
Academic Editor: Xiaobing Feng

Received: 2 December 2024

Revised: 3 January 2025

Accepted: 6 January 2025

Published: 9 January 2025

Citation: Lala, T. Stability Analysis of

Batch Offline Action-Dependent

Heuristic Dynamic Programming

Using Deep Neural Networks.

Mathematics 2025, 13, 206. https://

doi.org/10.3390/math13020206

Copyright: © 2025 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license

(https://creativecommons.org/

licenses/by/4.0/).

Article

Stability Analysis of Batch Offline Action-Dependent Heuristic
Dynamic Programming Using Deep Neural Networks
Timotei Lala

Department of Automation and Applied Informatics, Politehnica University of Timisoara, 2, Bd. V. Parvan,
300223 Timisoara, Romania; timotei.lala@student.upt.ro; Tel.: +40-256-403040; Fax: +40-256-403214

Abstract: In this paper, the theoretical stability of batch offline action-dependent heuristic
dynamic programming (BOADHDP) is analyzed for deep neural network (NN) approxima-
tors for both the action value function and controller which are iteratively improved using
collected experiences from the environment. Our findings extend previous research on the
stability of online adaptive ADHDP learning with single-hidden-layer NNs by addressing
the case of deep neural networks with an arbitrary number of hidden layers, updated
offline using batched gradient descend updates. Specifically, our work shows that the
learning process of the action value function and controller under BOADHDP is uniformly
ultimately bounded (UUB), contingent on certain conditions related to NN learning rates.
The developed theory demonstrates an inverse relationship between the number of hidden
layers and the learning rate magnitude. We present a practical implementation involving a
twin rotor aerodynamical system to emphasize the impact difference between the usage of
single-hidden-layer and multiple-hidden-layer NN architectures in BOADHDP learning
settings. The validation case study shows that BOADHDP with multiple hidden layer NN
architecture implementation obtains 0.0034 on the control benchmark, while the single-
hidden-layer NN architectures obtain 0.0049, outperforming the former by 1.58% by using
the same collected dataset and learning conditions. Also, BOADHDP is compared with
online adaptive ADHDP, proving the superiority of the former over the latter, both in terms
of controller performance and data efficiency.

Keywords: ADP; ADHDP; deep neural networks; batch learning; Lyapunov stability;
uniformly ultimately bounded; gradient descent; Q-function; action value function

MSC: 68T05

1. Introduction
Adaptive dynamic programming (ADP) has emerged as a powerful methodology

for tuning control systems in modern applications, where complexity, nonlinearity, and
uncertainty are commonplace. Originating from Werbos’ pioneering work [1], which
was based on the seminal work on dynamic programming conducted by Bellman [2],
ADP soon became a notable stream of research, with multiple ADP designs developed.
Among the ADP designs, two distinct classes of solutions have emerged: heuristic dynamic
programming (HDP) and dual heuristic programming (DHP) [3]. In the HDP framework,
reinforcement learning is employed to determine the cost-to-go from the current state. The
HDP convergence for the general nonlinear systems is presented in [4]. Conversely, in DHP,
neural networks are used to learn the derivative of the cost function relative to the states,
known as the costate vector [5]. The DHP convergence for linear systems was established

Mathematics 2025, 13, 206 https://doi.org/10.3390/math13020206

https://doi.org/10.3390/math13020206
https://doi.org/10.3390/math13020206
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-6682-5609
https://doi.org/10.3390/math13020206
https://www.mdpi.com/article/10.3390/math13020206?type=check_update&version=3

Mathematics 2025, 13, 206 2 of 28

in [6]. For both of those two classes of algorithms, there exists the action-dependent (AD)
adaptation [7]. ADP has also addressed the class of discrete-time control problems [8–13]
and continuous time systems [14–16].

Apart from the theoretical contributions, ADP designs have been validated on a wide
array of real applications. In [17], ADP is applied to a helicopter tracking and trimming
control task. In [18], neural network controllers tuned with the ADHDP method are
applied to an engine torque and exhaust air–fuel ratio control for an automotive engine. A
practical implementation in the context of an electric water heater is presented in [19], where
the collected sensor data were used to learn in a model-free manner the Q-function and
the controller.

Convergence and stability proofs of the iterative processes involved in ADP-like
techniques have also been developed. In [6], the adaptive critic method is described, where
two networks approximate the controller and the Lagrangian multipliers associated with
the optimal control, respectively. The convergence of the interleaved successive update of
the two networks has been analyzed. In [20], an online generalized ADP is issued for a
system with input constraints. Then, using a Lyapunov approach, a uniformly ultimate
boundedness (UUB) stability is proved. The convergence of the value-iteration HDP is
established for the nonlinear discrete-time systems in [4]. In paper [21], the authors derive
the UUB stability for direct HDP algorithms, proving that the actor and critic weights
remain bounded. The actor and critic were approximated by a multilayer perceptron (MLP)
with three layers: input, hidden, and output. However, the updated weights were only
the ones from the hidden and output layers, like in a linear basis function approach. To
overcome the practical limitations imposed by linear basis-function-type approximators,
such as scalability and overfitting, the authors from paper [22] extended the stability
analysis from [21] to MLPs to update both the input-to-hidden-layer weights and the
hidden-to-output weights.

Current research in the field of reinforcement learning (RL), which studies the class
of stochastic systems and controllers, shows significant performances when using deep
NNs for control applications for both discretized systems [23] and continuous control
tasks [24]. The advantage of deep neural networks over single-layer networks lies in their
increased approximation capacity, which is achieved through multiple hidden layers. These
layers enable the composition of features at different abstraction levels, creating a robust
hierarchical representation. This hierarchical structure allows deep networks to learn and
model complex nonlinear relationships within data more effectively than shallow networks.
Thus, using multilayer NNs in ADP applications can enhance learning convergence and the
overall controller performance. Also, using batch learning methods, which update the NN
weights using collected past experiences simultaneously, is more data efficient compared to
the single-transition learning, where the weights are updated one transition at a time. This
also breaks the temporal correlations, helping NNs better generalize across a system’s state
space. Typically, batch learning is combined with offline learning, where the weights are
updated exclusively using a fixed dataset of transitions, without any adaptation during
the controller’s runtime. Methods such as those in [19,24–26] demonstrate the benefits of
using batch learning through a technique known as experience replay. In contrast, ref. [27]
highlights an approach where the entire dataset of collected transitions is used for learning,
in an offline manner.

This paper makes two key contributions. First, we provide a novel theoretical stability
of ADHDP when utilizing deep neural networks as function approximators for both the
action value function and the controller and for when batch learning is issued on the entire
dataset of collected transitions from the system. This stands as an improvement over
the stability analyses performed in [21,22], which were based on single-hidden-layer NN

Mathematics 2025, 13, 206 3 of 28

architectures updated online, with each transition collected during the system runtime.
To this end, we prove that the batched offline ADHDP (BOADHDP) learning process
is uniformly ultimately bounded (UUB) by using the Lyapunov stability approach. We
show that the stability of the learning process is dependent on some conditions imposed
on the NN learning rates and that these conditions also provide a relationship between
the learning rate magnitudes and the number of hidden layers in the networks. Second,
we issue a validation study on a twin rotor aerodynamical system (TRAS) to emphasize
the superiority of employing multiple hidden layers in the NN approximators in the
BOADHDP learning process. We also issue some comparison between BOADHDP and the
online adaptive ADHDP algorithms from [21,22].

The rest of the paper is organized as follows. Section 2 describes the theoretical under-
pinnings of BOADHDP. Section 3 presents the multilayer neural network approximation of
the action value function and controller. Section 4 provides the main theoretical results for
the stability of BOADHDP. Section 5 illustrates the TRAS validation case study. Finally, the
discussion and concluding remarks are presented in Section 6.

2. Problem Formulation
Let the discrete-time nonlinear system described by the state equation be

xk+1 = F(xk, uk), (1)

where k ∈ N denotes the time index, xk = [x1,k, . . . , xn,k]
T ∈ ΩX ⊂ Rn the system state,

uk = [u1,k, . . . , um,k]
T ∈ ΩU ⊂ Rm the control input, F : ΩX × ΩU → ΩX the unknown

continuously differentiable system function, and ΩX and ΩU the compact subsets of Rn

and Rm, respectively. The control input is generated by uk = C(xk), with C : ΩX → ΩU

a time-invariant, continuous state feedback controller function with respect to the state x.
For convention, vectors with [x1,k, . . . , xn,k]

T are column vectors, while the ones without
the transposition are row vectors.

For the optimal control problem, the objective is to find the optimal controller that
minimizes the infinite value function, defined as follows:

V(xk) = ∑∞
i=k r(xi, C(xi)) = r(xk, C(xk)) + V(xk+1), (2)

where function r : ΩX × ΩU → R , having r(xk, uk) ≥ 0, r(0, 0) = 0, is known as the
penalty function, defined as r(xk, uk) = Θ(xk) + C(xk)

TRC(xk), where Θ : ΩX → R is the
penalty term describing the system’s desired behavior as a positive semidefinite function,
and R ∈ Rm×m is a square positive definite command weighting matrix, as in [4]. The
optimal value function [1] is defined as

V∗(xk) = min
C(xk)

{r(xk, C(xk)) + V∗(xk+1)}. (3)

The optimal controller is found by applying the argmin() operator to Equation (3), as

C∗(xk) = argmin
C(xk)

{r(xk, C(xk)) + V∗(xk+1)}. (4)

With the system function F unknown, one cannot apply the well-known ADP methods
for the system (1) directly in order to arrive at (3) and (4). Therefore, the introduction of
action value functions is mandatory to handle the model-free case.

Mathematics 2025, 13, 206 4 of 28

The action value function proposed by [28] evaluates both the current state and the
command. It is defined as

Q(xk, uk) = r(xk, uk) + V(xk+1). (5)

Compared to the value function (2), the action value function represents the cost of
issuing a command uk in a state xk, plus the value function of the next state xk+1. Mainly,
Equation (5) evaluates all possible actions uk ∈ ΩU followed by the controller C(xk+1).
Equation (5) can also be written, according to [28], as

Q(xk, uk) = r(xk, uk) + Q(xk+1, C(xk+1)). (6)

From [28], similarly to the value function (3), the optimal action value function is
defined as

Q∗(xk) = min
C(xk)

{r(xk, uk) + Q∗(xk+1, C(xk+1))}, (7)

and the optimal controller is represented by

C∗(xk) = argmin
C(xk)

{r(xk, uk) + Q∗(xk+1, C(xk+1))}. (8)

ADHDP Algorithm

Arriving at the optimal action value function and controller requires an iterative proce-
dure consisting of j steps, where the action value function and controller are continuously
updated, according to [28]. Starting with an initial controller C0(xk) and an action value
function, e.g., Q0(xk, uk) = 0, the action value function evaluation is issued by

Q1(xk, uk) = r(xk, uk) + Q0(xk+1, C0(xk+1)). (9)

Then, the controller is updated using

C1(xk) = argmin
C(xk)

{r(xk, uk) + Q0(xk+1, C(xk+1))}. (10)

At the jth iteration, the action value function update is

Qj+1(xk, uk) = r(xk, uk) + Qj
(
xk+1, Cj(xk+1)

)
, (11)

while the controller update law is

Cj+1(xk) = argmin
C(xk)

{
r(xk, uk) + Qj(xk+1, C(xk+1))

}
. (12)

The iteration scheme consisting of the repetitive application of Equations (11) and (12)
runs as j → ∞ .

Remark 1. A policy iteration algorithm requires an initially known stabilizing controller C0(xk),
whereas, for value iteration schemes, this need is avoided.

In the next section, the implementation of the controller and action value function
update is issued using a neural network function approximation for Qj(xk, uk) and Cj(xk).

3. Neural Network Implementation for BOADHDP
The recurrent ADP scheme described by Equations (11) and (12) is practically im-

plemented using function approximators for the action value function and controller. To

Mathematics 2025, 13, 206 5 of 28

this end, neural networks (NNs) are used, due to their universal function approximation
property, which is able to handle multidimensional nonlinear systems (1). The tuning of
the NN weights from each individual layer requires both input–output training data and
the employment of the backpropagation mechanism, which can be best described as a
gradient-based update rule.

The training data for the controller and action value function are collected from the
controlled system (1) and take the form of transition tuples (x k, uk, r(xk, uk), xk+1) stored
in a dataset DM = {(x k, uk, r(xk, uk), xk+1)}, with k = 1 : M. The main objective of the
data collection phase is to uniformly sample the state space ΩX ×ΩU , sufficiently exploring
the systems’ dynamics.

The action value function and controller NN weight tuning algorithm, using a gradient
descent, is described in Sections 3.1 and 3.2. The weight gradient update uses the entirety
of the collected transitions from DM, compared to the methods from [21,22] which use
only one transition per gradient update. This method is called batch optimization, and its
utilization is a common practice for the application of RL and ADP applied to complex
nonlinear systems.

For the batch learning implementation, the action value function and controller update
is made simultaneously for the entire dataset DM. Therefore, let Xp = [x1, . . . , xM−1],
X f = [x2, . . . , xM] of size n × (M − 1), and Y = [u1, . . . , uM−1] of size m × (M − 1) be

vectors that lump all states and commands collected in the dataset DM. Also, let Ξ =

[
Xp

Y

]
be the matrix of the concatenation of the states and command matrices converted into a
matrix resembling the action value function input.

Stating
∼
Qj
(
xk, uk, WQ

)
and

∼
Cj(xk, WC) as the action value function and controller

functions, respectively, approximated by NNs, and with ŴQ and ŴC representing the
entirety of the action value function and controller weights, respectively, the gradient
descend update is next detailed.

3.1. Action Value Function NN Approximation

The action value function NN has the scope of approximating (11). Having as inputs
the state xk and uk, the state action function NN is described as

Qj
(
Xp, Y, WQ

)
= Q

(
Xp, Y, Wj

Q

)
= z

LQ
Q = W

LQ
Q,jκ

LQ−1
Q , (13)

where
z

lQ
Q = W

lQ
Q,jκ

lQ−1
Q , for lQ = 1, . . . , LQ,

κ
lQ
Q = ϕ

(
z

lQ
Q

)
,

and LQ is the total number of layers, Wl
Q,j ∈ R

h
lQ
Q ×h

lQ−1
Q is the ideal hidden-layer weight

matrix from the iteration j and layer lQ, and h
lQ
Q is the number of neurons from layer lQ.

The size of Q
(

Xp, Y, Wj
Q

)
is 1× M. Here, ϕ(·) = tanh(·) represents the activation function

and can take any form, such as tanh(·), ReLu(·), sigmoid(·), and so on. The vector κl is the
lQ layer activation output. For the first layer, we have κ0

Q = Ξ.

Generally, weights W
lQ
Q,j

T
, for lQ = 0, . . . , LQ are generally unknown due to the

existing approximation errors in the weight update backpropagation rule. Hence, working
with the real action value function Qj

(
Xp, Y, WQ

)
is not realistic, but only with some

Mathematics 2025, 13, 206 6 of 28

approximations of it. Noting with ŴQ,j the entirety of the action value function weights,
the output of the approximate action value function NN has the form of

Q̂j
(
Xp, Y, ŴQ

)
= Q̂

(
Xp, Y, Ŵj

Q

)
= ẑ

LQ
Q = Ŵ

LQ
Q,jκ̂

LQ−1
Q , (14)

where
z

lQ
Q = W

lQ
Q,jκ

lQ−1
Q , for lQ = 1, . . . , LQ,

κ
lQ
Q = ϕ

(
z

lQ
Q

)
,

and where Ŵl
Q,j ∈ R

h
lQ
Q ×h

lQ−1
Q represents an estimation of the ideal weights for

lQ = 0, . . . , LQ. To update the action value function NN weights, an internal gradi-
ent update loop is issued for the iQ = 0, . . . , IQ steps, having the weights initialized with
ŴQ,j,0 = ŴQ,j. At each iteration i, the following optimization problem needs to be solved,

ŴQ,j,iQ+1 = argmin
Ŵ

1
M

EQ,j,iQ , (15)

where
EQ,j,iQ = eQ,j,iQ e

Q,j,iQ
T (16)

and
eQ,j,iQ =

(
Q̂
(
Xp, Y, Ŵ

)
− ηQ,j,iQ

)T
, (17)

having ηQ,j,iQ = r
(
Xp, Y

)
− γQ̂

(
X f ,

∼
C
(

X f , ŴC,j

)
, ŴQ,j,iQ

)
.

Here, eQ,j,iQ represents the prediction error in the form of a TD error. The state action
function weights are updated by the rule

Ŵ
lQ
Q,j, iQ+1 = Ŵ

lQ
Q,j, iQ

− αQ
∂EQ,j,iQ

∂Ŵ
lQ
Q,j, iQ

, (18)

where αQ > 0 is the action value function NN learning rate and

∂EQ,j,iQ

∂Ŵ
lQ
Q,j, iQ

=
∂EQ,j,iQ

∂ẑ
lQ
Q

∂ẑ
lQ
Q

∂Ŵ
lQ
Q,j, iQ

=
∂EQ,j,iQ

∂ẑ
lQ
Q

κ̂
lQ−1T

Q (19)

∂EQ,j,iQ

∂ẑ
lQ
Q

=
∂EQ,j,iQ

∂ẑ
lQ+1
Q

∂ẑ
lQ+1
Q

∂κ
lQ
Q

∂κ
lQ
Q

∂ẑ
lQ
Q

= Ŵ
lQ+1T

Q,j, iQ

∂EQ,j,iQ

∂ẑ
lQ+1
Q

⊙ .
ϕ
(

ẑ
lQ
Q

)
(20)

The sign
⊙

corresponds to the Hadamard product. Then, the weights ŴQ,j+1 of j + 1
are actualized as ŴQ,j+1 = ŴQ,j,IQ .

3.2. Controller NN Approximation

The controller NN has the scope of approximating C(xk). Noting with WC,j the entirety
of the controller weights, and having as input the state Xp, the output is computed as

Cj
(
Xp, WC

)
= C

(
Xp, WC,j

)
= zC

LC = WLC
C,jκC

LC−1, (21)

where
zC

lC = WlC
C,jκC

lC−1, for lC = 1, . . . , LC

Mathematics 2025, 13, 206 7 of 28

κC
lC = ϕ

(
zC

lC
)

,

and where WlC
C,j ∈ R

h
lC
Q ×h

lC−1
Q represents an estimation of the iteration j of the ideal weights

for the lC = 0, . . . , LC layers. Noting with ŴC,j the estimation of the ideal weights, the
output of the controller NN is

Ĉj
(
Xp, ŴC

)
= Ĉ

(
Xp, ŴC,j

)
= ẑLC

C = ŴLC
C,jκ̂

LC−1
C (22)

with
ẑlC

C = ŴlC
C,jκ̂

lC−1
C , for lC = 1, . . . , LC

κ̂
lC
C = ϕ

(
ẑlC

C

)
and where ŴlC

C,j represents an estimation of the real weights. To update the controller
weights, one needs to issue an internal gradient update loop for the iC = 0, . . . , IC steps,
having the weights initialized with ŴC,j,0 = ŴC,j. At each iteration iC, the following
optimization problem needs to be minimized for the entirety of the collected dataset,
as follows,

ŴC,j,iC = argmin
Ŵ

1
M

EC,j,iC (23)

where
EC,j,iC = eC,j,iC eC,j,iC

T (24)

and
eC,j,iC = Q̂

(
Xp, Ĉ

(
Xp, Ŵ

)
, ŴQ,j+1

)
(25)

where αC > 0 represents the controller NN learning rate.
The update of each individual weights is

ŴlC
C,j, iC+1 = ŴlC

C,j, iC − αC
∂EC,j,iC

∂ŴlC
C,j, iC

(26)

where
∂EC,j,iC

∂ŴlC
C,j, iC

=
∂EC,j,iC

∂ẑlC
C

∂ẑlC
C

∂ŴlC
Q,j, iC

=
∂EC,j,iC

∂ẑlC
C

κ̂
lC−1T

C (27)

∂EC,j,iC

∂ẑlC
C

=
∂EC,j,iC

∂ẑlC+1
C

∂ẑlC+1
C

∂κlC

∂κlC

∂ẑlC
C

= ŴlC+1T

C,j, iC

∂EC,j,iC

∂ẑlC+1
C

⊙ .
ϕ
(

ẑlC
C

)
. (28)

To issue the update (28), it is necessary to compute the gradient of the action value
function with respect to the controller output. This is computed as

∂EC,j,iC

∂ẑLC
C

=
∂EC,j,iC

∂Ĉ
(
Xp, ŴC,j,iC

) =
∂EC,j,iC

∂ẑ1
Q

∂ẑ1
Q

∂κ̂0
Q

∂κ̂0
Q

∂Ĉ
(
Xp, ŴC,j,iC

) = ΨT

(
Ŵ1T

C,j,i
∂EC,j,iC

∂ẑ1
Q

)
= Ωj,i (29)

where Ψ =

[
0n×m

Im

]
and Im are the identity matrix, of dimensions m × m, and 0n×m, a n × m

matrix of zeros. Then, the weights ŴC,j+1 of j + 1 are actualized as ŴC,j+1 = ŴC,j,IC .

3.3. Batch Offline ADHDP with Multiple-Hidden-Layer NN Algorithm

Next, the BOADHDP algorithm using multiple-hidden-layer NN function approxi-
mators is detailed. The algorithm consists of consecutive steps where the action value and
controller NNs are updated.

Mathematics 2025, 13, 206 8 of 28

1. Initialize αQ, αC, IQ, IC, ∆Q. Initialize the NN architectures for Q̂j(Xp, Y, ŴQ) and
Ĉj(Xp, ŴC) by setting LQ, LC, and their respective weights. Let j = 0 and iQ = iC = 0.

2. Collect M transitions from system (1) and construct the database DM.
3. At iteration j, set iQ = 0 and ŴQ,j,iQ = ŴQ,j. Then, update the weights from all LQ

layers using (18) for iQ = 0, IQ. Finally, set ŴQ,j+1 = ŴQ,j,IQ .

4. Set iC = 0 and ŴC,j,iC = ŴC,j. Then, update the weights from all LC layers using (26)
for iC = 0, IC. Finally, set ŴC,j+1 = ŴC,j,IC .

5. If the condition
∥∥ŴQ,j − ŴQ,j−1

∥∥ < ∆Q is not met, update j = j + 1 and go to Step 3.
Else, stop the iterative algorithm.

4. UUB Convergence
In this section, the convergence of the NN weights to a fixed point is examined. By

using a Lyapunov function, the stability of the weight evolution to the fixed point is proved
to be UUB under some specific conditions.

4.1. Lyapunov Approach Description

Each iteration j of the BOADHDP algorithm consists of a total cumulated
number of I = IQ + IC gradient steps for both action value function and
controller. Let a new iteration index be defined as i = 1 : j ∗ I, namely
i ∈

[
1, . . . , IQ, IQ + 1, . . . , I, I + 1, . . . , I + IQ, I + IQ + 1, . . . , 2I, . . .

]
, which represents a

fine-grained iteration over both gradient action value function and controller. During
i ∈

[
jI, jI + IQ

]
, only the action value function neural network weights ŴQ,j,i are updated

using (18), while ŴC,j,i remains unchanged. On the other side, for i ∈
[
jI + IQ, jI + IQ + IC

]
,

only the controller weights ŴC,j,i are updated using (26), while the action value function
weights ŴQ,j,i remain unchanged. To simplify the notation, we substitute ŴQ,j,i and ŴC,j,i

with ŴQ,i and ŴC,i, respectively.
Let W∗

Q and W∗
C represent the optimal weights of the action value function NN and

the controller NN, and let the weight estimation errors between the approximation of the
real weights and the optimal ones be WQ,i = ŴQ,i − W∗

Q, WC,i = ŴC,i − W∗
C.

Therefore, the difference between the estimated weights and the optimal ones at each
layer of both the action value function and the controller NN at each iteration i is, according
to (18) and (26),

W
lQ
Q,i+1 = Ŵ

lQ
Q,i+1 − W

lQ ,∗
Q = Ŵ

lQ
Q,i − αQ

∂EQ,i

∂Ŵ
lQ
Q,i

− W
lQ ,∗
Q = W

lQ
Q,i − αQ

∂EQ,i

∂Ŵ
lQ
Q,i

(30)

WlC
C,i+1 = ŴlC

C,i+1 − WlC ,∗
C = ŴlC

C,i − αC
∂EC,i

∂ŴlC
C,i

− WlC ,∗
C = WlC

C,i − αC
∂EC,i

∂ŴlC
C,i

. (31)

Then, based on (14), (18), (22), and (29), define the following dynamical system with
the nonlinear difference equation system, where P represents a nonlinear function,{[

WQ,i+1

WC,i+1

]
=

[
WQ,i

WC,i

]
−

P

ŴQ,i, ŴQ,i−1, ϕ
(

Ŵ1
Q,iΞ

)
, ϕ
(

Ŵ1
Q,i−1Ξ

)
, . . . , ϕ

(
Ŵ

LQ
Q,iκ̂

LQ−1
Q

)
, ϕ
(

Ŵ
LQ
Q,i−1κ̂

LQ−1
Q

)
ŴC,i, ŴC,i, ϕ

(
Ŵ1

C,iXp

)
, ϕ
(

Ŵ1
C,i−1Xp

)
, . . . , ϕ

(
ŴLC

C,iκ̂
LC−1
C

)
, ϕ
(

ŴLC
C,i−1κ̂

LC−1
C

) .

(32)

Mathematics 2025, 13, 206 9 of 28

Definition 1. The equilibrium point of a system (32) is said to be uniformly ultimately bounded
(UUB) with bound χ > 0 if, for any ψ > 0 and i0 > 0, there exists a positive number N = N(ψ, χ)

independent of i0, such that

∥∥∥∥∥WQ,i

WC,i

∥∥∥∥∥ ≤ χ for all i ≥ N + i0 when

∥∥∥∥∥WQ,i0
WC,i0

∥∥∥∥∥ ≤ ψ.

4.2. Preliminary Results

In the following, the UUB property of the system (32) is demonstrated for the update
rules (18) and (26), both of which make the weights of the two approximating NNs enter a
region with the center in the optimal weights W∗

Q and W∗
C. Some fundamental assumptions

are next introduced.

Assumption 1. The optimal NN weights for the action value function and the controller and
the activation function ϕ(·) are bounded by positive constants, i.e.,

∥∥∥W∗
Q

∥∥∥ ≤ W∗
Q,max,

∥∥W∗
C
∥∥ ≤

W∗
C,max, ∥ϕ(·)∥ ≤ ϕmax.

Lemma 1. Under Assumption 1, it is implied that the first difference of Γ
LQ
Q,i =

1
αQ

tr
{

W
LQ
Q,i

T
W

LQ
Q,i

}
is

given by

∆Γ
LQ
Q,i = −tr

{
2W

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ αQtr

{
eQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

. (33)

Proof. Let ∆Γ
LQ
Q,i be described as

∆Γ
LQ
Q,i =

1
αQ

tr
{

W
LQ
Q,i+1

T
W

LQ
Q,i+1 − W

LQ
Q,i

T
W

LQ
Q,i

}
. (34)

Using (19), (20), and (30), we get

W
LQ
Q,i+1 = W

LQ
Q,i − αQ

∂EQ,i

∂Ŵ
LQ
Q, i

=W
LQ
Q,i − αQ

∂EQ,i

∂eQ,i

∂eQ,i

∂ẑL
∂ẑL

∂Ŵ
LQ
Q, i

= W
LQ
Q,i − αQeQ,iϕ

(
ẑ

LQ−1
Q

)T
(35)

Based on this, we have

∆Γ
LQ
Q,i =

1
αQ

tr

{(
W

LQ
Q,i − αQeQ,iϕ

(
ẑ

LQ−1
Q

)T
)T(

W
LQ
Q,i − αQeQ,iϕ

(
ẑ

LQ−1
Q

)T
)
− W

LQ
Q,i

T
W

LQ
Q,i

}
= 1

αQ
tr
{(

W
LQ
Q,i

T
− αQϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
)(

W
LQ
Q,i − αQeQ,iϕ

(
ẑ

LQ−1
Q

)T
)
− W

LQ
Q,i

T
W

LQ
Q,i

}
= 1

αQ
tr
{
−2αQW

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T + α2
QeQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

= −tr
{

2W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ αQtr

{
eQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

.

(36)

□

Lemma 2. Under Assumption 1, it is implied that the first difference of Γ
lQ
Q,i =

1
αQ

tr
{

W
lQ
Q,i

T
W

lQ
Q,i

}
,

for lQ = 1 : LQ − 1 is given by

−tr
{

2W
lQ
Q,i

T
(

W
lQ+1
Q,i

T
Φ

lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
+

tr
{

αQϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1
i

T
Ŵ

lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

W
lQ+1
Q,i

T
Φ

lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
.

(37)

Mathematics 2025, 13, 206 10 of 28

Proof. For any ∆Γ
lQ
Q,i, with lQ = 1 : LQ − 1, we have

∆Γ
lQ
Q,i =

1
αQ

tr
{

W
lQ
Q,i+1

T
W

lQ
Q,i+1 − W

lQ
Q,i

T
W

lQ
Q,i

}
. (38)

Based on (19), (20), and (30), we get

W
lQ
Q,i+1 = W

lQ
Q,i − αQ

(
Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)
, (39)

with Φ
lQ+1
i =

∂EQ,i

∂ẑ
lQ+1
Q

. Based on (38) and (39), one gets

∆Γ
lQ
Q,i

= 1
αQ

tr

{(
W

lQ
Q,i − αQ

(
Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

))T(
W

lQ
Q,i

−αQ

(
Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

))
−W

lQ
Q,i

T
W

lQ
Q,i

}
= 1

αQ
tr
{(

W
lQ
Q,i

T
− αQϕ

(
ẑ

lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
))(

W
lQ
Q,i

−αQ

(
Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

))
−W

lQ
Q,i

T
W

lQ
Q,i

}
= 1

αQ
tr
{
−2αQW

lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)
+α2

Qϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
= −tr

{
2W

lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
+tr

{
αQϕ

(
ẑ

lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
.

(40)

□

Lemma 3. Under Assumption 1, it is implied that the first difference of ΓLC
C,i =

1
αC

tr
{

WLC
C,i

T
WLC

C,i

}
is

given by

−tr
{

2WlC
C,iϕ

(
ẑLC−1

C

)
Ωi

T
}
+ αCtr

{
Ωiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

. (41)

Proof. Let ∆ΓLC
C,i be described as

∆ΓLC
C,i =

1
αC

tr
{

WLC
C,i+1

T
WLC

C,i+1 − WLC
C,i

T
WLC

C,i

}
. (42)

Based on (27), (28), and (31), let

WlC
C,i+1 = WlC

C,i − αC
∂EC,i

∂ŴlC
C,i

= WlC
C,i − αCΩiϕ

(
ẑLC−1

C

)T
. (43)

Therefore,

Mathematics 2025, 13, 206 11 of 28

∆ΓLC
C,i =

1
αC

tr

{(
WlC

C,i − αCΩiϕ
(

ẑLC−1
C

)T
)T(

WlC
C,i − αCΩiϕ

(
ẑLC−1

C

)T
)
− WLC

C,i
T

WLC
C,i

}
=

1
αC

tr
{(

WlC
C,i

T
− αCϕ

(
ẑLC−1

C

)
Ωi

T
)(

WlC
C,i − αCΩiϕ

(
ẑLC−1

C

)T
)
− WLC

C,i
T

WLC
C,i

}
=

1
αC

tr
{
−2αCWlC

C,iϕ
(

ẑLC−1
C

)
Ωi

T + α2
CΩiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

=

−tr
{

2WlC
C,iϕ

(
ẑLC−1

C

)
Ωi

T
}
+ αCtr

{
Ωiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

.

(44)

□

Lemma 4. Under Assumption 1, it is implied that the first difference of ΓlC
C,i =

1
αC

tr
{

WlC
C,i

T
WlC

C,i

}
,

for lC = 1 : LC − 1, is given by

−tr
{

2WlC
C,i

T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
+αCtr

{
ϕ
(

ẑlC−1
C

)T
(

χ
lC+1
i

T
ŴlC+1

C,i
⊙ .

ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)} (45)

Proof. For any ∆ΓlC
C,i, with lC = 1 : LC − 1, we have

∆ΓlC
C,i =

1
αC

tr
{

WlC
C,i+1

T
WlC

C,i+1 − WlC
C,i

T
WlC

C,i

}
(46)

Based on (27), (28), and (31), we get

WlC
C,i+1 = WlC

C,i − αC

(
ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)
, (47)

with χ
lC+1
i =

∂EC,i

∂ẑ
lC+1
C

. Based on (46) and (47), one gets

∆ΓlC
C,i

= 1
αC

tr

{(
WlC

C,i − αC

(
ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

))T(
WlC

C,i

−αC

(
ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

))
−WlC

T

C,i WlC
C,i

}
= 1

αC
tr
{(

WlC
T

C,i − αCϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
))(

WlC
C,i

−αC

(
ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

))
−WlC

C,i
T

WlC
C,i

}
= 1

αC
tr
{
−2αCWlC

C,i
T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)
+α2

Cϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
= −tr

{
2WlC

C,i
T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
+αCtr

{
ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
.

(48)

□

4.3. Main Stability Analysis

This section provides the main stability theory for the error estimation of system (32).

Mathematics 2025, 13, 206 12 of 28

Theorem 1. Running BOADHDP algorithm from Section 3.3, which iteratively updates ŴQ,i and
ŴC,i using (18) and (26), the action value function and controller weights converge to their optimal
weights W∗

Q and W∗
C, respectively, such that WQ,i → 0 and WC,i → 0 if

αQ <
2
(

WQ, max
2
ϕQ,max

2 + ∑
LQ−1
lq=1 WQ, maxϕ2

Q,maxŴQ, max∏
LQ−1
l=lQ

ŴQ, max
.
ϕQ,max

)
WQ, max

2
ϕQ,max

4 + ∑
LQ−1
lq=1 Ŵ2

Q, maxϕQ,max
4∏

LQ−1
l=lQ

Ŵ2
Q, max

.
ϕQ,max

2 = αQ,max (49)

αC <
2
(

WC, maxΩmaxϕmax + ∑LC−1
lC=1 WC, maxϕmaxΩmax∏LC−1

l=lC
ŴC, max

.
ϕC,max

)
Ωmax

2ϕmax
2 + ∑LC−1

lC=1 ϕmax
2Ωmax

2∏LC−1
l=lC

Ŵ2
C, max

.
ϕC,max

2 = αC,max. (50)

Proof. According to (18) and (26), we have, for each layer of action value function and
controller NN,

W
lQ
Q,i+1 = Ŵ

lQ
Q,i+1 − W

lQ ,∗
Q = Ŵ

lQ
Q,i − αQ

∂EQ,i

∂Ŵ
lQ
Q,i

− W
lQ ,∗
Q = W

lQ
Q,i − αQ

∂EQ,i

∂Ŵ
lQ
Q,i

, (51)

WlC
C,i+1 = ŴlC

C,i+1 − WlC ,∗
C = ŴlC

C,i − αC
∂EC,i

∂ŴlC
C,i

− WlC ,∗
C = WlC

C,i − αC
∂EC,i

∂ŴlC
C,i

. (52)

Let the Lyapunov function candidate be defined for each weight matrix according to
each action value function and controller NN layer lQ and lC be described as

ΓQ = Γ1
Qi

+ . . . + Γ
LQ
Q,i =

1
αQ

tr
{

W1
Q,i

T
W1

Q,i

}
+ . . . +

1
αQ

tr
{

W
LQ
Q,i

T
W

LQ
Q,i

}
(53)

ΓC = Γ1
C,i + . . . + ΓLC

C,i =
1

αC
tr
{

W1
C,i

T
W1

C,i

}
+ . . . +

1
αC

tr
{

WLC
C,i

T
WLC

C,i

}
(54)

The joint action value function and controller Lyapunov function is

Γ = ΓQ + ΓC (55)

Let the difference of the Lyapunov candidates be

∆ΓQ = ∆Γ1
Q,i + . . . + ∆Γ

LQ
Q,i (56)

∆ΓC = ∆Γ1
C,i + . . . + ∆ΓLC

C,i, (57)

and the joint Lyapunov differences be ∆Γ = ∆ΓQ + ∆ΓC.
Next, the proof is divided in two parts: one proving that ∆ΓQ < 0, if inequality (49) is

respected, and one proving that ∆ΓC < 0, if inequality (50) is respected.

(a) Let ∆Γ
LQ
Q,i = −tr

{
2W

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ αQtr

{
eQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

,

according to Lemma 1, and ∆Γ
lQ
Q,i = −tr

{
2W

lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
+

tr
{

αQϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1
i

T
Ŵ

lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
, for

all layers lQ = 1 : LQ − 1, based on Lemma 2.

The sum ∆ΓQ = ∆Γ1
Q,i + . . . + ∆Γ

LQ
Q,i, ∀lQ = 1 : LQ − 1, is lower than 0 if

Mathematics 2025, 13, 206 13 of 28

∆ΓQ

= −tr
{

2W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ αQtr

{
eQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}
+ . . .

−tr
{

2W
lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
+tr

{
αQϕ

(
ẑ

lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
< 0

⇐⇒ αQtr
{

eQ,iϕ
(

ẑ
LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}
+ . . .

+αQtr
{

ϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
< tr

{
2W

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ . . . + tr

{
2W

lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
⇐⇒ αQ

(
tr
{

eQ,iϕ
(

ẑ
LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}
+ . . .

+tr
{

ϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)})
< tr

{
2W

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}
+ . . .

+tr
{

2W
lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}

(58)

For the terms corresponding to layer LQ from (58), we have

tr
{

eQ,iϕ
(

ẑ
LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

≤
∥∥∥∥eQ,iϕ

(
ẑ

LQ−1
Q

)T
∥∥∥∥2

(59)

Also, tr
{

2W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}

is written as

tr
{

2W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
}

= tr
{(

W
LQ
Q,i

T
+ ϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
)(

W
LQ
Q,i + eQ,iϕ

(
ẑ

LQ−1
Q

)T
)}

−tr
{

W
LQ
Q,i

T
W

LQ
Q,i

}
− tr

{
eQ,iϕ

(
ẑ

LQ−1
Q

)T
ϕ
(

ẑ
LQ−1
Q

)
eQ,i

T
}

≤
∥∥∥∥W

LQ
Q,i

T
+ ϕ

(
ẑ

LQ−1
Q

)
eQ,i

T
∥∥∥∥2

−
∥∥∥W

LQ
Q,i

∥∥∥2

−
∥∥∥∥eQ,iϕ

(
ẑ

LQ−1
Q

)T
∥∥∥∥2

≤
∥∥∥W

LQ
Q,i

∥∥∥2
+ 2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥eQ,iϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥

+

∥∥∥∥eQ,iϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

−
∥∥∥W

LQ
Q,i

∥∥∥2
−
∥∥∥∥eQ,iϕ

(
ẑ

LQ−1
Q

)T
∥∥∥∥2

= 2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥eQ,iϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥.

(60)

Based on the TD error definition (17), we can write eQ,i = W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
− ηQ,i. Then,

(59) is described as∥∥∥∥eQ,iϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

=

∥∥∥∥(W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
− ηQ,i

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

=

∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
− ηQ,iϕ

(
ẑ

LQ−1
Q

)T
∥∥∥∥2

≤
∥∥∥∥W

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

.

(61)

Mathematics 2025, 13, 206 14 of 28

Also, (60) is described as

2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥eQ,iϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥ = 2

∥∥∥W
LQ
Q,i

∥∥∥∥∥∥∥(W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
− ηQ,i

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥ =

2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
− ηQ,iϕ

(
ẑ

LQ−1
Q

)T
∥∥∥∥ ≤

2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥.

(62)

For the terms corresponding to all layers lQ = 1 : LQ − 1 from (58), we have

tr
{

ϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
≤∥∥∥ϕ

(
ẑ

lQ−1
Q

)∥∥∥2
∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥2
.

(63)

Also, the term tr
{

2W
lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
is described as

tr
{

2W
lQ
Q,i

T
(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
= tr

{(
W

lQ
Q,i

T
+ αQϕ

(
ẑ

lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
))(

W
lQ
Q,i + αQ

(
Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

))}
−tr

{
W

lQ
Q,i

T
W

lQ
Q,i

}
− tr

{
ϕ
(

ẑ
lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)(

Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

))
ϕ
(

ẑ
lQ−1
Q

)}
≤
∥∥∥∥W

lQ
Q,i

T
+ αQϕ

(
ẑ

lQ−1
Q

)T
(

Φ
lQ+1T

i Ŵ
lQ+1
Q,i

⊙ .
ϕ
(

ẑ
lQ
Q

)T
)∥∥∥∥2

−
∥∥∥W

lQ
Q,i

∥∥∥2

−
∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2
∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥2

≤
∥∥∥W

lQ
Q,i

∥∥∥2
+ 2
∥∥∥W

lQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥∥∥∥∥Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥
+
∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2
∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥2
−
∥∥∥W

lQ
Q,i

∥∥∥2

−
∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2
∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥2

= 2
∥∥∥W

lQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥∥∥∥∥Ŵ
lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥.

(64)

With Φ
lQ+1
i = Ŵ

lQ+2T

Q,i Φ
lQ+2
i

⊙ .
ϕ
(

ẑ
lQ+1
Q

)
, based on (20), we get, for all NN layers

from lQ + 1, lQ + 2, . . . , LQ,∥∥∥∥Ŵ
lQ+1T

Q, i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥ =

∥∥∥∥Ŵ
lQ+1T

Q, i

(
Ŵ

lQ+2T

Q,i Φ
lQ+2
i

⊙ .
ϕ
(

ẑ
lQ+1
Q

))⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥
=

∥∥∥∥Ŵ
lQ+1T

Q,i

(
Ŵ

lQ+2T

Q,i . . .
(

Ŵ
LQ

T

Q,i Φ
LQ
i
⊙ .

ϕ
(

ẑ
LQ−1
Q

))
. . .
⊙ .

ϕ
(

ẑ
lQ+1
Q

))⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥
=

∥∥∥∥Ŵ
lQ+1T

Q,i

(
Ŵ

lQ+2T

Q,i . . .
(

Ŵ
LQ

T

Q,i eQ,i
⊙ .

ϕ
(

ẑ
LQ−1
Q

))
. . .
⊙ .

ϕ
(

ẑ
lQ+1
Q

))⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥.

(65)

Mathematics 2025, 13, 206 15 of 28

Based on the normed Hadamard product property ∥A
⊙

B∥ ≤ ∥A∥·∥B∥, with A and
B being matrices of the same size, (65) is described as∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥
≤
∥∥∥Ŵ

lQ+1
Q, i

∥∥∥·∥∥∥∥Ŵ
lQ+2T

Q,i . . .
(

Ŵ
LQ

T

Q,i eQ,i
⊙ .

ϕ
(

ẑ
LQ−1
Q

))
. . .
⊙ .

ϕ
(

ẑ
lQ+1
Q

)∥∥∥∥·∥∥∥ .
ϕ
(

ẑ
lQ
Q

)∥∥∥
≤
∥∥∥Ŵ

lQ+1
Q,i

∥∥∥·∥∥∥Ŵ
lQ+2
Q,i

∥∥∥· . . . ·
∥∥∥Ŵ

LQ
Q,i

∥∥∥·∥∥eQ,i
∥∥·∥∥∥ .

ϕ
(

ẑ
LQ−1
Q

)∥∥∥· . . . ·
∥∥∥ .

ϕ
(

ẑ
lQ+1
Q

)∥∥∥·∥∥∥ .
ϕ
(

ẑ
lQ
Q

)∥∥∥
=
∥∥∥Ŵ

lQ+1
Q,i

∥∥∥·∥∥∥Ŵ
lQ+2
Q,i

∥∥∥· . . . ·
∥∥∥Ŵ

LQ
Q,i

∥∥∥·∥∥∥Ŵ
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
− ηQ,i

∥∥∥
·
∥∥∥ .

ϕ
(

ẑ
LQ−1
Q

)∥∥∥· . . . ·
∥∥∥ .

ϕ
(

ẑ
lQ+1
Q

)∥∥∥·∥∥∥ .
ϕ
(

ẑ
lQ
Q

)∥∥∥
≤
(∥∥∥Ŵ

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)∥∥∥− ∥∥ηQ,i
∥∥)·∥∥∥Ŵ

lQ+1
Q,i

∥∥∥·∥∥∥Ŵ
lQ+2
Q,i

∥∥∥· . . . ·
∥∥∥Ŵ

LQ
Q,i

∥∥∥
·
∥∥∥ .

ϕ
(

ẑ
LQ−1
Q

)∥∥∥· . . . ·
∥∥∥ .

ϕ
(

ẑ
lQ+1
Q

)∥∥∥·∥∥∥ .
ϕ
(

ẑ
lQ
Q

)∥∥∥
≤
∥∥∥Ŵ

LQ
Q,iϕ

(
ẑ

LQ−1
Q

)∥∥∥·∥∥∥Ŵ
lQ+1
Q,i

∥∥∥·∥∥∥Ŵ
lQ+2
Q,i

∥∥∥· . . . ·
∥∥∥Ŵ

LQ
Q,i

∥∥∥·∥∥∥ .
ϕ
(

ẑ
LQ−1
Q

)∥∥∥
· . . . ·

∥∥∥ .
ϕ
(

ẑ
lQ+1
Q

)∥∥∥·∥∥∥ .
ϕ
(

ẑ
lQ
Q

)∥∥∥
=
∥∥∥Ŵ

LQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
LQ−1
Q

)∥∥∥LQ−1

∏
l=lQ

∥∥∥Ŵl+1
Q,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
Q

)∥∥∥.

(66)

Therefore, based on (61)–(64), the inequality (58) is written as

αQ

(∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

+ . . . +
∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2
∥∥∥∥Ŵ

lQ+1T

Q,i Φ
lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥2
)

< 2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥+ · · ·+ 2

∥∥∥W
lQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥∥∥∥∥Ŵ
lQ+1T}
Q,i bmΦ

lQ+1
i

⊙ .
ϕ
(

ẑ
lQ
Q

)∥∥∥∥
⇐⇒ αQ

(∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

+ . . . +
∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2∥∥∥Ŵ
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)∥∥∥2LQ−1

∏
l=lQ

∥∥∥Ŵl+1
Q,i

∥∥∥2∥∥∥ .
ϕ
(

ẑl
Q

)∥∥∥2
)

< 2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥+ · · ·+ 2

∥∥∥W
lQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥∥∥∥Ŵ
LQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
LQ−1
Q

)∥∥∥LQ−1

∏
l=lQ

∥∥∥Ŵl+1
Q,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
Q

)∥∥∥
⇐⇒ αQ

(∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥2

+
LQ−1

∑
lq=1

∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥2∥∥∥Ŵ
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)∥∥∥2LQ−1

∏
l=lQ

∥∥∥Ŵl+1
Q,i

∥∥∥2∥∥∥ .
ϕ
(

ẑl
Q

)∥∥∥2
)

< 2
∥∥∥W

LQ
Q,i

∥∥∥∥∥∥∥W
LQ
Q,iϕ

(
ẑ

LQ−1
Q

)
ϕ
(

ẑ
LQ−1
Q

)T
∥∥∥∥+ 2

LQ−1

∑
lq=1

∥∥∥W
lQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
lQ−1
Q

)∥∥∥∥∥∥Ŵ
LQ
Q,i

∥∥∥∥∥∥ϕ
(

ẑ
LQ−1
Q

)∥∥∥LQ−1

∏
l=lQ

∥∥∥Ŵl+1
Q,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
Q

)∥∥∥.

(67)

Let the following norm bounds be defined as follows:∥∥∥W
lQ
Q,i

∥∥∥ ≤ WQ, max,
∥∥∥Ŵ

lQ
Q,i

∥∥∥ ≤ ŴQ, max,
∥∥∥ .

ϕ
(

ẑ
lQ
Q

)∥∥∥ ≤
.
ϕQ,max, for all lQ = 1 : LQ.

Then, based on Assumption 1, the inequality (67) can be written as

αQ

(
WQ, max

2
ϕQ,max

4 + ∑
LQ−1
lq=1 Ŵ2

Q, maxϕQ,max
4∏

LQ−1
l=lQ

Ŵ2
Q, max

.
ϕQ,max

2
)
<

2WQ, max
2
ϕQ,max

2 + 2∑
LQ−1
lq=1 WQ, maxϕ2

Q,maxŴQ, max∏
LQ−1
l=lQ

ŴQ, max
.
ϕQ,max.

(68)

To guarantee that (68) is negative, the learning rate needs to be selected as follows:

αQ <
2
(

WQ, max
2
ϕQ,max

2 + ∑
LQ−1
lq=1 WQ, maxϕ2

Q,maxŴQ, max∏
LQ−1
l=lQ

ŴQ, max
.
ϕQ,max

)
WQ, max

2
ϕQ,max

4 + ∑
LQ−1
lq=1 Ŵ2

Q, maxϕQ,max
4∏

LQ−1
l=lQ

Ŵ2
Q, max

.
ϕQ,max

2 = αQ,max. (69)

Mathematics 2025, 13, 206 16 of 28

(b) Let ∆ΓLC
C,i = −tr

{
2WlC

C,iϕ
(

ẑLC−1
C

)
Ωi

T
}
+ αCtr

{
Ωiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

, ac-

cording to Lemma 3, and ∆ΓlC
C,i = −tr

{
2WlC

C,i
T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
+

αCtr
{

ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
for all

layers lC = 1 : LC − 1, based on Lemma 4.
The sum ∆ΓC = ∆Γ1

C,i + . . . + ∆ΓLC
C,i, ∀lC = 1 : LC − 1, is lower than 0 if

∆ΓC

= −tr
{

2WlC
C,iϕ

(
ẑLC−1

C

)
Ωi

T
}
+ αCtr

{
Ωiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}
+ . . .

−tr
{

2WlC
C,i

T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
+αCtr

{
ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
< 0

⇐⇒ αCtr
{

Ωiϕ
(

ẑLC−1
C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}
+ . . .

+αCtr
{

ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
< tr

{
2WlC

C,iϕ
(

ẑLC−1
C

)
Ωi

T
}
+ . . . + tr

{
2WlC

C,i
T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
⇐⇒ αC

(
tr
{

Ωiϕ
(

ẑLC−1
C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}
+

. . . + tr
{

ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)})
< tr

{
2WlC

C,iϕ
(

ẑLC−1
C

)
Ωi

T
}
+ . . . + tr

{
2WlC

C,i
T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
.

(70)

For the terms corresponding to layer LC from (70), we have

tr
{

Ωiϕ
(

ẑLC−1
C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

≤
∥∥∥∥Ωiϕ

(
ẑLC−1

C

)T
∥∥∥∥2

. (71)

Also, tr
{

2WlC
C,iϕ

(
ẑLC−1

C

)
Ωi

T
}

is described as

tr
{

2WlC
C,iϕ

(
ẑLC−1

C

)
Ωi

T
}

= tr
{(

WlC
C,i

T
− ϕ

(
ẑLC−1

C

)
Ωi

T
)(

WlC
C,i − Ωiϕ

(
ẑLC−1

C

)T
)}

−tr
{

WlC
C,i

T
WlC

C,i

}
− tr

{
Ωiϕ

(
ẑLC−1

C

)T
ϕ
(

ẑLC−1
C

)
Ωi

T
}

≤
∥∥∥∥WlC

C,i − Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥2

−
∥∥∥WlC

C,i

∥∥∥2
−
∥∥∥∥Ωiϕ

(
ẑLC−1

C

)T
∥∥∥∥2

≤
∥∥∥WlC

C,i

∥∥∥2
+ 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥+ ∥∥∥∥Ωiϕ

(
ẑLC−1

C

)T
∥∥∥∥2

−
∥∥∥WlC

C,i

∥∥∥2

−
∥∥∥∥Ωiϕ

(
ẑLC−1

C

)T
∥∥∥∥2

= 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥.

(72)

For the terms corresponding to all layers lC = 1 : LC − 1 from (70), we have

tr
{

ϕ
(

ẑlC−1
C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
≤
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)∥∥∥∥2

=
∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥2
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥2
.

(73)

Mathematics 2025, 13, 206 17 of 28

Also, the term tr
{

2WlC
C,i

T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
is described as

tr
{

2WlC
C,i

T
(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
= tr

{(
WlC

C,i
T
+ ϕ

(
ẑlC−1

C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
))(

WlC
C,i +

(
ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

))}
−tr

{
WlC

C,i
T

WlC
C,i

}
− tr

{(
ẑlC−1

C

)T
(

χ
lC+1T

i ŴlC+1
C,i

⊙ .
ϕ
(

ẑlC
C

)T
)(

ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)}
≤
∥∥∥∥WlC

C,i
T
+ ϕ

(
ẑlC−1

C

)T
(

χ
lC+1
i

T
ŴlC+1

C,i
⊙ .

ϕ
(

ẑlC
C

)T
)∥∥∥∥2

−
∥∥∥WlC

C,i

∥∥∥2

−
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)∥∥∥∥2

≤
∥∥∥WlC

C,i

∥∥∥2
+ 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)∥∥∥∥
+

∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)∥∥∥∥2
−
∥∥∥WlC

C,i

∥∥∥2

−
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))
ϕ
(

ẑlC−1
C

)∥∥∥∥2

= 2
∥∥∥WlC

C,i

∥∥∥∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥.

(74)

Having χ
lC+1
i = ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC+1
C

)
,
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥ can be writ-

ten similarly to (65), as∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥
=

∥∥∥∥ŴlC+1T

C,i

(
ŴlC+2T

C,i . . .
(

ŴLC
T

C,i Ωi
⊙ .

ϕ
(

ẑLC−1
C

))
. . .
⊙ .

ϕ
(

ẑlC+1
C

))⊙ .
ϕ
(

ẑlC
C

)∥∥∥∥.
(75)

Based on the normed Hadamard product property, one gets∥∥∥∥ŴlC+1T

C,i

(
ŴlC+2T

C,i . . .
(

ŴLC
T

C,i Ωi
⊙ .

ϕ
(

ẑLC−1
C

))
. . .
⊙ .

ϕ
(

ẑlC+1
C

))⊙ .
ϕ
(

ẑlC
C

)∥∥∥∥
< ∥Ωi∥·

∥∥∥ŴlC+1
C,i

∥∥∥·∥∥∥ŴlC+2
C,i

∥∥∥· . . . ·
∥∥∥ŴLC

C,i

∥∥∥·∥∥∥ .
ϕ
(

ẑLC−1
C

)∥∥∥· . . . ·
∥∥∥ .

ϕ
(

ẑlC+1
C

)∥∥∥
·
∥∥∥ .

ϕ
(

ẑlC
C

)∥∥∥ = ∥Ωi∥
LC−1

∏
l=lC

∥∥∥Ŵl+1
C,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
C

)∥∥∥.

(76)

Mathematics 2025, 13, 206 18 of 28

Therefore, based on (71)–(74), the inequality (70) is

αC

(∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥2

+ . . . +
∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥2
∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥2
)

< 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥+ . . .

+2
∥∥∥WlC

C,i

∥∥∥∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥∥∥∥∥(ŴlC+1T

C,i χ
lC+1
i

⊙ .
ϕ
(

ẑlC
C

))∥∥∥∥
⇐⇒ αC

(∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥2

+ . . . +
∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥2
∥Ωi∥2

LC−1
∏

l=lC

∥∥∥Ŵl+1
C,i

∥∥∥2∥∥∥ .
ϕ
(

ẑl
C

)∥∥∥2
)

< 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥+ . . .

+2
∥∥∥WlC

C,i

∥∥∥∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥∥Ωi∥
LC−1

∏
l=lC

∥∥∥Ŵl+1
C,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
C

)∥∥∥
⇐⇒ αC

(∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥2

+
LC−1

∑
lC=1

∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥2
∥Ωi∥2

LC−1
∏

l=lC

∥∥∥ŴlC+1
C,i

∥∥∥2∥∥∥ .
ϕ
(

ẑlC
C

)∥∥∥2
)

< 2
∥∥∥WlC

C,i

∥∥∥∥∥∥∥Ωiϕ
(

ẑLC−1
C

)T
∥∥∥∥

+2
LC−1

∑
lC=1

∥∥∥WlC
C,i

∥∥∥∥∥∥ϕ
(

ẑlC−1
C

)∥∥∥∥Ωi∥
LC−1

∏
l=lC

∥∥∥Ŵl+1
C,i

∥∥∥∥∥∥ .
ϕ
(

ẑl
C

)∥∥∥.

(77)

Let the following norm bounds be defined as follows:∥∥∥WlC
C,i

∥∥∥ ≤ WC, max,
∥∥∥ŴlC

C,i

∥∥∥ ≤ ŴC, max,
∥∥∥ .

ϕ
(

ẑlC
C

)∥∥∥ ≤
.
ϕC,max, ∥Ωi∥ ≤ Ωmaxfor all lC = 1 : LC.

Based on Assumption 1, the inequality (77) can be written as

αC

(
Ωmax

2ϕmax
2 + ∑LC−1

lC=1 ϕmax
2Ωmax

2∏LC−1
l=lC

Ŵ2
C, max

.
ϕC,max

2
)

< 2WC, maxΩmaxϕmax + 2∑LC−1
lC=1 WC, maxϕmaxΩmax∏LC−1

l=lC
ŴC, max

.
ϕC,max.

(78)

To guarantee that (78) is negative, the learning rate needs to be selected as follows:

αC <
2
(

WC, maxΩmaxϕmax + ∑LC−1
lC=1 WC, maxϕmaxΩmax∏LC−1

l=lC
ŴC, max

.
ϕC,max

)
Ωmax

2ϕmax
2 + ∑LC−1

lC=1 ϕmax
2Ωmax

2∏LC−1
l=lC

Ŵ2
C, max

.
ϕC,max

2 = αC,max. (79)

In conclusion, by having the inequalities (69) and (79) respected, we get ∆Γ < 0. □

4.4. Results Interpretation

According to (69) and (79), as the number of hidden layers increases, the upper bounds
for the learning rates αQ and αC decrease. This is due to the denominators in (69) and (79)
being larger than their respective numerators, primarily because the denominators include
squared terms. Therefore, the number of hidden layers in both neural networks is inversely
proportional to the magnitude of their respective learning rates. For illustrative purposes,
the action value function learning rate bound αQ,max was plotted along the hidden layers
LQ = 1 : 15 in Figure 1, based on (69). The norm bounds of the weights were selected as
WQ, max = ŴQ, max = 2 and ϕQ,max =

.
ϕQ,max = 1 for the activation function ϕ(·) = tanh(·).

Mathematics 2025, 13, 206 19 of 28

Mathematics 2025, 13, x FOR PEER REVIEW 19 of 28

Figure 1. Relation between the number of NN layers and the bound of the learning rate 𝛼ொ,௠௔௫.

Remark 2. This inversely proportional relationship between the number of NN hidden layers and
the learning rate can be attributed to the gain in complexity of the NN optimization surface as the
number of hidden layer increases. A high learning rate in such a scenario can lead to erratic updates
in the intricate optimization surface, potentially causing the divergence of the learning process.
While a smaller learning rate increases the risk of getting stuck in local minima, it is beneficial for
a stable learning.

5. Simulation Study
Next, the impact of employing multiple hidden layers in the NN approximators,

batch learning, and offline computation in the ADHDP learning process, namely the BO-
ADHDP algorithm from 3.3, was tested on an ORM tracking task on the TRAS system.
First, the system is described along with the data collection settings for BOADHDP. This
is followed by a comparison between the BOADHDP learning process using single-hid-
den-layer NNs and the one using two-hidden-layer NNs for approximating the action
value function and the controller. Finally, the online adaptive ADHDHP algorithms from
[21,22] are compared with BOADHDP, highlighting the advantages of the latter.

5.1. Data Collection Settings on TRAS System

The nonlinear system was characterized as a two-input and two-output system. The
horizontal motion, or azimuth, operates as an integrator, whereas the vertical, or pitch,
motion experiences different gravitational effects when moving upward versus down-
ward. There was also an interconnection between these two channels. In Figure 2, a system
setup is shown. The model used was a simplified deterministic continuous-time state-
space representation, consisting of two interconnected state-space subsystems:

Figure 1. Relation between the number of NN layers and the bound of the learning rate αQ,max.

Remark 2. This inversely proportional relationship between the number of NN hidden layers and
the learning rate can be attributed to the gain in complexity of the NN optimization surface as the
number of hidden layer increases. A high learning rate in such a scenario can lead to erratic updates
in the intricate optimization surface, potentially causing the divergence of the learning process.
While a smaller learning rate increases the risk of getting stuck in local minima, it is beneficial for a
stable learning.

5. Simulation Study
Next, the impact of employing multiple hidden layers in the NN approximators, batch

learning, and offline computation in the ADHDP learning process, namely the BOADHDP
algorithm from Section 3.3, was tested on an ORM tracking task on the TRAS system.
First, the system is described along with the data collection settings for BOADHDP. This is
followed by a comparison between the BOADHDP learning process using single-hidden-
layer NNs and the one using two-hidden-layer NNs for approximating the action value
function and the controller. Finally, the online adaptive ADHDHP algorithms from [21,22]
are compared with BOADHDP, highlighting the advantages of the latter.

5.1. Data Collection Settings on TRAS System

The nonlinear system was characterized as a two-input and two-output system. The
horizontal motion, or azimuth, operates as an integrator, whereas the vertical, or pitch,
motion experiences different gravitational effects when moving upward versus downward.
There was also an interconnection between these two channels. In Figure 2, a system setup

Mathematics 2025, 13, 206 20 of 28

is shown. The model used was a simplified deterministic continuous-time state-space
representation, consisting of two interconnected state-space subsystems:

.
ωh = (sat(Uh)−Mh(ωh))

2.7 ·10−5,
Kh = (0.216Fh(ωh)cos αv − 0.058Ωh + 0.0178sat(Uv)cos αv),

Ωh = Kh
(0.0238·cos2 αv+3·10−3)

,
.
αh = Ωh,

.
ωv = (sat(Uv)−Mv(ωv))

1.63 ·10−4,

.
Ωv = 1

0.03

 0.2Fv(ωv)− 0.0127Ωv − 0.0935sin αv

−9.28·10−6Ωv|ωv|+ 4.17·10−3sat(Uh)− 0.05cos αv

−0.021Ω2
hsin αvcos αv − 0.093sin αv + 0.05

,

.
αv = Ωv,

(80)

where sat() is the saturation function in the interval [−1; 1]. The horizontal azimuth control
input was Uh = u1 and the vertical pitch control was Uv = u2. The system output was
represented by the azimuth angle αh ∈ [−π; π] and by the pitch angle αv ∈ [−π/2; π/2].
Nonlinear static characteristics were derived from experimental data through polynomial
fitting as in [29]:

Mv(ω) = 9.05 × 10−12ω3
v + 2.76 × 10−10 ω2

v + 1.25 × 10−4 ω1
v + 1.66 × 10−4, (81)

Fv(ω) = −1.8 × 10−18 ω5
v − 7.8 × 10−16 ω4

v + 4.1 × 10−11 ω3
v + 2.7 × 10−8 ω2

+3.5 × 10−4 ω − 0.014,
(82)

Mh(ωh) = 5.95 × 10−13 ω3
h − 5.05 × 10−10 ω2

h + 1.02 × 10−4 ω1
h

+1.61 × 10−3 ωh,
(83)

Fh(ωh) = −2.56 × 10−20 ω5
h + 4.09 × 10−17 ω4

h + 3.16 × 10−12 ω3
h

−7.34 × 10−9 ω2
h + 2.12 × 10−5 ωh + 9.13 × 10−3.

(84)

Mathematics 2025, 13, x FOR PEER REVIEW 20 of 28

⎩⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎧ 𝜔ሶ ௛ = ൫௦௔௧(௎೓)ିெ೓(ఠ೓)൯ଶ.଻ ∙ 10ିହ,𝐾௛ = (0.216𝐹௛(𝜔௛) cos 𝛼௩ − 0.058Ω௛ + 0.0178𝑠𝑎𝑡(𝑈௩) cos 𝛼௩),Ω௛ = ௄೓(଴.଴ଶଷ଼∙ୡ୭ୱమ ఈೡାଷ∙ଵ଴షయ) ,𝛼ሶ௛ = Ω௛,𝜔ሶ ௩ = ൫௦௔௧(௎ೡ)ିெೡ(ఠೡ)൯ଵ.଺ଷ ∙ 10ିସ,

Ωሶ ௩ = ଵ଴.଴ଷ ቌ 0.2𝐹௩(𝜔௩) − 0.0127Ω௩ − 0.0935 sin 𝛼௩−9.28 ∙ 10ି଺Ω௩|𝜔௩| + 4.17 ∙ 10ିଷ𝑠𝑎𝑡(𝑈௛) − 0.05 cos 𝛼௩−0.021Ω௛ଶ sin 𝛼௩ cos 𝛼௩ − 0.093 sin 𝛼௩ + 0.05 ቍ ,𝛼ሶ௩ = Ω௩,
 (80)

where 𝑠𝑎𝑡() is the saturation function in the interval [−1; 1] . The horizontal azimuth
control input was 𝑈௛ = 𝑢ଵ and the vertical pitch control was 𝑈௩ = 𝑢ଶ. The system output
was represented by the azimuth angle 𝛼௛ ∈ [−𝜋; 𝜋] and by the pitch angle 𝛼௩ ∈[−𝜋/2; 𝜋/2] . Nonlinear static characteristics were derived from experimental data
through polynomial fitting as in [29]: 𝑀௩(𝜔) = 9.05 × 10ିଵଶ𝜔௩ଷ + 2.76 × 10ିଵ଴ 𝜔௩ଶ + 1.25 × 10ିସ 𝜔௩ଵ + 1.66 × 10ିସ,

 (81)

𝐹௩(𝜔) = −1.8 × 10ିଵ଼ 𝜔௩ହ − 7.8 × 10ିଵ଺ 𝜔௩ସ + 4.1 × 10ିଵଵ 𝜔௩ଷ + 2.7 × 10ି଼ 𝜔ଶ + 3.5 × 10ିସ 𝜔 − 0.014, (82)

𝑀௛(𝜔௛) = 5.95 × 10ିଵଷ 𝜔௛ଷ − 5.05 × 10ିଵ଴ 𝜔௛ଶ + 1.02 × 10ିସ 𝜔௛ଵ + 1.61 × 10ିଷ 𝜔௛, (83)

𝐹௛(𝜔௛) = −2.56 × 10ିଶ଴ 𝜔௛ହ + 4.09 × 10ିଵ଻ 𝜔௛ସ + 3.16 × 10ିଵଶ 𝜔௛ଷ − 7.34 × 10ିଽ 𝜔௛ଶ + 2.12 × 10ିହ 𝜔௛ + 9.13 × 10ିଷ. (84)

Figure 2. TRAS system setup [29].

The process was discretized by using a zero-order hold sampler on both inputs and
outputs. With a sampling time of 𝑇௦ = 0.1 s, the following discrete-time model was ob-
tained, ቊ 𝒙௞ାଵ = 𝑓(𝒙௞, 𝒖௞),𝒚௞ = 𝑔(𝒙௞) = ൣ𝛼௞,௛, 𝛼௞,௩൧், (85)

where the system state was 𝒙௞ = ൣ𝜔௞,௛, Ω௞,௛, 𝛼௞,௛, 𝜔௞,௩, Ω௞,௩, 𝛼௞,௩൧் ∈ ℜ଺ and the control in-
put was 𝒖௞ = ൣ𝑢௞,௛, 𝑢௞,௩൧, as in [29].

Figure 2. TRAS system setup [29].

The process was discretized by using a zero-order hold sampler on both inputs
and outputs. With a sampling time of Ts = 0.1 s, the following discrete-time model
was obtained, {

xk+1 = f (xk, uk),
yk = g(xk) = [αk,h, αk,v]

T ,
(85)

Mathematics 2025, 13, 206 21 of 28

where the system state was xk = [ωk,h, Ωk,h, αk,h, ωk,v, Ωk,v, αk,v]
T ∈ R6 and the control

input was uk = [uk,h, uk,v], as in [29].
In the ORM tracking paradigm, the controlled system outputs track the output of the

ORM model. In this application, the ORM was defined as in [29] and had the form of
xh

k+1,m = 0.9673xh
k,m + 0.0328rk,h,

xv
k+1,m = 0.9673xv

k,m + 0.0328rk,v,

yk,m =
[
yh

k,m, yv
k,m

]T
=
[

xh
k,m, xv

k,m

]T
,

(86)

where rk,h and rk,v are step input reference signals. Therefore, an extended state
that comprises both the TRAS and the ORM states was defined as

xe
k =

[
ωk,h, Ωk,h, αk,h, ωk,v, Ωk,v, αk,v, xh

k,m, xv
k,m, rk,h, rk,v

]T
∈ R10.

For data collection, the linear diagonal controller

C(z, θ) =

[
P11(z)/

(
1 − z−1) 0

0 P22(z)/
(
1 − z−1)

]
,

P11(z) = 2.9341 − 5.8689z−1 + 3.9303z−2 − 0.9173z−3 − 0.0777z−4,

P22(z) = 0.6228 − 1.1540z−1 + 0.5467z−2 (87)

was used in a closed loop with system (85), where the controller parameters were tuned
using VRFT as in [29]. Having the closed loop stabilized, the successive step referenced
input signals with amplitudes ranging in an interval of rk,h ∈ [−2; 2], and rk,v ∈ [−1.4; 1.1]
were generated at 17 s and 25 s for the azimuth and pitch respectively. To guarantee a
satisfactory exploration of the system’s state-space domain, a random noise was added at
each two timesteps. The random noise added on C11(Z) had an amplitude of [−1.6; 1.6] and
the one added on C22(Z) had an amplitude of [−1.7; 1.7]. A total of M = 50, 000 transitions
were collected, creating, therefore, the dataset D50,000 =

{(
xe

k, uk, r
(
xe

k, uk
)
, xe

k+1

)}
, with

k = 1 : 50, 000. An excerpt of the data exploration is shown in Figure 3. Next, BOADHDP
was issued for action value function and controller NN approximations for both the single-
hidden-layer (LQ = 1, LC = 1) and the multilayer case (LQ = 2, LC = 2).

Mathematics 2025, 13, x FOR PEER REVIEW 21 of 28

In the ORM tracking paradigm, the controlled system outputs track the output of the
ORM model. In this application, the ORM was defined as in [29] and had the form of

൞ 𝑥௞ାଵ,௠௛ = 0.9673𝑥௞,௠௛ + 0.0328𝑟௞,௛,𝑥௞ାଵ,௠௩ = 0.9673𝑥௞,௠௩ + 0.0328𝑟௞,௩,𝑦௞,௠ = ൣ𝑦௞,௠௛ , 𝑦௞,௠௩ ൧் = ൣ𝑥௞,௠௛ , 𝑥௞,௠௩ ൧், (86)

where 𝑟௞,௛ and 𝑟௞,௩ are step input reference signals. Therefore, an extended state that
comprises both the TRAS and the ORM states was defined as 𝒙௞௘ =ൣ𝜔௞,௛, Ω௞,௛, 𝛼௞,௛, 𝜔௞,௩, Ω௞,௩, 𝛼௞,௩, 𝑥௞,௠௛ , 𝑥௞,௠௩ , 𝑟௞,௛, 𝑟௞,௩൧் ∈ ℜଵ଴.

For data collection, the linear diagonal controller 𝐶(𝑧, 𝜽) = ൤𝑃ଵଵ(𝑧)/(1 − 𝑧ିଵ) 00 𝑃ଶଶ(𝑧)/(1 − 𝑧ିଵ)൨, 𝑃ଵଵ(𝑧) = 2.9341 − 5.8689𝑧ିଵ + 3.9303𝑧ିଶ − 0.9173𝑧ିଷ − 0.0777𝑧ିସ,

𝑃ଶଶ(𝑧) = 0.6228 − 1.1540𝑧ିଵ + 0.5467𝑧ିଶ (87)

was used in a closed loop with system (85), where the controller parameters were tuned
using VRFT as in [29]. Having the closed loop stabilized, the successive step referenced
input signals with amplitudes ranging in an interval of 𝑟௞,௛ ∈ [−2; 2] , and 𝑟௞,௩ ∈[−1.4; 1.1] were generated at 17 s and 25 s for the azimuth and pitch respectively. To
guarantee a satisfactory exploration of the system’s state-space domain, a random noise
was added at each two timesteps. The random noise added on 𝐶ଵଵ(𝑍) had an amplitude
of [−1.6; 1.6] and the one added on 𝐶ଶଶ(𝑍) had an amplitude of [−1.7; 1.7]. A total of 𝑀 = 50,000 transitions were collected, creating, therefore, the dataset 𝐷ହ଴,଴଴଴ ={(𝒙௞௘ , 𝒖௞, 𝑟(𝒙௞௘ , 𝒖௞), 𝒙௞ାଵ௘)}, with 𝑘 = 1: 50,000. An excerpt of the data exploration is shown
in Figure 3. Next, BOADHDP was issued for action value function and controller NN ap-
proximations for both the single-hidden-layer (𝐿ொ = 1, 𝐿஼ = 1) and the multilayer case
(𝐿ொ = 2, 𝐿஼ = 2).

Figure 3. Data collection in relation to the TRAS system: 𝑟௞,௛ and 𝑟௞,௩ (yellow); 𝑥௞,௠௛ and 𝑥௞,௠௩
(red); 𝛼௞,௛ and 𝛼௞,௩ (blue).

0 2000 4000 6000 8000

-2

0

2

0 2000 4000 6000 8000
-2

0

2

−

−

Figure 3. Data collection in relation to the TRAS system: rk,h and rk,v (yellow); xh
k,m and xv

k,m (red);
αk,h and αk,v (blue).

Mathematics 2025, 13, 206 22 of 28

5.2. Comparison of BOADHDP with Single-Layer and Multilayer NN Approximations

For the single-layer NNs, the form of the action value function was 12-50-1 and that
of the controller was 10-10-2. The activation functions of the hidden layer were hyper-
bolic tangents and the ones of the output layer were linear. The weights were initialized
using the Xavier initialization [29]. The internal gradient updates were IQ = 500 and
IC = 100 and the learning rates were selected to be αQ = 0.01 and αC = 0.001. The

penalty function took the form of r
(
xe

k, uk
)
=
(

αk,h − xh
k,m

)2
+
(

αk,v − xv
k,m

)2
. The algo-

rithm ran for a total number of 500 iterations. The performance of the NN controller
was tested on a simulated scenario. In this scenario, the tracking capabilities were tested
on a random reference signal generated from [−1; 1] for 2000 timesteps. Therefore, at
each BOADHDP jth iteration, the performance of the controller was measured by the

function J
(
xe

k
)

=
(

αk,h − xh
k,m

)2
+
(

αk,v − xv
k,m

)2
/2000 on the simulated scenario, for

k = 1 : 2000. The convergence of the action value function and the values of J(xk) is
shown in Figure 4 in an orange color. This was computed by checking the norm between

the weights from successive BOADHDP iterations, namely the norm
∥∥∥Ŵj

Q − Ŵj−1
Q

∥∥∥2

2
. The

decreasing behavior of the successive weight norms from the first plot in Figure 4 proves
the convergence of the action value function. The second plot presents the performance
of the value function J

(
xe

k
)

under the simulated scenario for the controller obtained from
each iteration j, namely Cj

(
xe

k, WC
)
. The tracking performance of the controller obtained at

iteration j = 500 is shown in Figure 5. In this figure, the performance of the TRAS system
(85) in a closed loop with the controller C500

(
xe

k, WC
)

is shown. The evolution in time of
the output of the horizontal and the vertical axes is plotted in a blue color along with the
reference signal (yellow) and reference model (orange), showing the tracking capacity of
the C500

(
xe

k, WC
)

controller.

Mathematics 2025, 13, x FOR PEER REVIEW 22 of 28

5.2. Comparison of BOADHDP with Single-Layer and Multilayer NN Approximations

For the single-layer NNs, the form of the action value function was 12-50-1 and that

of the controller was 10-10-2. The activation functions of the hidden layer were hyperbolic

tangents and the ones of the output layer were linear. The weights were initialized using

the Xavier initialization [29]. The internal gradient updates were ΙQ = 500 and ΙC = 100

and the learning rates were selected to be 𝛼𝑄 = 0.01 and 𝛼𝐶 = 0.001. The penalty func-

tion took the form of 𝑟(𝒙𝑘
𝑒 , 𝒖𝑘) = (𝛼𝑘,ℎ − 𝑥𝑘,𝑚

ℎ)
2
+ (𝛼𝑘,𝑣 − 𝑥𝑘,𝑚

𝑣)
2
. The algorithm ran for a

total number of 500 iterations. The performance of the NN controller was tested on a sim-

ulated scenario. In this scenario, the tracking capabilities were tested on a random refer-

ence signal generated from [−1; 1] for 2000 timesteps. Therefore, at each BOADHDP 𝑗𝑡ℎ

iteration, the performance of the controller was measured by the function 𝐽(𝒙𝑘
𝑒) =

(𝛼𝑘,ℎ − 𝑥𝑘,𝑚
ℎ)

2
+ (𝛼𝑘,𝑣 − 𝑥𝑘,𝑚

𝑣)
2
/2000 on the simulated scenario, for 𝑘 = 1: 2000. The con-

vergence of the action value function and the values of 𝐽(𝒙𝑘) is shown in Figure 4 in an

orange color. This was computed by checking the norm between the weights from succes-

sive BOADHDP iterations, namely the norm ‖𝑾̂𝑄
𝑗
− 𝑾̂𝑄

𝑗−1
‖
2

2
. The decreasing behavior of

the successive weight norms from the first plot in Figure 4 proves the convergence of the

action value function. The second plot presents the performance of the value function

𝐽(𝒙𝑘
𝑒) under the simulated scenario for the controller obtained from each iteration 𝑗 ,

namely 𝐶𝑗(𝒙𝑘
𝑒 ,𝑾𝐶). The tracking performance of the controller obtained at iteration 𝑗 =

500 is shown in Figure 5. In this figure, the performance of the TRAS system (85) in a

closed loop with the controller 𝐶500(𝒙𝑘
𝑒 ,𝑾𝐶) is shown. The evolution in time of the output

of the horizontal and the vertical axes is plotted in a blue color along with the reference

signal (yellow) and reference model (orange), showing the tracking capacity of the

𝐶500(𝒙𝑘
𝑒 ,𝑾𝐶) controller.

Figure 4. BOADHDP convergence in the TRAS system.
Figure 4. BOADHDP convergence in the TRAS system.

Mathematics 2025, 13, 206 23 of 28

Mathematics 2025, 13, x FOR PEER REVIEW 23 of 28

Figure 5. One-hidden-layer controller learned through BOADHDP, at iteration 𝑗 = 500: 𝑟𝑘,ℎ and

𝑟𝑘,𝑣 (yellow); 𝑥𝑘,𝑚
ℎ and 𝑥𝑘,𝑚

𝑣 (red); 𝛼𝑘,ℎ and 𝛼𝑘,𝑣 (blue). The commands 𝑢𝑘,ℎ and 𝑢𝑘,𝑣 are for the

horizontal and vertical axes (blue).

For the multilayer NN setup, the form of the action value function was 15-50-10-2

and that of the controller was 10-10-4-2. The activation functions of the two hidden layers

were hyperbolic tangents and the ones from the output layer were linear. The weights

were initialized using the Xavier initialization [29]. The internal gradient updates were

ΙQ = 500 and ΙC = 100 , and the learning rates took the values of 𝛼𝑄 = 0.01 and 𝛼𝐶 =

0.001. The algorithm ran for a total number of 500 iterations. The convergence of the action

value function and the values of 𝐽(𝒙𝑘) is shown in Figure 4 in a blue color. The tracking

performance of the controller obtained at iteration 𝑗 = 500 is shown in Figure 5.

From Figure 4, it can be seen that the convergence of the two-layer NN approxima-

tors for the action value function and the controller delivered more stable results. First,

the norm of the action value function successive weight differences from the first plot was

less noisy and provided a faster convergence in the two-layer case than the single-layer

NN. Then, in the second plot, the function 𝐽(𝒙𝑘
𝑒) converged faster to a lower value that

correlated with a performant controller. Also, the values of 𝐽(𝒙𝑘
𝑒) was 0.0049 for the sin-

gle-layer NNs and 0.0031 for the two-layer implementation. The two-layer implementa-

tion outperformed the single-layer one by 1.58%. The difference in tracking performance

can be seen in Figures 5 and 6, where the horizontal motion tracking improved in the case

of the two-layer NN controller.

Figure 5. One-hidden-layer controller learned through BOADHDP, at iteration j = 500 : rk,h and rk,v
(yellow); xh

k,m and xv
k,m (red); αk,h and αk,v (blue). The commands uk,h and uk,v are for the horizontal

and vertical axes (blue).

For the multilayer NN setup, the form of the action value function was 15-50-10-2
and that of the controller was 10-10-4-2. The activation functions of the two hidden layers
were hyperbolic tangents and the ones from the output layer were linear. The weights
were initialized using the Xavier initialization [29]. The internal gradient updates were
IQ = 500 and IC = 100, and the learning rates took the values of αQ = 0.01 and αC = 0.001.
The algorithm ran for a total number of 500 iterations. The convergence of the action
value function and the values of J(xk) is shown in Figure 4 in a blue color. The tracking
performance of the controller obtained at iteration j = 500 is shown in Figure 5.

From Figure 4, it can be seen that the convergence of the two-layer NN approximators
for the action value function and the controller delivered more stable results. First, the
norm of the action value function successive weight differences from the first plot was less
noisy and provided a faster convergence in the two-layer case than the single-layer NN.
Then, in the second plot, the function J

(
xe

k
)

converged faster to a lower value that correlated
with a performant controller. Also, the values of J

(
xe

k
)

was 0.0049 for the single-layer NNs
and 0.0031 for the two-layer implementation. The two-layer implementation outperformed
the single-layer one by 1.58%. The difference in tracking performance can be seen in
Figures 5 and 6, where the horizontal motion tracking improved in the case of the two-layer
NN controller.

Mathematics 2025, 13, 206 24 of 28
Mathematics 2025, 13, x FOR PEER REVIEW 24 of 28

Figure 6. Two-hidden-layer controller learned through BOADHDP, at iteration 𝑗 = 500: 𝑟𝑘,ℎ and

𝑟𝑘,𝑣 (yellow); 𝑥𝑘,𝑚
ℎ and 𝑥𝑘,𝑚

𝑣 (red); 𝛼𝑘,ℎ and 𝛼𝑘,𝑣 (blue). The commands 𝑢𝑘,ℎ and 𝑢𝑘,𝑣 are for the

horizontal and vertical axes (blue).

5.3. Comparison Between BOADHDP and the Online Adaptive ADHDP

Next, the online adaptive ADHDP algorithms from [21,22] were applied to the TRAS

system. The difference between ADHDP methods [] was that the former one only updates

the weights from the hidden to the output layer, while the latter updates the entire NN

weights.

For these algorithms, we used the same NN architectures as in the single-layer NN

from BOADHDP, namely the form of the action value function NN was 12-50-1 and that

of the controller was 10-10-2. The activation functions of the hidden layer were hyperbolic

tangents and the ones of the output layer were linear. The weights were also initialized

using the Xavier initialization [29]. The learning rates were selected to be 𝛼𝑄 = 0.01 and

𝛼𝐶 = 0.001 . The penalty function took the form of 𝑟(𝒙𝑘
𝑒 , 𝒖𝑘) = (𝛼𝑘,ℎ − 𝑥𝑘,𝑚

ℎ)
2
+ (𝛼𝑘,𝑣 −

𝑥𝑘,𝑚
𝑣)

2
.

Compared with BOADHDP, in these implementations, the adaptation of the NNs

was made online, using only the transitions along with each time step of the simulated

system. The algorithm ran for 200 ,000 time steps. Every 2000 steps, the controller

weights were fixed and their performance was measured by the function 𝐽(𝒙𝑘
𝑒) =

(𝛼𝑘,ℎ − 𝑥𝑘,𝑚
ℎ)

2
+ (𝛼𝑘,𝑣 − 𝑥𝑘,𝑚

𝑣)
2
/2000 under a simulated scenario, for 𝑘 = 1: 2000 . The

convergence of the action value function and of the controller performance of the simu-

lated scenario can be seen in Figure 7 for the ADHDP algorithms from [21,22]. The track-

ing performance of the ADHDP algorithms from [21,22] on the TRAS system using the

aforementioned learning settings is presented in Figure 8. The value of the 𝐽(𝒙𝑘
𝑒) was

0.0236 for the ADHDP algorithm from [21] and 0.0258 for the ADHDP algorithm from

[22].

Figure 6. Two-hidden-layer controller learned through BOADHDP, at iteration j = 500 : rk,h and rk,v
(yellow); xh

k,m and xv
k,m (red); αk,h and αk,v (blue). The commands uk,h and uk,v are for the horizontal

and vertical axes (blue).

5.3. Comparison Between BOADHDP and the Online Adaptive ADHDP

Next, the online adaptive ADHDP algorithms from [21,22] were applied to the TRAS
system. The difference between ADHDP methods [] was that the former one only updates
the weights from the hidden to the output layer, while the latter updates the entire NN
weights.

For these algorithms, we used the same NN architectures as in the single-layer NN
from BOADHDP, namely the form of the action value function NN was 12-50-1 and that of
the controller was 10-10-2. The activation functions of the hidden layer were hyperbolic
tangents and the ones of the output layer were linear. The weights were also initialized
using the Xavier initialization [29]. The learning rates were selected to be αQ = 0.01

and αC = 0.001. The penalty function took the form of r
(
xe

k, uk
)
=
(

αk,h − xh
k,m

)2
+(

αk,v − xv
k,m

)2
.

Compared with BOADHDP, in these implementations, the adaptation of the NNs
was made online, using only the transitions along with each time step of the simulated
system. The algorithm ran for 200,000 time steps. Every 2000 steps, the controller weights

were fixed and their performance was measured by the function J
(
xe

k
)
=
(

αk,h − xh
k,m

)2
+(

αk,v − xv
k,m

)2
/2000 under a simulated scenario, for k = 1 : 2000. The convergence of

the action value function and of the controller performance of the simulated scenario can
be seen in Figure 7 for the ADHDP algorithms from [21,22]. The tracking performance
of the ADHDP algorithms from [21,22] on the TRAS system using the aforementioned
learning settings is presented in Figure 8. The value of the J

(
xe

k
)

was 0.0236 for the ADHDP
algorithm from [21] and 0.0258 for the ADHDP algorithm from [22].

Mathematics 2025, 13, 206 25 of 28
Mathematics 2025, 13, x FOR PEER REVIEW 25 of 28

Figure 7. ADHDP convergence in relation to the TRAS system. ADHDP algorithm from [21] in pur-

ple and ADHDP algorithm from [22] in green.

Figure 8. Tracking performance of the ADHDP algorithms from [21,22], at iteration 𝑗 =

150,000: 𝑟𝑘,ℎ and 𝑟𝑘,𝑣 (yellow); 𝑥𝑘,𝑚
ℎ and 𝑥𝑘,𝑚

𝑣 (red); 𝛼𝑘,ℎ and 𝛼𝑘,𝑣 (green—ADHDP algorithm

from [21], purple—ADHDP algorithm from [22]). The commands 𝑢𝑘,ℎ and 𝑢𝑘,𝑣 are for the hori-

zontal and vertical axes (green—ADHDP algorithm from [21], purple—ADHDP algorithm from

[22]).

The 𝐽(𝒙𝑘
𝑒) values of the BOADHDP and ADHDP algorithms from [21,22] are sum-

marized in Table 1. Also, from Figures 5 and 8, it can be observed that the online adaptive

ADHDP algorithms could not deliver the same performance as their batch and offline

counterpart, BOADHDP. Furthermore, the ADHDP algorithms presented in [21,22] failed

to enhance controller performance, even though they utilized four times as many collected

transitions from the system. This difference in the performance of the BOADHDP algo-

rithm stems, in part, from the batch nature of the learning process. By processing multiple

collected transitions from the state action space at the same time during NN actualization,

the gradient for the action value and controller NNs is averaged over all the transitions.

Figure 7. ADHDP convergence in relation to the TRAS system. ADHDP algorithm from [21] in
purple and ADHDP algorithm from [22] in green.

Mathematics 2025, 13, x FOR PEER REVIEW 25 of 28

Figure 7. ADHDP convergence in relation to the TRAS system. ADHDP algorithm from [21] in pur-

ple and ADHDP algorithm from [22] in green.

Figure 8. Tracking performance of the ADHDP algorithms from [21,22], at iteration 𝑗 =

150,000: 𝑟𝑘,ℎ and 𝑟𝑘,𝑣 (yellow); 𝑥𝑘,𝑚
ℎ and 𝑥𝑘,𝑚

𝑣 (red); 𝛼𝑘,ℎ and 𝛼𝑘,𝑣 (green—ADHDP algorithm

from [21], purple—ADHDP algorithm from [22]). The commands 𝑢𝑘,ℎ and 𝑢𝑘,𝑣 are for the hori-

zontal and vertical axes (green—ADHDP algorithm from [21], purple—ADHDP algorithm from

[22]).

The 𝐽(𝒙𝑘
𝑒) values of the BOADHDP and ADHDP algorithms from [21,22] are sum-

marized in Table 1. Also, from Figures 5 and 8, it can be observed that the online adaptive

ADHDP algorithms could not deliver the same performance as their batch and offline

counterpart, BOADHDP. Furthermore, the ADHDP algorithms presented in [21,22] failed

to enhance controller performance, even though they utilized four times as many collected

transitions from the system. This difference in the performance of the BOADHDP algo-

rithm stems, in part, from the batch nature of the learning process. By processing multiple

collected transitions from the state action space at the same time during NN actualization,

the gradient for the action value and controller NNs is averaged over all the transitions.

Figure 8. Tracking performance of the ADHDP algorithms from [21,22], at iteration j = 150, 000 : rk,h
and rk,v (yellow); xh

k,m and xv
k,m (red); αk,h and αk,v (green—ADHDP algorithm from [21], purple—

ADHDP algorithm from [22]). The commands uk,h and uk,v are for the horizontal and vertical axes
(green—ADHDP algorithm from [21], purple—ADHDP algorithm from [22]).

The J
(
xe

k
)

values of the BOADHDP and ADHDP algorithms from [21,22] are summa-
rized in Table 1. Also, from Figures 5 and 8, it can be observed that the online adaptive
ADHDP algorithms could not deliver the same performance as their batch and offline
counterpart, BOADHDP. Furthermore, the ADHDP algorithms presented in [21,22] failed
to enhance controller performance, even though they utilized four times as many collected
transitions from the system. This difference in the performance of the BOADHDP algorithm
stems, in part, from the batch nature of the learning process. By processing multiple col-
lected transitions from the state action space at the same time during NN actualization, the
gradient for the action value and controller NNs is averaged over all the transitions. In turn,
this makes the NN update more stable. By issuing the gradient update in an offline manner,
the same collected transitions are used at each iteration, making the convergence speed

Mathematics 2025, 13, 206 26 of 28

faster. This stands in accordance with the observations from [28], where the authors proved
the advantages of batch learning in comparison to the online adaptive single-transition
learning from the classical ADHDP methods. Also, from this case study, it can be seen that
the number of transitions required for learning was higher in the online adaptive case than
in the batch offline case.

Table 1. Comparison between the BOADHDP (single- and multiple-hidden-layer NN approximations)
and the ADHDP algorithms from [21,22].

Algorithm J
(
xe

k
)

BOADHDP with NN approximation having a single hidden layer 0.0049
BOADHDP with NN approximation having two hidden layers 0.0031

ADHDP from [21] 0.0236
ADHDP from [22] 0.0258

6. Discussion and Conclusions
In this paper, we study the theoretical stability of BOADHDP with deep neural net-

works as function approximators for the action value function and the controller. To this
end, we introduce a stability criterion for the iteratively updated action value function and
controller NN. The theory uses the Lyapunov stability approach and shows that the weight
estimation errors are UUB if some inequality constraints on the learning rate magnitudes
are respected. This research extends the previous results from the literature, such as [21,22],
both theoretically and practically.

• First, our Lyapunov stability is extended to address NN approximators for action value
functions and controllers with multiple hidden layers. Although NNs with a single
hidden layer are universal approximators, their usage for highly nonlinear applications
is hindered by their generalization capabilities. In contrast, multilayer NNs can learn
complex features effectively, reducing overfitting and generalization issues. The results
outlined in Theorem 1 indicate also an indirect proportionality between the number
of NN hidden layers and the magnitude of the learning rate, providing a practical
heuristic approach for practical ADP applications of multilayer NNs.

• Second, our theoretical Lyapunov stability analysis addresses the usage of batch offline
learning of the action value function and controller NNs. Although successful ADP
applications have been reported using adaptive update methods, their practical use
is often constrained by the significant number of iterations required for convergence.
The adoption of batch learning has, thus, become standard practice, necessitating a
theoretical Lyapunov stability coverage.

• Finally, from a practical point of view, we validate the advantage of using BOADHDP
with multilayer NNs through a case study on a twin rotor aerodynamical system
(TRAS). This study compares BOADHDP using neural networks with a single layer
and two hidden layers as function approximators. The results show that the normed ac-
tion value function weight convergence is smoother with two-hidden-layer networks,
also leading to a controller with an enhanced performance on the control benchmark
(0.0049 for the single-layer NNs and 0.0031 for the two-layer implementation, namely
a 1.58% improvement). This demonstrates the superior capability of multilayer net-
works in managing complex, nonlinear control systems. Also, BOADHDP is compared
with ADHDP algorithms from [21,22], with ADHDP algorithms from [21,22] obtain-
ing 0.0236 and 0.0258, respectively, on the control benchmark, while also requiring
four times more collected transitions from the TRAS system. This proves both the
efficiency of the BOADHDP with respect to the number of collected transitions and

Mathematics 2025, 13, 206 27 of 28

the performance of using batch offline learning methodologies, confirming the results
from [28].

Our findings highlight the advantages of BOADHDP with deep neural networks in
practical applications, underscoring the improved stability and performance in control
tasks. Future research may explore extending this batched multilayer approach to adaptive
learning scenarios. From a practical point of view, applications entailing deep neural
networks and batch learning applications might benefit from this analysis.

Funding: This research received no external funding.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the author on request.

Acknowledgments: I would like to thank Ioan Silea for reading this manuscript and for providing
constructive feedback that improved the quality of our research.

Conflicts of Interest: The author declares no conflicts of interest.

References
1. Werbos, P.J. Beyond Regression: New Tools for Prediction and Analysis in the Behavioral Science. Ph.D. Thesis, Committee on

Applied Mathematics, Harvard University, Cambridge, MA, USA, 1974.
2. Bellman, R.E. Dynamic Programming; Princeton University Press: Princeton, NJ, USA, 1957.
3. Werbos, P.J. Approximate dynamic programming for real time control and neural modeling. In Handbook of Intelligent Control:

Neural, Fuzzy, and Adaptive Approaches; White, D.A., Sofge, D.A., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1992;
pp. 493–525.

4. Al-Tamimi, A.; Lewis, F.L. Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof.
IEEE Trans. Syst. Man Cybern. B 2008, 38, 943–949. [CrossRef] [PubMed]

5. Prokhorov, D.V.; Wunsch, D.C. Adaptive critic designs. IEEE Trans. Neural Netw. 1997, 8, 997–1007. [CrossRef] [PubMed]
6. Liu, X.; Balakrishnan, S.N. Convergence analysis of adaptive critic based optimal control. In Proceedings of the American Control

Conference, Chicago, IL, USA, 28–30 June 2000.
7. White, D.A.; Sofge, D.A. Handbook of Intelligent Control: Neural, Fuzzy, and Adaptive Approaches; Van Nostrand Reinhold: New York,

NY, USA, 1992.
8. Padhi, R.; Unnikrishnan, N.; Wang, X.; Balakrishnan, S.N. A single network adaptive critic (SNAC) architecture for optimal

control synthesis for a class of nonlinear systems. Neural Netw. 2006, 19, 1648–1660. [CrossRef] [PubMed]
9. Balakrishnan, S.N.; Biega, V. Adaptive-critic-based neural networks for aircraft optimal control. J. Guid. Control Dyn. 1996, 19,

893–898. [CrossRef]
10. Dierks, T.; Jagannathan, S. Online optimal control of affine nonlinear discrete-time systems with unknown internal dynamics by

using time-based policy update. IEEE Trans. Neural Netw. Learn. Syst. 2012, 23, 1118–1129. [CrossRef] [PubMed]
11. Venayagamoorthy, G.K.; Harley, R.G.; Wunsch, D.C. Comparison of heuristic dynamic programming and dual heuristic pro-

gramming adaptive critics for neurocontrol of a turbogenerator. IEEE Trans. Neural Netw. 2002, 13, 764–773. [CrossRef]
[PubMed]

12. Ferrari, S.; Stengel, R.F. Online adaptive critic flight control. J. Guid. Control Dyn. 2004, 27, 777–786. [CrossRef]
13. Ding, J.; Jagannathan, S. An online nonlinear optimal controller synthesis for aircraft with model uncertainties. In Proceedings of

the AIAA Guidance, Navigation and Control Conference, Toronto, ON, Canada, 2–5 August 2010.
14. Vrabie, D.; Pastravanu, O.; Lewis, F.; Abu-Khalaf, M. Adaptive optimal control for continuous-time linear systems based on

policy iteration. Automatica 2009, 45, 477–484. [CrossRef]
15. Dierks, T.; Jagannathan, S. Optimal control of affine nonlinear continuous-time systems. In Proceedings of the American Control

Conference, Baltimore, MA, USA, 30 June–2 July 2010.
16. Vamvoudakis, K.; Lewis, F. Online actor-critic algorithm to solve the continuous-time infinite horizon optimal control problem.

Automatica 2010, 46, 878–888. [CrossRef]
17. Enns, R.; Si, J. Helicopter trimming and tracking control using direct neural dynamic programming. IEEE Trans. Neural Netw.

2003, 14, 929–939. [CrossRef]
18. Liu, D.; Javaherian, H.; Kovalenko, O.; Huang, T. Adaptive critic learning techniques for engine torque and air–fuel ratio control.

IEEE Trans. Syst. Man Cybern. B 2008, 38, 988–993.

https://doi.org/10.1109/TSMCB.2008.926614
https://www.ncbi.nlm.nih.gov/pubmed/18632382
https://doi.org/10.1109/72.623201
https://www.ncbi.nlm.nih.gov/pubmed/18255702
https://doi.org/10.1016/j.neunet.2006.08.010
https://www.ncbi.nlm.nih.gov/pubmed/17045458
https://doi.org/10.2514/3.21715
https://doi.org/10.1109/TNNLS.2012.2196708
https://www.ncbi.nlm.nih.gov/pubmed/24807137
https://doi.org/10.1109/TNN.2002.1000146
https://www.ncbi.nlm.nih.gov/pubmed/18244473
https://doi.org/10.2514/1.12597
https://doi.org/10.1016/j.automatica.2008.08.017
https://doi.org/10.1016/j.automatica.2010.02.018
https://doi.org/10.1109/TNN.2003.813839

Mathematics 2025, 13, 206 28 of 28

19. Ruelens, F.; Claessens, B.J.; Quaiyum, S.; De Schutter, B.; Babuška, R.; Belmans, R. Reinforcement learning applied to an electric
water heater: From theory to practice. IEEE Trans. Smart Grid 2018, 9, 3792–3800. [CrossRef]

20. He, P.; Jagannathan, S. Reinforcement learning-based output feedback control of nonlinear systems with input constraints. IEEE
Trans. Syst. Man Cybern. B 2005, 35, 150–154. [CrossRef] [PubMed]

21. Liu, F.; Sun, J.; Si, J.; Guo, W.; Mei, S. A boundness result for the direct heuristic dynamic programming. Neural Netw. 2012, 32,
229–235. [CrossRef] [PubMed]

22. Sokolov, Y.; Kozma, R.; Werbos, L.D.; Werbos, P.J. Complete stability analysis of a heuristic approximate dynamic programming
control design. Automatica 2015, 59, 9–18. [CrossRef]

23. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef]

24. Lillicrap, T.; Hunt, J.; Pritzel, A.; Heess, N.; Erez, Y.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous control with deep reinforcement
learning. In Proceedings of the International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016.

25. Fujimoto, S.; Hoof, H.; Meger, D. Addressing function approximation error in actor-critic methods. In Proceedings of the
Internation Conference on Machine Learning, Stockholmsmässan, Stockholm, Sweden, 10–15 July 2018.

26. Riedmiller, M. Neural Fitted Q Iteration–First Experiences with a Data Efficient Neural Reinforcement Learning Method. In
Proceedings of the European Conference on Machine Learning, Porto, Portugal, 3–7 October 2005.

27. Radac, M.-B.; Lala, T. Learning output reference model tracking for higher-order nonlinear systems with unknown dynamics.
Algorithms 2019, 12, 121. [CrossRef]

28. Watkins, C. Learning from Delayed Rewards. Ph.D. Thesis, Department of Computational Science, University of Cambridge,
Cambridge, UK, 1989.

29. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TSG.2016.2640184
https://doi.org/10.1109/TSMCB.2004.840124
https://www.ncbi.nlm.nih.gov/pubmed/15719944
https://doi.org/10.1016/j.neunet.2012.02.005
https://www.ncbi.nlm.nih.gov/pubmed/22397949
https://doi.org/10.1016/j.automatica.2015.06.001
https://doi.org/10.1038/nature14236
https://doi.org/10.3390/a12060121

	Introduction
	Problem Formulation
	Neural Network Implementation for BOADHDP
	Action Value Function NN Approximation
	Controller NN Approximation
	Batch Offline ADHDP with Multiple-Hidden-Layer NN Algorithm

	UUB Convergence
	Lyapunov Approach Description
	Preliminary Results
	Main Stability Analysis
	Results Interpretation

	Simulation Study
	Data Collection Settings on TRAS System
	Comparison of BOADHDP with Single-Layer and Multilayer NN Approximations
	Comparison Between BOADHDP and the Online Adaptive ADHDP

	Discussion and Conclusions
	References

