mitigating the impact of noise on model predictions.

The calculation of attention weights in the FSA begins with aggregating outputs from
fuzzy rules, each weighted by its activation strength. For a given target object within a
denoising group, the FSA mechanism computes the activation strength of each rule based



Mathematics 2025, 13, 287 14 of 25

on input membership values derived from the noise characteristics. The final attention
weight is determined as a weighted sum of rule outputs:

WFuzzy-Attention =
n

∑
i=1

wi · ORule
i , (20)

where wi represents the weight of the i-th rule, determined empirically or via data-driven
approaches, and ORule

i is the output of the i-th rule. Each rule output is computed as the

product of its activation strength, SStrength
i , and its output weight, wi:

ORule
i = SStrength

i × wi. (21)

The activation strength of a rule, SStrength
i , quantifies the degree to which the rule is

applicable to the current input conditions and is computed as the minimum membership
value among all input features:

SStrength
i = min

(
µShift(x, y), µScale(w, h), µFlip(l)

)
. (22)

This formulation ensures that a rule’s contribution is proportional to its relevance,
as indicated by the degree of satisfaction of its input conditions.

The fuzzy rules and corresponding membership functions play a pivotal role in
defining the behavior of the FSA. Three primary rules are implemented: the Center Shifting
Rule, the Box Scaling Rule, and the Label Flipping Rule. Each rule is equipped with
membership functions that capture the “fuzziness” of the associated operations, facilitating
a smooth transition between varying levels of distortion.

For the Center Shifting Rule, a bounding box center shift is classified as a “Small Shift”
if the shift values ∆x or ∆y satisfy |∆x| < λ1 × w/2 and |∆y| < λ1 × w/2. The membership
function µShift(x, y) is defined as follows:

µShift(x, y) = max
(

1 − |∆x|
λ1 × w/2

, 1 − |∆y|
λ1 × h/2

)
. (23)

This function assigns higher membership values to smaller shifts, indicating minimal
impact on the model’s predictions. Similarly, the Box Scaling Rule governs the scaling
of bounding box dimensions. Scaling operations are classified as “Minor Scaling” if the
width and height lie within [(1 − λ2)w, (1 + λ2)w] and [(1 − λ2)h, (1 + λ2)h], respectively.
The corresponding membership function is as follows:

µScale(w, h) = max
(

1 − |wscaled − w|
λ2 × w

, 1 − |hscaled − h|
λ2 × h

)
, (24)

where wscaled and hscaled denote the scaled dimensions. This formulation ensures higher
membership values for minor deviations from the original dimensions, signifying less
significant distortions. The Label Flipping Rule, controlled by the hyperparameter ξ,
classifies label flipping as “Minor Flipping” for small values of ξ. Its membership function
is defined as follows:

µFlip(l) = 1 − ξ. (25)

This simple function reflects the inverse relationship between label flipping probability
and its disturbance impact.

The FSA mechanism employs a set of rules and membership functions to systematically
adjust attention weights, thereby prioritizing inputs with lower levels of noise. This
fuzzy inference approach enables the model to integrate refined attention weights in a
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seamless manner, thereby enhancing the robustness and accuracy of object detection tasks,
particularly in challenging conditions.

3.4. Loss

In the FDTD, two primary loss functions are employed: the reconstruction loss and
the Hungarian loss. These loss functions are meticulously designed to guide the model
in accurately recovering and matching object detection results under noisy and fuzzy
conditions, thereby enhancing the model’s robustness and precision.

The Reconstruction Loss consists of the L1 loss and the Generalized Intersection over
Union (GIoU) loss. The L1 loss measures the absolute difference between predicted and
ground truth bounding boxes, stabilizing predictions in noisy settings. The GIoU loss
penalizes spatial discrepancies between predicted and ground truth boxes, encouraging
tighter and more accurate localization.

LossL1 =
N

∑
i=1

|b̂i − bi|, (26)

where b̂i represents the predicted bounding box, bi is the ground truth bounding box, and N
is the number of objects in the image.

LossGIoU = 1 −
|Bp ∩ Bgt|
|Bp ∪ Bgt|

+
|C − (Bp ∪ Bgt)|

|C| , (27)

where Bp and Bgt are the predicted and ground truth bounding boxes, and C is the smallest
enclosing box containing both.

The Hungarian Loss optimizes the matching of predicted and ground truth boxes
using the Hungarian algorithm, minimizing the matching cost. The label loss component
of this, represented by Focal Loss, helps the model handle class imbalance by increasing
the weight of hard-to-predict samples:

LossLabel = −αt(1 − pt)
γ log(pt), (28)

where pt is the predicted probability for class t, and αt and γ are hyperparameters that
control the balance between easy and hard samples.

The total loss combines these components, facilitating optimal matching between
predicted and ground truth boxes while also refining the bounding box predictions.

3.5. Training Strategy

The training strategy for the FSDN-DETR model is divided into two main phases: the
pretraining phase and the staged fine-tuning phase as illustrated in Figure 5. During the pre-
training phase, the model’s core components, including the ViT-based Transformer Encoder
and Decoder, are initialized and trained on a large-scale, general-purpose dataset. This
phase allows the model to learn fundamental visual patterns and feature representations
without domain-specific adaptations, thereby establishing a robust foundation for visual
processing. The objective is to equip the model with broad, transferable features that can
be applied to a wide range of object detection tasks. Building on this foundation, the model
progresses to the Staged Fine-tuning phase, during which domain-specific adaptations are
introduced and implemented in two stages: the Initial Fine-tuning Stage and the Secondary
Fine-tuning Stage.
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Figure 5. Training Strategy of FSDN-DETR Model. The strategy consists of two phases: pretraining
to initialize the backbone with general features and staged fine-tuning to adapt the model to specific
datasets through selective tuning of fuzzy logic and transformer components.

Initial Fine-tuning Stage: In this stage, the pre-trained Transformer Encoder is frozen,
and the FACM in the FATE is fine-tuned to better manage uncertainties in complex visual
data. The pre-trained Transformer Decoder is also integrated into the FSA module, and fine-
tuned to enhance its denoising capabilities. This stage focuses on adapting the fuzzy logic
modules without altering the pre-trained visual processing components.

Secondary Fine-tuning Stage: In the secondary stage, both the Encoder and Decoder
are unfrozen and fine-tuned together as a unified system. This phase harmonizes the pre-
trained components with the fuzzy logic adaptations from the initial fine-tuning, enabling
the model to achieve a balanced optimization between general visual knowledge and
task-specific fuzzy logic adjustments. The entire model is trained together to maximize
performance in noisy and ambiguous cross-domain object detection tasks.

This staged approach ensures that the transfer of knowledge from the pre-trained
backbone to the newly introduced fuzzy logic modules is gradual and efficient, resulting in
improved robustness and accuracy in challenging environments.

4. Experiments
This section evaluates the FSDN-DETR model through a structured analysis, including

its pre-training on COCO, fine-tuning on AI-TOD-V2, and ablation studies to examine key
components. Performance comparisons and discussions highlight the model’s robustness,
generalization, and improvements over baselines.

4.1. Datasets

COCO [54]: The COCO dataset (Table 1) contains over 330,000 images with more than
2.5 million object instances, spanning 80 object categories. It provides detailed annotations,
including object segmentation masks, key points, and captions, making it a comprehensive
resource for object detection tasks. This dataset serves as a foundation for the pretraining
of the FSDN-DETR model.

AI-TOD-V2 [55]: The AI-TOD-V2 dataset (Table 1) consists of 28,036 aerial images
with a total of 752,745 labeled object instances. It is divided into three subsets: 11,214 im-
ages for training, 2804 images for validation, and 14,018 images for testing. The dataset
features predominantly small objects, with 86% of instances smaller than 16 pixels and an
average object size of 12.7 pixels. The number of objects per image ranges from 1 to 2667,
with an average of approximately 24.64 objects per image and a standard deviation of 63.94,
reflecting a significant variation in object density.
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Table 1. Overview of the datasets used for training and evaluation, including image volume, number
of classes, and data source information for COCO2017 and AI-TOD-V2 datasets.

Name Image Volume Source

COCO2017 [54] 121,408 Microsoft
AI-TOD-V2 [55] 28,036 Wuhan University

4.2. Experimental Design

The experimental protocol is designed to rigorously evaluate the performance of the
FSDN-DETR model by first pre-training it on the COCO dataset using standard object
detection techniques, including multi-scale training and data augmentation. These tech-
niques help the model develop robust general feature representations, which are crucial for
subsequent fine-tuning. After pre-training, the model fine-tunes on the AI-TOD-V2 dataset,
specifically choosing to adapt the model’s parameters for the detection of small and densely
packed objects. This fine-tuning phase is essential for refining the model’s ability to handle
the unique challenges posed by small object detection in complex environments.

We conduct a series of baseline comparisons to benchmark its performance against
well-established models. Specifically, we compare the FSDN-DETR with CNN-based detec-
tors, such as FCIS [4], Faster R-CNN [21] and Mask R-CNN [56], as well as Transformer-
based models, including DETR [9], Deformable DETR [5], DN-DETR [7] and DQ-DETR [12].
These comparisons are performed under consistent training conditions to ensure fairness
and provide an objective assessment of the FSDN-DETR model’s relative performance.
By conducting these comparisons, we aim to demonstrate the advantages of our proposed
model in terms of accuracy, robustness, and adaptability, especially in scenarios involving
small densely packed objects.

4.3. Implementation Details

The training configuration for the FSDN-DETR model is meticulously optimized
following established best practices to balance computational efficiency and model perfor-
mance. The Adam optimizer is employed, equipped with a learning rate scheduler that
initially sets the learning rate to 1 × 10−4 and gradually reduces it based on validation
loss to enhance convergence stability. A batch size of 16 is selected to strike an optimal
balance between computational demands and the stability of convergence during train-
ing. The loss function combines cross-entropy loss with a fuzzy membership loss and is
specifically designed to capture the uncertainties in the predictions, thus enhancing the
model’s robustness in ambiguous scenarios. To maintain consistency and comparability
in performance evaluations, the maximum number of detections per image is capped at
500, ensuring a reliable assessment of detection quality even in densely populated scenes.
The model is implemented using the PyTorch framework [57], leveraging its flexibility and
efficiency in deep learning tasks.

4.4. Evaluation Metrics

The performance of the proposed FSDN-DETR model is evaluated using a compre-
hensive set of metrics to ensure a robust assessment across various object scales.

AP: The primary metric is used to measure the detection accuracy of the model. AP is
calculated as the mean value of precision scores from AP50 to AP95, with an Intersection
over Union (IoU) interval of 0.05. This metric provides an overall evaluation of the model’s
precision across different overlap thresholds.

Scale-specific AP Metrics: To evaluate performance across different object sizes, we
use the following scale-specific AP metrics:
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• APvt (Very Tiny): The evaluation assesses the model’s capacity to identify minute
objects, with a particular focus on those measuring between 2 and 8 pixels. This
metric represents the performance of the model in relation to the most challenging
and intricate detection tasks within the dataset.

• APt (Tiny): Measures detection performance for tiny objects ranging from 8 to 16 pixels,
offering insights into the model’s capability to recognize slightly larger but still chal-
lenging targets.

• APs (Small): Assesses detection accuracy for small objects sized 16–32 pixels, com-
monly found in aerial imagery and complex scenes, highlighting the model’s robust-
ness in this size range.

• APm (Medium): Focuses on the performance for medium-sized objects between
32 and 64 pixels, capturing the model’s effectiveness in handling moderately scaled
objects.

• APl (Large): Measures the performance on large objects (>64 pixels), reflecting the
model’s capability to detect and localize prominently scaled objects with clear boundaries.

These metrics provide a comprehensive evaluation framework, highlighting the
model’s ability to maintain robust detection performance across a wide range of object
sizes and complexities in the AI-TOD-V2 dataset.

4.5. Analysis of COCO Pre-Trained Models’ Performance

We compare the performance of our proposed FSDN-DETR model with state-of-the-art
DETR-based models on the COCO validation dataset. As shown in Table 2, FSDN-DETR
achieves an overall AP of 53.64, outperforming the best-performing DQ-DETR by +3.42%.
Notably, FSDN-DETR excels in small object detection (APs), achieving a score of 35.42,
which is a significant improvement over all other models.

Table 2. Performance comparison of FSDN-DETR and baseline models on the COCO validation
dataset, evaluated using AP metrics for small (APs), medium (APm), and large (APl) object sizes.

Basemodel Method Backbone AP APs APm APl

CNN-based
FCIS [4]+OHEM ResNet-101-C5 32.21 10.14 34.30 50.38

Mask R-CNN [56] ResNet101-FPN 39.54 22.43 43.37 52.21
Faster R-CNN [21] ResNet101-FPN 42.02 26.58 45.41 54.75

DETR-like

DETR [9] ResNet50 42.36 22.47 47.28 61.10
Deformable DETR [5] ResNet50 45.84 27.91 49.06 61.81

DN-DETR [7] ResNet50 46.07 26.68 50.03 63.38
DQ-DETR [12] ResNet50 50.22 31.85 53.19 64.70

Ours FSDN-DETR ResNet50 53.64 35.42 55.93 65.94

The enhanced performance in small object detection can be attributed to the integration
of the Fuzzy Adapter Transformer Encoder (FATE) module. FATE introduces fuzzy logic
into the encoder, allowing the model to focus more effectively on fine-grained details
of small objects, which are typically challenging for traditional object detection models.
By refining the attention mechanism, FATE improves the model’s ability to capture subtle
visual features that are critical for detecting smaller objects.

In addition to small object detection, FSDN-DETR shows consistent improvements
across medium and large objects, with APm and APl scores of 55.93 and 65.94, respectively.
These gains are driven by the Fuzzy Denoising Transformer Decoder (FDTD), which
enhances the model’s ability to handle noise and occlusions—common challenges when
detecting medium and large objects in complex scenes. By denoising the feature maps
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during the decoding stage, FDTD helps improve localization and reduces false positives,
ensuring higher accuracy across all object sizes.

Overall, the FATE and FDTD modules work synergistically, with FATE improving
feature extraction for small objects and FDTD enhancing localization and robustness across
multiple object sizes. This combination enables FSDN-DETR to achieve state-of-the-art
performance on the COCO dataset, demonstrating the effectiveness of fuzzy logic in
improving object detection, particularly for small and occluded objects.

4.6. Evaluation of Fine-Tuned Models on AI-TOD-V2

We evaluate the performance of our FSDN-DETR model after applying a Staged Fine-
tuning strategy on the AI-TOD-V2 dataset, specifically designed to enhance the detection of
small objects. The model is pre-trained on the COCO dataset, during which all parameters
are unfrozen, allowing full optimization of both the backbone and Transformer components.
For fine-tuning AI-TOD-V2, we employ a staged approach where initially only task-specific
modules are trained. This strategy significantly reduces computational costs and improves
convergence stability.

As shown in Table 3, FSDN-DETR achieves an overall AP of 31.58, surpassing the best-
performing DQ-DETR by +1.85%. Notably, FSDN-DETR excels in small object detection
(APs), reaching 37.43, a substantial improvement over all baseline models. Additionally,
the model shows superior performance in detecting very small objects as indicated by the
APvt score of 18.20, demonstrating its effectiveness at handling objects that are even smaller
than those typically addressed in the APs metric.

Table 3. Performance comparison of FSDN-DETR and baseline models on the COCO validation
dataset, evaluated using AP metrics for small (APs), medium (APm), and large (APl) object sizes.

Basemodel Method Backbone AP APs APm APl

CNN-based
FCIS [4]+OHEM ResNet-101-C5 32.21 10.14 34.30 50.38

Mask R-CNN [56] ResNet101-FPN 39.54 22.43 43.37 52.21
Faster R-CNN [21] ResNet101-FPN 42.02 26.58 45.41 54.75

DETR-like

DETR [9] ResNet50 42.36 22.47 47.28 61.10
Deformable DETR [5] ResNet50 45.84 27.91 49.06 61.81

DN-DETR [7] ResNet50 46.07 26.68 50.03 63.38
DQ-DETR [12] ResNet50 50.22 31.85 53.19 64.70

Ours FSDN-DETR ResNet50 53.64 35.42 55.93 65.94

These enhancements can be attributed to both the Staged Fine-tuning strategy and the
incorporation of the Fuzzy Adapter Transformer Encoder (FATE) and Fuzzy Denoising
Transformer Decoder (FDTD) modules. The FATE module enables the model to more effec-
tively capture fine-grained features, which are crucial for small object detection. Meanwhile,
the FDTD module enhances localization precision by denoising feature maps, making it
particularly effective for detecting smaller and occluded objects.

In addition to small and very small objects, FSDN-DETR demonstrates strong per-
formance across medium and large objects, with APm and APl scores of 46.91 and 55.93,
respectively. These gains further confirm the model’s adaptability to various object sizes,
driven by the combination of the fine-tuning strategy and fuzzy logic.

In comparison to DETR-like models, FSDN-DETR consistently outperforms across
all object sizes, particularly in detecting small and very small objects, where it achieves
the highest scores in both APs and APvt. This performance can be attributed to the effec-
tive integration of fuzzy logic into the attention mechanism, which enables the model to
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more effectively refine feature extraction and enhance detection accuracy for small and
occluded objects.

In summary, the results demonstrate that integrating fuzzy logic improves FSDN-
DETR’s ability to detect small and occluded objects, surpassing traditional DETR models.
Its strong performance, particularly with very small objects, highlights the importance
of refined feature extraction and attention mechanisms. These improvements emphasize
the model’s strong transferability to downstream tasks, making FSDN-DETR a promising
solution for diverse real-world detection challenges.

4.7. Ablation Study

To further evaluate the adaptability and generalization capabilities of our FSDN-DETR
model, we conduct an ablation study using a COCO pre-trained model and fine-tune
it on progressively larger portions of the AI-TOD-V2 dataset. Specifically, we use 50%,
65%, and 80% of the training data to analyze the model’s performance under varying
data availability conditions, comparing it against two competitive DETR-based models,
DINO-DETR and DQ-DETR.

As shown in Table 4, FSDN-DETR consistently outperforms DINO-DETR and DQ-
DETR across all training data proportions, demonstrating its robust adaptability to varying
data availability. When trained on 50% of the data, FSDN-DETR achieves an AP of 30.58,
significantly surpassing DQ-DETR (15.21) and DINO-DETR (11.68). This performance
gap widens as the training data increases: with 65% of the data, FSDN-DETR reaches
33.92, outpacing DQ-DETR (23.78) and DINO-DETR (18.42), and with 80% of the data,
FSDN-DETR achieves 36.41, outperforming DQ-DETR (35.64) and DINO-DETR (26.53).
These improvements are particularly evident in APvt (very small object detection), where
FSDN-DETR shows significant gains even with limited data. For example, with 50% of the
data, FSDN-DETR achieves an APvt of 16.20, surpassing DQ-DETR (6.89) and DINO-DETR
(3.86). As the training data increases, FSDN-DETR continues to excel, reaching 21.65 with
80% of the data, significantly outpacing DQ-DETR (16.49) and DINO-DETR (11.94). These
results underscore the superior performance of FSDN-DETR in detecting small and very
small objects, showcasing its effectiveness even in data-limited settings.

Table 4. Ablation Study Results. Performance Comparison of DINO-DETR, DQ-DETR, and FSDN-
DETR on AI-TOD-V2 Dataset Using Different Proportions of Training Data: 50%, 65%, and 80%.

Model Training Data AP APvt APt APs APm

DINO-DETR [8]
50%

11.68 3.86 4.93 8.60 11.53
DQ-DETR [12] 15.21 6.89 12.03 15.34 18.17
FSDN-DETR 30.58 16.20 28.51 33.43 39.81

DINO-DETR [8]
65%

18.42 5.71 9.31 11.32 14.08
DQ-DETR [12] 23.78 9.54 17.49 20.06 25.16
FSDN-DETR 33.92 19.74 33.01 39.16 47.07

DINO-DETR [8]
80%

26.53 11.94 21.36 27.02 32.57
DQ-DETR [12] 35.64 16.49 27.63 36.82 43.30
FSDN-DETR 36.41 21.65 34.23 41.88 48.42

The improvement across all object sizes, including APs (small objects) and APm

(medium objects), further highlights the effectiveness of the fuzzy logic components in-
tegrated into the model, specifically the FACM and FSA modules within the FATE and
FDTD components. The staged fine-tuning strategy, starting with fuzzy logic adaptation
and followed by full model fine-tuning, allows the model to leverage both domain-specific
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and general knowledge effectively, resulting in robust performance even under conditions
with limited training data.

The ablation study shows that FSDN-DETR outperforms DINO-DETR and DQ-DETR
across different training data sizes, demonstrating strong adaptability and transferability.
Even with limited training data (50%), FSDN-DETR excels in detecting small and very
small objects. The fuzzy logic components and staged fine-tuning strategy enable effective
performance across varying data conditions, confirming FSDN-DETR’s robustness in new
datasets and data-limited scenarios.

5. Discussion and Future Work
5.1. Discussion

The experimental results demonstrate that the proposed FSDN-DETR model achieves
notable improvements in small object detection and cross-domain transfer learning. How-
ever, several limitations and challenges were observed during the experiments which
warrant further discussion.

Handling Dense and Small Objects: The proposed FSDN-DETR model demonstrates
strong performance in detecting small and densely packed objects, as evidenced by the
successful identification of small targets in various typical environments. However, chal-
lenges remain in detecting small objects under conditions such as shadows, low lighting,
or occlusion. While the fuzzy logic components within the model significantly enhance its
ability to handle slight positional shifts and scale variations, its performance may degrade
when small objects are obscured by complex lighting conditions or shadows.

As shown in Figure 6, in scenarios where objects are partially shadowed or in low-light
environments, the model’s feature extraction capabilities may not fully capture the fine
details of small objects, leading to detection errors or missed objects. To address these chal-
lenges, further optimization is needed. Future improvements could focus on refining the
fuzzy attention mechanism to better handle illumination variations and occlusions. Addi-
tionally, incorporating more advanced image enhancement techniques or multi-modal data
could improve the model’s robustness under challenging lighting conditions, ultimately
enhancing its performance in real-world, low-visibility environments.

Figure 6. Sample of Error and Correct Detection in Low-Light Scenario. Red boxes indicate
misidentified regions, while green boxes represent correctly detected areas.

Resource Constraints and Computational Overhead: The incorporation of fuzzy logic
modules into the FSDN-DETR architecture, while beneficial for enhancing small object
detection, also introduces increased computational overhead. This was particularly evident
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during the pre-training phase on the COCO dataset, where the added complexity of the
fuzzy logic modules required substantial computational resources for the deeper layers
of the Transformer network. Limited GPU availability during the experiments further
constrained our ability to perform comprehensive hyperparameter tuning and optimiza-
tion, potentially limiting the overall performance of the model. Moreover, the increased
model complexity resulted in longer training times and higher memory usage, which may
restrict the applicability of FSDN-DETR in real-time or resource-constrained environments.
Future work should focus on developing lightweight versions of the fuzzy logic modules
to reduce computational overhead and improve the model’s scalability across various
deployment scenarios.

In summary, while FSDN-DETR demonstrates considerable improvements in small
object detection and cross-domain learning, addressing these challenges is crucial to fully
realize the model’s potential and ensure its robust application in various real-world scenarios.

5.2. Future Work

To address the identified limitations and broaden the applicability of FSDN-DETR,
future research will focus on developing lightweight fuzzy logic modules to improve
computational efficiency and enhance suitability for real-time applications. Additionally,
exploring hybrid learning paradigms that integrate unsupervised and semi-supervised
techniques could further bolster robustness and generalization. Applying the model to
other domains, such as medical imaging and remote sensing, would test its adaptability
and broaden its impact. Finally, advancements in attention mechanisms, such as dynamic
attention routing, may further refine feature aggregation and improve performance. These
efforts aim to position FSDN-DETR as a versatile and efficient solution for diverse object
detection challenges.

6. Conclusions
This paper introduces FSDN-DETR, a novel object detection framework that integrates

fuzzy logic into the Transformer architecture, addressing critical challenges in small object
detection and cross-domain transfer learning. The combination of the Fuzzy Adapter
Transformer Encoder (FATE) and the Fuzzy Denoising Transformer Decoder (FDTD) results
in a more robust model with enhanced noise tolerance and adaptability. In particular,
the incorporation of fuzzy logic improves the model’s ability to handle uncertainties and
ambiguities in feature representations, thereby facilitating more accurate detection of
occluded or small objects, particularly in noisy and complex environments. Moreover,
a staged fine-tuning strategy allows for the integration of pre-trained knowledge with
domain-specific adaptations, improving the efficiency of transfer learning on small, special-
ized datasets. Experimental results on COCO and AI-TOD-V2 demonstrate that the model
achieves superior performance in detecting densely packed and small objects, outperform-
ing state-of-the-art baselines. While the approach shows significant promise, it also presents
challenges, such as increased computational costs and the complexity of optimizing fuzzy
logic within the Transformer. These challenges will require further exploration in future
work to enhance the efficiency and scalability of the model.
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