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Abstract: In this paper, the theoretical stability of batch offline action-dependent heuristic
dynamic programming (BOADHDP) is analyzed for deep neural network (NN) approxima-
tors for both the action value function and controller which are iteratively improved using
collected experiences from the environment. Our findings extend previous research on the
stability of online adaptive ADHDP learning with single-hidden-layer NNs by addressing
the case of deep neural networks with an arbitrary number of hidden layers, updated
offline using batched gradient descend updates. Specifically, our work shows that the
learning process of the action value function and controller under BOADHDP is uniformly
ultimately bounded (UUB), contingent on certain conditions related to NN learning rates.
The developed theory demonstrates an inverse relationship between the number of hidden
layers and the learning rate magnitude. We present a practical implementation involving a
twin rotor aerodynamical system to emphasize the impact difference between the usage of
single-hidden-layer and multiple-hidden-layer NN architectures in BOADHDP learning
settings. The validation case study shows that BOADHDP with multiple hidden layer NN
architecture implementation obtains 0.0034 on the control benchmark, while the single-
hidden-layer NN architectures obtain 0.0049, outperforming the former by 1.58% by using
the same collected dataset and learning conditions. Also, BOADHDP is compared with
online adaptive ADHDP, proving the superiority of the former over the latter, both in terms
of controller performance and data efficiency.

Keywords: ADP; ADHDP; deep neural networks; batch learning; Lyapunov stability;
uniformly ultimately bounded; gradient descent; Q-function; action value function

MSC: 68T05

1. Introduction

Adaptive dynamic programming (ADP) has emerged as a powerful methodology
for tuning control systems in modern applications, where complexity, nonlinearity, and
uncertainty are commonplace. Originating from Werbos” pioneering work [1], which
was based on the seminal work on dynamic programming conducted by Bellman [2],
ADP soon became a notable stream of research, with multiple ADP designs developed.
Among the ADP designs, two distinct classes of solutions have emerged: heuristic dynamic
programming (HDP) and dual heuristic programming (DHP) [3]. In the HDP framework,
reinforcement learning is employed to determine the cost-to-go from the current state. The
HDP convergence for the general nonlinear systems is presented in [4]. Conversely, in DHP,
neural networks are used to learn the derivative of the cost function relative to the states,
known as the costate vector [5]. The DHP convergence for linear systems was established
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in [6]. For both of those two classes of algorithms, there exists the action-dependent (AD)
adaptation [7]. ADP has also addressed the class of discrete-time control problems [8-13]
and continuous time systems [14-16].

Apart from the theoretical contributions, ADP designs have been validated on a wide
array of real applications. In [17], ADP is applied to a helicopter tracking and trimming
control task. In [18], neural network controllers tuned with the ADHDP method are
applied to an engine torque and exhaust air—fuel ratio control for an automotive engine. A
practical implementation in the context of an electric water heater is presented in [19], where
the collected sensor data were used to learn in a model-free manner the Q-function and
the controller.

Convergence and stability proofs of the iterative processes involved in ADP-like
techniques have also been developed. In [6], the adaptive critic method is described, where
two networks approximate the controller and the Lagrangian multipliers associated with
the optimal control, respectively. The convergence of the interleaved successive update of
the two networks has been analyzed. In [20], an online generalized ADP is issued for a
system with input constraints. Then, using a Lyapunov approach, a uniformly ultimate
boundedness (UUB) stability is proved. The convergence of the value-iteration HDP is
established for the nonlinear discrete-time systems in [4]. In paper [21], the authors derive
the UUB stability for direct HDP algorithms, proving that the actor and critic weights
remain bounded. The actor and critic were approximated by a multilayer perceptron (MLP)
with three layers: input, hidden, and output. However, the updated weights were only
the ones from the hidden and output layers, like in a linear basis function approach. To
overcome the practical limitations imposed by linear basis-function-type approximators,
such as scalability and overfitting, the authors from paper [22] extended the stability
analysis from [21] to MLPs to update both the input-to-hidden-layer weights and the
hidden-to-output weights.

Current research in the field of reinforcement learning (RL), which studies the class
of stochastic systems and controllers, shows significant performances when using deep
NN for control applications for both discretized systems [23] and continuous control
tasks [24]. The advantage of deep neural networks over single-layer networks lies in their
increased approximation capacity, which is achieved through multiple hidden layers. These
layers enable the composition of features at different abstraction levels, creating a robust
hierarchical representation. This hierarchical structure allows deep networks to learn and
model complex nonlinear relationships within data more effectively than shallow networks.
Thus, using multilayer NNs in ADP applications can enhance learning convergence and the
overall controller performance. Also, using batch learning methods, which update the NN
weights using collected past experiences simultaneously, is more data efficient compared to
the single-transition learning, where the weights are updated one transition at a time. This
also breaks the temporal correlations, helping NNs better generalize across a system’s state
space. Typically, batch learning is combined with offline learning, where the weights are
updated exclusively using a fixed dataset of transitions, without any adaptation during
the controller’s runtime. Methods such as those in [19,24-26] demonstrate the benefits of
using batch learning through a technique known as experience replay. In contrast, ref. [27]
highlights an approach where the entire dataset of collected transitions is used for learning,
in an offline manner.

This paper makes two key contributions. First, we provide a novel theoretical stability
of ADHDP when utilizing deep neural networks as function approximators for both the
action value function and the controller and for when batch learning is issued on the entire
dataset of collected transitions from the system. This stands as an improvement over
the stability analyses performed in [21,22], which were based on single-hidden-layer NN
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architectures updated online, with each transition collected during the system runtime.
To this end, we prove that the batched offline ADHDP (BOADHDP) learning process
is uniformly ultimately bounded (UUB) by using the Lyapunov stability approach. We
show that the stability of the learning process is dependent on some conditions imposed
on the NN learning rates and that these conditions also provide a relationship between
the learning rate magnitudes and the number of hidden layers in the networks. Second,
we issue a validation study on a twin rotor aerodynamical system (TRAS) to emphasize
the superiority of employing multiple hidden layers in the NN approximators in the
BOADHDP learning process. We also issue some comparison between BOADHDP and the
online adaptive ADHDP algorithms from [21,22].

The rest of the paper is organized as follows. Section 2 describes the theoretical under-
pinnings of BOADHDP. Section 3 presents the multilayer neural network approximation of
the action value function and controller. Section 4 provides the main theoretical results for
the stability of BOADHDP. Section 5 illustrates the TRAS validation case study. Finally, the
discussion and concluding remarks are presented in Section 6.

2. Problem Formulation

Let the discrete-time nonlinear system described by the state equation be

X1 = Flxg, uy), 1)

where k € N denotes the time index, x; = [x7y, . ..,xn,k]T € Qx C K" the system state,
U = [ullk,...,um,k]T € Qu C R™ the control input, F: Qx x Oy — Qx the unknown
continuously differentiable system function, and Qx and ()j; the compact subsets of K"
and R"™, respectively. The control input is generated by u, = C(x), with C: Qx — Qy
a time-invariant, continuous state feedback controller function with respect to the state x.
For convention, vectors with [x1, ..., xn,k]T are column vectors, while the ones without
the transposition are row vectors.

For the optimal control problem, the objective is to find the optimal controller that

minimizes the infinite value function, defined as follows:

Vixg) = Yo r(xi, C(x) = r(x, Clx)) + V(xiep), @)

where function r: Qx x Quy — R, having r(xg,u;) > 0, r(0,0) = 0, is known as the
penalty function, defined as r(x, u;) = ©(x;) + C(x)"RC(x;), where © : Qx — R is the
penalty term describing the system’s desired behavior as a positive semidefinite function,
and R € R"™*™ is a square positive definite command weighting matrix, as in [4]. The
optimal value function [1] is defined as

V*(x) = min{r(xx, C(xg)) + V" (xp41)}- )

Cla)

The optimal controller is found by applying the argmin() operator to Equation (3), as
C*(x) = ng(lirﬁ{r(xk/ Clxx)) + V™ (x41) ;- 4
k

With the system function F unknown, one cannot apply the well-known ADP methods
for the system (1) directly in order to arrive at (3) and (4). Therefore, the introduction of
action value functions is mandatory to handle the model-free case.
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The action value function proposed by [28] evaluates both the current state and the
command. It is defined as

Qe uy) = 7(xp, i) + V (xXp41). (5)

Compared to the value function (2), the action value function represents the cost of
issuing a command u;, in a state xy, plus the value function of the next state x; 1. Mainly,
Equation (5) evaluates all possible actions u;, € () followed by the controller C(xy.1).
Equation (5) can also be written, according to [28], as

Q(ox, ux) = r(x, 1) + Qaxs1, Cloxpg1))- (6)

From [28], similarly to the value function (3), the optimal action value function is
defined as

Q" (%) = g(lir;{r(xk, ) + Q" (%41, Clxk41)) }, %

and the optimal controller is represented by
C* () = ng(lir;{f(xk, ) + Q" (%41, Claks1)) }- ®)
k

ADHDP Algorithm

Arriving at the optimal action value function and controller requires an iterative proce-
dure consisting of j steps, where the action value function and controller are continuously
updated, according to [28]. Starting with an initial controller Cy(x;) and an action value
function, e.g., Qo (xk, ux) = 0, the action value function evaluation is issued by

Q1 (g, i) = (2, ) + Qo (¥kr1, Co(xk41))- )
Then, the controller is updated using

Ci(x) = ng(lf}{r(xk’ uy) + Qo (xk41, C(xk41)) }- (10)

At the j! iteration, the action value function update is

Qjr1(xk, ui) = r(x, we) 4+ Qj (%41, Cj(¥p1)) s (11)

while the controller update law is
Ci1 () = ng(lifs{f (e, ue) + Qj(xky1, C (k1)) }- (12)
k

The iteration scheme consisting of the repetitive application of Equations (11) and (12)
runsas j — 0.

Remark 1. A policy iteration algorithm requires an initially known stabilizing controller Co(xy),
whereas, for value iteration schemes, this need is avoided.

In the next section, the implementation of the controller and action value function
update is issued using a neural network function approximation for Q;(x, ux) and Cj(xy).

3. Neural Network Implementation for BOADHDP

The recurrent ADP scheme described by Equations (11) and (12) is practically im-
plemented using function approximators for the action value function and controller. To
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this end, neural networks (NNs) are used, due to their universal function approximation
property, which is able to handle multidimensional nonlinear systems (1). The tuning of
the NN weights from each individual layer requires both input-output training data and
the employment of the backpropagation mechanism, which can be best described as a
gradient-based update rule.

The training data for the controller and action value function are collected from the
controlled system (1) and take the form of transition tuples (x, uy, r(xy, ), Xk+1) stored
in a dataset Dy = { (x4, uy, (X, ), Xk41)}, with k = 1 : M. The main objective of the
data collection phase is to uniformly sample the state space Qx x )y, sufficiently exploring
the systems” dynamics.

The action value function and controller NN weight tuning algorithm, using a gradient
descent, is described in Sections 3.1 and 3.2. The weight gradient update uses the entirety
of the collected transitions from D), compared to the methods from [21,22] which use
only one transition per gradient update. This method is called batch optimization, and its
utilization is a common practice for the application of RL and ADP applied to complex
nonlinear systems.

For the batch learning implementation, the action value function and controller update
is made simultaneously for the entire dataset Dj;. Therefore, let X, = [x1,...,xpm-1],
Xf = [x2,...,xm] of size n x (M—1), and Y = [uy,...,up 1] of size m x (M —1) be

X
vectors that lump all states and commands collected in the dataset Dy;. Also, let E = |7

be the matrix of the concatenation of the states and command matrices converted into a
matrix resembling the action value function input.

Stating (NQ]- (xk, uy, WQ) and E]-(xk, W) as the action value function and controller
functions, respectively, approximated by NNs, and with W and W representing the
entirety of the action value function and controller weights, respectively, the gradient
descend update is next detailed.

3.1. Action Value Function NN Approximation

The action value function NN has the scope of approximating (11). Having as inputs
the state x; and uy, the state action function NN is described as

Qi(Xy, Y, Wo) = Q(Xp Y, Wp) =2 = Wk, )

where l l
Q _ e o1 _
I/VIQJKQ ,fOI' lQ = 1,...,LQ,

z5 =
lo _ (e
K5 = ¢ (ZQ ),
th thfl
and Lg is the total number of layers, Wb,j € M'C "0 is the ideal hidden-layer weight

matrix from the iteration j and layer [, and thQ is the number of neurons from layer /5.
The size of Q (Xp, Y, WJQ) is1 x M. Here, ¢(-) = tanh(-) represents the activation function
and can take any form, such as tanh(-), ReLu(-), sigmoid(-), and so on. The vector «' is the

lg layer activation output. For the first layer, we have x = E.

T
Generally, weights I/VIQQ i forlg = 0,..., Lg are generally unknown due to the
existing approximation errors in the weight update backpropagation rule. Hence, working
with the real action value function Qj (Xp, Y, WQ) is not realistic, but only with some
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approximations of it. Noting with WQ,]- the entirety of the action value function weights,
the output of the approximate action value function NN has the form of

> Vo) — O A slo _ phoplo—l

Qj(Xp, Y, Wg) = Q (pr Y, WQ) =%y = Wg/] ko (14)

where l l
Q0 _ e Jo-1 _
zq —W]Q,].KQ ,forlg=1,...,Lg,

I} !
xS =¢(z8),
IQ th 1

and where I/AVZQ‘ c %' represents an estimation of the ideal weights for

/]
lQ =0,..., Lg. To update the action value function NN weights, an internal gradi-
ent update loop is issued for the ig = 0, ..., I steps, having the weights initialized with

WQ/j,O = WQJ. At each iteration i, the following optimization problem needs to be solved,

N 1
WQ,j,iQH = argmmMEQ,jriQ, (15)
W
where
_ . T
Eqjiq = Q0% jiq (16)
and ;
eQ/jriQ = (Q(XP’ Y’ W) - ”Q,f,iQ) 7 (17)

having 7 i, = r(Xp, Y) — 7Q <Xfr (Xfr WC]) WQ,J'J'Q)
Here, e ji, represents the prediction error in the form of a TD error. The state action
function weights are updated by the rule

oE
Q A0 Q]ZQ
Wl Qj ig+l = WZQ,], iQ “QaWzQ (18)
Qi ig

where ag > 0 is the action value function NN learning rate and

o
8EjSQ _ aEQ] ig E)z E)EQJ,,«Q ,\lelT
= & (19)
W, | 253 aw’Q asle @
Qj, ig Qj, ig Q
9 9Ey . 92197 gyclo O
er/iQ o Q] 1Q Z KQ — V\/Q"FlT Q] ZQ @ ( ) (20)
0z az9™ axlg 28 Yasg™

The sign  corresponds to the Hadamard product. Then, the weights WQ,j+1 of j+1
are actualized as Wo j11 = Wg i 1,-
3.2. Controller NN Approximation

The controller NN has the scope of approximating C(xy). Noting with W ; the entirety
of the controller weights, and having as input the state X;,, the output is computed as

Gj(Xp, W) = C(Xp, W) = zc"¢ = W< ™, @)

where
zClC = I/Vlé]-KClcfl, forlc=1,...,L¢
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OEcic

xclc = ¢(chc)

e s plc1
and where I/VJC e R0 *g represents an estimation of the iteration j of the ideal weights
for the [ = O, ..., L¢c layers. Noting with Wc,j the estimation of the ideal weights, the

output of the controller NN is

8 A A A Le Lo—1
C] (Xp/ WC) = C(Xp, WC]) WCC] CC (22)
with
26 = cc,jfféc_l, foric=1,...,Lc

N NR
ke —4’(zc)

and where I/VICC j Tepresents an estimation of the real weights. To update the controller
weights, one needs to issue an internal gradient update loop for the ic =0,...,I¢ steps,
having the weights initialized with WC/]',O = WC,]'. At each iteration ic, the following
optimization problem needs to be minimized for the entirety of the collected dataset,
as follows,

" 1
WC,j,iC = argmmMEC,jliC (23)
w
where
Ecji. = €C,jicec,ic (24)
and
ecjic = QXp, C(Xp, W), Wo ;1) (25)
where ac > 0 represents the controller NN learning rate.
The update of each individual weights is
. oEc i
CC,]', ic+1 — ‘/VZC] ic —oCc—7 VVIC ¢ (26)
Cj ic
where l
BEC,]-,Z'C B aEle- a%cc aEC]lC lC 1T (27)
A7 C o AlC A7C Alc C
WE o 056 WG, 0
Al
aEC]'iC B aEC]’iC achH dxcle - c+1 aEC]zc Qq)(dc) (28)

aAlC aAlC+1 oxlc aélcc — 'Cjic aAlc+1

To issue the update (28), it is necessary to compute the gradient of the action value
function with respect to the controller output. This is computed as

r] lC

Lo
6zC

BEC,j,l-C BEC

ok T
Q T A7l /JiAC
7 . = g =0 (29)
W #0 W, Cji qs Jii
BC (Xp, er,ic) aZQ Q E)C (Xp, C/jriC) < azé )

0 . . . . .
where ¥ = [ "Xm] and I;, are the identity matrix, of dimensions m x m, and 0,5, a1 X m
m

matrix of zeros. Then, the weights Wc,j+1 of j 41 are actualized as Wc,j+1 = WC,j,IC-

3.3. Batch Offline ADHDP with Multiple-Hidden-Layer NN Algorithm

Next, the BOADHDP algorithm using multiple-hidden-layer NN function approxi-
mators is detailed. The algorithm consists of consecutive steps where the action value and
controller NNs are updated.
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1. Initialize ag, ac, Ig, Ic, Ag. Initialize the NN architectures for Qj(Xp, Y, WQ) and
C;(Xp, Wc) by setting Lo, Lc, and their respective weights. Let j = 0 and ig = ic = 0.

2. Collect M transitions from system (1) and construct the database D,.

3. Atiteration j, setig = 0 and WQ,]-,Z-Q = WQ,]-. Then, update the weights from all Ly

layers using (18) for lQ = 0, IQ Finally, set WQ,j+1 = WQ,j,IQ'

4. Setic =0and WC,j,iC = WC,]-. Then, update the weights from all L layers using (26)
for iC = 0, Ic. Finally, set WC,j+l = WC,j,IC'

5. If the condition ||Wq ; — Wg ;_1|| < Ag is not met, update j = j + 1 and go to Step 3.
Else, stop the iterative algorithm.

4. UUB Convergence

In this section, the convergence of the NN weights to a fixed point is examined. By
using a Lyapunov function, the stability of the weight evolution to the fixed point is proved
to be UUB under some specific conditions.

4.1. Lyapunov Approach Description

Each iteration j of the BOADHDP algorithm consists of a total cumulated
number of I = Ig + Ic gradient steps for both action value function and
controller.  Let a new iteration index be defined as i = 1 : jxI, namely
i € [1,...,IQ,IQ+1,..., LI+1,...,I+1gI+Ig+1,..., 21,...}, which represents a
fine-grained iteration over both gradient action value function and controller. During
i € [jI,jl+1p], only the action value function neural network weights WQ,j,i are updated
using (18), while WC,j,i remains unchanged. On the other side, for i € []I +1Ig,jl+ 1o + Id ,
only the controller weights Wc,j,i are updated using (26), while the action value function
weights W, ; ; remain unchanged. To simplify the notation, we substitute W ;; and W¢
with WQ,i and WC,i/ respectively.

Let Wp, and W represent the optimal weights of the action value function NN and
the controller NN, and let the weight estimation errors between the approximation of the
real weights and the optimal ones be W ; = Wy ; — W, We,; = We; — WE.

Therefore, the difference between the estimated weights and the optimal ones at each
layer of both the action value function and the controller NN at each iteration i is, according
to (18) and (26),

— JEq, — oEq,;
Q  _Wwe o* _ we Qi o* _ We Qi
T L
IWg,; IWg,;
— R R 9Ec; — OEc;
Wi = Wiy — WE™ = W, — e — - WE" = WE; —ac— = (31)
IWE; IWE;
Then, based on (14), (18), (22), and (29), define the following dynamical system with
the nonlinear difference equation system, where P represents a nonlinear function,

V:VQ,i+1 _ ":VQ,i _
We i W,

N 1 N Lo Lo-1 . Lo—1

WQ,i/ WQ,i*l/(P (WQ,i‘:‘>/ ¢<WQ,i—lc‘)/ cee /¢<WE%KQQ )/ ¢<W(LQ%71KQQ )
o 1 .l Ny e ole—
Wc,z',Wc,i/<P(Wc,iXp)ffP(Wc,iqxp)’--- r47(Wci'KéC 1)f¢(wc,cifl"éc 1)
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Definition 1. The equilibrium point of a system (32) is said to be uniformly ultimately bounded
(UUB) with bound x > 0 if, for any > 0and iy > 0, there exists a positive number N = N (i, x)
WQ'i WQ io
WC,I’ C,ip

independent of iy, such that < xforalli > N + iy when

4.2. Preliminary Results

In the following, the UUB property of the system (32) is demonstrated for the update
rules (18) and (26), both of which make the weights of the two approximating NNs enter a
region with the center in the optimal weights W, and W¢.. Some fundamental assumptions

are next introduced.
Assumption 1. The optimal NN weights for the action value function and the controller and
the activation function ¢(-) are bounded by positive constants, i.e., WE|| <

Wé,max/ H(P()H < 4’max~

— Ly T—
Lemma 1. Under Assumption 1, it is implied that the first difference of FgQi = D}Qtr{ WgQZ WgQZ } is
given by

L = Lo-1 Lo-N\T /., Lo-1
AT = ftr{ZW(Lfiqb (zQQ )eQ,iT} + aQtr{tel{p (zQQ ) <p(zQQ )eQ,iT}. (33)
Proof. Let AFLQ% be described as

Q,i+1

arke t{wg 7 ) WLQ} (34)

Using (19), (20), and (30), we get

. _ oE 0Ep; de 9zL — Lo—1\T
we  _whe _ Qi _wle _ Qi 9€Q,i —Whe _ sl 35
ain1 = Woi— do whe, "Qgeq,; 22k awie, o ageqid(2g7 ) (35)
Based on this, we have
Lo _ 1 WHe JLo-1\T\' WLQ T WLQTWLQ
AFQ i xg tr Qi xgeqQ,id (ZQ ) — &xQeg, 14)( ) Q,i Q,i
1T Lo—1 —
= D}Qtr{ (W(LQQZ — o (zQQ )eQ,iT> (W(L2 —ugeq, lcp > Wégl} 36)

— 1tr{—2aQWLQZ-¢(2L - )eQz +lXQeQz¢( ) eQz }
—tr{ZWLQ (LQ 1>eQ,iT}—|—tht1’{€Q,i¢( ) eQ' }

O

Lemma 2. Under Assumption 1, it is implied that the first difference of T' 5 Q = 1 tr{I/VIQ I/VIQQ ; },
forlg =1: Lo —1is given by

—tr{ 2WR. r QJrl Q-1
{ZWZS’I (W’QH ! O4>( )) ( ! )}+
tr{aQ<p( Slo— 1) <¢5Q+1 WJQH@(P 2 T)< Q+1 lQHO(P( ))4’(281)} (37)
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Proof. For any Aflg’i, withlg =1: Lo —1, we have

ATS, = tr{w’Q "W

Q,i+1 Q,i+1

~Wg, le } (38)
Based on (19), (20), and (30), we get
WS, = WS, — o (WE @2 O(2¢) )o(25 ). )

with <I>IQJrl = af‘i’l Based on (38) and (39), one gets
a2

ZQ

-t (oo o s ) o
—aQ VL -
ro( W5, 0l 03 ))¢(’ Y)W s}
:ﬂtlgtr{(W’QlT—“Q‘P( Jo— 1) ((DfQH W1Q+1 ( >T>)(
ucQ<Wl§j1 1Q+1O¢( ))4’( slo— 1)) WIQ W’Q} (40)
- (ot 04(2) o4
—|—ch¢( o 1) ( oot WIQ+1®¢ lQ T (WIQJrl lQ“@gb( slo ))4)(281)}
o (o ord i)
+irfage (25 ") (@1 WE 0a(28) ") (WS 0l 0 (25) o(2 ) |

0

['%e}

Lemma 3. Under Assumption 1, it is implied that the first difference of I C =1L {W W(L;Cl} is
given by

e eer Coa L B P R CEp T S

Proof. Let AT écl be described as
L 1 —LcT—L
Al = e {WC1+1 Wc i1 — We WC?:’}‘ (42)
Based on (27), (28), and (31), let

aE — T
Wi = WE — e = WE —acQip (271 (43)

Therefore,
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AT =L {(W’CCZ aCQl(P( sle— 1) ) <M/Ccz ac01¢( sle- 1) >_Wé,CiTWé,Ci} _
(R e o) (W) )
1tr{ 20 Wi (571 ) QT + a2 g (5 1)T¢(zgc1)n;}:

—tr{zwlg,¢( sle- 1) }+actr{ <p< ple- 1>T¢(2écl)n,-T}.

0

Lemma 4. Under Assumption 1, it is implied that the first difference of FE P = L tr{ W]C W¢; },

forlc =1:Lc —1,is given by

r{aws, (Wer e 0 () Jo (2 )}
+zxctr{¢(zlgl)T (xﬁc”TWlCle @4’(2@) T) <chcflrxﬁcﬂ ©) ¢<2?)>¢(2£§1) }

(45)

Proof. For any Al"lci, withlc =1: Lc — 1, we have
] 1 _ T__ T
ALE; = %tr{"‘/cc,iﬂ Wlé:,m - chc,z' ccz} (46)
Based on (27), (28), and (31), we get
T A +1 l +1 Al Alc—1
Wi = W —ac ( WE T Od(2 C)) (267, 47)

with XICH = aafi’l Based on (46) and (47), one gets
ZC

ATE,

- alctr{ ("Vlcgi—“C<WICC,T1TX5CH©¢(EIC)> (2 1>)T(chc,i

—ac(WE K @4 () Jo (2 ) - wE

= rf (W] —aca (2 ) " (" W’5T1®¢(A’C)T))(W€,i

—ac (Wléfﬂxﬁc“@fﬁ(ilc))sb(dc l)) W, Ccz} (48)
:,,}Ctr{—mcmf& (wl&+1 ’C“@4>(AIC)>¢(21CC 3

a2z 1)T( le+1 VVZC“®¢(2’CC)T> (M]lc—s—l zc+1©¢(dc)>¢(élcc 1)}

——trfawe (WE 2 04(26) Jo(267) |

cect{o(s67)" (W 0d (2 ) (W ke 0 () Yo )

O

4.3. Main Stability Analysis

This section provides the main stability theory for the error estimation of system (32).
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Theorem 1. Running BOADHDP algorithm from Section 3.3, which iteratively updates Wg ; and
W ; using (18) and (26), the action value function and controller weights converge to their optimal

weights W, and W, respectively, such that Wp,; — 0 and We; — 0 if

Z(WQ max2¢Q,max2 + EZQzll WQ, max(P(Zg maxWQ maleLS]Ql WQ, maxgbg,mgx)
“Q < — 2 Lo—1 Lo—1 : 2 = XQmax (49)
WQ, max ¢Q,max4 + Equzl Q, maxQDQ max H[ lo Q, max(PQ,max
2("VC maxnmux(,bmax +21 WC maxfpmaxﬂmuxnl I WC max(Pc max)
ac < 1 P > = &C,max- (50)
Qmux Qbmux +ZICC:1 Gbmax 0max Hl Ic C, max¢C,max

Proof. According to (18) and (26), we have, for each layer of action value function and

controller NN,

oE _ oEp ;
WO  =Wo W = WZQ el RN VAT 7v (R e o (51)
Q,i+1 Q Q av\/ Q Q,i Q aWIS,i

Q,i+1 —
— . . OEc; oEc;
W]CC,i+1 = W]CC,iH —WE = W]cgz —ac— G = WE = W —ac— = (32
oW, IWE,
Let the Lyapunov function candidate be defined for each weight matrix according to
each action value function and controller NN layer /5 and I be described as

1 1 N
{le WQI}—l—...—l—aQtr{Wg%. wg?i} (53)

i

Te=Tki+...+T¢ = lctr{wlcfwlc,i} o+ ;Ctr{wéfiTwég} (54)
The joint action value function and controller Lyapunov function is
I'=To+T¢ (55)
Let the difference of the Lyapunov candidates be
ATg=ATH;+...+ AFQ l (56)
(57)

ATc = AT it +AFC1,
and the joint Lyapunov differences be AT’ = AI'g + ATc.
Next, the proof is divided in two parts: one proving that AT'g < 0, if inequality (49) is
respected, and one proving that AT'c < 0, if inequality (50) is respected
L o JLo—1 JLo-N\T /. Lo-1
(a) Let AFQ% = —tr{ZWé%gb(zQQ )eQ,iT} + sztr{eQ i (z Q ) (p(zQQ )teiT},
! o T +17 _lo+1 Slo-1
according to Lemma 1, and AI’QQ,Z. = —tr{ZI/VlQQ,i (WIQ ®° 0O qb( ))(])(25 ) } +
oI [ Cio+1T o do+1 - 700\ T ((we+1” oot o1
tr{zxgj)(zg ) (cpl.Q W’& qu(zég) >(W’(§Z = Q(p( )>¢<z§ )}, for

all layers [p = 1: Lo — 1, based on Lemma 2.
.+ ATQ o Vlg =1:Lg — 1, is lower than 0 if

The sum AT'g = Al"lQ’i +.
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ATq

= —tr{2Wgio (28 )ea” }*"‘Qtr{eQ'igb(%Q_l)Tgb(%gQ_l)eQ'iT} T
L ZWIQ (WISHT o' o >¢<21Q1)}
o~
“Q

Q

) ( 1Q+1TWIQ+1©¢( ) ) (WSTT‘I’FH@‘?’(QZS))(/’(EIS1)}
(

= sztr{eQﬂ.q, QCLQQ—1>T (ALQ—l)eQZT} N

-HXQtT{(P(flS1>T<¢§Q+1T[/\/]Q+1®¢( ) ) (W’Slﬂ lQ+1©¢<zl§))¢<2151>} (58)
< tr{ZWgc?in(%gQ_l)eQ,iT}+...+tr{zwlé2,i ("Vlégfl §Q+1O¢(28)>¢(Eg_l)}

e (tr{eQ'i‘P (5 ' (2 eaiTp+ -

+”{4’(2g_1)T<<I>§QHTWl§j1®¢(28>T (WIQH 1Q+1®¢(zl§)>¢( 15 1)}>
<ir{2Wgp(2g e )+

cor{ s, (w87 00(28) o 2 )

For the terms corresponding to layer L from (58), we have

+tr szgb(
<0

tr{eQ,#P(ﬁIéQ1>T¢<22Q1>8Q,iT} < |lequr (252" ’2 (59)
Also, tr{ZW(Lfi(p (215371) eQ,iT} is written as
r{2We (28 Jeai”}
= tr{ (WgQZT + 4’(25Q1)8Q,iT) (W(LQQ +eg, ¢(2LQ1)T) }
—tr{W(LfiTWg%} — tr{teiq)(%gQ_l)T(p(zg 1)eQ,l-T}
e
2 (60)

Lo—-1\T
_ eQ,i‘P(ZQQ )
_ Lo—1 T
2 |lecie (25 )
Lo-1\T 2 whe 2 Lo-1N\T 2
tleaip(2g) | — W 9(28)
— Lo—1\T
:szggH eQ,igb(zQQ ) .

Based on the TD error definition (17), we can write e ; = WLQ%gb (282_1) —1q,i- Then,
(59) is described as

eoip(2 ")

gﬂWLQ%Z

2
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Also, (60) is described as

J— Lo—1\T
2| aso(2e)
2|

=2 | (Wio (=5 ) ~naols5 )
Wols W) ey V@
2w [ole ol )|
For the terms corresponding to all layers o = 1: Ly — 1 from (58), we have
tr{¢(281)T(¢ﬁQ+1TWQ+1 ¢(A1Q)T) (WISZHT plot! @4’< ))qb(ilgl)} < o
2
Joz57) ]

WIQHT 1Q+1 ( IQ) '
Also, the term tr ZW/JQ- I/AVZQ{rl oot O gl /0" 1Y U ig described as
oi (Wai @i P(20) )P(%0

oo, (w17 0a(25) o 25) )

o (a5 (o7 " 0(25) >S” (7o 04 )4 ))
ool o) (37 00(8)') (o 0v() ol )

o ) (o6 o))y

o ot o o)

< I 21 I o 00
N e
Lo o 0afe)
- o5 o 05

i

IN

(64)

T .
With @, = WJS? <I>§Q+2 ©) 4)(28“), based on (20), we get, for all NN layers
from g +1, lQ +2,..., Lo,

T .
e on()
» Jo+1T (o Jo+2T

= W (We
A Jo+1T [ Jo+2T
= |wg ™ (Wt

ZQ+1

WIQ+1T (WIQ+2T 1Q+2©(P( 1Q+1>) O<P(Zl(§)
(W el @i ) ) - 0i(25 ) )04 (25)

Wil e0i09(2 ) ) @i (25" ) @b (25)

(65)
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Based on the normed Hadamard product property ||[A O B|| < ||A]|-||B|, with A and
B being matrices of the same size, (65) is described as

. Qj-l lQ+1®¢( )’
s W™ (W es0(2 1)>---®¢(JQQ“) [o(25)]
WIQ+1

i leasl- (2 )| (25™) o (=8)]

";“’g% (2¢") - anH

Adot2
W

JeCe)

IN

IN

(66)

25 ,
HE el
( &)[He
()] (20)])
Therefore, based on (61)—(64), the inequality (58) is written as
)
N o 1T}bm¢§QH 047(215)
Lo-1 )

<zgw>ui; 2 <zl>\r)

(67)
(e )T 92 o (et |

o)
AN
/\—/—\
= o
o
- ¥
LN

2

o W e o) [ e ot 002

S Al
o[ Y | o)
Al

I

o8 ol e s )HzL“H <z>r)
g s YooY+, Il Isisllotes I 1 )
Let the following norm bounds be defined as follows:
w5,

Then, based on Assumption 1, the inequality (67) can be written as

< 2HWfQQZ

_ +1
<2Hw’é%

+l

n ~ R .
WISJH < WQ, maxs 4)(25) H < P max foralllg =1:Lq.

oY 2 Lo—1 & Lo—1 A . 2
[1%6) (WQ max (PQ mux4 + Zl Q_l Q, max(PQ mux41_[l Q[Q Wz max¢Q max ) <
2WQ max (PQ max + 221 -1 WQ max‘PQ maxWQ male Ig WQ max‘PQ max*

(68)

To guarantee that (68) is negative, the learning rate needs to be selected as follows:

Lo-1
2<WQ max 47Q max +Zl =1 WQ mux‘PQ muxWQ male 1 WQ mux(PQ max)

= . (69)
1 2 Q,max
WQ max (PQ max4 + Zl e WZQ max‘PQ max Hl lo Q, max(PQ,max

ag <
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(b) Let ATES = —tr{2WE 9 (27 )i | + actr{ﬂ o (5 ‘1>T¢(Aéc‘1)ﬂf}, ac-
cording to Lemma 3, and AFEi = tr{ZWZCCZ <WICCZ+1T e @4)( ))<p( ICC l)} +
actr{¢< & )T<x§C“TW£,T1 O(2¢) )(WZC“T o5 ) } for all

layers I[c =1: Lc — 1, based on Lemma 4.
The sum AT = ATE; + ... + ATES, Vie = T Lc — 1, is lower than 0 if

ATc
:—tr{ZWlCC’@(ééc_l)QiT}+occtr{ (26 )Tcp( ) iT}+...
o, (W e 0a() ol )
wactr{p(27) (T WE () ) (WK @9(26) Jo (2 |
@)actr{ﬂ-cp(ié *1)T¢( Le- 1)0 T}+
Jmctr{q)(lcc )T(chJrlT c+1O¢ T) <ch+1 1C+1®¢ ) } (70)
<tr{2W’5¢( < ) + +tr{2wJCT(w’C+1 let1 ) }
@W( { () o2k ) }+
...+tr{¢(i§ )T( T 0 (2l )(w’C“ X od(2 5))4>(i§ )})
< {oWe g (2l )07} + +tr{zw(g, (WE 2 @ () o (2 }.
For the terms corresponding to layer L¢ from (70), we have
‘ . (71)

t,{0i¢<2éc—1)T¢(2(L:c—1)0iT} < H0i4)<2(€c—1>T 2

Also, tr{ ( ) } is described as

We (5 )QT}

(2¢ WS, — Oy (2{;0‘1)T
tr{{xfz’gﬂ w’(gl} tr{Q ¢(22 (1)T¢(zgcl)nﬁ} >}
we,— o (2 )| - !Wa oo (et
W, 2+2’W’51 Qi (5™ Hmp )
() | =2[WE o ( ol

For the terms corresponding to all layers I[c = 1: L¢c — 1 from (70), we have

tr{(l)(%éc—l)T(Xéc-l-]TWéjl Oq'b(%ﬂ;c)T) (W;gﬂ Ic+1 @4’(2%))4)(215 )}
< | (W e oa () o (s

_ H‘P(‘%lcc_1> 2 (chleX§C+1 @47(2(:)) HZ

IN

T ’2 (72)

-

2
WE;

<

(73)
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T[T :
Also, the term tr{ZVVICC/i (I/\/CCZ+1 X5C+1 O¢ (2?) ) cp(zlcC ) } is described as

fords” (W R 09(25) Yo (s67)
= (W o) (W 0 ()" ) (WE + (W 00(2) o (2 ) )}

o W o ()" (W 00 ) ) (WA 03 o)

< "VlcC,iTjL‘P(‘%lg_l)T(XichlTWCﬂ@4’(2[5>T> - ‘chz ’
(5 oo ol ) o
< [ 2w (W 00 () o)
_|_’ (chﬂT 1C+1®¢ CC)> ( ) B HWZCC ’2
_’ (chc;rlT lc+1®¢ CC)> ( )H2
= 2w o (25 || (W 2 @9(26) ) |
Having XICH Wléjjl xiCHQd)(%lgH), ‘(I/A\/léjﬁxgﬁl@d)(%lg)) can be writ-
ten similarly to (65), as
(37 00t4)

= [wet (Wgﬁﬂ... <WE§T01~@¢(2§C‘1)> 0¢(2 lC“)) O¢(2¢)||

Based on the normed Hadamard product property, one gets

e (Wi (Wéfn Ob(sE )) @4,(215“)) O(zk)

< ol W W) |- o) 79
1

|
()] = o 11 [t o2 |

C,z
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ac <

Therefore, based on (71)—(74), the inequality (70) is

“C<H 1¢ h:1>T
< 2w ,¢(zc -
2w ()] (v

e 1¢< )

< 2w | oo (st )H+

C+1

o)

ot o) Froar T

2 T
Adc+1 lC+1 Alc
(WC,i Xi

lC*J’C)¢’ Ak; )“
o))

I=lc
(77)

2] o) ot 7 o)
e Jontee )] - 1H¢<Je iy 9 o ) )
<2 oo (c6)’]

+zf§z_ll\|m/& oz )] ||ni||LjIlC1 b(2)]

Let the following norm bounds

e

be defined as follows:

$(2¢) H < e v 1% < Quuarfor all Ic = T+ L.

Based on Assumption 1, the inequality (77) can be written as

2 Lc—1
ac (Qmax Gbmax2 + ZICC 1

< ZWC, maxnmax¢max + 22

Le—1w
47max20mux2Hl ¢

Le—1+o
le=1

. 2
C, max¢C,max )
WC mux¢maxnmaxnl I

(78)
WC, max¢C,max‘

To guarantee that (78) is negative, the learning rate needs to be selected as follows:

k7Y, Le—1 47
2 (WC, mzszmux(Pmax + ZICC 1

WC maxfpmaxnmuxnl I WC max(PC mux)

Lc—1
Qmux247max2 + Zlcczl

Le—1
Pmax QmaxZHlC WZC

5 = XC,max- (79)

Ic max¢C max

In conclusion, by having the inequalities (69) and (79) respected, we get AI' < 0. O

4.4. Results Interpretation

According to (69) and (79), as the number of hidden layers increases, the upper bounds

for the learning rates ag and ac decrease. This is due to the denominators in (69) and (79)

being larger than their respective numerators, primarily because the denominators include

squared terms. Therefore, the number of hidden layers in both neural networks is inversely

proportional to the magnitude of their respective learning rates. For illustrative purposes,

the action value function learning rate bound & ;4 Was plotted along the hidden layers

Lo = 1:15in Figure 1, based on (69). The norm bounds of the weights were selected as

WQ, max — WQ, max = 2 and ‘PQ,max =

(j)Q/max = 1 for the activation function ¢(-) = tanh(-).
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10 12 14
Lq

Figure 1. Relation between the number of NN layers and the bound of the learning rate &g ;45 -

Remark 2. This inversely proportional relationship between the number of NN hidden layers and
the learning rate can be attributed to the gain in complexity of the NN optimization surface as the
number of hidden layer increases. A high learning rate in such a scenario can lead to erratic updates
in the intricate optimization surface, potentially causing the divergence of the learning process.
While a smaller learning rate increases the risk of getting stuck in local minima, it is beneficial for a
stable learning.

5. Simulation Study

Next, the impact of employing multiple hidden layers in the NN approximators, batch
learning, and offline computation in the ADHDP learning process, namely the BOADHDP
algorithm from Section 3.3, was tested on an ORM tracking task on the TRAS system.
First, the system is described along with the data collection settings for BOADHDP. This is
followed by a comparison between the BOADHDDP learning process using single-hidden-
layer NNs and the one using two-hidden-layer NNs for approximating the action value
function and the controller. Finally, the online adaptive ADHDHP algorithms from [21,22]
are compared with BOADHDDP, highlighting the advantages of the latter.

5.1. Data Collection Settings on TRAS System

The nonlinear system was characterized as a two-input and two-output system. The
horizontal motion, or azimuth, operates as an integrator, whereas the vertical, or pitch,
motion experiences different gravitational effects when moving upward versus downward.
There was also an interconnection between these two channels. In Figure 2, a system setup
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is shown. The model used was a simplified deterministic continuous-time state-space
representation, consisting of two interconnected state-space subsystems:

Wy, = (sat(uh)i;\Al1(wll)).10*5,

Kj, = (0.216F;, (wy,)cos a, — 0.0580), + 0.0178sat (U, )cos ay ),

J— KI
= (0.0238-c0522¢v+3-10*3)’
a =y,
Wy = (sat(Uv)lfélgVIv(wv)) .10_4, (80)

0.2F,(wy) — 0.0127Q), — 0.0935sin a;,
Oy = gig | —9.28-107600 |wy | + 41710 3sat (L) — 0.05cos & |,
—0.02107sin acos a, — 0.093sin &, + 0.05
‘kv - Qv/

where sat() is the saturation function in the interval [—1; 1]. The horizontal azimuth control
input was U}, = u; and the vertical pitch control was U, = uy. The system output was
represented by the azimuth angle w), € [—7; 7] and by the pitch angle a, € [—71/2; 7/2].
Nonlinear static characteristics were derived from experimental data through polynomial
fitting as in [29]:

My(w) =9.05 x 1072w +2.76 x 10710 w2 + 125 x 10 * w) +1.66 x 1074, (81)

Fp(w) = -1.8x 10718 0] — 7.8 x 10710 w# +4.1 x 1071 w3 +2.7 x 1078 w?

82
+3.5x 107* w — 0.014, (82)
My (wy,) =595 x 1013 w? —5.05 x 10710 w? +1.02 x 10~* w} )
+1.61 x 1073 wy,
= =20 ;5 17 4 -12 3
Fy(wy) = —2.56 x 10720 w? +4.09 x 107" w} +3.16 x 1012 w} -

—7.34 x 1077 w? +2.12 x 1075 wj, + 9.13 x 1073.

. F main rotor
tail rotor o I

AL
tail shield—g.--’"

o

. o
|«—main shield

DC-motor + f ‘\ DC-motor +
tacho —T—— \ tacho
|
. . I \free-free beam
articulation

Counter balance

Figure 2. TRAS system setup [29].

The process was discretized by using a zero-order hold sampler on both inputs
and outputs. With a sampling time of T; = 0.1 s, the following discrete-time model
was obtained,

{ ) )

Y = g(xk) = [“k,h/ D‘k,v]T/
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where the system state was x; = [win, Qs Xk 1, W os riv,aklv]T € R° and the control
input was uy, = [uy, g5, as in [29].

In the ORM tracking paradigm, the controlled system outputs track the output of the
ORM model. In this application, the ORM was defined as in [29] and had the form of

Xy = 0.9673x] 4 0.03287,
X0 q = 0.9673x7  +0.0328r,, (86)

h v T h v T
Yem = [yk,m’yk,m} = [xk,m’ xk,m} ’
where 7, and 7y, are step input reference signals. Therefore, an extended state

that comprises both the TRAS and the ORM states was defined as
T

xp = {wk,thk,h/ & s W00 Qpor o x;i‘,m,x;f,mrrk,h, rk,v:| € RO,
For data collection, the linear diagonal controller

| Pu(z)/(1—2z71) 0
Clz8) = l ! 0 Pn(z2)/(1 Z_l)]'

Py1(z) = 2.9341 — 5.8689z 1 4-3.9303z 72 — 0.9173z > — 0.0777z "%,
Py (z) = 0.6228 — 1.1540z ! 4 0.5467z 2 (87)

was used in a closed loop with system (85), where the controller parameters were tuned
using VRFT as in [29]. Having the closed loop stabilized, the successive step referenced
input signals with amplitudes ranging in an interval of r , € [=2;2], and 1, € [-1.4;1.1]
were generated at 17 s and 25 s for the azimuth and pitch respectively. To guarantee a
satisfactory exploration of the system’s state-space domain, a random noise was added at
each two timesteps. The random noise added on Cy;(Z) had an amplitude of [—1.6;1.6] and
the one added on C;(Z) had an amplitude of [—1.7;1.7]. A total of M = 50, 000 transitions
were collected, creating, therefore, the dataset D5 go0 = { (x,e(, uy, r(x,e(, uk), xp +1) }, with
k =1:50,000. An excerpt of the data exploration is shown in Figure 3. Next, BOADHDP
was issued for action value function and controller NN approximations for both the single-
hidden-layer (Lo = 1, Lc = 1) and the multilayer case (Lo = 2, L¢c = 2).

QLo

v
km»
o

Il

Tko, T

0 2000 4000 6000 8000
sample index k

Figure 3. Data collection in relation to the TRAS system: ry ; and 7y, (yellow); x,i’ nand x  (red);
ay and ay ,, (blue).
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5.2. Comparison of BOADHDP with Single-Layer and Multilayer NN Approximations

For the single-layer NNs, the form of the action value function was 12-50-1 and that
of the controller was 10-10-2. The activation functions of the hidden layer were hyper-
bolic tangents and the ones of the output layer were linear. The weights were initialized
using the Xavier initialization [29]. The internal gradient updates were I = 500 and
Ic = 100 and the learning rates were selected to be x5 = 0.01 and ac = 0.001. The

penalty function took the form of r(x¢,u) = (ak,h - x,’j,m>2 + (rxk,z, - x,f/m)z. The algo-
rithm ran for a total number of 500 iterations. The performance of the NN controller
was tested on a simulated scenario. In this scenario, the tracking capabilities were tested
on a random reference signal generated from [—1;1] for 2000 timesteps. Therefore, at
each BOADHDP " iteration, the performance of the controller was measured by the

2 2
function J(x§) = (’Xk,h - x,i’m) + (“k,v - xfk’m> /2000 on the simulated scenario, for
k =1 :2000. The convergence of the action value function and the values of J(x) is
shown in Figure 4 in an orange color. This was computed by checking the norm between

the weights from successive BOADHDP iterations, namely the norm H W, — Wy ! Hz The
decreasing behavior of the successive weight norms from the first plot in Figure 4 proves
the convergence of the action value function. The second plot presents the performance
of the value function | (xi) under the simulated scenario for the controller obtained from
each iteration j, namely C;(x{, W ). The tracking performance of the controller obtained at
iteration j = 500 is shown in Figure 5. In this figure, the performance of the TRAS system
(85) in a closed loop with the controller Csg (xi, WC) is shown. The evolution in time of
the output of the horizontal and the vertical axes is plotted in a blue color along with the
reference signal (yellow) and reference model (orange), showing the tracking capacity of
the Csoo (x¢, W) controller.

6 T T T T
= ——2 hid layers
_|_:0’4 —1 hid layer
| —
._,Bo’z
p— O |
0 100 200 300 400 500
0.15 : :
E 0.1 |
S
0.05+ 1
0 | | I T
0 100 200 300 400 500

Figure 4. BOADHDP convergence in the TRAS system.
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Figure 5. One-hidden-layer controller learned through BOADHDP, at iteration j = 500 : ry j, and 7y ,,
(yellow); xf nand xf - (red); a , and &y, (blue). The commands uy j, and uy, are for the horizontal
and vertical axes (blue).

For the multilayer NN setup, the form of the action value function was 15-50-10-2
and that of the controller was 10-10-4-2. The activation functions of the two hidden layers
were hyperbolic tangents and the ones from the output layer were linear. The weights
were initialized using the Xavier initialization [29]. The internal gradient updates were
Io = 500 and I¢ = 100, and the learning rates took the values of ag = 0.01 and ac = 0.001.
The algorithm ran for a total number of 500 iterations. The convergence of the action
value function and the values of J(xy) is shown in Figure 4 in a blue color. The tracking
performance of the controller obtained at iteration j = 500 is shown in Figure 5.

From Figure 4, it can be seen that the convergence of the two-layer NN approximators
for the action value function and the controller delivered more stable results. First, the
norm of the action value function successive weight differences from the first plot was less
noisy and provided a faster convergence in the two-layer case than the single-layer NN.
Then, in the second plot, the function ] (x;) converged faster to a lower value that correlated
with a performant controller. Also, the values of ] (x¢) was 0.0049 for the single-layer NNs
and 0.0031 for the two-layer implementation. The two-layer implementation outperformed
the single-layer one by 1.58%. The difference in tracking performance can be seen in
Figures 5 and 6, where the horizontal motion tracking improved in the case of the two-layer
NN controller.
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Figure 6. Two-hidden-layer controller learned through BOADHDDP, at iteration j = 500 : 7 j, and 7y ,,
(yellow); xllz nand xp (red); ay , and &y, (blue). The commands uy ;, and uy, are for the horizontal
and vertical axes (blue).

5.3. Comparison Between BOADHDP and the Online Adaptive ADHDP

Next, the online adaptive ADHDP algorithms from [21,22] were applied to the TRAS
system. The difference between ADHDP methods [] was that the former one only updates
the weights from the hidden to the output layer, while the latter updates the entire NN
weights.

For these algorithms, we used the same NN architectures as in the single-layer NN
from BOADHDP, namely the form of the action value function NN was 12-50-1 and that of
the controller was 10-10-2. The activation functions of the hidden layer were hyperbolic
tangents and the ones of the output layer were linear. The weights were also initialized
using the Xavier initialization [29]. The learning rates were selected to be g = 0.01

2
and ac = 0.001. The penalty function took the form of r(x{,u;) = (vck,h - xf(l’m) +
2

(“k,v - xlzc;,m>

Compared with BOADHDDP, in these implementations, the adaptation of the NNs
was made online, using only the transitions along with each time step of the simulated
system. The algorithm ran for 200,000 time steps. Every 2000 steps, the controller weights

2
were fixed and their performance was measured by the function J(x{) = (Dék,h - x,lj,m) +

(“k,v — x;c’,m)z/ 2000 under a simulated scenario, for k = 1 : 2000. The convergence of
the action value function and of the controller performance of the simulated scenario can
be seen in Figure 7 for the ADHDP algorithms from [21,22]. The tracking performance
of the ADHDP algorithms from [21,22] on the TRAS system using the aforementioned
learning settings is presented in Figure 8. The value of the ] (x¢) was 0.0236 for the ADHDP
algorithm from [21] and 0.0258 for the ADHDP algorithm from [22].
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Figure 7. ADHDP convergence in relation to the TRAS system. ADHDP algorithm from [21] in
purple and ADHDP algorithm from [22] in green.
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Figure 8. Tracking performance of the ADHDP algorithms from [21,22], at iteration j = 150,000 : 7y
and 7y, (yellow); me and xi’/m (red); ay j, and g, (green—ADHDP algorithm from [21], purple—
ADHDP algorithm from [22]). The commands u j, and uy , are for the horizontal and vertical axes
(green—ADHDP algorithm from [21], purple—ADHDP algorithm from [22]).

The | (xi) values of the BOADHDP and ADHDP algorithms from [21,22] are summa-
rized in Table 1. Also, from Figures 5 and 8, it can be observed that the online adaptive
ADHDP algorithms could not deliver the same performance as their batch and offline
counterpart, BOADHDP. Furthermore, the ADHDP algorithms presented in [21,22] failed
to enhance controller performance, even though they utilized four times as many collected
transitions from the system. This difference in the performance of the BOADHDP algorithm
stems, in part, from the batch nature of the learning process. By processing multiple col-
lected transitions from the state action space at the same time during NN actualization, the
gradient for the action value and controller NNs is averaged over all the transitions. In turn,
this makes the NN update more stable. By issuing the gradient update in an offline manner,
the same collected transitions are used at each iteration, making the convergence speed
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faster. This stands in accordance with the observations from [28], where the authors proved
the advantages of batch learning in comparison to the online adaptive single-transition
learning from the classical ADHDP methods. Also, from this case study, it can be seen that
the number of transitions required for learning was higher in the online adaptive case than
in the batch offline case.

Table 1. Comparison between the BOADHDP (single- and multiple-hidden-layer NN approximations)
and the ADHDP algorithms from [21,22].

Algorithm J(x)
BOADHDP with NN approximation having a single hidden layer 0.0049
BOADHDP with NN approximation having two hidden layers 0.0031
ADHDP from [21] 0.0236
ADHDP from [22] 0.0258

6. Discussion and Conclusions

In this paper, we study the theoretical stability of BOADHDP with deep neural net-
works as function approximators for the action value function and the controller. To this
end, we introduce a stability criterion for the iteratively updated action value function and
controller NN. The theory uses the Lyapunov stability approach and shows that the weight
estimation errors are UUB if some inequality constraints on the learning rate magnitudes
are respected. This research extends the previous results from the literature, such as [21,22],
both theoretically and practically.

e  First, our Lyapunov stability is extended to address NN approximators for action value
functions and controllers with multiple hidden layers. Although NNs with a single
hidden layer are universal approximators, their usage for highly nonlinear applications
is hindered by their generalization capabilities. In contrast, multilayer NNs can learn
complex features effectively, reducing overfitting and generalization issues. The results
outlined in Theorem 1 indicate also an indirect proportionality between the number
of NN hidden layers and the magnitude of the learning rate, providing a practical
heuristic approach for practical ADP applications of multilayer NNs.

e  Second, our theoretical Lyapunov stability analysis addresses the usage of batch offline
learning of the action value function and controller NNs. Although successful ADP
applications have been reported using adaptive update methods, their practical use
is often constrained by the significant number of iterations required for convergence.
The adoption of batch learning has, thus, become standard practice, necessitating a
theoretical Lyapunov stability coverage.

e  Finally, from a practical point of view, we validate the advantage of using BOADHDP
with multilayer NNs through a case study on a twin rotor aerodynamical system
(TRAS). This study compares BOADHDP using neural networks with a single layer
and two hidden layers as function approximators. The results show that the normed ac-
tion value function weight convergence is smoother with two-hidden-layer networks,
also leading to a controller with an enhanced performance on the control benchmark
(0.0049 for the single-layer NNs and 0.0031 for the two-layer implementation, namely
a 1.58% improvement). This demonstrates the superior capability of multilayer net-
works in managing complex, nonlinear control systems. Also, BOADHDP is compared
with ADHDP algorithms from [21,22], with ADHDP algorithms from [21,22] obtain-
ing 0.0236 and 0.0258, respectively, on the control benchmark, while also requiring
four times more collected transitions from the TRAS system. This proves both the
efficiency of the BOADHDP with respect to the number of collected transitions and



Mathematics 2025, 13, 206 27 of 28

the performance of using batch offline learning methodologies, confirming the results
from [28].

Our findings highlight the advantages of BOADHDP with deep neural networks in
practical applications, underscoring the improved stability and performance in control
tasks. Future research may explore extending this batched multilayer approach to adaptive
learning scenarios. From a practical point of view, applications entailing deep neural
networks and batch learning applications might benefit from this analysis.
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