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Abstract

Understanding how complex biological forms emerge and evolve remains a central ques-
tion in evolutionary and developmental biology. To explore this complexity, we intro-
duce a minimal two-dimensional, cellular automaton (CA)-based model that captures
key features of biological development—such as spatial growth, self-organization, and
differentiation—while remaining computationally tractable and evolvable. Unlike most
abstract genotype–phenotype mapping models, our approach generates emergent morpho-
logical complexity through spatially explicit rule-based interactions governed by a simple
genetic vector, resulting in self-organized patterns reminiscent of biological morphogenesis.
Using simulations, we show that, as observed in empirical studies, the resulting phenotypic
distribution is highly skewed: simple forms are common, while complex ones are rare. The
model exhibits a strongly non-linear genotype-to-phenotype mapping in such a way that
small genetic changes can lead to disproportionately large morphological shifts. Notably,
transitions toward complexity are less frequent than regressions to simplicity, reflecting
evolutionary asymmetries observed in natural systems. We further demonstrate that, by
allowing for mutations in the generative rules, our model is capable of adaptive evolution
and even reproducing generic features of tumoral growth. These findings suggest that even
minimal developmental rules can give rise to rich, hierarchical patterns and complex evolu-
tionary dynamics, positioning our CA-based model as a powerful tool for investigating
how developmental constraints and biases shape morphological evolution.

Keywords: cell automaton; self-organization; genotype-phenotype-map; spatial pattern;
complexity; evolvability

MSC: 37N25; 68Q80; 92C15

1. Introduction
Self-organization is a fundamental principle observed across all levels of biological

organization, from molecular assemblies to ecological systems [1,2]. The spontaneous
emergence of ordered patterns from local interactions has been extensively explored in
developmental biology and evolutionary theory [3–5]. One of the clearest manifestations of
self-organization in biology is the developmental process, whereby complex morphological
structures emerge through the iterative and dynamic interplay between genes and cells [6].

During development, genes interact in structured gene regulatory networks (GRNs)
controlling cellular properties and behaviors such as proliferation, polarity, apoptosis,
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and migration [6–8]. The activation of these behaviors, embedded within the spatial context
of tissues, collectively shapes the morphology of the developing embryo which, in turn,
may potentially affect gene regulation via the channeled diffusion of morphogens or stress-
driven mechanotransduction. This effectively creates a dynamic, recursive loop between
gene activity and physical form.

This feedback-driven system ensures that successive developmental stages or spa-
tial patterns (understood as specific distributions of cell types) differ from, and are often
more complex than, preceding ones (which may be as simple as a spherical zygote), ul-
timately culminating in highly structured multicellular forms. Beyond this increase in
morphological complexity, development introduces non-linearities into the relationship
between genotype and phenotype. As a result, the genotype-to-phenotype map (hereafter
GPM) of most organisms is inherently complex [9], a property that appears to extend to the
relationship between the initial pattern or conditions and the final phenotypic outcomes—
the so-called epigenotype-to-phenotype map [10]. Consequently, some phenotypes (especially
simpler ones [11,12]) are more likely to arise than others, while some may be entirely inac-
cessible through developmental dynamics alone, leading to a morphospace with structured
gaps and directional biases [13,14].

These intricacies arising from development are extremely relevant from an evolution-
ary point of view, as they can constrain phenotypic variation [15–17], reduce the efficiency
of natural selection by introducing trait correlations [11], or channel evolution along non-
adaptive trajectories [13,18–20]. However, despite their importance, characterizing the
GPM in real organisms remains technically challenging, not only because it requires large-
scale mutational screening, but also because many mutants result in non-viable forms.
Leveraging data from natural populations is not always a viable alternative either, as most
non-adaptive phenotypic variants, although developmentally accessible, are likely to have
been purged over generations by purifying selection [21].

To address these limitations, many researchers have turned to computational models
to study development and the structure of GPMs. Under the premise of biological realism,
some of these models [22–26] simulate GRNs, morphogen diffusion, physics-based tissue
biomechanics in a continuous 2D or 3D space, along with biologically inspired cellular
behaviors, to recreate actual organs or phenotypes. These models typically rely on spe-
cific initial conditions, genetic programs, and developmental mechanisms, with minimal
variation across replicates and/or generations [11,27,28]. Moreover, the number of po-
tential interactions, and consequently, the computational demands, increase rapidly with
the number of genes and cells [29]. Therefore, while very effective and informative for
studying developmental dynamics of specific organs, these models are generally unsuitable
for evolutionary studies involving large populations and high generational turnover.

At the other extreme are more abstract and highly idealized models which, although in-
tended to capture certain properties of developmental dynamics, fail to implement self-
organizing mechanisms [30]. These models typically compute the genotype-to-phenotype
translation in a single step, relying on statistical correlations between genotypic and pheno-
typic changes (e.g., G-matrices encoding trait covariation [19,20,31]), or on mathematical
functions that mimic developmental variation [32–34]. While computationally efficient
(the phenotype is calculated in a single step from “genetic” parameters), these models
lack many evolutionarily relevant features of real developmental systems, such as the
physical space in which phenotypes emerge, emergent collective behaviors [3], gaps in
morphospace [9,17,28], persistent developmental biases [16], or evolutionary novelties [35].

Situated between the physics-based models in continuous space and the non-
generative models lacking explicit space lie the so-called cellular automata (CA): discrete,
grid-based systems in which each cell updates its state according to fixed rules based on
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its neighbors [36–38]. By operating in discrete space (often bidimensional) with limited
discrete (often binary) cell states, CAs retain spatial structure, context-dependence, and rule-
based emergent behavior while minimizing computational complexity, therefore offering a
promising balance between generative capacity and computational simplicity.

One of the simplest and most well-known CA-models is the classical Conway’s Game
of Life [39,40], a binary-state automaton implemented on a square grid (although several
extensions—e.g., HexLife and HighLife [41,42]—have expanded its rule space and behavior).
Despite its simplicity, this CA generates remarkably complex dynamics, including stable
structures, periodic oscillators, and mobile patterns such as “gliders” and “spaceships”.
Notably, a related one-dimensional automaton, Rule 110, has been proven Turing-complete
(i.e., computationally universal), demonstrating the generative potential of CAs [43]. An-
other particularly interesting example is Lenia [44], a CA with continuous state values that
exhibits life-like dynamics and emergent structures, albeit at a greater computational cost.
However, despite their popularity in computer science, recreational mathematics, and the-
oretical physics, pure (i.e., deterministic) CA models are often unsuitable for biological
processes due to their limited degrees of freedom and interpretability (however, see [29]).

In the cases where CAs have been applied to biological scenarios, they are usually
designed to explore the evolution of ecological communities by establishing analogies
between CA rules and biological processes [45]. For instance, in the Conway’s Game of Life,
cells with too few or too many neighbors are said to “die” due to under- or overpopula-
tion [40]. This population-level behavior can be extended to developmental patterning [46].
In a developmental context, the spatial patterns that emerge from neighborhood-based
rules may be viewed as epigenetic, in the sense that they influence the final configuration
of cell states (i.e., the phenotype) without modifying the generative rules of the system (i.e.,
the CA’s update rules, analogous to the genome) [47,48]. However, epigenetic mechanisms
alone are insufficient to produce orchestrated developmental processes, as they also require
genetic regulation to ensure robustness and heritability [10,49,50]. Furthermore, genetic
mutations—i.e., changes in the generative rules of the genetic program—are essential for
evolution as a source of heritable variation. These genetic dimensions of development
and evolution have been incorporated into more biologically grounded CA-based models,
such as the Cellular Potts Model (CPM) [27,51], which allows for a more fine-grained
implementation of cell behaviors and biologically meaningful parameters [29].

In general, genetic control over cell states and behaviors is integrated into CPMs in
the form of continuous or Boolean gene regulatory networks (GRNs), often combined with
long-range cell–cell signaling and stochastic noise to prevent the system from becoming
trapped in local energy minima [29,52]. In addition to cell signaling, CPMs typically rely on
other non-local energy functions (such as constraints on surface/volume or perimeter/area
ratios, adhesion energies, etc.) that are minimized across the entire system to maintain
the physical integrity and viscoelastic properties of cells [29]. Another key feature of
CPMs and related models is that each grid cell does not correspond to a single “biological”
(in silico) cell, but rather to a fraction of subcellular volume, allowing for cell shape to vary
dynamically in response to mechanical and tensile forces [27,29,53–55].

These additional layers of biological realism, together with the incorporation of CPM-
based cores into multi-purpose modeling platforms like CompuCell3D [52], MorphoSim [56],
Morpheus [57], and Chaste [29,58], have expanded the application domain of CAs to a broad
variety of developmental systems. Examples include cell sorting [29,53,54], vertebrate limb
bud morphogenesis [59], cell colony growth [55], organoid development [60], and somite
segmentation [61], to name just a few.

However, in many of these models, cell signaling and morphogen diffusion, as well
as gene–gene interactions (i.e., GRNs whose size scales with the square of the number
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of genes), are typically formulated as systems of ordinary differential equations (ODEs)
that require fine-grained numerical integration methods such as Euler–Maruyama [29].
Furthermore, many CPM-based models rely on asynchronous cell updates, which intro-
duces additional stochasticity and computational overhead (although similar behaviors
have been observed in synchronous update schemes [62]). Even in simplified CPM im-
plementations designed to minimize algorithmic complexity, additional adjustments (not
always formally supported [63]), such as allowing for multiple cells per grid site, are some-
times used to enhance biological realism [55,64]. Consequently, most CPM-based models
exhibit relatively high computational complexity [56], with some approaching the cost of
continuous-space simulations (e.g., EmbryoMaker [24–26]) and being similarly demanding
in terms of computational resources [65].

This leaves a conceptual and methodological gap between simple, discrete, and de-
terministic cellular automata (e.g., Conway’s Game of Life) and complex CA-based de-
velopmental models designed to accurately describe real-world biological systems (e.g.,
the Cellular Potts Model). In this work, we introduce a minimal, biologically inspired
CA-based model that helps fill this sparsely populated intermediate spectrum. Like other
CAs, our model operates on a two-dimensional grid, updating cell states synchronously
according to a few simple, local, and developmentally inspired rules [6,29,66]. In addition,
our model implements a non-local rule, reminiscent of directional cell growth, that modi-
fies neighboring rather than focal cells (a property that has been explored in some recent
CA-based model variants [29,55]). As we show, this rule naturally gives rise to a form
of volume-exclusion principle, even within the minimal architecture proposed here (see
Section 4). This non-local growth, together with other biologically inspired minimal trans-
formation rules, are encoded in a mutable vector that allows for evolutionarily adaptation
(as in [50,67]).

Through extensive (>10,000) simulations and a variety of metrics, we demonstrate
that our model exhibits key properties of biological development such as the generation
of complexity via self-organized processes, multi-level hierarchy, skewed distribution of
phenotypic complexity (more complex structures are less frequent), non-linear genotype-
to-phenotype mapping, and evolvability. Furthermore, we offer a proof of principle for its
heuristic potential by assessing (i) the interplay between genetic and epigenetic inheritance
(i.e., maternal effects) under different selection criteria and (ii) its ability to quantitatively
reproduce generic features of tumor growth. Given its algorithmic simplicity and com-
putational efficiency, our model provides a minimal yet flexible tool for investigating the
evolutionary consequences of complex developmental processes, with broad applicability
to theoretical research in evolutionary and developmental biology.

2. Methods: The Model
The model (Figure 1) follows the typical structure of a two-dimensional cellular

automaton with open boundary conditions (periodic or toroidal boundary conditions
could potentially introduce artifacts if the boundaries were ever approached). Each row
i and column j (i ∈ Z, j ∈ Z) in the lattice has associated a discrete variable Sij, which
is zero for empty positions and positive for positions containing living cells. For living
cells, Sij ∈ {1, . . . , 8}, encoding a spatial direction among the eight possibilities defined by
Moore’s neighborhood. Therefore, at each iteration t, the whole system is defined by the
set of internal states of all cells, that is,

St = {St
ij}

Living cells can perform four different behaviors (or developmental rules) depending on
the number of living neighbors in their Moore neighborhood:
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• Rule 0 (stasis): The cell remains unchanged and alive in the next time step: St
ij = St−1

ij .

• Rule 1 (apoptosis): The cell dies: St−1
ij = x → St

ij = 0. Besides the genetic regulation
of cell death (see below), this rule is applied by default whenever a cell has zero living
neighbors to ensure the physical continuity and integrity of the system.

• Rule 2 (change of internal state): The cell updates its state: St
ij = St−1

ij + 1; if St−1
ij = 8,

then St
ij = 1. Note that while other increments in Rule 2 (e.g., +2, +3) are certainly

possible, they would unnecessarily complicate the minimal nature of the model and
diverge from biological systems, where non-gradual changes in cell states are typically
achieved through gene regulatory network dynamics.

• Rule 3 (growth): The cell initiates the creation of a clone in the direction specified
by its internal state Sij, provided that the target cell is vacant. If the target location is
already occupied by another living cell, no action is taken. Without loss of generality,
directions are defined relative to the Moore neighborhood and indexed clockwise,
starting from the cell directly above. Each direction is labeled using a two-letter code
that combines vertical (U: Up; C: Central; D: Down) and horizontal (L: Left; C: Central;
R: Right) references. Accordingly, Sij = 1 corresponds to UC, Sij = 2 to UR, Sij = 3 to
CR, Sij = 4 to DR, Sij = 5 to DC, Sij = 6 to DL, Sij = 7 to CL, and Sij = 8 to UL.

Although these behaviors represent only a subset of the cellular mechanisms known
in plants and animals [6–8,68], they underlie many important morphogenetic transfor-
mations and can be implemented even in a minimal architecture. In contrast, simulating
more complex behaviors, such as cell shape changes that drive tissue deformation or
migration, typically requires allowing for multiple grid sites per cell or multiple cells
per grid unit [27,55,69], introducing continuous force fields coupled to the grid (as in
lattice-gas or lattice–Boltzmann approaches [64,65,70]), or adding parameters to capture
heterotypic adhesion strengths or chemical gradients, all of which significantly compromise
the model’s minimalism.

To avoid the complications outlined above and to make our four minimal key behav-
iors operative, they are encoded in a genetic vector G of length 8, which is fixed at the
beginning of the simulation and identical for every cell. Notice that, since the system’s
evolution cannot be formalized using local transition matrices (because a dividing cell Sij

may modify a different cell Skl with (k ̸= i) ∨ (l ̸= j)), the choice of a vector as the reposi-
tory for the transformation rules provides a practical encoding of the cellular automaton
(CA) rules. Such a direct encoding of the rules (rather than using a genetic network per
se, whose size scales quadratically with the number of genetic elements) keeps the model
minimal and compact while retaining a clear biological analogue to a linear genome, widely
used in biological modeling [27,50,67,71]. Furthermore, this representation enables the
digital “organisms” to undergo mutation or to perform genetic crossing [72,73] to explore
the effects of genetic admixture (not addressed in this work, but see [50]).

At each time step, the number of living neighbors (Nij) determines the update rule
to be applied, and, therefore, the behavior of the corresponding cell. Specifically, the k-th
value of the vector G determines the rule to be applied to any cell with exactly k neighbors.
More formally,

IFF
(
Sij ̸= 0 ∧ Nij = k ∧ k ̸= 0

)
=⇒ cell Sij performs behavior Gk,

where k ∈ {1, . . . , 8} and Gk ∈ {0, 1, 2, 3}

In turn, since only living cells can perform “actions”, an initial population of such cells
is required to begin the simulation. These cells constitute the initial conditions and can
adopt different spatial configurations, encoded as a binary pattern in the matrix Epi. This
Epi matrix, which defines the system’s state at t = 0 (S0), may be interpreted as maternally
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inherited epigenetic information, analogous to the zygotic mRNA gradients necessary to
establish body axes in many organisms [74].

Figure 1. Graphical depiction of the proposed CA-based model. (a) Developmental rules
—conceptualized as biologically inspired cell behaviors—implemented within our model, namely,
Rule 0 (developmental stasis), Rule 1 (apoptosis or programmed cell death), Rule 2 (change of internal
state in a clockwise fashion), and Rule 3 (directional cell growth). The yellow cell indicates the focal
cell executing the behavior, with the central arrowhead representing its internal state (Sij), which
determines the direction of cell division (see Section 2). Purple and black cells represent living and
dead neighboring cells, respectively. (b) An example genetic vector G encoding the possible rules to
be executed by the focal cell. Each entry in G (from 1 to 8, bottom row) corresponds to the rule (top
row) triggered when the focal cell has exactly that number of living neighbors. In this example, G
specifies that apoptosis occurs with one or six neighbors; internal state changes occur with two, four,
or five neighbors; and growth is triggered with three neighbors. (c) Illustrative dynamics over ten
iterations using the genetic vector G from panel (b) and the “epigenetic” matrix Epi shown at t(0),
which encodes the initial distribution of living cells in a 4× 4 grid. For each living cell, small numbers
indicate the number of living neighbors, and arrowheads represent the internal state. Orange cells
denote those experiencing frustration (i.e., cases in which the developmental rule to be executed
cannot proceed due to spatial constraints; see Discussion). This example illustrates the progressive,
yet non-monotonic, increase in complexity observed in many parameter combinations, and how
identical spatial patterns with different internal states (linked by green dotted lines) can lead to
distinct morphogenetic transformations.

To ensure comparable magnitudes between the genetic and epigenetic spaces, the size
of the initial prepattern Epi is set to 4 × 4 = 16 cells, each initialized with Sij = 1. Thus,
the epigenetic search space has 216 = 65,536 possible configurations, since each of the
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16 positions in Epi can contain either a living cell or empty space. Similarly, the size of
the genetic search space is 48 = 65,536, where 4 is the number of possible rules (including
Rule 0) and 8 is the length of the vector G. Combined, these yield a total evolutionary
search space of 216 × 48 = 4,294,967,296 possible configurations, which is large enough
(>109) for the questions addressed in this work, yet easily expandable (see Section 4).

Given that the application of the aforementioned rules is fully deterministic (i.e., no
probabilistic mechanisms are involved), the dynamic transitions of the system from state St

to the subsequent state St+1 depend solely on the current configuration and the behaviors
encoded in the rule vector G. These state transitions across iterations can be denoted by
the map R:

R(St, G) → St+1

For the sake of clarity, specific analytical techniques and experimental setups are
described in the corresponding Results sub-sections.

3. Results
3.1. Complexity and Stability Analysis

We first explored the behavior of the system across a large number (n = 10,000) of
parameter combinations (i.e., random pairings of random genomes G and random initial
conditions Epi). Although this represents only 0.00025% of the total search space, previous
research adopting similar approaches has shown that such sparse yet unbiased explorations
are sufficient to uncover relevant variational properties of generative systems [11,49,75].
For each parameter combination, we ran the model for tmax = 150 iterations (via a syn-
chronous parallel update algorithm), recording the final spatial distribution of living cells
as the resulting phenotype. Although these phenotypes do not resemble known biolog-
ical organisms, a visual inspection reveals substantial variation in form and complexity,
with patterns ranging from minute to large morphologies (Figure 2). Many phenotypes
exhibit X- or Y-shaped structures that appear to function as bauplans for these digital organ-
isms, i.e., basic templates from which further variation emerges. These often incorporate
triangles, fractal-like motifs, and secondary patterns. The most complex phenotypes display
a baroque mixture of structural elements at various scales, some even evoking the stylized
hummingbirds of the Nazca petroglyphs. From a dynamical perspective, it is noteworthy
that conserved structures (such as the radial “arms” defining the overall bauplan) emerge
early during in silico developmental time (Figure 2m). In contrast, the finer patterning that
introduces differentiation and amplifies the phenotypic impact of parameter variation tends
to appear later, suggesting a temporal hierarchy in morphogenesis. This developmental
sequence broadly parallels patterns observed in real-world embryogenesis, where coarse
body plans precede detailed and species-specific structural elaboration [74,76].

As in real-world developmental systems, not every parameter combination gave rise
to a viable phenotype. As shown in Figure 3a, four distinct dynamical regimes emerged in
our simulations: extinction within a few iterations (≈95%), steady-state or cyclic behavior
(≈3%), indefinite growth (≈2%), and chaotic (<1%). These proportions closely match those
reported in theoretical models of real GRNs [28,77]. Notably, even among the phenotypes
exhibiting indefinite growth, 99% remain bounded within the theoretical upper limit
predicted by a two-dimensional random walk model (scaling as nx/ log(x) with n < 6),
and all simulations lie well below the x2 curve, which would correspond to the unrestricted
growth of a solid square.
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Figure 2. Bestiary of illustrative morphologies from our parametric exploration, sorted by increas-
ing complexity. (a–f) Examples of low-complexity phenotypes, characterized by a small number of
living cells forming simple patterns, low algorithmic and informational complexity, and near-linear
parameter-to-phenotype mappings. (g–l) Mid-to-high-complexity phenotypes. Complexification
often emerges from an X- or Y-shaped skeleton with additional finely patterned, secondary structures.
(m–p) Representatives of the most complex phenotypes, characterized by large populations of living
cells, intricate and surreal patterns reminiscent of the Nazca lines, high algorithmic/informational
complexity, and non-linear mappings between parameters and phenotypes. In (m), colors represent
cell age: purple cells (forming the “bauplan” skeleton) are developmentally old, having appeared
during the first half of developmental time, whereas orange and yellow cells emerge later. In all other
plots, colors encode a combination of each cell’s age and its internal state Sij, using an arbitrary color
code. Black regions indicate areas without living cells.

Phenotypic complexity was quantitatively assessed using three complementary mea-
sures: (1) size, defined as the final number of living cells (Nc); (2) Shannon entropy (H); and
(3) algorithmic (Kolmogorov) complexity. Since the latter is formally incomputable [78],
we followed standard practice and approximated it via lossless compression. Specifically,
we used the compression ratio of phenotype data files, obtained with the standard zipfile
module of Python 3.10, as a proxy. This method assumes that highly structured data can be
efficiently compressed, whereas incompressible data lacking exploitable patterns require
a description as complex as the data itself. All three complexity metrics yielded nega-
tively skewed (approximately exponential) distributions, indicating that the more complex
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the phenotype, the rarer its occurrence (Figure 3b). This pattern aligns with previous
observations of organismal complexity [79].

Figure 3. Complexity and stability analysis. (a) Developmental trajectories based on the number
of living cells across 10,000 simulations with random initial conditions (Epi) and genetic vectors
(G), revealing three distinct dynamical regimes: extinction, steady-state/cyclic behavior, and un-
bounded growth, with their respective frequencies. (b) Distributions of final phenotype complexity
measured by number of living cells (Nc), Shannon entropy (H), and compression-based algorithmic
complexity. All metrics show a non-linear decay with increasing complexity (dashed lines: exponen-
tial fit). Insets in the middle panel show representative phenotypes for selected complexity values.
(c) Jensen–Shannon divergence across phenotypic scales reveals peaks in pattern redundancy at
three characteristic sizes, suggesting emergent structural levels (see main text). (d) Zoom-ins of
medium-scale motifs (at the “organ/tissue level”) that appear consistently with minimal variation
within and across phenotypes (in arbitrary colorcode).

Importantly, pairwise comparisons revealed that the three complexity measures
were only weakly correlated with one another (Nc vs. H: Pearson correlation coefficient
R = 0.234; Nc vs. Kolmogorov: R = 0.561; Kolmogorov vs. H: R = 0.232). This lack of
strong correlation indicates that each measure captures a distinct aspect of phenotypic
organization, and that the negative relationship between complexity and frequency is a
robust and metric-independent feature of the system. Furthermore, the final phenotype
size (Nc) was also not correlated with the number of initially living cells in Epi (R = 0.049),
suggesting that, as in other CAs and biological systems [9,80], initial conditions are poor
predictors of the system’s behavior and long-term dynamics (see next section). Introducing
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discrete random cell states U ∼ {1, . . . , 8} in Epi neither introduces a meaningful difference
in the shape of complexity distributions (p-value ≈ 2.6 × 10−6 for pairwise comparisons
among Nc distributions using Wilcoxon signed-rank test). By contrast, increasing Epi size
does affect the distributions, as it alters the λ parameters of the exponential fits, approxi-
mately following λ ∝ 1/Epi. These possibilities are only explored here in a limited way,
since the parsimonious principle guiding our experiments favors keeping the model and
its parametric space minimal.

To further investigate how phenotypic complexity is distributed across organizational
levels, from individual “cells” to entire “organisms”, we conducted an information-theoretic
analysis using the Jensen–Shannon divergence [81]. By applying a sliding window of vari-
able size, we quantified the redundancy (or information content) of progressively smaller
subsets of each phenotype. As shown in Figure 3c, complexity is not uniformly distributed
across scales. Instead, the analysis reveals three main peaks in pattern redundancy at
granularities roughly corresponding to subsets of

√
4 = 2,

√
60 ≈ 8, and

√
120 ≈ 11 cells.

These represent characteristic organizational levels at which local patterns appear especially
ordered and exhibit high statistical regularity, suggesting that phenotypic complexity in our
model is hierarchically organized. The smallest scale likely reflects basic empty space–living
cell permutations between adjacent grid positions, whereas the largest scale appears to
correspond to macroscopic features located along the main quadrants and axes, such as
the “arms” of X- or Y-shaped forms. The intermediate peak may correspond to the scale
at which self-organization is most effective, producing non-trivial structured motifs with
internal coherence. Those medium-scale motifs (illustrated in Figure 3d) are of particular
interest, as they constitute highly conserved substructures, analogous to tissues or serial
organs, that emerge with minimal variation across different regions of a single phenotype
and even among phenotypes generated by distinct genetic and epigenetic configurations.

The hierarchical organization of phenotypic complexity was further studied by ana-
lyzing the Hausdorff dimension (or “fractality”, HD) of the resulting phenotypes. Using
the box-counting method [82], we estimated the Hausdorff dimension for the subset of
simulations where this calculation was feasible (typically those with Nc > 100). The re-
sulting distribution of dimensionalities followed a log-normal pattern, peaking around
HD ≈ 0.65. This value is strikingly close to that reported for classical Cantor dust-like
structures (HD ≈ 0.63) [83], suggesting that our CA-based model not only produces phe-
notypes of considerable complexity, but does so by generating nested substructures that
hierarchically emerge from the inside out, exhibiting scale-invariant, fractal-like proper-
ties. In other words, the observed complexity is not merely a consequence of structural
elaboration, but reflects an underlying generative logic capable of producing hierarchically
organized, self-similar patterns.

3.2. Genotype-to-Phenotype Mappings

We next asked whether, as in real-world developmental systems, our CA-based model
and its pseudo-developmental process exhibit a non-linear mapping between generative
parameters (i.e., the genetic vector G and the Epi matrix) and resulting phenotypes. To ad-
dress this, we analyzed how phenotypic divergence varies with genetic distance.

Genetic distance was quantified using the Hamming distance between the genetic
vectors of individuals A and B (GHD), scoring each entry in the summation as 0 if GA

k = GB
k

and 1 otherwise. This binary definition avoids spurious distance inflation due to the
arbitrary numerical coding of behavioral rules. Phenotypic distance was quantified by
means of both Hamming distance (PHD) and a Euclidean distance (PED). PHD accounts
only the living cell/empty space status in the resulting phenotypes (i.e., Sij ̸= 0 vs. Sij = 0),
while PED compares the full internal state values of all living cells Sij.
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As a first step, we sampled random pairs of individuals from the initial ensemble
and compared their genetic and phenotypic distances. As shown in Figure 4a,b, GHD
exhibits a saturating relationship with both PED and PHD, indicating that increasing
genetic divergence does not necessarily lead to proportional phenotypic divergence. These
results support that the GPM in our model is pervasively non-linear, affecting both the
structural and functional aspects of phenotypes.

The same experimental procedure was repeated to assess the relationship between
(Hamming) differences in initial conditions (Epi matrices) and the resulting phenotypes
across pairs of individuals. Both PHD and PED were used to quantify phenotypic
(dis-)similarity. The results (Figure 4c,d) indicate that, as in other biological systems
(both real and simulated [10,84]), many general features of the epigenetic-to-phenotype
map—including its degree of nonlinearity—are comparable to those observed in GPMs
(cf. Figure 4, panels a,b vs. e,f).

A potential explanation for the observed saturating pattern, unrelated to the non-
linearity of the GPM, is that it may be a statistical artifact resulting from saturation effects.
Specifically, it is possible that, beyond a certain GHD threshold, phenotypic differences
converge to the expected dissimilarity between two random binary matrices of size N. This
effect would be especially pronounced around GHD ≈ 6, which, according to the Central
Limit Theorem, is the most probable Hamming distance between two random genetic
vectors of length 8, where P(GA

k ̸= GB
k ) =

3
4 · |G|. In that case, the apparent non-linearity

could simply reflect the intrinsic saturating growth pattern already observed in Figure 3a.
To rule out this possibility, we repeated the experiment while restricting GHD to the

immediate mutational neighborhood. Specifically, we selected a random subset of genomes
from the initial ensemble and, for each one, generated 30 mutants by introducing 1, 2, or
3 point mutations, each implemented as

Gk → (Gk + 1) mod 4, with k ∼ U{1, |G|}

Phenotypic distances were then computed between each mutant and its corresponding
“wild-type” genome (Figure 4e), and also between mutant pairs within the same local
neighborhood via pseudo-bootstrap sampling (Figure 4f). In both cases, the results show a
saturating pattern, reinforcing the conclusion that the GPM is intrinsically non-linear across
mutational scales. This similarity in the degree of non-linearity across scales suggests that
the GPM may exhibit a self-similar, scale-free structure, a hallmark of many self-organizing
dynamical systems [1] (see Section 4 for a probabilistic interpretation of this result).

To conclude our analysis, we explored how GPM behavior varies across the pheno-
typic complexity spectrum. Specifically, we restricted the analysis to the most complex
(H > 2.5) and simplest (H < 0.5) phenotypic subsets from the initial ensemble, finding
that simple phenotypes tend to be associated with more linear mapping, while complex
phenotypes exhibit more intricate and discontinuous relationships (Figure 4g,h). This
pattern is consistent with previous findings in biological models [11,25]. Furthermore,
large-effect mutations not only produce greater morphological change, but also lead to
more discrete and non-gradual transitions in phenotype space.
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Figure 4. Relationship between genetic and phenotypic divergence. (a) PED vs. GHD for a subset
of randomly chosen pairs of individuals from the initial ensemble. (b) PHD vs. GHD for the same
pairs. Both panels reveal a non-linear, saturating pattern in the GPM, evidenced by their deviation
from reference linear slopes (red dashed lines). (c,d) Analogous analyses as in (a,b), but relating
Hamming differences in initial conditions (Epi matrices) to phenotypic differences. The results show
a comparable degree of non-linearity in the epigenetic-to-phenotype map. (e) PED vs. GHD between
each focal genotype from a randomly selected subset and its immediate mutational neighborhood
(30 one-, two-, or three-step mutants). (f) PED vs. GHD between pairs of mutants within the same
local mutational neighborhood (via pseudo-bootstrap). Panels e and f use PED, but qualitatively
equivalent patterns were observed with PHD. The persistence of saturation confirms the non-linearity
of the GPM at small genetic distances. (g,h) GPMs restricted to the most complex (H > 2.5) and
simplest (H < 0.5) phenotypic subsets. In these heatmaps, yellow hues indicate high frequencies
or occurrences, while purple tones correspond to low frequencies. Black regions represent zero
frequency. Orange lines show smoothed average values. Overall, these heatmaps show that complex
phenotypes exhibit more non-linear and discontinuous mappings, whereas simpler phenotypes tend
to follow predominantly linear relationships.

3.3. Evolvability Assays

One of the core properties of our CA-based model—featuring mutable rules and
initial conditions—is its capacity for adaptive evolution, a feature generally absent in CA
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with fixed update rules. To assess this evolvability, we performed a series of experiments
designed to test adaptive performance under different evolutionary scenarios.

In a first set of simulations, we implemented a standard mutation-selection-drift
scenario [85], where a population of p = 32 individuals, randomly selected from the
initial ensemble, evolved toward an arbitrary (fixed) target phenotype T, also drawn
from the same initial ensemble. Evolution proceeded over discrete, non-overlapping
generations, with 20% of individuals undergoing a single point mutation at each generation,
unless otherwise stated (see below). The absolute fitness W of each individual A was
defined as the inverse of its PHD to the target phenotype T:

W(A) = [1 + PHD(A, T)]−1. (1)

Relative fitness W∗ (0 < W∗ < 1), obtained by normalizing W to the maximum fitness
in the population, determined the probability that each individual was selected to survive
into the next generation under non-deterministic selection. Adaptation, in this context, was
simply defined as a consistent increase in the average absolute fitness over time.

Since our model allows for variation in both genetic and epigenetic components, we
performed three independent sets of simulations in which mutations affected (1) only the
genetic vector G, (2) only the initial conditions Epi, or (3) both G + Epi. For each condition,
30 independent trials were performed to ensure statistical robustness.

Figure 5a–c illustrate the consistent increase in average absolute fitness W across the
three mutational scenarios. Each panel compares the population average (red) with the
best fitness reached up to each generation (all-time-high, ATH; blue), which also exhibits
an asymptotic convergence toward W = 1. These general trends demonstrate the adaptive
capacity of our CA-based model. Notably, panel d confirms that the initial generations
in the simulations already capture the overall adaptive trend—even though, as expected,
the magnitude of improvement (∼20%) is modest under this evolutionary time constraint.
These short-term fitness trends serve as a reliable proof-of-principle for evolvability, while
also enabling robust comparisons between experimental conditions within a balanced
trade-off between evolutionary resolution and computational cost.

To further evaluate the conditions under which adaptive performance is enhanced, we
conducted a second set of simulations focused on the role of mutational distance between
target and initial phenotypes. Specifically, we tested whether evolvability improves when
the target phenotype lies within a closer (and presumably more accessible) region of the
genotype space. In these simulations, a reference individual, randomly drawn from the
initial ensemble, was selected to serve as the target phenotype T. Initial populations were
then constructed from mutant variants generated at two predefined genetic distances,
using the reference individual’s genome as a template: small (two mutations) and large (six
mutations, sufficient to induce substantial phenotypic divergence; see Figure 2a). As in the
previous experiments, three mutation regimes were tested: modifying only G, only Epi,
or both (G + Epi).

As shown in panels e and f of Figure 5 (cf. panel a), evolvability improves substantially
when the target phenotype lies within a relatively close mutational neighborhood—even
when that neighborhood still represents a considerable search space (46 = 4096 possi-
ble genotypes). This result reinforces the model’s ability to navigate fitness landscapes
effectively when evolutionary constraints are moderated. Furthermore, it aligns with
well-established principles of evolutionary dynamics, which predict enhanced evolvability
when the ratio between search space size and available evolutionary time is minimized.
According to classical population genetics theory, adaptation could be further enhanced by
increasing population size or fine-tuning mutation rates [72,73]. However, since the effects
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of these parameters are well understood in the context of evolutionary dynamics, they were
held constant in our simulations to isolate the specific contribution of mutational distance.

Figure 5. Evolvability assays. (a–c) Long-term evolutionary trajectories in simulations where
mutations affect only the genetic vector G (a), only the epigenetic initial conditions Epi (b), or both
(c). Orange lines show the evolution of average absolute fitness, and blue lines indicate the historical
maximum or all-time-high (ATH) fitness at each generation. All scenarios exhibit a consistent upward
trend, demonstrating adaptive potential. (d) Short-term trajectories of average fitness under the same
mutation regimes: G (blue), Epi (orange), and G + Epi (green). While most populations eventually
reach the target phenotype given sufficient evolutionary time (Wt→∞ = 1), short simulations already
capture the overall adaptive trend. (e,f) Short-term fitness trajectories when the target phenotype lies
within a relatively small mutational neighborhood: GHD ≤ 2 in (e) and GHD ≤ 6 in (f). Evolvability
improves in both cases, with the system exhibiting consistent gains across all mutation regimes,
although adaptation slows as the mutational radius increases. (g,h) Short-term fitness trajectories
for transitions between phenotypes of differing complexity. In (g), populations initialized with
simple phenotypes (H < 0.5) evolve toward complex targets (H > 2.5), while in (h), the reverse
occurs. Evolutionary transitions are asymmetric: simplification is rapid and reliable, whereas
complexification is slower and often leads to fitness plateaus. (i,j) Short-term fitness trajectories under
maternal effects with no buffering. In these simulations, each organism inherits its initial conditions
from its maternal phenotype (see main text). Both with- and without-genetic-mutation setups (i vs. j)
consistently fail to adapt, highlighting that unbuffered maternal inheritance undermines evolvability.
All panels: population size p = 32, 30 replicates, non-deterministic selection.

Next, we explored whether the direction of evolutionary change shows an inherent
bias related to the complexity of the target phenotype. In other words, we investigated
whether transitions between phenotypes of different complexity occur with equal ease,
or whether the system tends to favor either simplification or complexification. This type of
asymmetry has been reported in various biological systems and may reflect a fundamental
feature of developmentally mediated genotype–phenotype maps [12,86,87]. To test whether
a similar bias arises in our model, we ran simulations on two independent populations of
32 individuals each: one initialized with low-complexity phenotypes (H < 0.5) and the
other with high-complexity phenotypes (H > 2.5). Each population evolved toward a
target of opposite complexity: from simple to complex and from complex to simple.

As shown in panels g and h of Figure 5, evolutionary transitions are strongly asym-
metric: while complex phenotypes readily regress into simpler ones, the reverse transition
proves much harder. Populations starting from simple forms struggle to reach complex
targets and often become trapped in suboptimal fitness regions, suggesting that evolving
complexity may require substantially longer evolutionary timescales.
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3.4. Simulating Adaptive Maternal Effects with Our CA-Based Model

Finally, to demonstrate the heuristic potential of our CA-based model for exploring
less well-understood developmental and evolutionary phenomena beyond its alignment
with known variational patterns of living systems, we conducted two proof-of-concept sets
of simulations.

The first one is an evolutionary experiment concerned with the adaptive role of mater-
nal effects. These refer to epigenetic factors (e.g., hormones, proteins, mRNA gradients)
that are maternally provided (i.e., dependent on the maternal phenotype) and influence
developmental dynamics, thereby affecting the offspring’s phenotype. These effects are
widespread in nature: for example, stress-induced hormonal changes in bird eggs can alter
hatchling behavior and metabolic profiles [88], and maternally inherited molecular gradi-
ents are essential for establishing embryonic axes and enabling gene regulatory networks
to function properly in early insect development [28,74,89]. The necessity of maternally
provided information is, indeed, a general biological principle, since every organism is, in a
non-metaphorical sense, “a detached bit of its parents” [90].

The goal of this experiment was not to provide a detailed or predictive account,
but rather to probe the internal consistency of common assumptions about maternal effects
in evolutionary theory. This is precisely the kind of insight that toy models like ours
are designed to provide, by abstracting biological complexity to highlight key structural
and logical constraints (e.g., [30]). In our model, maternal effects were implemented by
replacing the usual random mutation of the initial condition Epi with a direct inheritance
mechanism. Specifically, each offspring’s initial conditions were “copied” from the central
4 × 4 region of its maternal phenotype at generation t − 1. In other words, each new
individual began its development from a configuration that was a specific subset of its
mother’s phenotype. All other experimental settings were kept the same as in the standard
evolutionary scenario, including the basic mutational algorithm in vector G (i.e., as in
Figure 5a–d).These simulations, which model unbuffered maternal inheritance, reveal
that such maternal effects fail to confer an adaptive advantage. On the contrary, adaptive
performance collapses, and fitness fails to improve even when genetic mutations are
allowed (Figure 5i,j). This discrepancy with the biological reality and ubiquity of maternally
transmitted epigenetic inputs does not reflect a failure of the model. Rather, it highlights
a critical feature of such simplified developmental architectures: maternally inherited
information, if transmitted too rigidly or without developmental modulation, can become
maladaptive. These findings suggest that, for maternal effects to support adaptation, they
must either decay quickly across generations or be buffered—i.e., integrated in a way
that allows for development to modulate their impact. Revisiting these assumptions may
help uncover the conditions under which maternal effects become effectively adaptive
(see Section 4).

3.5. Simulating Tumor Growth with Our CA-Based Model

Our second proof-of-concept experiment focuses on tumor evolution and was specifi-
cally designed to illustrate (i) how, in certain instances, the model can be translated into an
applicable tool for biomedical sciences, and (ii) how our model can generate data that can
be quantitatively compared with empirical evidence.

In essence, we investigated whether our model could reproduce the spatial dynamics
of tumor evolution, which is a critical aspect of cancer research. Such tumor growth can
be characterized by multiple features, such as the number of tumor-cell subpopulations
that can coexist, the relative size of each subpopulation, or the frequency with which
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subpopulations are replaced over developmental time. The first two properties are usually
summarized by the clonal diversity index (D), defined as

D = 1/
MNC

∑
i=1

p2
i (2)

where MNC is the maximum number of tumor-cell subpopulations and pi represents the
size (i.e., number of cells) of each subpopulation relative to the total tumor size. The third
property, subpopulation turnover, is measured by the average clonal turnover (Θ̄), defined
as the mean of all turnover values Θ(t) computed at each iteration:

Θ(t) =
MNC

∑
i=1

(pi(t) + pi(t − δ))2 (3)

being δ a time interval of length 0.1 · tmax. To simulate such tumor evolution using our CA-
based model, we introduced a (founder) single-point mutation into one of the living cells of
the initial (t=0) epigenetic matrix (Epi). With a constant mutation rate µ (10−4 < µ < 10−1),
mutant cells accumulate further mutations. Each new mutation is assigned a unique integer
label that defines its clonal identity: all cells sharing the same label are considered part
of the same subpopulation. When a mutant cell divides, its daughter inherits the same
label, giving rise to clonal lineages. Non-mutated cells, which can be interpreted as the
healthy tissue invaded by the tumor, are labeled as zero. D and Θ were recorded for each
individual replicate.

Using these minimal assumptions, we first asked whether cancer mutations that affect
cell motility alter the expansive dynamics of tumor growth. To address this, we defined
two scenarios: (i) NMMS (non-morphogenetic mutations), where mutations do not alter the
morphogenetic rules encoded in vector G; and (ii) MMS (morphogenetic mutations), where
each new mutation randomly modifies one position in G, as described in the Section 3.2.

Our simulations show that mutations which alter morphogenetic rules have a similar
effect to those that do not in terms of clonal cell diversity and their invasive capacity.
(Figure 6a,b). By contrast, mutation rate has a pronounced impact on tumor evolution:
while very low rates (µ ≤ 10−4) are, as expected, associated with slow expansion and
low clonal diversity counts, similar dynamics are also found at very high mutation rates
(µ ≥ 10−1). Tumor progression seems thus maximized at intermediate mutation rates
(10−3 < µ < 10−2 in our simulations), likely because they generate spatial dynamics
compatible with those of the surrounding tissue, thereby enhancing spatial coupling and
invasive potential. Indeed, morphologies resulting from these intermediate mutation rates
exhibit a mosaic-like distribution of tumor cells scattered across most parts of the in silico
“organism” (Figure 6c, central panels). In contrast, excessively high or low mutation rates
result in either decohesive, loosely fragmented clusters of fully tumoral cells (Figure 6c,
leftmost panel) or, conversely, a few isolated tumor cells embedded within a large mass of
healthy tissue (Figure 6c, rightmost panel). These results align with previous findings on the
error catastrophe phenomenon in cancer and other biological systems [91–93], underscoring
how even minimal models can capture generic yet critical aspects of tumor evolution and
thereby enrich the theoretical foundations of biomedical research.
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Figure 6. Simulating tumor growth. (a) To simulate tumor evolution with our CA-based model,
single-point mutations were introduced in cells under different (constant) mutation rates µ (starting
from the initial epigenetic matrix Epi). Initially, these mutations were independent of the vector
G encoding the morphogenetic rules (NMMS scenario). The plots show that the number of tumor
cell subpopulations (Clonal Diversity index, D) increases non-linearly with phenotypic complexity
(upper row) and, less intuitively, follows different growth modes under different mutation rates
(lower row). (b) Similar results are obtained under the MMS scenario, where carcinogenetic point
mutations affect the rules encoded in the vector G. (c) In the MMS scenario, morphologies resulting
from different mutation rates exhibit distinctive patterns in the number and distribution of clonal
(tumor) cells (colored dots) within the non-tumoral tissue (purple dots). From left to right: low
mutation rates (µ) result in fragmented clusters of fully tumoral cells, intermediate µ result in a
mosaic-like distribution of tumor cells, and high µ allows for the growth of a large mass of healthy
tissue containing only a few isolated tumor cells. (d) Quantitative comparison of tumor growth
metrics with empirical data reveals that, by changing only the mutation rate µ, the MMS setting
can reproduce qualitatively different tumor growth dynamics, with the notable exception of the
“gland fission” mode (see main text). Each point represents one of the 300 replicates generated by our
CA-based model, while translucent convex hulls delineate the point clouds reported in [69]; both
axes are plotted on the same scale.

Under these premises, we speculated whether our model could quantitatively mimic
the progression of real tumors. Recent and influential studies [69,94] have shown that
the progression of most tumors can be classified into a few basic modes, depending
on the dispersal strategies of tumor cells: non-spatial, gland fission, invasive glandular,
and boundary growth. Cancer genomic data and detailed computer simulations have
revealed that each of these modes exhibits distinctive patterns in the indices D and Θ,
thereby providing a suitable test bench for other models. By comparing these indices
between our simulations and those reported in Ref. [69], we found that changes in mutation
rates alone can shift the system from one mode of tumor growth to another (Figure 6d),
although a simple mapping between µ and growth mode remains elusive. This suggests
that, at least in some cases, efficient cancer expansion may not require an orchestrated
coordination of cell behaviors or growth rules, but can simply emerge from random
alterations applied at sufficiently high frequency. Interestingly, our minimal model is
unable to replicate the gland fission mode of growth, in which a single mass of tumor cells
splits into several, smaller ones. This limitation may stem from the inability of cells in our
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model to migrate or leave intercellular gaps (forbidden by Rule 1), but further investigation
is needed to clarify this mechanism and to ensure the broader applicability of our findings.

4. Discussion
Across all levels of biological organization, from gene regulation to tissue morpho-

genesis and ecological interactions, life displays remarkable complexity. Disentangling
this complexity remains a formidable challenge, and computational models have proven
to be powerful allies in this endeavor. However, models must face a fundamental trade-
off: balancing simplicity and tractability against realism and interpretability. Thus, while
developing approaches that can generate rich, biologically meaningful dynamics without
incurring prohibitive computational cost is essential for advancing our understanding of
evolution and development, achieving this balance remains an elusive goal.

The CA-based model introduced in this paper contributes to the relatively small set of
models that occupy this middle ground. It operates using just four simple update rules, each
abstracting a fundamental developmental mechanism such as stasis, apoptosis, state change,
or directional growth. Despite its abstract nature and minimalist design, and despite the
fact that its resulting phenotypes bear little resemblance to known organisms, our results
demonstrate that the system exhibits a broad range of emergent behaviors characteristic
of developing biological systems. These include self-organization, structured pattern
formation, morphogenesis-like dynamics, complex genotype-to-phenotype mappings,
and evolvability.

A key feature of our system that contributes to the emergence of non-linearity—and
thus to the overall complexity of its generative dynamics—is the phenomenon of local
frustration. Here, we refer to frustration in a specific, operational sense: it arises when the
ideal transformation prescribed by the generative operator R (see Section 2) is not among
the set of physically realizable transitions at time t, denoted P(St). That is, frustration
occurs whenever

R(St, G) /∈ P(St),

reflecting a mismatch between what the generative rule aims to achieve (e.g., directional
growth) and what the system can actually perform due to spatial constraints.

In our model, such local frustration primarily results from Rule 3, which governs
directional cell growth. This rule “attempts” to modify a neighboring cell rather than the
focal cell itself, with success depending on both the internal state of the focal cell and
the occupancy of the target site. Since two cells cannot simultaneously occupy the same
position in the 2D grid, Rule 3 naturally introduces a form of volume-exclusion principle,
which is known to drive the emergence of complex spatial patterns in many physical
and biological systems [7,95,96]. Furthermore, these local constraints can propagate and
amplify across scales due to the iterative nature of our CA-based model, potentially giving
rise to the emergent properties and higher-order structures not explicitly encoded in the
rule set.

However, in contrast to many standard CPMs and some CA-based models, where
these exclusion effects are typically enforced via non-local energy minimization terms
(e.g., area/perimeter constraints), in our case, this spatial conflict emerges directly from
the local update logic. This spatiotemporal dependency makes our CA-based model
only weakly compatible with standard CA formalisms and transition matrices [29,37,66],
yet more aligned with recent minimal asynchronous approaches implementing similar
mechanisms [29,55,97,98]. From this perspective, while our CA-based model does not
constitute a genuinely new class within the vast catalog of CA models [29,52], our specific
instantiation, characterized by inherent cell directionality and internal cyclic states, remains
among the algorithmically simplest. This simplicity alleviates some of the complications of
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non-locality and non-equilibrium that pervade more complex models [63], and appears
particularly well suited, to study generic and abstract genotype–phenotype relationships.

From a probabilistic perspective, this emergent volume-exclusion principle likely
underlies the complexity–frequency anticorrelation observed in our model. This is be-
cause, although the probability of the system decreasing in size, p(Nc(t + 1) < Nc(t)) =
p(rule 1, apoptosis) = 1/4, or of remaining the same size, p(Nc(t + 1) = Nc(t)) =

p(rule 0) + p(rule 2) = 1/2, is fixed, the probability of increasing the system’s size changes
dynamically and decreases as the average cell density increases, since most surrounding
sites are likely to be occupied. Therefore, although the nominal probability of growth is
constant, p(rule 3) = 1/4, the probability of actual growth is always smaller. It ranges from
(1/4)× (7/9) ≈ 0.194 when cells have, on average, one neighbor (the case of zero neighbors
is excluded by rule 1), down to zero when cells have, on average, nine neighbors, leaving
no vacant sites for expansion. In practice, growth may still occur at the system’s boundary,
even in the case of a nearly solid and densely packed square. However, in this case, the
perimeter-to-area ratio (and thus the probability of further growth) decreases as 4/

√
Nc,

becoming vanishingly small as the number of cells increases. This density dependence
introduces a negative feedback, or ratchet-like mechanism, whereby larger phenotypes
are increasingly unlikely to continue growing, strongly hindering further increases in
complexity and skewing the complexity distributions toward the simplest cases.

In an evolutionary context, this form of structured variation gives rise to develop-
mental biases and non-zero evolvability, contributing to the emergence of asymmetric
phenotypic transitions, where it is generally easier to evolve from complex to simple forms
than the reverse [12,86,87]. This pattern is clearly observed in our targeted simulations
involving directional transitions between phenotypes of differing complexity (Figure 5g,h).
As in biological systems, the asymmetry arises from the unequal likelihood and distribution
of simple and complex phenotypes within the search space. Because complex forms are
much rarer and more sparsely distributed, most mutants surrounding a given phenotype
will, statistically, correspond to simpler configurations. As a result of this anisotropy in
the local mutational neighborhood, accumulating and maintaining mutations that increase
complexity is both more difficult and more time-consuming than transitions toward simpler
phenotypes, which tend to follow paths of least resistance.

By reproducing these key variational properties observed in biological systems from
minimal assumptions, our CA-based model provides a coherent framework for investigat-
ing broader evolutionary phenomena, particularly those involving an interplay between
selective forces and the constraints imposed by the system’s structural and spatial features.
This explanatory capacity is exemplified in our final experiments, which explore, respec-
tively, the evolutionary dynamics of adaptive maternal effects and tumor growth. The first
experiment reveals that when maternal influences are transmitted in every generation
and exert a dominant role in phenotype determination, adaptive evolution is severely
compromised. This observation suggests that for maternal effects to be truly adaptive, they
cannot simultaneously be both long-lasting (i.e., span multiple generations) and strongly
deterministic. In other words, either maternal inputs must decay rapidly over evolution-
ary time, or developmental processes must buffer their influence on phenotypes. This
buffering would help to ensure that development remains relatively insensitive to variation
in the maternally provided epigenetic inputs. Notably, this insight aligns with empirical
observations in natural systems, where maternal effects typically have limited phenotypic
consequences [99] and rarely persist across generations [100], often reflecting transient
environmental conditions.

In turn, our second case-study experiment suggests that pure mutational noise can
drive transitions between qualitatively different tumor growth dynamics and that invasive
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potential is maximized when the growth rates of tumors and the surrounding tissues are
concordant. Taken together, these two experiments illustrate how our CA-based model,
through its algorithmic simplicity and ease of implementation, provides a promising heuris-
tic tool for addressing theoretical questions at the interface between generative rules and
evolutionary processes, while also showcasing its flexibility to incorporate additional fea-
tures (which might easily include others such as extra internal states and non-gradual
transitions between them, new cell behaviors, chemical signaling, or alternative neighbor-
hood topologies). In both cases, the model yields simple and coherent insights grounded in
structural constraints and logical necessity rather than adaptive reasoning—an approach
that may, in turn, inform other explanatory levels in evolutionary developmental biology
and biomedical research.

To conclude, although our CA-based model is far from universal, it seems to capture
certain abstract yet fundamental principles underlying living, developing, and evolving
biological systems. The appearance of life-like variational properties in a system as simple
as ours implies that certain features of living systems may be governed not solely by
physicochemical principles, but also by deeper, more universal organizational principles
grounded in generative logic. Identifying such principles and clarifying their contribution
to the complexity of living systems could represent a promising direction for future research,
and our CA-based model may serve as a useful tool in that endeavor.
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Abbreviations
The following abbreviations are used in this manuscript:

CA Cellular Automaton
D Clonal Diversity (for Tumor growth simulations)
Epi Epigenetic Matrix
G Genetic Vector
GHD Genetic Hamming Distance
GPM Genotype-to-Phenotype Map
GRN Gene Regulatory Network
H Shannon Entropy
HD Hausdorff Dimension (i.e., “Fractality”)
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MMS Morphogenetic Mutations Scenario
NMMS Non-Morphogenetic Mutations Scenario
PED Phenotypic Euclidean Distance
PHD Phenotypic Hamming Distance
T Target Phenotype (for Evolutionary Simulations)
W Fitness (for Evolutionary Simulations)
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