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Abstract

In this paper, we develop a fully discrete finite element scheme, based on a second-order
backward differentiation formula (BDF2), for numerically solving the three-dimensional
incompressible Navier–Stokes equations. Under the assumption that the fully discrete
solution remains bounded in a certain norm, we establish that any smooth initial data
necessarily gives rise to a unique strong solution that remains smooth. Moreover, we
demonstrate that the fully discrete numerical solution converges strongly to this exact
solution as the temporal and spatial discretization parameters approach zero.

Keywords: incompressible Navier–Stokes equations; BDF2 scheme; finite element method;
smooth solution
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1. Introduction
Consider the 3D incompressible Navier–Stokes equations{

∂tu + u · ∇u − µ∆u +∇p = 0,

divu = 0,
(x, t) ∈ Ω × (0, T], (1)

where Ω ⊂ R3 is a convex polyhedral domain, which satisfies compatibility conditions
and has smooth boundary ∂Ω, u = u(x, t) ∈ R3 and p = p(x, t) ∈ R are unknown velocity
field and pressure, respectively, µ > 0 represents the viscosity coefficient of the flow. We
consider system (1) subject to the following Dirichlet boundary condition

u(x, t)|∂Ω = 0, (2)

and the initial condition
u(x, 0) = u0(x), for x ∈ Ω. (3)

As usual, one imposes the condition
∫

Ω p(x, t)dx = 0 for the uniqueness of pressure.
The three-dimensional incompressible Navier–Stokes equations serve as a cornerstone

mathematical framework in fluid dynamics, with broad applicability across scientific and
engineering disciplines such as meteorology, aerodynamics, and oceanic modeling. It is
worth noting that the global existence of weak solutions to system (1) can be traced back
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to the work of Leray [1] and Hopf [2]. However, the global existence of strong solutions
to system (1) with general smooth initial data remains an open challenge, primarily due
to the strong nonlinearity and complex structure of the equations. A common approach
to circumvent this difficulty has been to assume that the initial data is sufficiently small.
Under such smallness conditions, several classical works have successfully established
global well-posedness. For instance, Fujita and Kato [3] proved global existence for small
initial data in Hs(R3) with s ≥ 1

2 . Subsequent improvements and extensions were obtained
by Kato [4] in L3(R3), by Cannone [5] and Planchon [6] in Besov spaces, by Koch and
Tataru [7] in the larger space BMO−1, and by Lei and Lin [8] in the Lei–Lin space. In
addition, significant progress has been made on regularity criteria for strong solutions
to the 3D incompressible Navier–Stokes equations; we refer the reader to [9–12] and the
references therein for further details.

Over the past several decades, a wide variety of numerical methods have been
developed for approximating solutions to the incompressible Navier–Stokes equations.
For instance, finite element methods are discussed in [13–17], finite difference methods
in [18–20], Lagrange–Galerkin methods in [21–23], and spectral methods in [24–26]. It is
important to note that previous convergence analyses of numerical schemes for the 3D
Navier–Stokes equations have universally relied on the assumption that an exact smooth
solution exists. This naturally leads to the question: if a numerical solution remains
bounded in certain norms, what does this imply about the regularity of the true solution?
To date, two relevant studies have addressed this issue: one by Li [27] and another by Cai
and Zhang [28]. Both works show that for any M > 0, there exist positive constants τM

and hM such that, provided the time step τ ≤ τM and the mesh size h ≤ hM, bounded-
ness of the numerical solution in specific norms implies both the existence of a unique
smooth solution to the continuous problem (1)–(3) and the convergence of the numerical
approximation to this true solution. The primary distinction between the two lies in the
temporal discretization: Li employs a backward Euler scheme, whereas Cai and Zhang use
a Crank–Nicolson approach.

In this paper, we study a numerical method based on a second-order backward differ-
entiation formula (BDF2) for time discretization and finite elements for spatial discretization.
As a widely adopted approach (see [29–34] and references therein), the BDF scheme pro-
vides higher-order temporal accuracy and improved stability over the backward Euler
method. Furthermore, unlike the Crank–Nicolson scheme, the BDF2 method is a linear
fully implicit scheme that is straightforward to implement and computationally efficient,
as only linear systems need to be solved at each time step. Compared to the work of Cai
and Zhang [28], our analysis requires weaker qualitative assumptions on the solution u of
problem (1)–(3). Specifically, we only assume the same regularity conditions as in Li [27],
yet still achieve higher-order convergence estimates comparable to those in [28].

Remark 1. We note that the existence of weak solutions to the three-dimensional incompressible
Navier–Stokes equations was established in seminal works by Leray [1] and Hopf [2]. Specifically, for
an initial condition u0 ∈ L2(Ω) with ∇ · u0 = 0, where Ω ⊆ R3 is either a bounded domain or the
whole space, they proved the existence of a unique weak solution u in the space L∞(0, T; L2(Ω)) ∩
L2(0, T; H1(Ω)). However, due to the presence of the nonlinear convective term u · ∇u, standard
PDE techniques are insufficient to derive higher-order a priori estimates. Consequently, it remains a
major open problem and one of the seven Millennium Prize Problems to establish, without restrictions
on the initial data, the existence of a strong solution u ∈ L∞(0, T; Hk(Ω)) ∩ L2(0, T; Hk+1(Ω))

for any integer k ≥ 1.
In mathematical analysis, a common strategy to circumvent this difficulty is to assume the

initial data are sufficiently small, which allows the conclusion of global strong solutions. In
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numerical analysis, an alternative approach is taken: by assuming the numerical solution remains
bounded in certain discrete norms, one can deduce the existence of a strong solution to the continuous
problem. In this sense, the boundedness assumption on the numerical solution in our work plays a
role analogous to the smallness assumption on the initial data in classical theoretical studies.

The remainder of this paper is structured as follows. Section 2 introduces necessary
notations and preliminary results, and states the main theorems. The detailed proof of the
main result is then presented in Section 3.

2. Notations and Main Results
We employ standard notation for Lebesgue and Sobolev spaces. For any p ∈ [1, ∞]

and K > 0, let Pp(Ω) and Wk,p(Ω) be abbreviated as Lp and Wk,p, endowed with the norms
∥ · ∥Lp and ∥ · ∥Wk,p , respectively. When p = 2, we denote Hk = Wk,2 with norm ∥ · ∥Hk .
The norm and inner product in L2(Ω) are written simply as ∥ · ∥ and (·, ·).

Define the space of zero-mean square-integrable functions as

∥L2
0(Ω) =

{
v ∈ L2(Ω)|

∫
Ω

vdx = 0
}

.

Let Wk,p
0 (Ω) denote the closure of C∞

0 (Ω) in Wk,p(Ω) and let Hk
0(Ω) = Wk,2

0 (Ω).
Furthermore, the vector-valued Sobolev spaces are denoted by W k,p(Ω) = (Wk,p(Ω))3,
Hk

0(Ω) = (Hk
0(Ω))3 and Lp(Ω) = (Lp(Ω))3. The following vector-valued Sobolev spaces

will be used frequently in the following:

Ḋ(Ω) = {v ∈ C∞
0 (Ω)3 : divv = 0},

L̇(Ω) = The completion of Ḋ(Ω) in L2(Ω),

Ḣ1
(Ω) = The completion of Ḋ(Ω) in H1(Ω),

Ḣ2
(Ω) = Ḣ1

(Ω)
⋂

H2(Ω),

H−1(Ω) = The dual space of Ḣ1
(Ω).

In this paper, for convenience, we denote by ∥ · ∥Wk,p the norms of both Wk,p(Ω) and
W k,p(Ω), denote by ∥ · ∥Hk the norms of both Hk(Ω) and Hk(Ω), and denote by ∥ · ∥Lp the
norms of both Lp(Ω) and Lp(Ω). Denote the norm of Ḣ−1 by ∥ · ∥H−1 .

Let Jh be a quasi-uniform triangulation of the convex polyhedral domain Ω,
consisting of tetrahedral elements Kjj = 1J , where the mesh size is defined as h =

max 1 ≤ j ≤ Jdiam(Kj). In order to discretize problem (1)–(3), we need to use a finite
element space Xh × Vh ⊂ H1

0(Ω)× L2
0(Ω) that satisfies

inf
vh∈Xh

∥v − vh∥Lq ≤ Chl+1+ 3
q −

3
2 ∥v∥Hl+1 , ∀v ∈ H1

0(Ω)
⋂

H l+1(Ω), (4)

inf
qh∈Vh

∥q − qh∥L2 ≤ Ch∥q∥H1 , ∀q ∈ H1(Ω), (5)

∥qh∥L2(Ω) ≤ C sup
vh∈Xh ,vh ̸=0

|(∇qh, vh)|
∥∇vh∥L2(Ω)

, ∀qh ∈ Vh, (6)

for l = 0, 1 and q ∈ [2, 6], where C is a positive constant independent of h. We also need to
assume that

divvh ∈ Vh, ∀vh ∈ Xh, (7)

which ensures that the discrete divergence-free functions satisfy the divergence-free condi-
tion pointwise—a crucial property for the numerical approximation of problem (1)–(3).
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Remark 2. The condition specified in (7), namely that div, vh ∈ Vh for all vh ∈ Xh and hence
that discrete velocities are pointwise divergence-free, is only achievable with certain specialized
finite elements, such as the Scott–Vogelius pair on barycentrically refined meshes. Standard MINI
elements do not possess this property, and the original text does not specify any particular element
choice or mesh condition to fulfill this requirement.

Let {ti}N
i=0 be a uniform partition of the time interval [0, T] with mesh size τ = T

N .
Then, for a sequence of functions gn (n = 1, 2, · · · , N − 1), one defines

Dτ gn+1 =
3gn+1 − 4gn + gn−1

2τ
, D̄τ gn+1 =

gn+1 − gn

τ
, ĝn = 2gn − gn−1,

a BDF2 mixed finite element method of Navier–Stokes problem (1)–(3) is defined as: for
given un

h , un−1
h ∈ Xh, pn

h ∈ Vh, find (un+1
h , pn+1

h ) ∈ Xh × Vh such that

(Dτun+1
h , vh) + µ(∇un+1

h ,∇vh)− (un+1
h , ûn

h · ∇vh)− (pn+1
h ,∇ · vh) = 0, (8)

and
(∇ · un+1

h , qh) = 0, ∀vh ∈ Xh, qh ∈ Vh, (9)

where u0
h := Rhu0(x) is the Stokes-Ritz projection of u0 onto Xh, and u1

h can be provided
by a backward Euler finite element method:

(D̄τu1
h, vh) + µ(∇u1

h,∇vh)− (u1
h, û0

h · ∇vh)− (p1
h,∇ · vh) = 0, (10)

(∇ · u1
h, qh) = 0, ∀vh ∈ Xh, qh ∈ Vh, (11)

Then, for the solution un
h given by (8)–(11), one defines the piecewise constant numeri-

cal solution
uh,τ(x, t) = un

h(x), x ∈ Ω, t ∈ (tn−1, tn]. (12)

By taking (vh, qh) = (un+1
h , pn+1

h ) in (8) and (9), note that

2(3a − 4b + c, a) = |a|2 − |b|2 + |2a − b|2 − |2b − c|2 + |a − 2b + c|2,

we have

1
4τ

(∥un+1
h ∥2

L2 − ∥un
h∥

2
L2 + ∥2un+1

h − un
h∥

2
L2 − ∥2un

h − un−1
h ∥2

L2 + ∥∥un+1
h − 2un

h + un−1
h ∥2

L2)

+ µ∥∇un+1
h ∥2

L2 = 0.

Summing up from the time step t1 to tn+1, it yields that

1
4
(∥un+1

h ∥2
L2 + ∥2un+1

h − un
h∥L2) + µτ

N

∑
n=1

∥∇un+1
h ∥2

L2 ≤1
4
(∥u1

h∥
2
L2 + ∥2u1

h − u0
h∥L2)

≤1
4
(5∥u1

h∥
2
L2 + 2∥u0

h∥L2),

where n = 1, 2, · · · , N − 1. Taking (vh, qh) = (u1
h, p1

h) in (10) and (11), it is easy to see that

∥u2
h∥

2
L2 + 2µτ∥∇u1

h∥
2
L2 ≤ ∥u0

h∥
2
L2 .

Then, based on the above two inequalities, we easily derive that

1
4
(∥un+1

h ∥2
L2 + ∥2un+1

h − un
h∥L2) + µτ

N

∑
n=1

∥∇un+1
h ∥2

L2 ≤ 2∥u0
h∥

2
L2 . (13)
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Next, we present our main result in the following theorem.

Theorem 1. For any M > 0, there exist positive constants τM and hM–both decreasing in M–that
are independent of the solution u, the initial data u0, and the time T, but may depend on the viscosity
coefficient µ, such that when

τ < τM, h < hM, (14)

if a numerical solution uh,τ defined by (12) satisfies

∥uh,τ∥L∞(0,T;L4) + ∥u0∥H2 + 1 ≤ M, (15)

then there exists a unqiue strong solution for problem (1)–(3) with regularity

u ∈ L∞(0, T; Ḣ2), ∂tu ∈ L∞(0, T; L̇2). (16)

In the end of this section, we would like to provide a table of auxiliary functions and
their properties (Table 1).

Table 1. Auxiliary functions and their properties.

Auxiliary
Functions Properties

α: decreasing
function depend on Ω and does not depend on u and T

Φ: increasing
function depend on Ω and does not depend on u and T, satisfies Φ(s) ≥ s

We remark that the constants C in the following are positive constants which are not
only independent of h and τ, but also independent of the unknown solution u.

3. Proof of Theorem 1

Let P : L2 → L̇2 denote the L2-orthogonal projection onto the space of divergence-free
functions. Then, the H2-regularity estimate of linear Stokes equations, as established in [35],
implies that

∥v∥H2 ≤ C∥P∆v∥L2 ≤ C∥∆v∥L2 , ∀v ∈ Ḣ2
(Ω). (17)

Now, we give two Lemmas, which were proved in [27], and will be used in the proof
of Theorem 1.

Lemma 1 ([27]). There exists an increasing function Φ : R+ → R such that if u0 ∈ Ḣ2 and
the Navier–Stokes problem (1)–(3) has a weak solution u ∈ L∞(0, T; Ḣ2

), then the solution has
regularity (16) and satisfies the following quantitative estimate:

∥∂ttu∥L2(0,T;Ḣ−1) + ∥∂tu∥L∞(0,T;L2) + ∥∂tu∥L2(0,T;H1)

+ ∥u∥L2(0,T;H2) + ∥u∥L∞(0,T;H2) + ∥p∥L∞(0,T;H1)

≤Φ(∥u∥L∞(0,T;L4) + ∥u0∥Ḣ2),

where the function Φ does not dependent on u and T.

Lemma 2 ([27]). There exists a decreasing function α : R+ → R such that if u0 ∈ Ḣ2, then the
strong solution exists on [0, α(∥u0∥H2)] and satisfies

∥u∥L∞(0,α(u0∥H2 );H1) ≤ ∥u0∥H1 + 1,
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where the function α does not depend on u and T.

To analyze the convergence behavior of the fully discrete scheme, we define the
Stokes–Ritz projection operator (Rh, Ph) : H1

0(Ω)× L2(Ω) → Xh × Vh:

µ(∇(W − Rh(W, p)),∇vh)− (p − Ph(W, p),∇ · vh) = 0, ∀vh ∈ Xh, (18)

(∇ · Rh(W, p), qh) = 0, ∀qh ∈ Vh, (19)

and the condition
∫

Ω[p− Ph(u, p)]dx = 0 is imposed to ensure uniqueness. This Stokes–Ritz
projection exhibits the following approximation properties:

∥W − Rh(W, p)∥Lq ≤ Chl− 1
2+

3
q (∥W∥Hl+1 + ∥p∥Hl ), (20)

∥W − Rh(W, p)∥H1 + ∥p − Ph(W, p)∥L2 ≤ Chl(∥W∥Hl+1 + ∥p∥Hl ), (21)

for any (W, p) ∈ Ḣ2(Ω)× H1(Ω), 2 ≤ q ≤ 6 and l = 0, 1. If we assume that X̄h is the
divergence-free subspace of Xh, then Rh(u, p) ∈ X̄h, Ph(u, p) ∈ Vh, and

µ(∇(u − Rh(u, p)),∇vh) = 0, ∀vh ∈ X̄h, (22)

(p − Ph(u, p),∇ · vh) = (∇(u − Rh(u, p),∇vh), ∀vh ∈ Xh, vh ∈ Vh. (23)

Since the Stokes operator is independent of the pressure; hence, the term ∥p∥Hl can be
removed in (21). Therefore, we have [27,28]

h
1
2−

3
q ∥W − Rh(W, p)∥Lq + ∥W − Rh(W, p)∥H1 ≤ Chl∥W∥Hl+1 , (24)

∥p − Ph(W, p)∥L2 ≤ Chl(∥W∥Hl+1 + ∥p∥Hl ). (25)

We also introduce the following inverse inequality [28]:

∥vh∥Wk,p ≤ Chm−k+ n
p −

n
q ∥vh∥Wm,q , 0 ≤ m ≤ k ≤ ∞, 1 ≤ q ≤ p ≤ ∞, (26)

where vh ∈ Xh or Vh and n is the spatial dimension.
Next, one proves the main results of Theorem 1. Define the positive constant M in

Theorem 1 as
M := ∥uh,τ∥L∞(0,T;L4) + ∥u0∥H2 + 1. (27)

Hence, the condition Φ(s) > s in Lemma 2 can be transformed as Φ(M) ≥ M ≥ 1. In
the following, to obtain the main results, we state a primary claim:

Claim 1 ([27,28]). For each k = 0, 1, · · · , N, there exists a unique strong solution

blueu ∈ L∞(0, tk; Ḣ2)
⋂

L2(0, tk+1; Ḣ3),

of system (1)–(3) such that ∥uh,τ − u∥L∞(0,tk ;L4) ≤ 1.

Note that u0
h is the Stokes–Ritz projection of u0, we have ∥u0

h − u0∥L4 ≤ C0h
5
4 ∥u0∥H2

for some positive constant C0. Hence, if

h < (C0M)−
4
5 ≤ (C0∥u0∥H2)−

4
5 ,
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then Claim 1 holds for k = 0. Further, according to ([27], Lemma 1), we easily see that
Claim 1 also holds for k = 1. Then, one assumes that Claim 1 holds for k ≤ n, which implies

∥u∥L∞(0,tk ;L4) + ∥u0∥H2

≤∥uh,τ − u∥L∞(0,tk ;L4) + ∥uh,τ∥L∞(0,tk ;L4) + ∥u0∥H2

≤1 + ∥uh,τ∥L∞(0,tk ;L4) + ∥u0∥H2 ≤ M.

(28)

Employing Lemma 2 in conjunction with the inductive hypothesis and inequality (28),
we conclude that there exists a unique strong solution u ∈ L∞(0, tm; Ḣ2)

⋂
W1,∞(0, tk; L̇2)

defined in interval (0, tk) can be extended to (0, tk+1), i.e.,
Problem (1)–(3) has a unique strong solution

u ∈ L∞(0, tk+1; Ḣ2)
⋂

L2(0, tk+1; Ḣ3), (29)

satisfies
∥∂ttu∥L2(0,tk+1; ˙H−1)

+ ∥∂tu∥L∞(0,tk+1;L̇2)
+ ∥∂tu∥L2(0,tk+1;Ḣ1)

+ ∥u∥L2(0,tk+1;Ḣ3)
+ ∥u∥L∞(0,tk+1;Ḣ2)

+ ∥p∥L∞(0,tk+1;H1)

≤Φ(∥u∥L2(0,tk ;L̇4)
+ ∥u0∥H2)

≤Φ(M).

(30)

Under the regularity (30), the solution u satisfies

(Dτun+1, vh)− (un+1, ûn · ∇v) + µ(∇u, v)− (pn+1,∇ · vh) = (Fn+1
1 , v) + (Fn+1

2 ,∇v), (31)

(∇ · un+1, qh) = 0, (32)

for n = 1, 2, · · · , k, where
Fn+1

1 = Dτun+1 − ∂tun+1, (33)

Fn+1
2 = −ûn ⊗ un+1 + un+1 ⊗ un+1, (34)

and the truncation errors of temporal discretization satisfies

k

∑
n=1

τ∥Fn+1
1 ∥2

˙H−1 +
k

∑
n=1

τ∥Fn+1
2 ∥2

L2

≤C∥Dτun+1 − ∂tun+1∥2
L2(0,tk+1;Ḣ−1)

+ C∥(ûn − un+1)⊗ un+1∥2
L2(0,tk+1;L2)

≤Cτ4(∥∂ttu∥2
L2(0,tk+1;Ḣ−1)

+ ∥u∥2
L∞(0,tk+1;L4)∥∂ttu∥2

L2(0,tk+1;L4))

≤Cτ4Φ4(M),

(35)

where the Taylor formula is used to get the second-to-last inequalities.
Assume that

en+1
u := Rhun+1 − un+1

h , en+1
p := Ph(u

n+1, pn+1)− pn+1
h .
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Subtracting (31) from (8), then we derive that

(Dτen+1
u vh) + µ(∇en+1

u ,∇vh)− (en+1
p ,∇ · vh)

=(Fn+1
1 , vh) + (Fn+1

2 ,∇vh) + (Dτ(Rhun+1 − un+1), vh)

+ (un+1 − Rhun+1, ûn · ∇vh) + (en+1
u , ûn · ∇vh)

+ (un+1, (ûn − Rhûn) · ∇vh) + (un+1, ên
u · ∇vh)

=
7

∑
i=1

Ii(vh).

(36)

Subtracting (32) from (9) yields

(∇ · en+1
u , qh) = 0. (37)

Taking vh = en+1
u and qh = en+1

p in (36) and (37), respectively, summing them up, we
deduce that

1
4τ

(∥en+1
u ∥2

L2 − ∥en
u∥2

L2 + ∥2en+1
u − en

u∥2
L2 − ∥2en

u − en−1
u ∥2

L2 + ∥en+1
u + 2en

u − en−1
u ∥2

L2)

+ µ∥∇en+1
u ∥2

L2 =
6

∑
i=1

Ii(en+1
u ).

(38)

Based on (24) and (25), the terms on the right-hand side of (38) can be bounded as

I1(en+1
u ) = (Fn+1

1 , eun+1) ≤ C∥Fn+1
1 ∥2

H−1 + ε∥∇eun+1∥2
L2 , (39)

I2(en+1
u ) = (Fn+1

2 ,∇eun+1) ≤ C∥Fn+1
2 ∥2

L2 + ε∥∇eun+1∥2
L2 , (40)

I3(en+1
u ) =(Dτ(Rhun+1 − un+1), en+1

u )

≤Ch∥Dτun+1∥H1∥en+1
u ∥L2

≤Ch∥Dτun+1∥H1∥∇en+1
u ∥L2

≤ε∥∇en+1
u ∥2

L2 + Ch2∥Dτun+1∥2
H1 ,

(41)

I4(en+1
u ) =(un+1 − Rhun+1, ûn · ∇en+1

u )

≤∥un+1 − Rhun+1∥L6∥ûn∥L3∥∇en+1
u ∥L2

≤∥un+1 − Rhun+1∥H1∥ûn∥L3∥∇en+1
u ∥L2

≤Ch∥un+1∥H2∥∇ûn∥L2∥∇en+1
u ∥L2

≤ε∥∇en+1
u ∥2

L2 + Ch2∥Dτun+1∥2
H2∥∥∇ûn∥2

L2 ,

(42)

I5(en+1
u ) = (en+1

u , ûn · ∇en+1
u ) = 0, (43)

I6(en+1
u ) =(un+1, (ûn − Rhûn) · ∇en+1

u )

≤∥un+1
h ∥L3∥ûn − Rhûn∥L6∥∇en+1

u ∥L2

≤C∥un+1
h ∥H1∥∇(ûn − Rhûn)∥L2∥∇en+1

u ∥L2

≤C∥∇un+1
h ∥L2 h∥ûn∥H2∥∇en+1

u ∥L2

≤ε∥∇en+1
u ∥2

L2 + Ch2∥∇un+1
h ∥2

L2∥ûn∥2
H2 ,

(44)
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I7(en+1
u ) =(un+1, ên

u · ∇en+1
u )

=− (en+1
u , ên

u · ∇en+1
u ) + (Rhun+1, ên

u · ∇en+1
u )

=(Rhun+1, ên
u · ∇en+1

u )

≤∥Rhun+1∥L∞∥ên
u∥L2∥∇en+1

u ∥L2

≤C∥Rhun+1∥H2∥ên
u∥2

L∥∇en+1
u ∥L2

≤ε∥∇en+1
u ∥2

L2 + C∥u∥2
L∞(0,tk+1;H2)∥ên

u∥2
L2 ,

(45)

Supposing that ε = µ
12 , adding (38)–(45) together gives

1
2τ

(∥en+1
u ∥2

L2 − ∥en
u∥2

L2 + ∥2en+1
u − en

u∥2
L2 − ∥2en

u − en−1
u ∥2

L2 + ∥en+1
u

+ 2en
u − en−1

u ∥2
L2) + µ∥∇en+1

u ∥2
L2

≤C(∥Fn+1
1 ∥2

H−1 + ∥Fn+1
2 ∥2

L2)

+ Ch2(∥Dτun+1∥2
H1 + ∥un+1∥2

H2∥∥∇ûn∥2
L2 + ∥∇un+1

h ∥2
L2∥ûn∥2

H2)

+ C∥u∥2
L∞(0,tk+1;H2)∥ên

u∥2
L2 .

(46)

Note that

∇un =
1
τ

∫ tn

tn−1

∇u(t)dt +
1
τ

∫ tn

tn−1

(s − tn−1)∂t∇u(s)ds. (47)

Using (30) and (35), we arrive at

k

∑
n=1

τ(∥Fn+1
1 ∥2

H−1 + ∥Fn+1
2 ∥2

L2) ≤ CΦ4(M)τ4, (48)

k

∑
n=1

τ∥Dτun+1∥2
H1 ≤ C∥∂tu∥2

L2(0,tk+1;H1) ≤ CΦ2(M), (49)

and

k

∑
n=1

τ(∥un+1∥2
H2∥∥∇ûn∥2

L2 + ∥∇un+1
h ∥2

L2∥ûn∥2
H2)

≤C∥u∥2
L∞(0,tk+1;H2)

(
k

∑
n=1

τ(∥∇ûn∥2
L2 + ∥∇un+1

h ∥2
L2

)
≤CΦ2(M)

(
∥∇u∥2

L2(0,tk+1;L2) + τ2∥∂t∇u∥2
L2(0,tk+1;L2) + τ∥∇u0∥2

L2 + ∥u0∥2
L2

)
≤CΦ4(M).

(50)

Plugging (48)–(50) into (46), one obtains

1
2
(∥en+1

u ∥2
L2 + ∥2en+1

u − en
u∥2

L2) + µ
k

∑
n=1

τ∥∇en+1
u ∥2

L2

≤1
2
(∥e1

u∥2
L2 + ∥2e1

u − e0
u∥2

L2) + CΦ4(M)(τ4 + h2) + Cτ
k

∑
n=1

∥u∥2
L∞(0,tk+1;H2)∥ên

u∥2
L2 .

(51)

Cai and Zhang [28] proved that

∥e1
u∥2

L2 + µτ∥∇e1
u∥2

L2 ≤ CΦ4(M)(τ4 + h2), (52)
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as τ ≤ τ1, where τ1 is a positive constant. We remark that M, which is only depends on the
L4-norm of numerical solution and the H2-norm of the initial data, satisfies (27). Therefore,
by (51) and (52) and Gronwall inequality, we find that

max
0≤n≤k

(∥en+1
u ∥2

L2 + ∥2en+1
u − 2n

u∥2
L2) + 2µτ

k

∑
n=1

∥∇en+1
u ∥2

L2

≤ exp

(
C

k

∑
n=1

τ∥u∥2
L∞(0,tn+1;H2)

)
Φ4(M)(τ4 + h2)

≤ exp
(

C∥u∥2
L∞(0,tk+1;H2)

)
Φ4(M)(τ4 + h2)

≤ exp
(

CΦ2(M)
)

Φ4(M)(τ4 + h2)

≤ exp
(

CΦ4(M)
)
(τ4 + h2).

(53)

Next, applying the inverse inequality ∥en+1
u ∥L4 ≤ Ch−

3
4 ∥en+1

u ∥L2 and the Sobolev
embedding inequality ∥en+1

u ∥L4 ≤ C∥∇en+1
u ∥L2 , we have the following inequality:

max
0≤n≤k

∥en+1
u ∥2

L4 ≤min
(

Ch−
3
2 max

0≤n≤k
∥en+1

u ∥2
L2 , C max

0≤n≤k
∥∇en+1

u ∥L2

)
≤C min(h−

3
2 , τ−2)

(
max

0≤n≤k
∥en+1

u ∥2
L2 + τ

k

∑
n=0

∥∇en+1
u ∥2

L2 + τ∥∇e1
u∥2

L2

)
≤ exp(C1Φ4(M))(τ2 + h

1
2 ),

(54)

where we have used (52) and (53) in the above estimates. Furthermore, for any t ∈ (tn, tn+1]

and n = 0, 1, · · · , k, we have

max
t∈(tn ,tn+1]

∥u − Rhun+1∥2
L4 ≤ max

t∈(tn ,tn+1]
(2∥u(t)− un+1∥2

L4 + 2∥un+1 − Rhun+1∥2
L4)

≤Cτ2∥∂tu∥2
L∞(tn ,tn+1;H1) + C∥un+1 − Rhun+1∥2

H1

≤Cτ2∥∂tu∥2
L∞(0,tn+1;H1) + Ch2∥u∥2

L∞(0,tn+1;H2)

≤CΦ2(M)(τ2 + h2)

≤ exp(C2Φ4(M))(τ2 + h2).

(55)

Combining (54) and (55) together gives

∥uh,τ − u∥2
L∞(0,tk+1;L4) ≤ exp(C3Φ4(M))(τ2 + h

1
2 ), (56)

that is
∥uh,τ − u∥2

L∞(0,tk+1;L4) ≤ 1, (57)

as τ2 + h
1
2 ≤ exp(−C3Φ4(M)).

Assume that

τ0 = min
{

ϕ(M), τ1,
1
2

exp
(
−C3

2
Φ4(M)

)}
,

h0 = min
{
(C0M)−

4
5 ,

1
2

exp
(
−2C3Φ4(M)

)}
.

Then, on the basis of (29), (30) and (57), the mathematical induction of Claim 1 is
complete. Consequently, the existence and uniqueness of the strong solution

u ∈ L∞(0, T; Ḣ2)
⋂

W1,∞(0, T; L̇2)
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is proved, which satisfies

∥u∥L∞(0,T;L4) ≤ ∥uh,τ∥L∞(0,T;L4) + 1.

Then, we complete the proof of Theorem 1.

4. Conclusions
Existing studies on the convergence of numerical methods for the three-dimensional

incompressible Navier–Stokes equations typically assume the existence of a sufficiently
smooth exact solution. However, due to the nonlinear convective term and the intrinsic
complexity of the equations, the global existence of strong solutions—in either bounded or
unbounded domains—remains a major open problem. This raises a fundamental question:
if a numerical solution remains bounded in certain norms, what can be deduced about the
regularity of the true solution?

Partial answers were provided by Li [27] and Cai and Zhang [28], who showed for
the backward Euler and Crank–Nicolson schemes, respectively, that boundedness of the
numerical solution in specific norms implies the existence of a unique smooth solution to the
continuous problem (1)–(3), and guarantees convergence of the numerical approximation
to this strong solution.

In this work, we extend this analysis to the BDF2 scheme and prove that, under
similar boundedness conditions on the discrete solution, there also exists a unique smooth
solution to the continuous problem, and that the numerical solution converges to this
strong solution. It should be noted that the primary aim of this paper is to establish the
theoretical connection between the strong solution of the Navier–Stokes system and the
numerical solution of the BDF2 discretization. Since numerical experiments and practical
implementations of the BDF2 scheme have already been discussed in works such as [36,37],
we do not focus on numerical examples here.
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