. mathematics

Article

Toward Real-Time Scalable Rigid-Body Simulation Using
GPU-Optimized Collision Detection and Response

Nak-Jun Sung !

check for
updates
Academic Editors: Moldoveanu Alin,

Anca Morar and Robert Gabriel Lupu

Received: 3 September 2025
Revised: 17 September 2025
Accepted: 24 September 2025
Published: 9 October 2025

Citation: Sung, N.-J.; Hong, M.
Toward Real-Time Scalable Rigid-
Body Simulation Using GPU-
Optimized Collision Detection and
Response. Mathematics 2025, 13, 3230.
https:/ /doi.org/10.3390/
math13193230

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ / creativecommons.org/
licenses /by /4.0/).

and Min Hong *>*

Research Institute, National Cancer Center Korea, Goyang-si 10408, Republic of Korea; njsung@ncc.re kr
Department of Computer Software Engineering, Soonchunhyang University, Asan-si 31538, Republic of Korea

* Correspondence: mhong@sch.ac.kr

Abstract

We propose a GPU-parallelized collision-detection and response framework for rigid-body
dynamics, designed to efficiently handle densely populated 3D simulations in real time.
The method combines explicit Euler time integration with a hierarchical Octree—~AABB
collision-detection scheme, enabling early pruning and localized refinement of contact
checks. To resolve collisions, we employ a two-step response algorithm that integrates non-
penetration correction and impulse-based velocity updates, stabilized through smoothing,
clamping, and bias mechanisms. The framework is fully implemented within Unity3D
using compute shaders and optimized GPU kernels. Experiments across multiple mesh
models and increasing object counts demonstrate that the proposed hierarchical configura-
tion significantly improves scalability and frame stability compared to conventional flat
AABB methods. In particular, a two-level hierarchy achieves the best trade-off between
spatial resolution and computational cost, maintaining interactive frame rates (>30 fps) un-
der high-density scenarios. These results suggest the practical applicability of our method
to real-time simulation systems involving complex collision dynamics.

Keywords: rigid-body simulation; real-time collision detection; collision response;
GPU-parallel processing

MSC: 08A70

1. Introduction

We propose a GPU-parallelized collision detection and response framework for rigid-
body dynamics, designed to efficiently handle densely populated 3D simulations in real
time. The method combines explicit Euler time integration with a hierarchical Octree~AABB
collision detection scheme, enabling early pruning and localized refinement of contact
checks. To resolve collisions, we employ a two-step response algorithm that integrates non-
penetration correction and impulse-based velocity updates, stabilized through smoothing,
clamping, and bias mechanisms. The framework is fully implemented within Unity3D
version 2020.3.26f1 using compute shaders [1] and optimized GPU kernels [2]. Experiments
across multiple mesh models and increasing object counts demonstrate that the proposed
hierarchical configuration significantly improves scalability and frame stability compared
to conventional flat AABB methods. In particular, a two-level hierarchy achieves the
best trade-off between spatial resolution and computational cost, maintaining interactive
frame rates (>30 fps) [3,4] under high-density scenarios. These results suggest the practical
applicability of our method to real-time simulation systems involving complex collision

Mathematics 2025, 13, 3230

https://doi.org/10.3390/math13193230

https://doi.org/10.3390/math13193230
https://doi.org/10.3390/math13193230
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3514-7152
https://orcid.org/0000-0001-9963-5521
https://doi.org/10.3390/math13193230
https://www.mdpi.com/article/10.3390/math13193230?type=check_update&version=1

Mathematics 2025, 13, 3230

2 of 25

dynamics. Among these two stages, collision response poses a particular computational
bottleneck due to its strict requirements on physical correctness and numerical stability. Col-
lision response then determines how intersecting objects should be separated and how their
velocities and positions are updated. Physically accurate response mechanisms often rely
on constraints derived from Newton’s laws of motion and restitution principles, ensuring
that energy and momentum are preserved or damped appropriately. However, achieving
high-fidelity collision handling introduces substantial computational challenges [5]. In
particular, enforcing the non-penetration condition, which requires maintaining strict sepa-
ration between interacting bodies throughout the simulation, demands accurate contact
resolution and often involves iterative correction procedures [6]. As the number of objects
increases, especially in densely populated scenes, brute-force pairwise collision checks incur
quadratic computational complexity O(n?) [7], rendering the approach impractical even on
highly parallel GPU architectures. This inherent scalability limitation highlights the neces-
sity of employing spatial acceleration structures that can reduce redundant computations
while preserving the physical accuracy of the simulation [8,9].

To address this challenge, we design a hierarchical Octree—AABB space subdivision
scheme that enables scalable and real-time collision handling [10,11]. At the heart of our
approach lies an explicit non-penetration constraint, which is enforced through a two-
step process involving both geometric position correction and velocity impulse updates.
This formulation guarantees physically plausible separation between objects, even in
densely populated simulation environments. The core mechanism operates by recursively
partitioning the simulation domain using an octree, a hierarchical data structure where
each node represents an axis-aligned cubic cell that is subdivided into eight equally sized
children. Each rigid object is inserted into the Octree according to the spatial extent of its
Axis-Aligned Bounding Box (AABB), enabling a structured and localized organization of
the simulation space. In the broad phase of collision detection, comparisons begin at higher
levels of the tree, where large bounding volumes are used to efficiently eliminate distant
or irrelevant object pairs. As the algorithm traverses deeper into the hierarchy, spatial
granularity increases and finer tests are applied only to those regions where bounding
boxes intersect. This hierarchical top-down pruning dramatically reduces the number
of narrow-phase checks, as collision tests are confined to localized clusters of potentially
interacting objects.

By reducing unnecessary pairwise distance calculations, our Octree-AABB framework
reclaims significant computational budget, which can then be reallocated to enforce more
accurate and aggressive non-penetration constraints in the response phase. This design not
only improves scalability across a wide range of scene complexities but also ensures robust
physical realism suitable for real-time GPU simulation. Unlike traditional force-based
methods or post-collision corrections, our system treats collision handling as a proactive
and integrated process. Contact resolution is invoked at the earliest possible moment—as
soon as bounding volumes overlap—and relies on both positional and velocity-based
adjustments derived from collision normals and relative motion. This design prevents error
accumulation, reduces interpenetration artifacts, and supports stable stacking interactions
in real time.

Previous work has explored diverse collision-detection strategies, including Signed
Distance Functions (SDFs) for arbitrary object shapes [12], Bounding Volume Hierarchies
(BVH) for mesh acceleration, and Continuous Collision Detection (CCD) for prevent-
ing tunneling effects during fast motion [13]. However, few frameworks explicitly in-
tegrate these ideas with GPU-optimized hierarchical space partitioning and real-time
non-penetration constraints.

Our contributions in this paper are as follows:

Mathematics 2025, 13, 3230

30f25

* We propose a GPU-accelerated Octree-AABB collision-detection algorithm, sup-
porting broad-to-narrow pruning and vertex-level filtering, implemented entirely in
compute shaders.

* We formulate an explicit non-penetration constraint enforced via both positional
correction and Newtonian impulse, ensuring stable contact and separation.

¢ We introduce a velocity constraint mechanism that suppresses high-frequency oscilla-
tion and improves the visual fidelity of rigid-body stacking and sliding.

* We evaluate the proposed system using a diverse set of high-resolution 3D models
(Bunny, Armadillo, and Dragon), and demonstrate stable real-time performance above
30 frames per second (fps) in scenes with up to 400 interacting objects and multi-level
octree hierarchies.

2. Related Work
2.1. Time Integration Method

Time integration plays a central role in physically based simulation by advancing
the dynamic state of rigid bodies over discrete time steps. Several numerical schemes
have been proposed to solve Newton’s second law, each offering different trade-offs
between accuracy, stability, and computational cost. The explicit Euler method remains
the most widely adopted in interactive and real-time environments due to its simplicity
and low computational overhead. Despite its known limitations in stiff or high-frequency
systems, its forward stepping scheme allows for easy integration into GPU-based pipelines
and real-time simulation engines [14,15]. In contrast, the implicit Euler method (also
called backward Euler) improves stability by incorporating the next state into the update
equation. This allows larger time steps and better handling of stiff constraints but requires
solving nonlinear systems, which can be computationally intensive [16]. Higher-order
methods such as the Runge-Kutta (RK) (e.g., RK2, RK4) offer improved accuracy and
better energy conservation in some cases [17], but their computational demands often
limit their applicability in real-time applications. Hybrid schemes, such as those used in
Position-Based Dynamics (PBD) [15,18], combine explicit prediction with constraint-based
corrections and are widely used for character animation and cloth simulation.

In this work, we adopt the explicit Euler integration scheme to propagate rigid-body
states across time steps. This choice reflects the need for computational efficiency and
parallelizability within large-scale GPU simulations, where the ability to process thousands
of objects per frame outweighs the benefits of higher-order accuracy.

2.2. Collision Detection

Collision detection is a fundamental component of rigid-body simulation, responsible
for identifying potential contacts between moving objects. Due to its quadratic complex-
ity in naive pairwise comparisons, most modern approaches adopt a two-stage pipeline
consisting of a broad phase and a narrow phase [19]. In the broad phase, computationally
inexpensive bounding volumes are used to eliminate non-intersecting object pairs, while
the narrow phase performs fine-grained geometric checks to confirm actual collisions. One
of the most widely used bounding volumes is the Axis-Aligned Bounding Box (AABB),
which encloses each object in a rectangular box aligned to the coordinate axes. Overlap tests
between AABBs can be performed using simple min-max comparisons on each axis, mak-
ing them particularly suitable for GPU-parallel execution [20]. Several hybrid approaches
extend this idea by integrating Oriented Bounding Boxes (OBB) or sphere trees to better
conform to object geometry and reduce false positives [21]. To further improve scalability
in complex scenes, spatial partitioning techniques such as the Octree have been extensively
employed [22]. An octree recursively subdivides the 3D simulation space into eight octants,

Mathematics 2025, 13, 3230

4 of 25

forming a hierarchical structure in which objects are inserted based on their spatial location.
When combined with AABBs at each level, the Octree—~AABB hierarchy allows efficient
pruning of distant or non-overlapping objects, significantly reducing the number of narrow-
phase tests required. This hierarchical scheme is especially effective in simulations with
non-uniform object distributions or sparse interactions. Recent studies have explored GPU
acceleration of octree traversal and bounding volume queries by leveraging data-parallel
operations. Techniques such as non-recursive tree search [23] or GPU-accelerated bounding
volume hierarchies [24] allow real-time traversal and intersection tests across thousands of
objects. Extensions such as probabilistic volumetric mapping (PVM) further improve mem-
ory utilization while maintaining interactive frame rates in dynamic environments [25].
In our framework, we adopt a hierarchical Octree-AABB structure to efficiently manage
broad-phase collision detection. Objects are inserted into spatial cells based on their AABB
extent, and overlap queries are performed hierarchically to eliminate redundant checks.
This structure aligns well with GPU compute pipelines, enabling coarse-to-fine pruning
and scalable parallelism even in densely populated scenes.

2.3. Collision Response

While collision detection identifies when and where objects intersect, collision re-
sponse governs how objects should react once contact is confirmed. The primary objective
of collision response is to ensure physically plausible behavior by enforcing conservation
principles, such as the conservation of momentum, while also preventing interpenetration
and preserving numerical stability. A common approach is to formulate the response
according to Newton’s third law, which stipulates that every force exerted by one object
on another is met with an equal and opposite force. Westhofen et al. [26] developed an
IPC-based contact potential within incremental potential-based time integration, achieving
interpenetration-free and bounce-free collision response through a distance-strengthened
cubic penalty and energy-based coupling with magnetic forces. Ferguson et al. [27] mod-
eled collisions using a barrier function and friction potential, resolving contact implicitly
by minimizing the total energy in the rigid-body incremental potential. Modern collision
response techniques typically incorporate both geometric and dynamic constraints. Geo-
metric constraints, such as non-penetration conditions, ensure that objects remain separated
following contact. Dynamic constraints, such as velocity adjustments through impulses,
enable restitution behavior and energy exchange modeling. When these constraints are
integrated within a unified solver, the system can achieve robust, stable interactions even
in highly cluttered or densely populated simulations. For real-time GPU-based simulations,
computational efficiency and parallelism are critical. By combining geometric correction
and impulse-based velocity adjustment in a data-parallel fashion, the proposed approach
maintains physically consistent responses while avoiding divergence across thousands of
simultaneously updated objects.

2.4. GPU-Parallel Processing

Recent advances have demonstrated the effectiveness of GPU acceleration in physics-
based simulation, particularly through compute shaders in frameworks such as Unity3D
using DirectX. GPUs enable massive parallelism and high-throughput memory access,
which are well suited for collision detection and response computations. One class of
applications is cloth simulation, where GPU-based implementations commonly rely on
Verlet integration to enforce position constraints and elastic behavior in cloth models [28].
These methods leverage compute shaders to process large numbers of particles or mesh
vertices simultaneously, achieving real-time performance without compromising visual
fidelity. Another relevant area is GPU-accelerated collision detection using hierarchical

Mathematics 2025, 13, 3230

50f 25

spatial structures. For instance, Hor et al. [29] presented an Octree—~AABB algorithm
that significantly reduces the number of triangle-primitive checks by spatially slicing
the scene for Unity3D. Their GPU implementation enabled efficient culling across octree
levels and achieved real-time performance in dense environments. In prior implemen-
tations, however, many Octree~AABB hierarchies were only partially GPU-accelerated
or optimized for CPU execution. Moreover, they often targeted simple models rather
than scaling to high object counts or complex meshes. In contrast, our framework fully
integrates the Octree—AABB structure into GPU compute shaders within Unity3D. This
allows highly parallel execution and direct use of GPU memory, enabling simulation of
complex models such as Bunny, Armadillo, and Dragon with tens of thousands of ver-
tices and triangles—even when multiplied across concurrent instances. Furthermore, our
evaluation emphasizes scalability: instead of solely measuring algorithmic efficiency, we
quantify the maximum number of rigid-body instances that can be simulated at interactive
frame rates (>30 fps). This practical focus on large-scale, real-time performance sets our
work apart from earlier implementations and reveals the true potential of GPU-accelerated
Octree—~AABB collision handling.

3. Method

Our method consists of four stages: (i) explicit Euler integration, (ii) hierarchical broad-
phase collision detection, (iii) narrow-phase response with friction and stabilizers, and (iv) a
GPU-based parallel implementation, with concise pseudocode illustrating each kernel.

3.1. Explicit Euler Time Integration for Rigid-Body Dynamics

The most popular approaches for dynamic physically based simulation in computer
graphics are force-based, particularly for use in interactive environments. External forces
(such as gravity, wind, or interaction forces between nodes) are accumulated and applied
according to Newton’s second law, F = ma. For time integration, we employ the explicit
Euler method to update the predicted velocities and positions of objects at each time step
At during the dynamic simulation of rigid bodies. Each node i is associated with three
attributes, namely mass, velocity, and position.

Starting from Newton’s second law, the acceleration of node i is defined as

1
a; = ﬁFi/ (1)

i
where F; is the external force and m; the mass of the node.
The explicit Euler integration scheme then updates velocity and position sequentially as:

vi(to + At) = vi(to) + At a;(to), 2)

x;i(to + At) = x;(to) + Atv;(to + At). 3)

By applying this scheme, the subsequent position of each node is predicted from
the accumulated force contributions in a simple yet robust manner. This enables efficient
estimation of potential collisions, simplifying intersection checks in large-scale simulations.
While higher-order integration schemes such as Runge-Kutta (RK4) can improve numerical
accuracy, they introduce significant computational overhead and are not energy-preserving,
which limits their suitability for real-time GPU-based rigid-body simulation [30].

Mathematics 2025, 13, 3230

6 of 25

Stability of the Explicit Euler Scheme

Although the explicit Euler method is simple and efficient, its stability requires a
restriction on the step size. For a linearized rigid body with damping,

mi+cx+kx=0,

the discrete update in Equations (2) and (3) is

k c
Upt1 = Un — At(gxn + %U,J,
Xp41 = Xn + DLV 4.

A standard eigenvalue analysis of this recurrence shows that the solution remains
bounded provided

r = \/7 (4)

Choosing At below this limit prevents divergence and preserves the stability of the simulation.

3.2. Hierarchical Octree—AABB Collision-Detection Framework

To perform efficient and scalable collision detection for large-scale 3D simulations, we
employ a hierarchical approach based on Axis-Aligned Bounding Boxes (AABBs) integrated
with an octree spatial partitioning structure. Our method consists of two main phases:
(1) a broad-phase filtering using AABB intersection tests and octree traversal, and (2) a
narrow-phase refinement using vertex-level proximity checks.

AABB Representation

Each 3D object is enclosed in an AABB defined by the minimum and maximum
coordinates of its geometry, aligned with the global coordinate axes. The bounding region
R of an object is defined as:

R = {(X,y, Z) | Xmin < % < Xmaxs Ymin < y < Ymax, Zmin <z < Zmax} (5)

Broad-Phase Collision Detection: Two objects are considered to potentially collide if
their AABBs intersect. This condition is satisfied when their bounding intervals overlap
along all three coordinate axes:

Xgﬁn < Xrélax A Xr}‘tax > Xrélin
AABB4 NAABBp # @ <= { yin < ypax A ympax > ymin (6)
Zr/?in S Zg\ax A Zglax 2 Zgﬁn

Traditional AABB methods check every object pair in a brute-force manner, which
becomes computationally intractable for large N. To address this, we utilize an octree
structure that recursively subdivides the simulation domain into axis-aligned subregions.

Octree Construction: Starting from the root (Level 0), the domain is recursively
partitioned into eight child nodes per level. Each object is inserted into the lowest-level
node that completely contains its AABB. This hierarchical spatial indexing accelerates
collision checks by pruning non-overlapping regions early.

Figure 1 illustrates our octree-based collision-detection framework. AABBs are used
at different levels to coarsely identify regions of interest, and the number of colliding
candidates significantly decreases with deeper levels due to improved spatial filtering.

Mathematics 2025, 13, 3230 7 of 25

level 0 octree level0 B 0

E- >

[]

a

s level 1

o

>

Q

-l
level 2

c

L

-

S

c

Q

7]

[

13

o

Q

[

0

o0

b 1

< Collider Settings Detection Level Settings Collide State

Figure 1. Hierarchical Octree-AABB collision-detection framework. (Left): Octree depth levels and
AABB colliders. (Right): collision states of a complex 3D model at different octree depths, showing
progressively reduced collision candidates.

Narrow-Phase Collision Refinement: Once a potential collision is identified in the
broad phase, vertex-level proximity is tested to confirm actual contact. Let V4 and Vp be
vertices from two objects. A collision is confirmed if their Euclidean distance is less than a
predefined threshold 6:

[Va—Vg|l <0 ()

The full collision-detection pipeline can thus be summarized as:

. false, if AABB4NAABBg =O
Collision(A, B) = (8)
true, if 3(Vy, V) such that ||V, — V3| < 6.

Here, the threshold 6 is calibrated based on the mesh resolution and the scale of simu-
lation objects. It enables flexible contact detection even under mesh discretization errors.

From a complexity viewpoint, building the octree for N objects with depth L costs
O(NL), while broad-phase pruning requires O(N + N?/8%) under a uniform distribution
assumption. Thus, increasing L reduces the number of candidate pairs from O(N?) toward
linear complexity.

In our implementation, each frame updates the AABBs based on new positions com-
puted by the physics solver. As demonstrated in our results, this hierarchical strategy leads
to significant performance gains, especially in densely populated scenes.

3.3. Enhanced Collision Response Algorithm

The collision response stage combines mass-weighted penetration correction with an
impulse-based velocity update, extended with Coulomb friction and several stabilizers to
ensure robustness in stacking and dense contact scenarios.

(1) Position correction for non-penetration
When two AABBs overlap, penetration depths along the three axes are:

X X
px = min(mﬁlx, mﬁlx) — max(min, min),
ATB A B

y y ¥ ¥
o _ Y 9
Py mm(mf;‘ax, ml?x) max(ngn, mBm),)

z z
pz = min(mzax, rnzax) — max(min, min).
A B A B

Mathematics 2025, 13, 3230 8 of 25

If any p; < 0, the pair is discarded. Otherwise, the axis of smallest penetration defines
the normal 7 and the depth d,:

dp = min{ px, py, pz }- (10)
Penetration is resolved by a Baumgarte-style correction:
Ax = B max(d, — 6, 0)n, (11)

where B controls correction strength and J is a small bias (“slop”) to ignore negligible overlaps.
The displacement is split by inverse masses:

X4 =Xa+ B Ax/
A m;l + mgl
. (12)
/ M4
Xp=Xp— —— — Ax
my, +my
Optionally, smoothing can be applied:
Xnew = (1 - “)xold + XXtarget, O0<a<l (13)
3.3.1. Non-Penetration Guarantee
Let d’;, denote the penetration depth at step k. After applying the correction,
k k k
dp+1 = max (0, d, — p(d, — %)), (14)

with 0 < B < 1, the sequence is monotonic and converges to a gap not larger than J,
ensuring that configurations remain non-penetrating.
Optionally, smoothing can be applied:

Xnew = (1 - “)xold + XXtarget, 0<a<l (15)

(2) Impulse-based velocity update

After correction, the relative velocity is decomposed:

Urel = 0UA — 0B,
Un = (Vgel,), (16)

UVt = Upe] — Uphl.

If v, > 0, the bodies are separating. Otherwise, restitution with a velocity threshold
is used:
0/ |vl’l | < vﬂ’l

Ceff = ’
e, otherwise 17)
Jo=— (14 eeff)on
Tom! +mgl
A B
A minimum magnitude is enforced:
Jn, Jul 2 Jmi
[, = n | n| mm. (18)

Sign(]n)]minr |]Vl| < Jmin

Mathematics 2025, 13, 3230 9 of 25
Velocities are updated:
VA 0Up+ m_ln,
A A+ In Al (19)
vg < v — Juiy n.
3.3.2. Friction (Coulomb Model)
If ||o¢]| > 0, define t = v;/||v¢]|. The ideal tangential impulse is
(43
i = —%- (20)
m," +my
Friction is then
I i1 < sl Tl
Je = : (21)
—uk|Jn|sign(Jf) otherwise
Apply to velocities:
-1
Up $—0pq+m t,
A A Al)

Up < U — mglht.

With the Coulomb law, the tangential impulse satisfies J; ||v¢|| < 0, hence AE; = J; ||v¢]| <0,
and friction cannot increase kinetic energy.

(3) Stability safeguards

To maintain robustness:

e Substitute n with a fixed axis if ||x4 — xg|| < €.

¢ Bias ¢ prevents tiny overlaps from accumulating.

* vy, disables restitution at low speeds, improving stacking.
* Jmin avoids sticking from numerical noise.

¢ A velocity clamp enforces

Uj < Clip(vi/ —Umax, Umax)- (23)

This unified formulation integrates penetration correction, restitution-aware normal
impulses, and Coulomb friction under a single set of parameters, ensuring non-penetration,
bounded energy, and smooth sliding in real-time simulations.

3.3.3. Parameter Constraints

For monotone non-penetration and bounded energy, we require 0 < § < 1,0 <a <1,
0 > 0, Jmin > 0, and a finite vmax. The penetration correction contracts as d’;” —0 =
(1—ap) (d’;7 — &), so the effective rate is governed by (1 — af). Restitution is suppressed at
low speeds via eq = 0 for |vy| < vy,.

(4) Parameter summary

Table 1 summarizes the parameters used in the collision response stage. Each term
originates from standard impulse-based contact models and is selected to ensure non-
penetration, bounded restitution, stable frictional response, and numerical robustness.

Table 1. Parameters for the collision response algorithm.

Parameter Value (Example) Role
0 0.001 Slop distance to tolerate negligible interpenetrations and suppress jitter.
B 1.0 Coefficient controlling the strength of position correction for
’ penetration removal.
o 03 Threshold below which restitution is disabled to stabilize resting
th -

contacts.

Mathematics 2025, 13, 3230 10 of 25
Table 1. Cont.
Parameter Value (Example) Role

Minimum normal impulse magnitude to avoid sticking due to

]min 0.01 . .
numerical noise.

Us, Uk 0.6,0.5 Static and kinetic friction coefficients defining the stick-slip limit.

Umax 50 Upper bound on post-collision velocity to prevent divergence.

3.4. GPU-Based Parallel Processing

With the benefit of GPGPU programming via the Unity engine and HLSL, collision
detection and response can be implemented as parallel algorithms. These kernels leverage
direct GPU memory access for efficient execution within compute shaders. Each shader
can be organized into one or more kernel programs, invoked from C# scripts, and may
share a limited number of buffers per kernel. This design allows the GPU to process many
independent tasks concurrently, taking advantage of parallelism while minimizing memory
latency through optimized hardware and data transfer mechanisms.

Moreover, GPU-based kernels can be utilized for a wide variety of tasks, such as
physically based graphical simulation pipelines, general-purpose parallel processing on
graphics processing units (GPGPU), and numerical calculations involving large datasets.
Each block consists of threads that are synchronized within the GPU cores, with a maximum
of 1024 threads per block. This enables the simultaneous execution of multiple threads
in parallel.

Additionally, several essential kernels are utilized to implement random movement in
rigid-body simulation. Solving collision detection involves many kernels, as described in
Table 2.

Table 2. List of essential GPU kernels in collision detection and response.

Kernel Name Grid Size Number of Threads
Octree Construct Obj/1024 (1024, 1,1)
Vertex-Bounding Box Relation Obj/1024 (1024, 1, 1)
Bounding Box Collision Detect Oct_Ind/32 (32,32,1)
Check Vertex Inside Bounding Box =~ Obj/1024 (1024, 1, 1)
Collision Response Node/1024 (1024, 1, 1)

In addition, we also require the ability to store or transfer vertex-based data to the
GPU compute buffers. Table 3 lists the compute buffers used in this study. This design
allows configuring compute buffer values of multiple types, such as int and float3. For
instance, a compute buffer of type int is used to store a one-dimensional array of integers,
while a float3 buffer stores a three-dimensional array of floating-point values.

Table 3. List of GPU compute buffers in collision detection and response.

Buffer Name Data Type Description

Vertex float3 The list of vertices.

Octreelndex int The list of octree indices (three levels).
VertexRelation int The list of vertex relations inside bounding boxes.
OctreeCollision int The list of collided octree boxes.
NodelnsideBox int The list of nodes inside collided boxes.
NodeCounter int The list of node counters.
IntersectionObject int Boolean buffer indicating collision occurrences.

To execute the complete simulation on the GPU, both computational tasks and ren-
dering processes are integrated to solve collision detection and response in real time. The
overall pipeline is illustrated in Figure 2.

Mathematics 2025, 13, 3230

11 of 25

Load TetGen models
Octree Structure

J/ Octree Level 0
Initialize Vertices

S ! Octree Level 1

Initialize Buffers
Octree Level 2

Initialize Compute
Shaders

L){ Dispatch Compute Shader Kenels }—T

Figure 2. Flowchart of collision detection and response in the simulation of a randomly moving

rigid body.

3.5. GPU Kernel Implementation

We implement three core GPU kernels and two auxiliary GPU kernels that form the
backbone of our hierarchical collision detection and response framework. Each kernel is
parallelized using compute shaders and executed across multiple threads on the GPU. The
detailed implementations of two auxiliary GPU kernels are provided in the Appendix A.

3.5.1. Hierarchical Octree Construction

This kernel initializes the hierarchical spatial subdivision by constructing an Octree
bounding structure up to level 2. Starting from the root node (level 0), each cell is recursively
subdivided into eight children, forming level 1 and level 2 regions. For each node, the
algorithm calculates the minimum, maximum, and center coordinates, which are used to
define local AABBs for collision filtering. Algorithm 1 shows the detail hierarchical octree
construction process.

Algorithm 1: Hierarchical Octree Construction

Input: Root center cp; root bounds (ming, maxg); maximum depth MAX_LEVEL
Output: Octree node array Nodes (fields: level, bounds, center, child info); level offsets Level Of fsets;
total node count NodeCount

1 Initialization:

2 Nodes < @; Level Of fsets[0] < 0

3 Create root node ng < (0, ming, maxg, ¢p, —1,0)

4 Append ng to Nodes; currLevel < 0

5 Iteration:

6 while currLevel < MAX_LEVEL do

7 start <— Level Of fsets[currLevel|

8 end < (currLevel = 0)?|Nodes| : Level Of fsets[currLevel + 1]

9 LevelOf fsets[currLevel + 1] < |Nodes|

10 for nid < start to end — 1 do

1 if Nodes|nid].level = currLevel then

12 for oct <+ 0to7 do

13 (ming, max,, ¢;) < Subdivide(Nodes[nid], oct)

14 Append (currLevel + 1, min., max,, ¢, —1,0) to Nodes
15 Nodes|nid].firstChild < LevelOf fsets[currLevel + 1]

16 Nodes[nid].childCount < 8

17 currLevel < currLevel + 1

18 Termination:

19 Stop when currLevel = MAX_LEVEL.

20 Post-processing:

21 NodeCount < |Nodes|; return (Nodes, LevelOf fsets, NodeCount).

Mathematics 2025, 13, 3230

12 of 25

3.5.2. Broad-Phase Collision Candidate Detection

This algorithm performs the broad-phase collision pruning by comparing the Oc-
tree node indices of all objects. It discards non-overlapping pairs early based on their
AABB locations in the spatial hierarchy. Only object pairs sharing the same parent node
(i.e., spatially close) are passed to the next stage as collision candidates. Algorithm 2 shows
the detail broad-phase collision candidate detection process.

Algorithm 2: Broad-Phase Collision Candidate Detection

Input: Number of objects N; array ParentIdx[0..N — 1] containing the octree node index of each object
Output: Candidate buffer Candidates containing object pairs (i, j); candidate count CandCount
Initialization:
Candidates < ©@; CandCount <+ 0.
Iteration:
fori <— 0to N — 1 do in parallel
forj<i+1toN—1do
if Parentldx[i] = ParentIdx[j] then
k < atomicAdd(CandCount, 1)
L Candidates[k] < (i,])

® 9 & G R @ N =

Termination:

©

10 All object pairs have been examined.
11 Post-processing:
12 return (Candidates, CandCount).

3.5.3. Narrow-Phase Collision Response

This algorithm handles narrow-phase contacts by combining mass-weighted pene-
tration correction and impulse-based velocity updates, with Coulomb friction and several
stabilizers for stacked or densely interacting rigid bodies.

First, overlaps along the x, y, and z axes of the two AABBs are tested. If no positive
depth is found, the pair is discarded; otherwise, the axis of minimum penetration defines
the contact normal 7 and depth d.

To remove interpenetration, a symmetric position correction

Ax = Bmax(dp —90,0)n

is applied.

B (Baumgarte factor) controls how fast penetration is resolved, and é (“slop”) avoids
jitter from negligible overlaps. The stability of the Baumgarte position correction depends
on the choice of B and the allowable penetration §. While we adopt values suggested by
(Table 1), we additionally provide an ablation study of p and ¢ parameters and their effect
on penetration depth in Appendix A.3.

Next, the relative velocity is split into normal and tangential components. A normal
impulse as

_ (1 + eeff) Urel,n
Jn=—"—= 5"
my, +mpg
is applied only when the approach speed exceeds a threshold (e.;s = 0 otherwise), with
a floor Jmin to keep resting contacts stable. Coulomb friction is then applied along the
tangential direction: if the ideal impulse is below s |J,| (static limit) the tangential velocity
is removed; otherwise, a kinetic impulse of size y|],| opposes sliding.

Finally, velocities are clamped to vmax and the states of both bodies are written back,
refreshing AABBs for subsequent contacts. Typical values—f ~ 0.6-0.9, § a small fraction
of body size, vy, tied to minimal stacking energy, and y;, py from material data—balance
fast convergence, low energy drift, and minimal penetration.

Mathematics 2025, 13, 3230

13 of 25

The combination of these parameters provides: (i) penetration suppression without
oscillation (B, §), (ii) bounded restitution (eqg;, vy,), (iii) stable frictional response (s, px),
and (iv) robustness against numerical drift (Jmin, ¥max), yielding reliable stacks and smooth
sliding without global constraints. Algorithm 3 shows the detail narrow-phase collision
response process.

Algorithm 3: Narrow-Phase Collision Response

Input: Bodies A, B (positions x, velocities v, masses m, AABBs);
restitution ¢; friction (s, yx); correction params (B, 9);
impulse floor Jmin; velocity cap Umax
Output: Updated x/,, x5, v;, v
// 1. Detect contact and compute normal
Find penetration depths along x, y, z axes
if no overlap then
L return

W N=

'S

Choose the axis with the smallest penetration as normal n

o

dy < penetration depth along n

// 2. Position correction (mass-weighted)
6 ¢ < p-max(dy,—4,0)-n

1/my

7 XAt = 1/mA+1/mBC;
_ _ 1/mp
8 Xp— = 1/mA+1/mBC

// 3. Normal impulse (with restitution threshold)
Upe] <~ VA — UB

10 Uy 4= Uy - 1

1 if v, < 0 then

©

12 compute J, with restitution (set e = 0 if |v,| small)
13 clamp Jy t0 Jmin
14 apply Jun to vy and —Jun to v

// 4. Friction impulse (Coulomb)
15 Compute tangential velocity v;
16 Compute ideal J; to cancel v;
17 if [J¢| < ps|Jn| then
18 ‘ apply J; (stick)
19 else
20 L apply —pik|Jn| along —v; (slide)
21
// 5. Clamp and update
22 Limit v4,vp tO Umax
23 Write back x’, v' and refresh AABBs

4. Experiments
We implemented rigid-body dynamics simulations in the Unity3D engine, with a
particular emphasis on collision detection and response for randomly moving objects. The

hardware and software configurations of the experimental workstation are provided in
Table 4.

Table 4. Hardware and software environments for simulations.

Name Description

CPU Intel i7-7700k, 3.6 GHz

GPU Nvidia RTX 3090 Ti, 24 GB V-RAM
(O8] Windows 10 Pro

Memory 32 GBRAM

IDE Visual Studio Code 1.104.1

Engine Unity 2020.3.26f1

Library HLSL Shader Model 5.0

Mathematics 2025, 13, 3230

14 of 25

To evaluate the scalability and robustness of the proposed framework, we selected
four representative benchmark models with varying geometric complexities, as shown in
Figure 3. The Bunny model consists of 2527 vertices and 4968 triangles, representing a
relatively simple mesh suitable for lightweight simulations; it serves as a baseline to test
performance under low complexity and minimal collision conditions. The Armadillo model
includes 41,787 vertices and 15,580 triangles, introducing moderate complexity due to its
compact yet articulated form. Its structure, featuring a detailed torso and limbs, provides a
balanced challenge for both broad-phase culling and narrow-phase refinement. The Dragon
model is composed of 50,000 vertices and 100,000 triangles, offering a dense surface and
elongated limbs that stress-test the collision pipeline at higher resolution. Finally, the Asian
Dragon, with 360,947 vertices and 721,902 triangles, represents the most challenging case in
our benchmarks. Its intricate surface details and large number of elongated features make it
an ideal target for evaluating the scalability and performance ceiling of the GPU-accelerated
framework. Together, these models span a wide range of mesh densities, topology, and
structural intricacies, thereby enabling a comprehensive assessment of collision-detection
efficiency, response stability, and the scalability of the GPU-based implementation across
increasing geometric complexity.

o Xbw

Bunny Armadillo Dragon Asian Dragon
2527 Nodes 41,787 Nodes 50,000 Nodes 360,947 Nodes
4968 Triangles 15,580 Triangles 100,000 Triangles 721,902 Triangles

Figure 3. 3D models used for scalability and performance evaluation in collision-heavy simulation
environments.

To evaluate the performance of our proposed framework, we conducted a series of
experiments using complex 3D models with a large number of nodes. Each experiment was
averaged over 3000 frames in the compute shader, which primarily leveraged the GPU’s
parallel processing capability and, in particular, its VRAM capacity. A high-VRAM GPU
can efficiently manage large-scale simulations while simultaneously processing extensive
data, and our results suggest that simulation performance can be further improved by
deploying more powerful GPU devices capable of handling increasingly complex scenarios.
The Unity engine provides a V-Sync option that synchronizes the frame rate with the
monitor’s refresh rate; however, this feature was disabled so that the maximum fps was
determined solely by the underlying GPU performance.

Building on this setup, we designed two experiments to assess different aspects of the
collision framework. In the first, we conducted an ablation study to evaluate which culling
configurations in a hierarchical Octree~AABB structure most improve performance. In the
second, we examined whether the Octree—AABB structure outperforms Spatial Hashing, a
widely used collision-detection method, within our simulation scenario.

4.1. Scalability Analysis of Hierarchical Octree~AABB Collision Detection

In order to systematically analyze scalability and performance limits, each experiment
was conducted with three representative models (Bunny, Armadillo, and Dragon) while
progressively increasing the number of object instances within the simulation scene. This

Mathematics 2025, 13, 3230

15 of 25

setup allowed us to identify the performance threshold, i.e., the maximum number of objects
that can be simulated before the frame rate drops below real-time requirements. In addition,
a critical evaluation criterion was to determine the minimal simulation conditions under
which the system consistently maintains interactive frame rates (>30 fps). We considered
three different configurations of the proposed hierarchical collision handling algorithm:

* Experiment A (Level 2 only): A flat configuration in which all collisions are processed
at the finest granularity using level 2 bounding boxes exclusively. This setup provides
a baseline for the effectiveness of a single-level spatial subdivision.

* Experiment B (Level 1 — Level 2): A two-level hierarchical configuration where
broad-phase pruning occurs at level 1 and narrow-phase collision handling is re-
fined at level 2. This configuration is designed to balance detection accuracy and
computational efficiency.

* Experiment C (Level 0 — Level 1 — Level 2): A full hierarchical configuration in
which collision handling is performed across all octree levels. This setting exploits the
complete spatial subdivision hierarchy to maximize pruning efficiency and reduce
unnecessary vertex-level checks.

Figure 4 illustrates the performance trade-offs introduced by varying the depth of
the Octree hierarchy in real-time collision handling. The table in the upper right corner of
each figure shows the performance results profiled in the Unity3D. When only a shallow
hierarchy (Level 1) is applied, broader bounding regions result in fewer collision checks but
may also increase false positives, leading to redundant processing and reduced accuracy. In
contrast, a deeper configuration (Level 2) achieves more selective pruning by subdividing
the space into finer regions, yet incurs additional overhead due to increased tree traversal
and box management. The fps values clearly reflect this shift: although the shallower
setup achieves higher raw performance, the deeper configuration provides finer control
over densely packed collisions. This experiment highlights the need to balance spatial
resolution with computational efficiency, depending on the simulation complexity and
collision density. Table 5 summarizes the experimental results, reporting the average fps
(mean = standard deviation over five runs) achieved under different configurations and
varying object counts for each model. These results highlight the progressive improvements
obtained through hierarchical collision handling and confirm the effectiveness of the pro-
posed approach in achieving real-time performance even under high-complexity scenarios.

ARV

Level 1: 10

Figure 4. Performance comparison between Octree depth levels in dense collision scenarios using
50 Dragon models. (Left): Level 1 configuration achieves 102.2 fps with a shallower hierarchy. (Right):
Level 2 introduces deeper spatial subdivision, resulting in increased collision checks and reduced
performance (46.4 fps). Red boxes denote AABB collision bounds. This illustrates the trade—off
between spatial resolution and computational cost in hierarchical collision detection.

Furthermore, to rigorously assess the impact of our hierarchical approach, we per-
formed an ablation study by comparing the results against the conventional Level 0 only
setting, which corresponds to the traditional AABB-based collision-detection method with-

Mathematics 2025, 13, 3230

16 of 25

out octree partitioning. This comparison isolates the contribution of hierarchical collision
handling and quantifies its benefit in terms of scalability and sustained performance. As
summarized in Table 6, the ablation study highlights a clear trade-off between raw frame
rate and simulation robustness. While the traditional Level 0 AABB configuration achieves
higher fps values at lower object counts, its performance rapidly deteriorates in terms of
stability and scalability when handling more complex models. In contrast, the hierarchical
Octree configurations (B and C) maintain stable operation even under dense collision scenar-
ios, demonstrating the necessity of multi-level pruning for practical large-scale rigid-body
simulation. This comparison highlights that our proposed method prioritizes consistent
real-time performance over raw throughput, thereby offering a more reliable foundation
for complex interactive applications. Table 6’s relative change ratio field is calculated by

FPSc — FPSAaBB
FPSaABB

RelativeChangeRatio = Round(x 100%, 1) ,

where V(is the value from the hierarchical configuration (C) and Vs app is the correspond-
ing Level 0 (AABB only) result.

Table 5. FPS (mean =+ std over 5 runs) for Octree configurations: A (Level 2), B (Level 1—2), and C
(Level 0—1—2). Deeper hierarchies (C) provide better scalability and frame rates than shallower ones.

Num Objects Experiment A Experiment B Experiment C
Bunny
300 55.6 +1.85 113.66 £+ 1.56 98.35 + 1.09
350 42,76 £1.22 89.91 +1.28 55.37 +1.07
400 27.63 £1.05 46.7 +1.11 37.81+0.72
450 25.61 £0.6 40.1 £0.8 32.14+0.45
Armadillo
150 36.71 £2.06 64.66 £1.71 58.01 £1.51
200 27.82+1.75 49.13 £1.06 4391 £1.07
250 17.21 +1.45 45.14 +1.05 36.11 £ 0.91
300 13.18 £ 0.71 36.51 £ 0.89 27.88 +0.62
Dragon
150 29.33 £2.06 60.7 +1.17 48.1 +1.09
200 2392 +1.75 4256 +1.05 35.72 +1.06
250 12.55 + 1.45 40.35 £1.03 20.54 +£0.76
300 8.8+0.71 25.6 +0.85 13.16 £0.51
Asian Dragon
40 33.15+1.4 63.35 + 1.03 56.31 + 0.95
50 23.8 +1.35 5242 +1.12 47.37 £1.03
60 13.2+1.02 48.14 £0.93 30.33 £ 0.6
70 5.8 +0.69 20.15+0.72 11.64 +0.33

Table 6. Ablation study comparing the flat AABB baseline (Level 0) with the hierarchical Octree
method (Experiment C). The table reports mean FPS (xstd over 5 runs) as object count increases,
showing that the Octree maintains scalability and stability in dense scenes.

Num Objects Level 0 (AABB Only) Hierarchical (C) Relative Change Ratio
Bunny
300 128.55 £3.10 98.35+1.09 —23.5%
350 94.12+2.33 55.37 £ 1.07 —41.2%
400 81.14 +£1.22 37.81+0.72 —53.4%

450 67.51 +0.96 32.10+0.45 —52.5%

Mathematics 2025, 13, 3230 17 of 25
Table 6. Cont.
Num Objects Level 0 (AABB Only) Hierarchical (C) Relative Change Ratio
Armadillo
150 70.22 £2.07 58.01 +1.51 —17.4%
200 56.03 +1.87 43.91+1.07 —21.6%
250 40.77 £1.12 36.11 +£0.91 —11.4%
300 33.214+0.98 27.88 +0.62 —16.0%
Dragon
150 58.43 +1.95 48.10 +1.09 —17.7%
200 4521 +1.68 35.72 £ 1.06 —21.0%
250 26.67 +0.95 20.54+0.76 —23.0%
300 17.04 £0.81 13.16 £0.51 —22.7%
Asian Dragon
40 63.47 £1.34 56.31 £ 0.95 —11.3%
50 56.84 +1.12 47.37 +1.03 —16.7%
60 41.24+0.73 30.33+0.6 —26.4%
70 16.87 £ 0.62 11.64 £0.33 —31.0%

4.2. Comparison of Broad-Phase Collision-Detection Methods

To further investigate the efficiency of our broad-phase design, we compared the
proposed hierarchical Octree—A ABB strategy with a Spatial Hashing approach, which par-
titions space into uniform cells of size / (here h = 0.25f). Both methods were implemented
with identical data structures for the narrow phase, with the only difference lying in the
broad-phase mechanism. As in the previous experiment, we conducted a free-fall stacking
test with 50 instances of four 3D models (Bunny, Armadillo, Dragon, and Asian Dragon).
Two primary metrics were measured: (i) average frame rate (FPS) over five runs, and
(if) runtime memory footprint. This setup isolates the impact of the broad-phase algorithm
on scalability and resource usage.

To obtain reliable measurements, collision detection was executed for up to 3000 frames
to ensure a sufficient number of contacts. Metrics were recorded every 100 frames, and
running averages were computed to smooth out short-term fluctuations caused by transient
contacts or garbage collection. This sampling strategy provides a clear view of long-term
performance as stacking becomes denser.

The FPS traces reveal two distinct stages. During the initial free-fall phase, Spatial
Hashing performs better due to its expected O(1) insertion and query cost. As stacking
progresses and object density increases, the Octree~AABB approach maintains higher
throughput and stability because its hierarchical culling reduces unnecessary candidate
checks. Figure 5 shows the FPS evolution with error bands for both methods across the four
models, highlighting how Spatial Hashing dominates in sparse scenes while Octree~AABB
offers improved stability under dense collisions.

Spatial Hashing achieves constant-time insertion and query on average, but may pro-
duce redundant candidate pairs when objects span multiple cells, especially for elongated
meshes or crowded scenes. By contrast, the Octree—AABB method scales as O(NL) for tree
construction, with culling cost

O(N + N?/8")

under a uniform distribution. This complexity enables more selective filtering at the cost of
additional hierarchy management, which becomes advantageous as collisions grow denser.

Mathematics 2025, 13, 3230

18 of 25

500

— Spatial Hash Mean
Octree-AABB Mean

350

300

— Spatial Hash Mean
Octree-AABB Mean

—~—\

400

250
o o
2 2
]]
2 300 — Z 200
g A g
b3 =
150

200
100

100 0

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Frames Frames.

50 Bunny Models 50 Armadillo Models

400 — Spatial Hash Mean
Octree-AABB Mean 50

350
v 45
300

— Spatial Hash Mean
Octree-AABB Mean

0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
Frames Frames

50 Dragon Models 50 Asian Dragon Models

Figure 5. Performance comparison of Spatial Hash and Octree—~AABB for 50 instances of each dataset
(Bunny, Armadillo, Dragon, and Asian Dragon). Mean FPS values with error bands are plotted over
3000 frames. Spatial Hash maintains higher speed in the early sparse phase, while Octree~AABB
shows greater stability and throughput once stacking increases collision density.

To quantify the observed trends, we divided the simulation into an early phase
(<1500 frames) and a late phase (1500-3000 frames) and computed the mean FPS for each
method. During the early phase, Octree—~AABB achieved 363.87 FPS vs. 327.20 FPS for
Bunny (+10.08%), 306.98 vs. 252.50 for Armadillo (+17.75%), 288.23 vs. 300.64 for Dragon
(—4.31%), and 36.58 vs. 34.79 for Asian Dragon (+4.88%). In the late phase, the advantages of
hierarchical culling became more pronounced: 244.63 FPS vs. 134.20 (+45.14%) for Bunny,
257.55 vs. 43.10 (+83.26%) for Armadillo, 235.44 vs. 56.86 (+75.85%) for Dragon, and 17.22 vs.
15.36 (+10.81%) for Asian Dragon. These results, summarized in Table Al in Appendix A,
confirm that hierarchical Octree-A ABB sustains significantly higher throughput in dense
state, while the performance of Spatial Hashing tends to fluctuate for models with extended
appendages (e.g., Armadillo, Dragon) that map to multiple cells, increasing candidate checks
and degrading efficiency in the late phase.

In terms of memory usage, both methods remained stable over the entire simulation.
Octree—-AABB consumed slightly more memory (about 5-10% on average) but exhibited
smaller variance, indicating more predictable behavior in dense stacking scenarios. For
example, average memory footprints were 23.1 + 1.7 MB vs. 25.9 &+ 1.1 MB for Bunny,
30.3 +3.5 MB vs. 32.1 & 1.1 MB for Armadillo, 36.8 = 1.8 MB vs. 38.7 + 1.1 MB for Dragon,
and 42.9 + 3.4 MB vs. 45.0 & 1.1 MB for Asian Dragon. Overall, Octree-A ABB offers slightly
higher but more consistent memory usage, while Spatial Hashing trades lower memory for
less predictable performance under high-density conditions.

Mathematics 2025, 13, 3230

19 of 25

5. Discussion
5.1. Effectiveness of Hierarchical Collision Handling Compared to Flat AABB

The ablation study comparing the baseline flat AABB method (Level 0 only) with the
proposed hierarchical Octree-based configurations revealed clear differences in scalability,
frame stability, and robustness under dense collision scenarios. Flat AABB collision detec-
tion performs bounding box checks between all object pairs without spatial filtering. While
this method yields high frame rates in low-density environments, its performance quickly
degrades as the number of objects increases.

For example, with 300 instances of the Dragon model, the flat AABB method achieved
only 17.04 fps, well below the real-time threshold of 30 fps. This drop is due to the quadratic
growth in pairwise comparisons and the absence of spatial pruning. In contrast, the
hierarchical Octree configuration (Level 0 to 2) reduced unnecessary checks by leveraging
spatial partitioning. Although the absolute frame rate was lower in some cases (13.16 fps
for Dragon 300), it provided better frame stability and fewer performance spikes. Among
the configurations, the two-level hierarchy (Level 1 to 2) achieved the best balance. For
instance, with 250 Dragon models, it recorded 40.35 fps, significantly outperforming both
the flat and full-depth hierarchical methods. These results demonstrate that hierarchical
collision handling improves not only detection efficiency but also enables more stable
simulation in complex and crowded scenes.

5.2. Hierarchy Depth Configuration and Trade-Offs

The performance of hierarchical collision detection is highly sensitive to the depth
of the Octree. Increasing the number of levels improves spatial resolution, but it also
introduces additional computation for tree traversal and bounding volume updates. The
configuration using Level 2 only applies fine-grained bounding boxes to all objects without
prior filtering. While this provides high precision, it also generates significant compu-
tational overhead due to the lack of early rejection. In contrast, the two-level approach
(Level 1 to 2) filters candidates at a coarse level before performing detailed checks, resulting
in better performance across various models and object counts.

Adding an extra Level 0 node at the top of the hierarchy further reduces collision
candidates but introduces overhead in GPU memory access and kernel logic. In some
scenarios, the full hierarchy (Level 0 to 2) performed slightly worse than the two-level
configuration, indicating diminishing returns from deeper hierarchies. These findings
suggest that the optimal depth configuration depends on the complexity of the 3D model
and the object distribution within the scene. For scenes with medium to high complexity,
a two-level hierarchy provides the most efficient balance between spatial filtering and
computational cost.

5.3. Simulation Scalability and Frame Rate Stability

To maintain real-time responsiveness in interactive applications, the simulation must
sustain a minimum of 30 fps. This constraint was used to assess scalability across three
representative models: Bunny, Armadillo, and Dragon. The experiments showed a clear re-
lationship between model complexity and the number of objects that can be simulated while
preserving the real-time threshold. The Bunny model maintained over 30 fps up to 400 in-
stances. The Armadillo model sustained real-time performance up to around 250 instances,
while the Dragon model fell below 30 fps at approximately 200 instances. These trends
reflect the increasing cost of collision detection and response as mesh resolution and vertex
count rise.

Hierarchical configurations significantly improved the ability to maintain real-time
performance under increasing load. In the Dragon 250 case, the flat AABB method dropped

Mathematics 2025, 13, 3230

20 of 25

to 12.55 fps, whereas the two-level hierarchy achieved 40.35 fps. Even in scenarios where
real-time thresholds were not fully met, the hierarchical approach showed greater consis-
tency, lower frame variance, and improved physical stability. All measurements were taken
with V-Sync disabled in the Unity engine to ensure that frame rates were determined solely
by GPU compute capacity. This setup allowed us to isolate the algorithmic performance
from display-related limitations and provided a reliable basis for assessing simulation
scalability under hardware constraints.

6. Limitations and Future Work

While the proposed hierarchical collision detection and response framework demon-
strates strong scalability and stability in GPU-based rigid-body simulations, several limita-
tions remain that warrant further investigation.

First, the current method is optimized for axis-aligned bounding volumes and static
spatial hierarchies. Although the Octree structure provides effective pruning in scenes
with relatively stable object distributions, it must be rebuilt or updated entirely whenever
objects undergo large-scale displacements or transformations. This limitation can lead to
inefficiencies in highly dynamic environments, such as particle explosions or deformable
object interactions. To mitigate this cost, future work could adopt dynamic spatial data
structures, such as GPU-friendly bounding volume hierarchies (BVH) or ray-tracing-based
optimization [31]. Exploring hybrid or wide-branching BVH schemes, or leveraging neural
intersection functions for secondary rays, could further accelerate query performance in
large or highly dynamic scenes. Future work may also consider stackless traversal and
GPU-parallel construction algorithms, enabling real-time updates of the hierarchy as objects
or viewpoints change.

Second, the framework assumes uniform thresholds for collision resolution, such as
proximity distance and impulse floor values, across all models and scales. While these
parameters were empirically tuned to balance stability and responsiveness, they may not
generalize across different simulation contexts or mesh resolutions. An adaptive strategy
could be introduced, where thresholds such as J, Jmin, Or vy, are scaled by local object size,
collision density, or recent energy drift. Learning-based meta-controllers could predict
parameter values, balancing stability and responsiveness across heterogeneous scenes.

Third, all experiments were conducted using triangular mesh models without con-
sidering topological deformation or articulated joints. As a result, the current system does
not support soft body dynamics or skeleton-based character simulations. One avenue
is to extend the solver with constraint-based formulations(e.g., eXtended Position-based
Dynamics, Vertex Block Descent), so that joint limits, angular momentum conservation,
and compliance can be incorporated alongside the current impulse solver. This would
enable articulated or deformable models while retaining GPU parallelism.

Finally, from a GPU compute perspective, the kernel logic was designed to be simple
and parallelizable, but it does not yet take advantage of advanced features such as warp-
level primitives, shared memory optimization, or persistent thread blocks. These features
could reduce memory latency and improve performance under extreme object densities,
especially on newer architectures.

In future work, we plan to explore hybrid approaches that combine Octree and BVH
structures to support both static and dynamic object groups more efficiently. Additionally,
integrating learning-based components to predict collision-prone regions or to adapt pa-
rameter settings in real time could further enhance system robustness and generalizability.
Finally, extending the method to support continuous collision detection (CCD) will be nec-
essary for applications involving fast-moving objects where discrete-time approximations
are insufficient. Implementing these enhancements constitutes our next research goal, with

Mathematics 2025, 13, 3230

21 of 25

the broader aim of establishing a simulation specification suitable for XR environments,
where high fidelity, responsiveness, and scalability are critical for immersive interaction.

7. Conclusions

We presented a GPU-accelerated hierarchical collision detection and response frame-
work for large-scale rigid-body simulation. By integrating multi-level Octree spatial subdi-
vision with parallel compute kernels, the proposed method achieved scalable and stable
performance across various model complexities and object densities. Experimental re-
sults demonstrated that the hierarchical configuration significantly reduced unnecessary
collision checks and maintained interactive frame rates under dense conditions, while
preserving physical plausibility and numerical stability. These findings suggest that the
proposed approach provides an effective foundation for real-time physics-based simulation
in graphics and engineering applications.

Author Contributions: Conceptualization, N.-J.S.; Methodology, N.-].S.; Software, N.-J.S.; Validation,
N.-].S.; Writing—original draft, N.-J.S.; Writing—review and editing, N.-].5. and M.H. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported by the Basic Science Research Program through the National
Research Foundation of Korea (NRF), funded by the Ministry of Education under Grant NRF-
2022R111A3069371, was funded by the BK21 FOUR (Fostering Outstanding Universities for Research)
No. 5199990914048, and supported by the Soonchunhyang University Research Fund.

Data Availability Statement: The raw data supporting the conclusions of this article will be made
available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A
Appendix A.1. Visualization

Figure A1 provides a qualitative visualization of the hierarchical collision-detection
framework applied under varying Octree depth configurations. The figure consists of
three rows, each corresponding to a specific depth level of the Octree (Level 0, Level
1, and Level 2 from top to bottom), and three columns representing different 3D mesh
models—Bunny, Armadillo, and Dragon, arranged from left to right. Red wireframe
boxes denote the Axis-Aligned Bounding Boxes (AABBs) used to encapsulate geometry
for broad-phase collision detection. At Level 0, the bounding regions are coarse and large,
resulting in fewer initial collision checks but a higher chance of false positives due to low
spatial selectivity. As the depth increases, particularly at Level 2, the simulation space is
subdivided into finer partitions, enabling more precise localization of collision candidates
and effectively reducing the number of unnecessary checks. However, this comes at the cost
of increased computational overhead for tree traversal and bounding volume management.
The visual comparison clearly demonstrates the spatial filtering effect introduced by deeper
Octree hierarchies. In densely populated regions such as those represented by the Dragon
model, the Level 2 configuration produces significantly tighter bounding volumes, thereby
enhancing the effectiveness of spatial pruning. This observation aligns with the quantitative
results discussed in Section 4, further validating the trade-off between spatial resolution
and performance in hierarchical collision-detection schemes.

Mathematics 2025, 13, 3230

22 of 25

Bunny Armadillo
s i

Level 0

Level 1

Level 2

Figure A1. Visual comparison of hierarchical collision-bounding volumes across Octree depth levels
in dense simulation scenarios. Each row corresponds to a different Octree depth configuration ((top):
Level 0, (middle): Level 1, (bottom): Level 2), and each column shows a different model. Red boxes
indicate axis-aligned bounding boxes (AABBs) used in collision detection. As the hierarchy deepens,
the bounding volumes become more spatially localized, reducing the number of unnecessary collision
checks. This figure illustrates the trade-off between coarse-level pruning and fine-grained spatial
resolution in hierarchical collision handling.

Appendix A.2. Supplementary GPU Kernels

For completeness, we provide pseudocode descriptions of two auxiliary GPU kernels
used in the preprocessing stage of the collision-detection pipeline. These functions support
the mapping between vertices and spatial regions, and prepare the data structures used in
the narrow-phase stage.

Appendix A.2.1. Vertex-Bounding Box Relation

This kernel builds the mapping between each vertex and the axis-aligned bounding box
(AABB) it belongs to inside the Octree. It runs in parallel over all vertices and stores, for each
vertex vy, the identifier of the leaf cell that contains it, or a sentinel if none is found. This
information is used by later stages to restrict collision checks to relevant spatial partitions.

Algorithm A1: Vertex-Bounding Box Relation

Input: Vertices {v }x=1.n;

Octree nodes with bounds B; = [bin, pmax]

Output: VertexRelation[1..N] : index of the AABB that contains vy (or —1)
1 foreach vertex vy in parallel do

// Search from root to leaves

2 node < root of Octree

3 while node is not leaf do

4 if vy € child bounds then

5 I_ node < child;

6 else

7 |_ break;

8 if vy € B, ;4. then

9 I_ VertexRelation[k] + node.id
10 else

11 I_ VertexRelation[k] + —1

Appendix A.2.2. Check Node Inside Bounding Box

This kernel links the set of candidate octree boxes flagged during the broad phase with
the vertices that reside inside them. It scans the list of active boxes and, for each, collects

Mathematics 2025, 13, 3230

23 of 25

the indices of vertices previously mapped by Algorithm Al. Atomic increments are used to
append valid indices into a compact buffer.

Algorithm A2: Check Node Inside Bounding Box

Input: OctreeCollision[1..M]: bitmask of boxes potentially colliding;
VertexRelation[1..N]
Output: NodeCounter : contiguous list of (box, vertex) pairs

1 foreach vertex vj in parallel do

2 boxID ¢ VertexRelationlj]

3 if boxID # —1 and OctreeCollision[boxID] == 1 then

4 idx <— AtomicAdd(NodeCounter.length, 1)

5 L NodeCounter[idx] < (boxID, j)

Appendix A.3. Penetration-Depth Ablation

To assess the influence of stability parameters on contact quality, we measured the
penetration depth between colliding objects during simulation. Given two bodies A and B
with axis-aligned bounding boxes (AABBs), we define the overlap along each axis as

max max

px = min(xA , X% min min),

) — max(x}", x5

max

py = min(y3>, yFo) — max(y3™", yg), (A1)

max .max

p: = rnin(zA 28 min min)

) — max(z'\'", z

and the penetration depth as d, = min{py, py, p.} whenever all ps > 0. The corresponding
contact normal 7 is aligned with the axis that achieves d,, with its sign determined by
the relative centers of the two AABBs. This quantity feeds directly into the Baumgarte
correction term fmax(d, — 6,0)n and guarantees non-penetration under the contraction
bound in Equation (A1).

In practice, we log for each frame the average and maximum d), over all colliding
pairs, together with the ratio of cases exceeding the slop 6. These statistics are written
every 100 frames, together with FPS, memory, and collision counts, and later visualized as
heatmaps versus parameters such as J and .

0.379 0.35
=
0302
0.367 [a]
— c
a S
© ©
£ 0.25 £
3 @
0.361 9
(=2
0.20 Z
0.356
0.15
0.01 0.1 0.2 0.5 1.0

slop ()

Figure A2. Average penetration depth for combinations of Baumgarte factor 8 and slop J (time step
0.001). Lower values (darker) indicate reduced interpenetration.

Mathematics 2025, 13, 3230 24 of 25

Appendix A.4. Comparison Between Spatial Hash and Hierarchical Octree—~AABB Method

Table A1 summarizes the measured FPS in the early and late phases of the stacking ex-
periment for each dataset. Positive gains indicate cases where the hierarchical Octree-AABB
strategy outperforms Spatial Hashing.

Table A1l. Mean FPS of Spatial Hash and Hierarchical Octree~AABB in early (<1500) and late
(1500-3000) phases of the simulation. The rightmost column reports the relative improvement of
Hierarchical Octree~AABB over Spatial Hash. SH: Spatial Hash, O-A: Octree-AABB, RCR: Relative

Change Ratio.
. Early Phase (<1500 Frames) Late Phase (1500-3000 Frames)
Mode SH O-A RCRI[%] SH O-A RCR[%]
Bunny 327.20 363.87 +10.08 134.20 244.63 +45.14
Armadillo 252.50 306.98 +17.75 43.10 257.55 +83.26
Dragon 300.64 288.23 —4.31 56.86 235.44 +75.85
Asian Dragon 34.79 36.58 +4.88 15.36 17.22 +10.81

References

1. Schiitz, M.; Kerbl, B.; Wimmer, M. Rendering Point Clouds with Compute Shaders and Vertex Order Optimization. In Computer
Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2021; Volume 40, pp. 115-126. [CrossRef]

2. Unity Technologies. Compute Shaders; Unity Technologies: San Francisco, CA, USA, 2025.

3. Spjut, J.; Madhusudan, A.; Watson, B.; Boudaoud, B.; Kim, J. The Esports Frontier: Rendering for Competitive Games. arXiv 2022,
arXiv:2208.11774. [CrossRef]

4. Akenine-Moller, T.; Haines, E.; Hoffman, N. Real-Time Rendering; AK Peters/CRC Press: Boca Raton, FL, USA, 2019.

5. Chung, M.; Kwon, T.; Kim, Y. Fast Simulation of Soft-body Deformation using Connected Rigid Objects. Comput. Graph. 2025,
128,104202. [CrossRef]

6. Sui, S.; Sentis, L.; Bylard, A. Hardware-accelerated Ray Tracing for Discrete and Continuous Collision Detection on Gpus. In
Proceedings of the 2025 IEEE International Conference on Robotics and Automation (ICRA), Atlanta, GA, USA, 19-23 May 2025.
[CrossRef]

7. Yu, C; Du, W,; Zong, Z.; Castro, A,; Jiang, C.; Han, X. A Convex Formulation of Material Points and Rigid Bodies with
GPU-Accelerated Async-Coupling for Interactive Simulation. arXiv 2025, arXiv:2503.05046. [CrossRef]

8. Mandarapu, D.K,; James, N.; Kulkarni, M. Mochi: Fast & Exact Collision Detection. arXiv 2024, arXiv:2402.14801. [CrossRef]

9. Hor, K.; Kim, T.; Hong, M. Fast Collision Detection Method with Octree-Based Parallel Processing in Unity3D. Eng. Proc. 2025,
89, 37. [CrossRef]

10. Wong, T.H.; Leach, G.; Zambetta, F. An Adaptive Octree Grid for GPU-based Collision Detection of Deformable Objects. Vis.
Comput. 2014, 30, 729-738. [CrossRef]

11. Zhang, J.; Zhu, X. Application and Prospect of Virtual Reality Technology in Dentistry in the Internet Era. Appl. Math. Nonlinear
Sci. 2024, 9 . [CrossRef]

12. Liu, P; Zhang, Y.; Wang, H.; Yip, M.K,; Liu, E.S; Jin, X. Real-time Collision Detection between General SDFs. Comput. Aided Geom.
Des. 2024, 111, 102305. [CrossRef]

13. Yuan, X; Xiang, F; Yang, Y.; Su, H. C5D: Sequential Continuous Convex Collision Detection Using Cone Casting. Acm Trans.
Graph. (TOG) 2025, 44, 1-14. [CrossRef]

14. Miiller, M.; Heidelberger, B.; Teschner, M.; Gross, M. Interactive Collision Detection for Deformable Objects. Comput. Graph.
Forum 2004, 23, 567-576. [CrossRef]

15. Bender, J.; Miiller, M.; Macklin, M. A Survey on Position-Based Simulation Methods in Computer Graphics. Comput. Graph.
Forum 2014, 33, 228-251. [CrossRef]

16. Baraff, D.; Witkin, A. Large Steps in Cloth Simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and
Interactive Techniques, New York, NY, USA, 24 July 1998; ACM: New York, NY, USA, 1998; pp. 43-54. [CrossRef]

17. Hairer, E.; Lubich, C.; Wanner, G. Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinarv Differential
Equations. Comput. Math. Appl. 2003, 45, 1782-1784. [CrossRef]

18. Miiller, M.; Heidelberger, B.; Hennix, M.; Ratcliff,]. Position Based Dynamics. |. Vis. Commun. Image Represent. 2007, 18, 109-118.
[CrossRef]

19. Mirtich, B. Efficient Algorithms for Two-phase Collision Detection. In Practical Motion Planning in Robotics: Current Approaches

and Future Directions; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1997; pp. 203-223.

http://doi.org/10.1111/cgf.14345
http://dx.doi.org/10.48550/arXiv.2208.11774
http://dx.doi.org/10.1016/j.cag.2025.104202
http://dx.doi.org/10.1109/ICRA55743.2025.11128528
http://dx.doi.org/10.48550/arXiv.2503.05046
http://dx.doi.org/10.48550/arXiv.2402.14801
http://dx.doi.org/10.3390/engproc2025089037
http://dx.doi.org/10.1007/s00371-014-0954-1
http://dx.doi.org/10.2478/amns-2024-1026
http://dx.doi.org/10.1016/j.cagd.2024.102305
http://dx.doi.org/10.1145/3731151
http://dx.doi.org/10.1111/j.1467-8659.2005.00829.x
http://dx.doi.org/10.1111/cgf.12346
http://dx.doi.org/10.1145/3596711.3596792
http://dx.doi.org/10.1016/s0898-1221(03)80155-4
http://dx.doi.org/10.1016/j.jvcir.2007.01.005

Mathematics 2025, 13, 3230 25 of 25

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Gottschalk, S.; Lin, M.C.; Manocha, D. OBBTree: A Hierarchical Structure for Rapid Interference Detection. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, LA, USA, 4-9 August 1996; ACM:
New York, NY, USA, 1996; pp. 171-180. [CrossRef]

Larsson, T.; Akenine-Moller, T. Collision Detection for Continuously Deforming Bodies. Eurographics 2001, 20, 325-333. [CrossRef]
Samet, H. The Quadtree and Related Hierarchical Data Structures. Acm Comput. Surv. (CSUR) 1984, 16, 187-260. [CrossRef]
Frisken, S.F,; Perry, RN. Simple and Efficient Traversal Methods for Quadtrees and Octrees.]. Graph. Tools 2002, 7, 1-11.
[CrossRef]

Garanzha, K.; Loop, C. Fast Ray Sorting and Breadth-First Packet Traversal for GPU Ray Tracing. Comput. Graph. Forum 2010,
30, 289-298. [CrossRef]

Min, H.; Han, K.M.; Kim, Y.J. OctoMap-RT: Fast probabilistic volumetric mapping using ray-tracing GPUs. IEEE Robot. Autom.
Lett. 2023, 8, 5696-5703. [CrossRef]

Westhofen, L.; Fernandez-Fernandez, J.A.; Jeske, S.R.; Bender, J. Strongly Coupled Simulation of Magnetic Rigid Bodies. In
Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2024; Volume 43, p. €15185. [CrossRef]

Ferguson, Z.; Li, M.; Schneider, T.; Gil-Ureta, F.; Langlois, T.; Jiang, C.; Zorin, D.; Kaufman, D.M.; Panozzo, D. Intersection-free
rigid body dynamics. Acm Trans. Graph. 2021, 40, 1-16. [CrossRef]

Jiang, Y.; Wang, R. Real-time Cloth Simulation based on Improved Verlet Algorithm. In Proceedings of the 2010 IEEE 11th
International Conference on Computer-Aided Industrial Design & Conceptual Design, Yiwu, China, 17-19 November 2010;
Volume 1, pp. 443—446. [CrossRef]

Hor, K; Sung, N.; Ma, J.; Choi, M.; Hong, M. A Fast Parallel Processing Algorithm for Triangle Collision Detection based on
AABB and Octree Space Slicing in Unity3D. IEEE Access 2025, 13, 4759-4773. [CrossRef]

Hou, S.; Lu, X,; Gao, W,; Jiang, S.; Zhang, X. Interactive Physically based Simulation of Roadheader Robot. Arab. J. Sci. Eng. 2023,
48, 2441-2454. [CrossRef]

Weier, P; Rath, A.; Michel, E.; Georgiev, I.; Slusallek, P.; Boubekeur, T. N-BVH: Neural Ray Queries with Bounding Volume
Hierarchies. In Proceedings of the Special Interest Group on Computer Graphics and Interactive Techniques Conference
Conference Papers, Denver, CO, USA, 27 July-1 August 2024; ACM: New York, NY, USA, 2024; pp. 1-11. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/237170.237244
http://dx.doi.org/10.1145/1778765.1778818
http://dx.doi.org/10.1145/356924.356930
http://dx.doi.org/10.1080/10867651.2002.10487560
http://dx.doi.org/10.1111/j.1467-8659.2009.01598.x
http://dx.doi.org/10.1109/LRA.2023.3300227
http://dx.doi.org/10.1111/cgf.15185
http://dx.doi.org/10.1145/3450626.3459802
http://dx.doi.org/10.1109/CAIDCD.2010.5681313
http://dx.doi.org/10.1109/ACCESS.2024.3525025
http://dx.doi.org/10.1007/s13369-022-07335-x
http://dx.doi.org/10.1145/3641519.3657464

	Introduction
	Related Work
	Time Integration Method
	Collision Detection
	Collision Response
	GPU-Parallel Processing

	Method
	Explicit Euler Time Integration for Rigid-Body Dynamics
	Hierarchical Octree–AABB Collision-Detection Framework
	Enhanced Collision Response Algorithm
	Non-Penetration Guarantee
	Friction (Coulomb Model)
	Parameter Constraints

	GPU-Based Parallel Processing
	GPU Kernel Implementation
	Hierarchical Octree Construction
	Broad-Phase Collision Candidate Detection
	Narrow-Phase Collision Response

	Experiments
	Scalability Analysis of Hierarchical Octree–AABB Collision Detection
	Comparison of Broad-Phase Collision-Detection Methods

	Discussion
	Effectiveness of Hierarchical Collision Handling Compared to Flat AABB
	Hierarchy Depth Configuration and Trade-Offs
	Simulation Scalability and Frame Rate Stability

	Limitations and Future Work
	Conclusions
	AppendixA
	AppendixA.1
	AppendixA.2
	AppendixA.2.1
	AppendixA.2.2

	AppendixA.3
	AppendixA.4

	References

