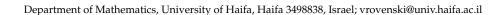


MDPI

Article

Weak Nearly S- and Weak Nearly C-Manifolds

Vladimir Rovenski D



Abstract

The recent interest in geometers in the f-structures of K. Yano is motivated by the study of the dynamics of contact foliations, as well as their applications in theoretical physics. Weak metric f-structures on a smooth manifold, recently introduced by the author and R. Wolak, open a new perspective on the theory of classical structures. In this paper, we define structures of this kind, called weak nearly \mathcal{S} - and weak nearly \mathcal{C} -structures, study their geometry, e.g., their relations to Killing vector fields, and characterize weak nearly \mathcal{S} - and weak nearly \mathcal{C} -submanifolds in a weak nearly Kähler manifold.

Keywords: weak nearly S-manifold; weak nearly C-manifold; Killing vector field; submanifold; weak nearly Kähler manifold

MSC: 53C15; 53C25; 53D15

1. Introduction

The f-structure introduced by K. Yano [1] on a smooth manifold M^{2n+s} serves as a higher-dimensional analog of almost complex structures (s=0) and almost contact structures (s=1). This structure is defined by a (1,1)-tensor f of rank 2n such that $f^3+f=0$. The tangent bundle splits into two complementary subbundles: $TM=f(TM)\oplus\ker f$. The restriction of f to the 2n-dimensional distribution f(TM) defines a complex structure. The existence of the f-structure on M^{2n+s} is equivalent to a reduction of the structure group to $U(n)\times O(s)$; see [2]. A submanifold M of an almost complex manifold (\bar{M},J) that satisfies the condition $\dim(T_xM\cap J(T_xM))=const>0$ naturally possesses an f-structure; see [3]. An f-structure is a special case of an almost product structure, defined by two complementary orthogonal distributions of a Riemannian manifold (M,g). Foliations appear when one or both distributions are involutive. An interesting case occurs when the sub-bundle $\ker f$ is parallelizable, leading to a framed f-structure for which the reduced structure group is $U(n)\times \mathrm{Id}_s$. In this scenario, there exist vector fields $\{\xi_i\}_{1\leq i\leq s}$ (called Reeb vector fields) spanning $\ker f$ with dual 1-forms $\{\eta^i\}_{1\leq i\leq s}$, satisfying $f^2=-\mathrm{Id}+\sum_{i=1}^s \eta^i\otimes \xi_i$. Compatible Riemannian metrics, i.e.,

$$g(fX, fY) = g(X, Y) - \sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y),$$

exist on any framed f-manifold, and we obtain the metric f-structure; see [2,4–6].

To generalize concepts and results from almost contact geometry to metric f-manifolds, geometers have introduced and studied various broad classes of metric f-structures. A metric f-manifold is termed a \mathcal{K} -manifold if it is normal and $d\Phi=0$, where $\Phi(X,Y):=g(X,fY)$. Two important subclasses of \mathcal{K} -manifolds are \mathcal{C} -manifolds if $d\eta^i=0$ and \mathcal{S} -manifolds if $d\eta^i=0$ for any i; see [2]. Omitting the normality condition, we obtain almost \mathcal{K} -manifolds, almost \mathcal{S} -manifolds and almost \mathcal{C} -manifolds, e.g., [7–9]. The distribution

Academic Editors: Marija S. Najdanović and Ljubica Velimirovic

Received: 9 September 2025 Revised: 28 September 2025 Accepted: 30 September 2025 Published: 3 October 2025

Citation: Rovenski, V. Weak Nearly S- and Weak Nearly C-Manifolds. *Mathematics* **2025**, *13*, 3169. https://doi.org/10.3390/math13193169

Copyright: © 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/ licenses/by/4.0/). Mathematics 2025, 13, 3169 2 of 13

ker f of a K-manifold is tangent to a \mathfrak{g} -foliation with flat totally geodesic leaves. An f-K-contact manifold is an almost S-manifold, whose Reeb vector fields are Killing vector fields; the structure is intermediate between almost S-structure and S-structure; see [6,10]. Nearly S- and nearly C-manifolds (M^{2n+s} , f, ξ_i , η^i , g) are defined in the same spirit as the nearly Kähler manifolds of A. Gray [11] by a constraint only on the symmetric part of ∇f – starting from S- and C-manifolds (e.g., [12–15]):

$$(\nabla_X f)X = \left\{ egin{array}{ll} g(fX,fX)\,ar{\xi} + ar{\eta}(X)f^2X\,, & ext{nearly \mathcal{S}} - ext{manifolds.} \\ 0\,, & ext{nearly \mathcal{C}} - ext{manifolds.} \end{array}
ight.$$

Here, $\bar{\eta} = \sum_{i=1}^s \eta^i$ and $\bar{\xi} = \sum_{i=1}^s \xi_i$. These counterparts of nearly Kähler manifolds play a key role in the classification of metric f-manifolds; see [2]. The Reeb vector fields ξ_i of nearly S- and nearly C-structures are unit Killing vector fields. The influence of constant-length Killing vector fields on Riemannian geometry has been studied by many authors, e.g., [16]. The interest of geometers in f-structures is also motivated by the study of the dynamics of contact foliations. Contact foliations generalize to higher dimensions the flow of the Reeb vector field on contact manifolds, and K-structures are a particular case of uniform s-contact structures; see [17,18]. Dynamics and integration on s-cosymplectic manifolds are studied in [19]; they investigate the Lie integrability of s-evolution systems in this setting, and develop a Hamilton–Jacobi theory tailored to multi-time Hamiltonian systems, both via symplectification techniques.

In [20–22], we introduced and studied metric structures on a smooth manifold, see Definition 1, which generalize almost Hermitian, almost contact (e.g., Sasakian and cosymplectic) and f-structures. Such so-called "weak" structures (the complex structure on the contact distribution is replaced by a nonsingular skew-symmetric tensor) allow us a new look at the theory of classical structures and find new applications. A. Einstein worked on various variants of Unified Field Theory, more recently known as Non-symmetric Gravitational Theory (NGT), see [23]. In this theory, the symmetric part g of the basic tensor G = g + F is associated with gravity, and the skew-symmetric one F is associated with electromagnetism. The theory of weak metric structures is fully consistent with the skew-symmetric part of G; thus, it provides new tools for studying NGT. S. Ivanov and M. Zlatanović developed NGT with linear connections of totally skew-symmetric torsion and gave examples with the skew-symmetric part F of the tensor G obtained using an almost contact metric structure; see [24]. In [25], the author and M. Zlatanović were the first to apply weak metric structures to NGT of totally skew-symmetric torsion with tensor F(X,Y) = g(X,fY) of constant rank.

In this paper, we define and study new structures of this kind, generalizing nearly S- and nearly C-structures. Section 2, following the Introduction, recalls some results regarding weak nearly Kähler manifolds (generalizing nearly Kähler manifolds) and weak metric f-manifolds. Section 3 introduces weak nearly S- and weak nearly C-structures and studies their geometry. Section 4 characterizes weak nearly C- and weak nearly S-submanifolds in weak nearly Kähler manifolds and proves that a weak nearly C-manifold with parallel Reeb vector fields is locally the Riemannian product of a Euclidean space and a weak nearly Kähler manifold. The proofs use the properties of new tensors, as well as classical constructions.

2. Preliminaries

Here, we review some results; see [20–22]. Nearly Kähler manifolds (M, J, g) were defined by A. Gray [11] using the condition that only the symmetric part of ∇J vanishes, where ∇ is the Levi-Civita connection, in contrast to the Kähler case, where $\nabla J = 0$. Several

Mathematics 2025, 13, 3169 3 of 13

authors studied the problem of finding and classifying parallel skew-symmetric 2-tensors (other than almost-complex structures) on a Riemannian manifold, e.g., [26].

Definition 1. A Riemannian manifold (M,g) of even dimension equipped with a skew-symmetric (1,1)-tensor f such that the tensor f^2 is negative-definite is called a *weak Hermitian manifold*. Such (M,f,g) is called a *weak Kähler manifold* if $\nabla f = 0$. A weak Hermitian manifold is called a *weak nearly Kähler manifold* if

$$(\nabla_X f)Y + (\nabla_Y f)X = 0 \quad (X, Y \in \mathfrak{X}_M). \tag{1}$$

A weak metric f-structure on a smooth manifold M^{2n+s} (n,s>0) is a set (f,Q,ξ_i,η^i,g) , where f is a skew-symmetric (1,1)-tensor of rank 2n, Q is a self-adjoint nonsingular (1,1)-tensor, ξ_i $(1 \le i \le s)$ are orthonormal vector fields, η^i are dual 1-forms, and g is a Riemannian metric on M, satisfying

$$f^2 = -Q + \sum_{i=1}^s \eta^i \otimes \xi_i, \quad \eta^i(\xi_i) = \delta_i^i, \quad Q \, \xi_i = \xi_i, \tag{2}$$

$$g(fX, fY) = g(X, QY) - \sum_{i=1}^{s} \eta^{i}(X) \eta^{i}(Y) \quad (X, Y \in \mathfrak{X}_{M}).$$
 (3)

In this case, $(M^{2n+s}, f, Q, \xi_i, \eta^i, g)$ is called a *weak metric f-manifold*.

The geometric meaning of (1) is the same as in the classical case: geodesics are f-planar curves. A curve γ is f-planar if the section $\dot{\gamma} \wedge f\dot{\gamma}$ is parallel along the curve. A framed weak f-manifold (i.e., only (2) holds) admits a compatible metric (i.e., also (3) holds) if f in (2) has a skew-symmetric representation, i.e., for any $x \in M$ there exists a frame $\{e_i\}$ on a neighborhood $U_x \subset M$, for which f has a skew-symmetric matrix.

Example 1. Take k > 1 almost Hermitian manifolds (M_j, f_j, g_j) . The Riemannian product $\prod_{j=1}^k (M_j, \lambda_j^{1/2} f_j, g_j)$, where $\lambda_j > 0$ are different constants, is a weak almost Hermitian manifold with $Q = \bigoplus_j \lambda_j \operatorname{Id}_j$. We call $\prod_j (M_j, \lambda_j^{1/2} f_j, g_j)$ a $(\lambda_1, \ldots, \lambda_k)$ -weighed product of almost Hermitian manifolds (M_j, f_j, g_j) ; see [27]. The $(\lambda_1, \ldots, \lambda_k)$ -weighed product of (nearly) Kähler manifolds is a weak (nearly) Kähler manifold. A nearly Kähler manifold of dimension ≤ 4 is a Kähler manifold; see [11]. The unit sphere S^6 in the set of purely imaginary Cayley numbers admits a strictly nearly Kähler structure. The classification of weak nearly Kähler manifolds in dimensions ≥ 4 is an open problem. The (λ_1, λ_2) -weighed products of 2-dimensional Kähler manifolds are 4-dimensional weak nearly Kähler manifolds. The $(\lambda_1, \lambda_2, \lambda_3)$ -weighed products of 2-dimensional Kähler manifolds are 6-dimensional weak nearly Kähler manifolds, and similarly for dimensions > 6.

Putting Y = ξ_j in (3), and using $\eta^i(\xi_j) = \delta^i_j$, we get

$$\eta^{j}(X) = g(X, \xi_{j}); \tag{4}$$

thus, ξ_j is orthogonal to the distribution $\mathcal{D} = \bigcap_{i=1}^s \ker \eta^i$. For a more intuitive understanding of the role of Q in the f-structure, we explain the following properties:

$$f \xi_i = 0$$
, $\eta^i \circ f = 0$, $\eta^i \circ Q = \eta^i$, $[Q, f] = 0$.

By (2), $f^2\xi_i=0$ is true. From this and (2), we get $f^3+fQ=0$. By this, $Q\xi_i=\xi_i$ and $f^2\xi_i=0$ we get $0=-f^3\xi_i=fQ\xi_i=f\xi_i$. By $f\xi_i=0$, (4), and the skew-symmetry of f, we get $\eta^i(fX)=g(fX,\xi_i)=-g(X,f\xi_i)=0$. From this and condition rank f=2n, we conclude that f the distribution $\mathcal D$ of a weak metric f-structure is f-invariant, $\mathcal D=f(TM)$

Mathematics 2025, 13, 3169 4 of 13

and dim $\mathcal{D}=2n$. By this and $f^3+fQ=0$, we get $f^3X=f^2(fX)=-QfX$; hence, $f^3+Qf=0$. This and $f^3+fQ=0$ yield fQ=Qf. By symmetry of Q and $Q\xi_i=\xi_i$, we get $\eta^i(QX)=g(QX,\xi_i)=g(X,Q\xi_i)=g(X,\xi_i)=\eta^i(X)$.

Therefore, TM splits as complementary orthogonal sum of \mathcal{D} and ker f. A weak metric f-structure (f, Q, ξ_i, η^i, g) is said to be normal if the following tensor is zero:

$$\mathcal{N}^{(1)}(X,Y) = [f,f](X,Y) + 2\sum_{i=1}^s d\eta^i(X,Y)\,\xi_i \quad (X,Y\in\mathfrak{X}_M).$$

The Nijenhuis torsion of a (1,1)-tensor S and the derivative of a 1-form ω are given by

$$[S,S](X,Y) = S^{2}[X,Y] + [SX,SY] - S[SX,Y] - S[X,SY] \quad (X,Y \in \mathfrak{X}_{M}),$$

$$d\omega(X,Y) = (1/2) \{X(\omega(Y)) - Y(\omega(X)) - \omega([X,Y])\} \quad (X,Y \in \mathfrak{X}_{M}).$$

Using the Levi-Civita connection ∇ of g, one can rewrite [S, S] as

$$[S,S](X,Y) = (S\nabla_Y S - \nabla_{SY} S)X - (S\nabla_X S - \nabla_{SX} S)Y.$$
(5)

The fundamental 2-form Φ on $(M^{2n+s}, f, Q, \xi_i, \eta^i, g)$ is defined by

$$\Phi(X,Y) = g(X,fY) \quad (X,Y \in \mathfrak{X}_M).$$

Proposition 1. A weak metric f-structure with condition $\mathcal{N}^{(1)} = 0$ satisfies

$$\begin{split} & \pounds_{\xi_i} f = d\eta^j(\xi_i, \cdot) = 0, \\ & d\eta^i(fX, Y) - d\eta^i(fY, X) = \frac{1}{2} \, \eta^i([\widetilde{Q}X, fY]), \\ & \nabla_{\xi_i} \, \xi_j \in \mathcal{D}, \quad [X, \xi_i] \in \mathcal{D} \quad (1 \leq i, j \leq s, \, X \in \mathcal{D}). \end{split}$$

Moreover, $\nabla_{\xi_i} \xi_j + \nabla_{\xi_i} \xi_i = 0$, that is, ker f defines a totally geodesic distribution.

These tensors on a weak metric *f*-manifold are well known in the classical theory:

$$\begin{split} \mathcal{N}_{i}^{(2)}(X,Y) &:= (\pounds_{fX}\eta^{i})(Y) - (\pounds_{fY}\eta^{i})(X) = 2\,d\eta^{i}(fX,Y) - 2\,d\eta^{i}(fY,X), \\ \mathcal{N}_{i}^{(3)}(X) &:= (\pounds_{\xi_{i}}f)X = [\xi_{i},fX] - f[\xi_{i},X], \\ \mathcal{N}_{ii}^{(4)}(X) &:= (\pounds_{\xi_{i}}\eta^{j})(X) = \xi_{i}(\eta^{j}(X)) - \eta^{j}([\xi_{i},X]) = 2\,d\eta^{j}(\xi_{i},X). \end{split}$$

Example 2. Let $M^{2n+s}(f,Q,\xi_i,\eta^i)$ be a weak framed f-manifold. Consider the product manifold $\bar{M}=M^{2n+s}\times\mathbb{R}^s$, where \mathbb{R}^s is a Euclidean space with a basis $\partial_1,\ldots,\partial_s$, and define tensors J and \bar{Q} on \bar{M} putting $J(X,\sum_{i=1}^s a^i\partial_i)=(fX-\sum_{i=1}^s a^i\xi_i,\sum_j\eta^j(X)\partial_j)$ and $\bar{Q}(X,\sum_{i=1}^s a^i\partial_i)=(QX,\sum_{i=1}^s a^i\partial_i)$ for $a_i\in C^\infty(M)$. It can be shown that $J^2=-\bar{Q}$. The tensors $\mathcal{N}_i^{(2)},\mathcal{N}_i^{(3)},\mathcal{N}_{ij}^{(4)}$ appear when we derive the integrability condition [J,J]=0 and express the normality condition $\mathcal{N}^{(1)}=0$ for (f,Q,ξ_i,η^i) .

Define a "small" (1, 1)-tensor $\tilde{Q} := Q - \text{Id}$ and note that $[\tilde{Q}, f] = 0$ and $\eta^i \circ \tilde{Q} = 0$. The following new tensor (vanishing at $\tilde{Q} = 0$)

$$\begin{split} \mathcal{N}^{(5)}(X,Y,Z) &:= fZ\left(g(X,\widetilde{Q}Y)\right) - fY\left(g(X,\widetilde{Q}Z)\right) \\ &+ g([X,fZ],\widetilde{Q}Y) - g([X,fY],\widetilde{Q}Z) + g([Y,fZ] - [Z,fY] - f[Y,Z],\,\widetilde{Q}X), \end{split}$$

Mathematics **2025**, 13, 3169 5 of 13

which supplements the sequence $\mathcal{N}^{(1)}$, $\mathcal{N}_i^{(2)}$, $\mathcal{N}_i^{(3)}$, $\mathcal{N}_{ij}^{(4)}$, is needed to study the weak metric f-structure. We express the covariant derivative of f using a new tensor $\mathcal{N}^{(5)}$:

$$\begin{split} &2\,g((\nabla_X f)Y,Z) = 3\,d\Phi(X,fY,fZ) - 3\,d\Phi(X,Y,Z) + g(\mathcal{N}^{(1)}(Y,Z),fX) \\ &+ \sum_{i=1}^s \left(\mathcal{N}_i^{(2)}(Y,Z)\,\eta^i(X) + 2\,d\eta^i(fY,X)\,\eta^i(Z) - 2\,d\eta^i(fZ,X)\,\eta^i(Y)\right) + \mathcal{N}^{(5)}(X,Y,Z), \end{split}$$

where the derivative of a 2-form Φ is given by

$$3 d\Phi(X,Y,Z) = X \Phi(Y,Z) + Y \Phi(Z,X) + Z \Phi(X,Y) - \Phi([X,Y],Z) - \Phi([Z,X],Y) - \Phi([Y,Z],X).$$

Note that the above equality yields

$$3d\Phi(X,Y,Z) = (\nabla_X \Phi)(Y,Z) + (\nabla_Y \Phi)(Z,X) + (\nabla_Z \Phi)(X,Y). \tag{6}$$

For particular values of $\mathcal{N}^{(5)}$, we get $\mathcal{N}^{(5)}(\xi_i, \xi_j, Z) = \mathcal{N}^{(5)}(\xi_i, Y, \xi_j) = 0$ and

$$\mathcal{N}^{(5)}(X,\xi_{i},Z) = -\mathcal{N}^{(5)}(X,Z,\xi_{i}) = g(\mathcal{N}_{i}^{(3)}(Z),\widetilde{Q}X),$$

$$\mathcal{N}^{(5)}(\xi_{i},Y,Z) = g([\xi_{i},fZ],\widetilde{Q}Y) - g([\xi_{i},fY],\widetilde{Q}Z).$$

Definition 2. A weak metric *f*-structure is called a *weak almost* \mathcal{K} -structure if $d\Phi = 0$. We define its two subclasses as follows:

- (i) A weak almost C-structure if Φ and η^i $(1 \le i \le s)$ are closed forms;
- (ii) A weak almost S-structure

if the following is valid:

$$\Phi = d\eta^1 = \dots = d\eta^s \quad \text{(hence, } d\Phi = 0\text{)}. \tag{7}$$

Adding the normality condition, we get $weak \ \mathcal{K}$ -, $weak \ \mathcal{C}$ -, and $weak \ \mathcal{S}$ -structures, respectively. A $weak \ f$ -K-contact structure is a weak almost \mathcal{S} -structure, whose structure vector fields ξ_i are Killing, i.e., the tensor $(\pounds_{\xi_i} g)(X,Y) = g(\nabla_Y \xi_i,X) + g(\nabla_X \xi_i,Y)$ vanishes. For s=1, weak (almost) \mathcal{C} - and weak (almost) \mathcal{S} -manifolds reduce to weak (almost) cosymplectic manifolds and weak (almost) Sasakian manifolds, respectively.

Remark 1. The almost S-structure is also called an f-contact structure, e.g., [21]; then, the S-structure can be regarded as a normal f-contact structure.

Example 3. (i) To construct a weak metric f-structure (f, Q, ξ_i, η^i, g) on the Riemannian product $M = \overline{M} \times \mathbb{R}^s$ of a weak almost Hermitian manifold $(\overline{M}, \overline{f}, \overline{g})$ with $\Omega(X, Y) = \overline{g}(X, \overline{f}Y)$ and a Euclidean space (\mathbb{R}^s, dy^2) , we take any point (x, y) of M and set

$$\xi_i = (0, \partial_{y^i}), \ \eta^i = (0, dy^i), \ f(X, \partial_{y^i}) = (\bar{f}X, 0), \ Q(X, \partial_{y^i}) = (-\bar{f}^2X, \partial_{y^i}),$$

where $X \in T_x \overline{M}$. Note that $\nabla f = 0$ if and only if $\overline{\nabla} \overline{f} = 0$. On the other hand, $\overline{\nabla} \overline{f} = 0$ if and only if $d\Omega = 0$, see (6) with $\Phi = \Omega$, i.e., (M, Ω) is a symplectic manifold.

(ii) For a weak C-structure, we obtain $g((\nabla_X f)Y, Z) = \frac{1}{2} \mathcal{N}^{(5)}(X, Y, Z)$. A weak metric f-structure with conditions $\nabla f = 0$ and $g([\xi_i, \xi_j], \xi_k) = 0$ is a weak C-structure with the property $\mathcal{N}^{(5)} = 0$. For a weak S-structure, we get

$$g((\nabla_{X}f)Y,Z) = g(fX,fY)\,\bar{\eta}(Z) - g(fX,fZ)\,\bar{\eta}(Y) + \frac{1}{2}\,\mathcal{N}^{(5)}(X,Y,Z);$$

Mathematics 2025, 13, 3169 6 of 13

 ξ_i are Killing vector fields and ker f defines a Riemannian totally geodesic foliation. In particular, for an S-structure, we have

$$(\nabla_X f)Y = g(fX, fY)\,\bar{\xi} + \bar{\eta}(Y)f^2X. \tag{8}$$

For a weak almost \mathcal{K} -structure (and its special cases, a weak almost \mathcal{S} -structure and a weak almost \mathcal{C} -structure), the distribution ker f is involutive (tangent to a foliation). Moreover, weak almost \mathcal{S} - and weak almost \mathcal{C} -structures satisfy the following conditions (trivial for s=1):

$$[\xi_i, \xi_j] = 0, \tag{9}$$

$$g(\nabla_X \xi_i, \, \xi_i) = 0 \quad (X \in \mathfrak{X}_M) \tag{10}$$

for $1 \le i, j \le s$. The following condition is a corollary of (10):

$$\eta^k(\nabla_{\tilde{c}_i}\,\tilde{\xi}_i) = 0 \quad (1 \le i, j, k \le s). \tag{11}$$

By (9), the distribution ker f of weak almost S- and a weak almost C-manifolds is tangent to a g-foliation with an abelian Lie algebra.

Remark 2 ([28]). Let \mathfrak{g} be a Lie algebra of dimension s. A foliation of dimension s on a smooth connected manifold \mathfrak{g} is called a \mathfrak{g} -foliation if there exist complete vector fields ξ_1, \ldots, ξ_s on \mathfrak{g} which, when restricted to each leaf, form a parallelism of this submanifold with a Lie algebra isomorphic to \mathfrak{g} .

3. Main Results

In this section, weak nearly S- and weak nearly C-structures are defined and studied; some of the statements generalize the results in [13–15].

The restriction on the symmetric part of (8) gives the following.

Definition 3. A weak metric f-manifold is called a weak nearly S-manifold if

$$(\nabla_X f)Y + (\nabla_Y f)X = 2g(fX, fY)\bar{\xi} + \bar{\eta}(X)f^2Y + \bar{\eta}(Y)f^2X \tag{12}$$

for all $X, Y \in \mathfrak{X}_M$. A weak metric f-manifold is called a weak nearly C-manifold if

$$(\nabla_X f)Y + (\nabla_Y f)X = 0. (13)$$

Example 4. Let a Riemannian manifold (M^{2n+s},g) admit two nearly S-structures (or, nearly C-structures) $M^{2n+s}(f_k,Q,\xi_i,\eta^i,g)$ (k=1,2) with common Reeb vector fields ξ_i and one-forms $\eta^i=g(\xi_i,\cdot)$. Suppose that $f_1\neq f_2$ are such that $\psi:=f_1f_2+f_2f_1\neq 0$. Then, $f:=(\cos t)f_1+(\sin t)f_2$ for small t>0 satisfies (12) (and (13), respectively) and

$$f^2 = -\mathrm{Id} + (\sin t \cos t) \psi + \sum_{i=1}^s \eta^i \otimes \xi_i.$$

Thus, (f, Q, ξ_i, η^i, g) is a weak nearly S-structure (and weak nearly C-structure, respectively) on M^{2n+s} with $Q = \mathrm{Id} - (\sin t \cos t) \psi$.

The following condition is trivial when $Q = \operatorname{Id}_{TM}$:

$$(\nabla_X Q)Y = 0 \quad (X, Y \in \mathfrak{X}_M, Y \perp \ker f). \tag{14}$$

Mathematics 2025, 13, 3169 7 of 13

Using (14), we have

$$(\nabla_X Q)Y = \sum_{i=1}^s \eta^i(Y)(\nabla_X Q)\xi_i = -\sum_{i=1}^s \eta^i(Y)\widetilde{Q}\nabla_X \xi_i \quad (X,Y \in \mathfrak{X}_M).$$

Example 5. To construct a weak (nearly) C-structure (f, Q, ξ_i, η^i, g) on the Riemannian product $M = \overline{M} \times \mathbb{R}^s$ of a weak (nearly) Kähler manifold $(\overline{M}, \overline{f}, \overline{g})$ and a Euclidean space (\mathbb{R}^s, dy^2) , we take any point (x, y) of M and set

$$\xi_i = (0, \partial_{v^i}), \ \eta^i = (0, dy^i), \ f(X, \partial_{v^i}) = (\bar{f}X, 0), \ Q(X, \partial_{v^i}) = (-\bar{f}^2X, \partial_{v^i}),$$

as in Example 3(i). Note that if $\overline{\nabla}_X(\overline{f}^2) = 0$ $(X \in T\overline{M})$, then (14) holds.

The following result opens new applications to Killing vector fields.

Proposition 2. Both on a weak nearly S-manifold and a weak nearly C-manifold satisfying (9) and (11), the distribution ker f defines a flat totally geodesic foliation; moreover, if conditions (10) and (14) hold, then the vector fields ξ_i are Killing.

Proof. Putting $X = \xi_j$ and $Y = \xi_k$ in (12) or (13), we find $(\nabla_{\xi_j} f) \xi_k + (\nabla_{\xi_k} f) \xi_j = 0$; hence, $f(\nabla_{\xi_i} \xi_k + \nabla_{\xi_k} \xi_j) = 0$. Applying f to this and using (2), we obtain

$$0 = f^2(\nabla_{\xi_i} \xi_k + \nabla_{\xi_k} \xi_j) = -Q(\nabla_{\xi_i} \xi_k + \nabla_{\xi_k} \xi_j) + \sum_{i=1}^s \eta^i(\nabla_{\xi_i} \xi_k + \nabla_{\xi_k} \xi_j) \xi_i.$$

Since the (1,1)-tensor Q is nonsingular and (11) is true, we get $\nabla_{\xi_j} \xi_k + \nabla_{\xi_k} \xi_j = 0$. Combining this with $\nabla_{\xi_j} \xi_k - \nabla_{\xi_k} \xi_j = 0$, see (9), yields

$$\nabla_{\xi_i} \, \xi_k = 0 \quad (1 \le j, k \le s); \tag{15}$$

hence, ker f defines a flat totally geodesic foliation. Next, using (15) we calculate

$$\nabla_{\xi_i} \eta^j = g(\nabla_{\xi_i} \xi_j, \cdot) = 0. \tag{16}$$

Using (10) and (15), we obtain

$$(\pounds_{\xi_j} g)(\xi_k, \cdot) = g(\nabla_{\xi_j} \xi_k, \cdot) = 0.$$

Taking the ξ_j -derivative of (3) and using (14) and $\nabla_{\xi_j} \eta^i = 0$, we find (for $Y \perp \ker f$)

$$\begin{split} g((\nabla_{\xi_j}f)X,fY) + g(fX,(\nabla_{\xi_j}f)Y) &= \nabla_{\xi_j}g(fX,fY) \\ &= g(X,(\nabla_{\xi_i}Q)Y) + \sum_{i=1}^s \left\{ (\nabla_{\xi_i}\eta^i)(X)\,\eta^i(Y) + \eta^i(X)(\nabla_{\xi_i}\eta^i)(Y) \right\} = 0. \end{split}$$

For a weak nearly S-manifold, using (12), (10), and $\eta \circ \widetilde{Q} = 0$ yields

$$\begin{split} &g((\nabla_{\xi_{j}}f)X,fY) + g(fX,(\nabla_{\xi_{j}}f)Y) \\ &= -g((\nabla_{X}f)\xi_{j},fY) - g(fX,(\nabla_{Y}f)\xi_{j}) + g(f^{2}X,fY) + g(f^{2}Y,fX) \\ &= -g(\nabla_{X}\xi_{j},f^{2}Y) - g(f^{2}X,\nabla_{Y}\xi_{j}) = g(\nabla_{X}\xi_{j},QY) + g(QX,\nabla_{Y}\xi_{j}) \\ &= g(\nabla_{X}\xi_{j},Y) + g(X,\nabla_{Y}\xi_{j}) + g(\nabla_{X}\xi_{j},\widetilde{Q}Y) + g(\widetilde{Q}X,\nabla_{Y}\xi_{j}) \\ &= (\pounds_{\xi_{i}}g)(X,Y) - g(\xi_{i},(\nabla_{X}\widetilde{Q})Y) - g((\nabla_{Y}\widetilde{Q})X,\xi_{j}) = (\pounds_{\xi_{i}}g)(X,Y). \end{split}$$

Mathematics 2025, 13, 3169 8 of 13

Here, we used $g(\xi_i, (\nabla_X \widetilde{Q})Y) = 0$. For a weak nearly \mathcal{C} -manifold, using (13) yields

$$(\mathcal{L}_{\xi_j}g)(X,Y) = g((\nabla_{\xi_j}f)X,fY) + g(fX,(\nabla_{\xi_j}f)Y) = 0.$$

$$(17)$$

From (17), for both cases we obtain $\mathcal{L}_{\xi_i} g = 0$, i.e., ξ_j is a Killing vector field. \square

Remark 3. Note that even for a nearly S-manifold without conditions (9) and (10), the vector fields ξ_i ($1 \le i \le s$) are not Killing; see Corollary 1 in [13].

Theorem 1. There are no weak nearly C-manifolds with conditions (9), (10), and (14) which satisfy $\Phi = d\eta^1 = \ldots = d\eta^s$; see (7).

Proof. Suppose that our weak nearly C-manifold satisfies (7). Since also ξ_i are Killing vector fields (see Proposition 2), M is a weak f-K-contact manifold. By Theorem 1 in [22], the following holds:

$$\nabla \xi_i = -f \quad (1 \le i \le s). \tag{18}$$

By Proposition 6 in [22], the ξ -sectional curvature of a weak f-K-contact manifold is positive, i.e., $K(\xi_i, X) > 0$ ($X \perp \ker f$). Thus, for any nonzero vector $X \perp \ker f$, using (13) and (18), we get

$$0 < K(\xi_i, X) = g(\nabla_{\xi_i} \nabla_X \xi_i - \nabla_X \nabla_{\xi_i} \xi_i - \nabla_{[\xi_i, X]} \xi_i, X)$$

= $g(-(\nabla_{\xi_i} f)X + f^2 X, X) = g((\nabla_X f) \xi_i, X) - g(fX, fX)$
= $-g(f\nabla_X \xi_i, X) + g(f^2 X, X) = 2g(f^2 X, X).$

This contradicts the following equality: $g(f^2X, X) = -g(fX, fX) \le 0$.

Corollary 1. There are no nearly C-manifolds with conditions (9) and (10) which satisfy (7).

Theorem 2. A weak nearly C-manifold $(M^{2n+s}, f, Q, \xi_i, \eta^i, g)$ satisfies

$$\nabla \xi_i = 0 \quad (1 \le i \le s) \tag{19}$$

if and only if the manifold is locally isometric to the Riemannian product of a Euclidean s-space and a weak nearly Kähler manifold.

Proof. For all vector fields *X*, *Y* orthogonal to ker *f* , we have

$$2 d\eta^{i}(X,Y) = g(\nabla_{X} \xi_{i}, Y) - g(\nabla_{Y} \xi_{i}, X). \tag{20}$$

Thus, if the condition $\nabla \xi_i = 0$ holds, then the contact distribution \mathcal{D} is integrable. Moreover, any integral submanifold of \mathcal{D} is a totally geodesic submanifold. Indeed, for $X,Y \perp \ker f$, we have $g(\nabla_X Y, \xi_i) = -g(Y, \nabla_X \xi_i) = 0$. Since $\nabla_{\xi_i} \xi_j = 0$, by de Rham Decomposition Theorem, the manifold is locally the Riemannian product $\bar{M} \times \mathbb{R}^s$. The metric weak f-structure induces on \bar{M} a weak almost-Hermitian structure, which, by these conditions, is weak nearly Kähler.

Conversely, if a weak nearly \mathcal{C} -manifold is locally the Riemannian product $\bar{M} \times \mathbb{R}^s$, where \bar{M} is a weak nearly Kähler manifold and $\xi_i = (0, \partial_{y^i})$ (see also Example 5), then $d\eta^j(X,Y) = 0$ ($X,Y \perp \ker f$). By (20) and $\nabla_{\xi_i} \xi_j = 0$, we obtain $\nabla \xi_i = 0$. \square

Mathematics 2025, 13, 3169 9 of 13

Corollary 2. A nearly C-manifold $(M^{2n+s}, f, \xi_i, \eta^i, g)$ satisfies (19) if and only if the manifold is locally isometric to the Riemannian product of \mathbb{R}^s and a nearly Kähler manifold.

Theorem 3. Let a weak nearly S-structure satisfy (9), (10), and (14); then, the following is true:

- (i) The condition $\eta^j \circ N^{(1)} = 0$ $(1 \le j \le s)$ yields $d\eta^j(X,Y) = \Phi(QX,Y)$ for all j.
- (ii) The condition (7) yields $N^{(1)}(X,Y) = 2\Phi(\widetilde{Q}X,Y)\bar{\xi}$.

Proof. (*i*) We calculate, using (5), (12), and $\eta^j \circ f = 0$,

$$\begin{split} \eta^{j}(N^{(1)}(X,Y)) - 2 \, d\eta^{j}(X,Y) &= \eta^{j}([f,f](X,Y)) \stackrel{(5)}{=} \eta^{j}\big((\nabla_{fX}f)Y - (\nabla_{fY}f)X\big) \\ \stackrel{(12)}{=} \eta^{j}\big((\nabla_{X}f)\,f\,Y - (\nabla_{Y}f)\,fX\big) + 4\,g(f^{2}X,f\,Y) \\ &= g\big((\nabla_{X}f^{2})\,Y - (\nabla_{Y}f^{2})\,X,\,\xi_{j}\big) - 4\,g(QX,f\,Y) \\ &= (\nabla_{X}\,\eta^{j})(Y) - (\nabla_{Y}\,\eta^{j})(X) - 4\,g(QX,f\,Y) \\ &= 2\,d\eta^{j}(X,Y) - 4\,g(QX,f\,Y). \end{split}$$

Here, we used the identity $2 d\eta^j(X,Y) = (\nabla_X \eta^j)(Y) - (\nabla_Y \eta^j)(X)$. Thus, if $\eta^i(N^{(1)}(X,Y)) = 0$, then $d\eta^j(X,Y) = g(QX,fY) = \Phi(QX,Y)$ for all j.

(ii) Using
$$d\Phi = 0$$
, (2), (6), and (12), where $\bar{\eta} = \sum_{i=1}^{s} \eta^i$ and $\bar{\xi} = \sum_{i=1}^{s} \xi_i$, we get

$$\begin{split} 3d\,\Phi(X,Y,Z) &= -g((\nabla_X f)Y,Z) + g((\nabla_Y f)X,Z) - g((\nabla_Z f)X,Y) \\ &= -g((\nabla_X f)Y,Z) + g\big(-(\nabla_X f)Y + 2\,g(fX,fY)\,\bar{\xi} + \bar{\eta}(X)f^2Y + \bar{\eta}(Y)f^2X,\,Z\big) \\ &+ g\big((\nabla_X f)Z - 2\,g(fX,fZ)\,\bar{\xi} - \bar{\eta}(X)f^2Z - \bar{\eta}(Z)f^2X,\,Y\big) \\ &= -3\,g((\nabla_X f)Y,Z) - 3\,g(f^2X,Y)\,\bar{\eta}(Z) + 3\,g(f^2X,Z)\,\bar{\eta}(Y). \end{split}$$

Thus, (8) holds. Using (8) in (5) gives

$$[f, f] = 2 g(f^2 X, f Y) \overline{\xi} = -2 g(O X, f Y) \overline{\xi} = -2 \Phi(O X, Y) \overline{\xi},$$

hence,
$$N^{(1)}(X,Y) = 2\Phi(\widetilde{Q}X,Y)\bar{\xi}$$
. \square

A consequence of Theorem 3 is a rigidity result for S-manifolds; see Theorem 1 of [13].

Corollary 3. A normal nearly S-structure is an S-structure.

4. Submanifolds of Weak Nearly Kähler Manifolds

Here, we study weak nearly S- and weak nearly C- submanifolds in a weak nearly Kähler manifold. The second fundamental form h of a submanifold $M \subset (\bar{M}, \bar{g})$ is related with $\overline{\nabla}$ (the Levi-Civita connection of \bar{g} restricted to M) and ∇ (the Levi-Civita connection of metric g induced on M via the Gauss equation) by

$$\overline{\nabla}_{X}Y = \nabla_{X}Y + h(X,Y) \quad (X,Y \in \mathfrak{X}_{M}). \tag{21}$$

A submanifold is said to be totally geodesic if h=0. The shape operator $A_N: X \mapsto -\overline{\nabla}_X N$ with respect to a unit normal N is related with h via the equalities

$$h_N(X,Y) = \bar{g}(h(X,Y),N) = g(A_N(X),Y) \quad (X,Y \in \mathfrak{X}_M). \tag{22}$$

Mathematics **2025**, 13, 3169

Lemma 1. Let $(\bar{M}, \bar{f}, \bar{g})$ be a weak Hermitian manifold and M^{2n+s} a submanifold of codimension s equipped with mutually orthogonal unit normals N_i (i = 1, ..., s) satisfying the condition

$$\bar{g}(\bar{f}N_i, N_j) = 0 \quad (1 \le i, j \le s) \tag{23}$$

(trivial for s = 1). Then, M inherits a metric weak f-structure (f, Q, ξ_i, η^i, g) given by

$$\xi_{i} = \bar{f} N_{i}, \quad \eta^{i} = \bar{g}(\bar{f} N_{i}, \cdot) \quad (i = 1, \dots, s), \quad g = \bar{g}|_{M},
f = \bar{f} + \sum_{i=1}^{s} \bar{g}(\bar{f} N_{i}, \cdot) N_{i}, \quad Q = -\bar{f}^{2} + \sum_{i=1}^{s} \bar{g}(\bar{f}^{2} N_{i}, \cdot) N_{i}.$$
(24)

Moreover, (14) holds on M if $\bar{f}^2N_i \perp TM$ ($1 \leq i \leq s$) and

$$((\overline{\nabla}_X \overline{f}^2)Y)^{\top} = 0 \quad (X, Y \in \mathfrak{X}_M, Y \perp \ker f).$$

Proof. Using the skew-symmetry of \bar{f} and (23), we verify (2):

$$\begin{split} &f^{2}X = f(\bar{f}X - \sum_{i=1}^{s} \bar{g}(\bar{f}X, N_{i}) \, N_{i}) \\ &= \bar{f}\left(\bar{f}X - \sum_{i=1}^{s} \bar{g}(\bar{f}X, N_{i}) \, N_{i}\right) - \bar{g}(\bar{f}(\bar{f}X - \sum_{i,j=1}^{s} \bar{g}(\bar{f}X, N_{i}) \, N_{i}), N_{j}) \, N_{j} \\ &= \bar{f}^{2}X - \sum_{j} \bar{g}(\bar{f}^{2}N_{j}, X) \, N_{j} - \sum_{i=1}^{s} \bar{g}(\bar{f}N_{i}, X) \, \bar{f}N_{i} + \sum_{i,j=1}^{s} \bar{g}(\bar{f}X, N_{i}) \, \bar{g}(\bar{f}N_{i}, N_{j}) \, N_{j} \\ &= -QX + \sum_{i=1}^{s} \eta^{i}(X) \, \xi_{i} \quad (X \in \mathfrak{X}_{M}). \end{split}$$

Since \bar{f}^2 is negative-definite, for nonzero $X \in \mathfrak{X}_M$ we obtain $\bar{g}(N_i, X) = 0$ and

$$g(QX,X) = \bar{g}(-\bar{f}^2X + \sum_{i=1}^{s} \bar{g}(\bar{f}^2N_i, X) N_i, X) = -\bar{g}(\bar{f}^2X, X) > 0,$$

hence, the tensor Q is positive-definite on TM. Then, we calculate $(\nabla_X Q)Y$ for $X,Y \in \mathfrak{X}_M$ and $Y \perp \ker f$, using (21) and (24) and the condition $\overline{f}^2N_i \perp TM$ $(1 \leq i \leq s)$:

$$\begin{split} &(\nabla_X Q)Y = \nabla_X (QY) - Q(\nabla_X Y) \\ &= \big\{ \overline{\nabla}_X \big(- \overline{f}^2 Y + \sum_{i=1}^s g(\overline{f}^2 N_i, Y) N_i \big) - h(X, QY) + \overline{f}^2 \big(\overline{\nabla}_X Y - h(X, Y) \big) \\ &- \sum_{i=1}^s g(\overline{f}^2 N_i, \overline{\nabla}_X Y - h(X, Y) \big) N_i \big\}^\top \\ &= (-(\overline{\nabla}_X (\overline{f}^2 Y)) + \overline{f}^2 (\overline{\nabla}_X Y))^\top - \sum_{i=1}^s g(\overline{f}^2 N_i, Y) A_{N_i} X \\ &= -((\overline{\nabla}_X (\overline{f}^2 Y))^\top. \end{split}$$

where $^{\top}$ is the *TM*-component of a vector. This completes the proof. \Box

The following theorem characterizes weak nearly C- and weak nearly S-submanifolds of a nearly Kähler manifold, using the property of the second fundamental form.

Theorem 4. Let $(\bar{M}, \bar{f}, \bar{g})$ be a weak nearly Kähler manifold and M^{2n+s} a submanifold of codimension s equipped with mutually orthogonal unit normals N_i $(i=1,\ldots,s)$ satisfying (23). If the second fundamental form of M and the induced metric weak f-structure (f, Q, ξ_i, η^i, g) on M, given by (24), satisfy

(i)
$$h_{N_i}(X,Y) = g(QX,Y) + \sum_{j,k=1}^{s} (h_{N_i}(\xi_j,\xi_k) - \delta_{j,k}) \eta^j(X) \eta^k(Y),$$

(ii) $h_{N_i}(X,Y) = \sum_{j,k=1}^{s} h_{N_i}(\xi_j,\xi_k) \eta^j(X) \eta^k(Y),$ (25)

and

$$h_{N_i}(\xi_i, \xi_k) = h_{N_i}(\xi_i, \xi_k) \quad (1 \le i, j \le s), \tag{26}$$

Mathematics **2025**, 13, 3169

then (f, Q, ξ_i, η^i, g) is

Proof. Substituting

$$\bar{f} Y = f Y - \sum_{i=1}^{s} \bar{g}(\bar{f} N_i, Y) N_i = f Y - \sum_{i=1}^{s} \eta^i(Y) N_i$$

in $(\overline{\nabla}_X \overline{f})Y$, where $X, Y \in \mathfrak{X}_M$, and using (21) and Lemma 1, we obtain

$$\begin{split} (\overline{\nabla}_X \overline{f})Y &= \overline{\nabla}_X (\overline{f} \, Y) - \overline{f} (\overline{\nabla}_X Y) = (\nabla_X f)Y + \sum_{i=1}^s \left\{ \eta^i(Y) A_{N_i} X - h_{N_i}(X,Y) \, \xi_i \right\} \\ &+ \sum_{i=1}^s \left\{ X(\eta^i(Y)) - \eta^i(\nabla_X Y) + h_{N_i}(X,fY) \right\} N_i. \end{split}$$

Thus, the *TM*-component of the weak nearly Kähler condition (1), using (21) and (22), takes the form

$$((\overline{\nabla}_X \overline{f})Y + (\overline{\nabla}_Y \overline{f})X)^{\top} = (\nabla_X f)Y + (\nabla_Y f)X + \sum_{i=1}^s \{\eta^i(X)A_{N_i}Y + \eta^i(Y)A_{N_i}X - 2h_{N_i}(X,Y)\xi_i\} = 0.$$
 (28)

Using (22), one can show that (25) is equivalent to the following:

(i)
$$A_{N_i}X = -f^2X + \sum_{j,k=1}^s h_{N_i}(\xi_j, \xi_k) \, \eta^j(X) \, \xi_k,$$

(ii) $A_{N_i}X = \sum_{j,k=1}^s h_{N_i}(\xi_j, \xi_k) \, \eta^j(X) \, \xi_k.$ (29)

(i) If we have a weak nearly S-structure, see (12), then from (28) we get

$$2g(fX, fY)\bar{\xi} + \bar{\eta}(Y)f^{2}X + \bar{\eta}(X)f^{2}Y + \sum_{i=1}^{s} \{\eta^{i}(X)A_{N_{i}}Y + \eta^{i}(Y)A_{N_{i}}X - 2h_{N_{i}}(X, Y)\xi_{i}\} = 0,$$
(30)

Substituting the expressions of $h_{N_i}(X,Y)$ and A_{N_i} , see (25)(i) and (29)(i), in (30) and using (26) gives identity; thus, we obtain a weak nearly S-structure on M.

(ii) If we have a weak nearly C-structure, see (13), then from (28) we get

$$\sum_{i=1}^{s} \left\{ \eta^{i}(X) A_{N_{i}} Y + \eta^{i}(Y) A_{N_{i}} X - 2 h_{N_{i}}(X, Y) \xi_{i} \right\} = 0.$$
 (31)

Substituting the expressions of $h_{N_i}(X,Y)$ and A_{N_i} , see (25)(ii) and (29)(ii), in (31) and using (26) gives identity; thus, we obtain a weak nearly C-structure on M. \square

For Q = Id, the properties of (25) lead us to the following.

Definition 4. A codimension s submanifold M^{2n+s} of a Hermitian manifold $(\bar{M}, \bar{f}, \bar{g})$, equipped with mutually orthogonal unit normals N_i (i = 1, ..., s) satisfying

$$h_{N_i}(X,Y) = a_i g(X,Y) + \sum_{j,k=1}^{s} b_{i,j,k} \eta^j(X) \eta^k(Y),$$
 (32)

where $a_i, b_{i,j,k} \in C^{\infty}(M)$ and η^i $(1 \le i \le s)$ are linear independent one-forms on M, will be called an s-quasi-umbilical submanifold. For s = 1, condition (32) reads as follows, see [15]:

$$h_N(X,Y) = a_1 g(X,Y) + b_1 \eta(X) \eta(Y).$$

The geometric meaning of (32) is that the restriction of h_{N_i} on the distribution $\bigcap_{i=1}^s \ker \eta^i$ looks similar to h for totally umbilical submanifolds: $h = (\operatorname{trace}_g h / \dim M) g$.

Mathematics 2025, 13, 3169 12 of 13

The following consequence of Theorem 4 extends the fact (see Theorem 4.1 in [14]) that a hypersurface of a nearly Kähler manifold is nearly Sasakian or nearly cosymplectic if and only if it is quasi-umbilical with respect to the almost contact form.

Corollary 4. Let $(\bar{M}, \bar{f}, \bar{g})$ be a nearly Kähler manifold and M^{2n+s} a submanifold of codimension s equipped with mutually orthogonal unit normals N_i $(i=1,\ldots,s)$ satisfying (23), and $(f, \xi_i, \eta^i, g = \bar{g}|_M)$ the induced metric f-structure on M, given by

$$\xi_i = \bar{f}N_i$$
, $\eta^i = \bar{g}(\bar{f}N_i, \cdot)$ $(i = 1, \dots, s)$, $f = \bar{f} + \sum_{j=1}^s \bar{g}(\bar{f}N_j, \cdot) N_j$.

If M^{2n+s} is an s-quasi-umbilical submanifold (with respect to the 1-forms η^i),

(i)
$$h_{N_i}(X,Y) = g(X,Y) + \sum_{j,k=1}^{s} (h_{N_i}(\xi_j,\xi_k) - \delta_{j,k}) \eta^j(X) \eta^k(Y),$$

(ii) $h_{N_i}(X,Y) = \sum_{j,k=1}^{s} h_{N_i}(\xi_j,\xi_k) \eta^j(X) \eta^k(Y),$

and (26) are true, then (f, ξ_i, η^i, g) is (i) a nearly S-structure; (ii) a nearly C-structure.

5. Conclusions

We have shown that weak nearly S- and weak nearly C-structures are useful for studying metric f-structures, e.g., totally geodesic foliations, Killing vector fields, and s-quasi-umbilical submanifolds. Some classical results have been extended in this paper to weak nearly S- and weak nearly C-manifolds with additional conditions. Based on the numerous applications of nearly Kähler, nearly Sasakian, and nearly cosymplectic structures, we expect that weak nearly Kähler, S- and C-structures will be useful for geometry and theoretical physics, e.g., for NGT, the theory of s-cosymplectic structures and s-contact structures, multi-time Hamiltonian systems, and s-evolution systems.

Funding: This research received no external funding.

Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declares no conflicts of interest.

References

- 1. Yano, K. On a Structure f Satisfying $f^3 + f = 0$; Technical Report No. 12; University of Washington: Washington, DC, USA, 1961.
- 2. Blair, D.E. Geometry of manifolds with structural group $U(n) \times O(s)$. J. Differ. Geom. 1970, 4, 155–167. [CrossRef]
- 3. Ludden, G.D. Submanifolds of manifolds with an *f*-structure. *Kodai Math. Semin. Rep.* **1969**, 21, 160–166. [CrossRef]
- 4. Cabrerizo, J.L.; Fernández, L.M.; Fernández, M. The curvature tensor fields on *f*-manifolds with complemented frames. *An. Stiint. Univ. Al. I. Cuza Iasi* **1990**, *36*, 151–161.
- 5. Di Terlizzi, L.; Pastore, A.M.; Wolak, R. Harmonic and holomorphic vector fields on an *f*-manifold with parallelizable kernel. *An. Stiint. Univ. Al. I. Cuza Iausi Ser. Noua Mat.* **2014**, *60*, 125–144. [CrossRef]
- 6. Di Terlizzi, L. On the curvature of a generalization of contact metric manifolds. *Acta Math. Hung.* **2006**, *110*, 225–239. [CrossRef]
- 7. Cappelletti Montano, B.; Di Terlizzi, L. *D*-homothetic transformations for a generalization of contact metric manifolds. *Bull. Belg. Math. Soc. Simon Stevin* **2007**, *14*, 277–289. [CrossRef]
- Carriazo, A.; Fernández, L.M.; Loiudice, E. Metric *f*-contact manifolds satisfying the (*k*, *μ*)-nullity condition. *Mathematics* 2020, 8, 891. [CrossRef]
- 9. Fitzpatrick, S. On the geometry of almost S-manifolds. ISRN Geom. 2011, 2011, 879042. [CrossRef]
- 10. Goertsches, O.; Loiudice, E. On the topology of metric *f*-K-contact manifolds. *Monatshefte Math.* **2020**, 192, 355–370. [CrossRef]
- 11. Gray, A. Nearly Kähler manifolds. J. Differ. Geom. 1970, 4, 283–309. [CrossRef]
- 12. Balkan, Y.S.; Aktan, N. Deformations of Nearly C-manifolds. Palest. J. Math. 2019, 8, 209–216.
- 13. Aktan, N.; Tekin, P. An introduction to the new type of globally framed manifold. AIP Conf. Proc. 2017, 1833, 020051. [CrossRef]
- 14. Blair, D.E.; Showers, D.K.; Yano, K. Nearly Sasakian structures. Kodai Math. Sem. Rep. 1976, 27, 175–180. [CrossRef]
- 15. Rovenski, V. Weak nearly Sasakian and weak nearly cosymplectic manifolds. Mathematics 2023, 11, 4377. [CrossRef]

Mathematics 2025, 13, 3169 13 of 13

16. Berestovskij, V.N.; Nikonorov, Y.G. Killing vector fields of constant length on Riemannian manifolds. *Sib. Math. J.* **2008**, 49, 395–407. [CrossRef]

- 17. de Almeida, U.N.M. Generalized K-contact structures. J. Lie Theory 2024, 34, 113-136.
- 18. Finamore, D. Contact foliations and generalised Weinstein conjectures. Ann. Glob. Anal. Geom. 2024, 65, 27. [CrossRef]
- 19. Leok, M.; Sardón, C.; Zhao, X. Integration on *q*-Cosymplectic Manifolds. *arXiv* **2025**, arXiv:2509.16587.
- 20. Rovenski, V.; Wolak, R. New metric structures on g-foliations. *Indag. Math.* 2022, 33, 518–532. [CrossRef]
- 21. Rovenski, V. Metric structures that admit totally geodesic foliations. J. Geom. 2023, 114, 32. [CrossRef]
- 22. Rovenski, V. Einstein-type metrics and Ricci-type solitons on weak *f*-K-contact manifolds. In Proceedings of the 4th International Workshop on Differential Geometry, Haifa, Israel, 10–13 May 2023; Differential Geometric Structures and Applications; Rovenski, V., Walczak, P., Wolak, R., Eds.; Springer: Cham, Switzerland, 2023; pp. 29–51.
- 23. Moffat, J.W. A new nonsymmetric gravitational theory. *Phys. Lett. B* 1995, 355, 447–452. [CrossRef]
- 24. Ivanov, S.; Zlatanović, M. Connection on Non-Symmetric (Generalized) Riemannian Manifold and Gravity. *Class. Quantum Gravity* **2016**, 33, 075016. [CrossRef]
- 25. Zlatanović, M.; Rovenski, V. Applications of weak metric structures to non-symmetrical gravitational theory. *arXiv* **2025**, arXiv:2508.08021. [CrossRef]
- 26. Herrera, A.C. Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras. *Rev. Union Mat. Argent.* **2023**, *65*, 295–311. [CrossRef]
- 27. Rovenski, V.; Zlatanović M. Weak metric structures on generalized Riemannian manifolds. *arXiv* **2025**, arXiv:2506.23019. [CrossRef]
- 28. Alekseevsky, D.; Michor, P. Differential geometry of g-manifolds. Differ. Geom. Appl. 1995, 5, 371-403. [CrossRef]

Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.