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Abstract

The recent interest in geometers in the f -structures of K. Yano is motivated by the study
of the dynamics of contact foliations, as well as their applications in theoretical physics.
Weak metric f -structures on a smooth manifold, recently introduced by the author and
R. Wolak, open a new perspective on the theory of classical structures. In this paper, we
define structures of this kind, called weak nearly S- and weak nearly C-structures, study
their geometry, e.g., their relations to Killing vector fields, and characterize weak nearly S-
and weak nearly C-submanifolds in a weak nearly Kähler manifold.
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1. Introduction
The f -structure introduced by K. Yano [1] on a smooth manifold M2n+s serves as a

higher-dimensional analog of almost complex structures (s = 0) and almost contact struc-
tures (s = 1). This structure is defined by a (1,1)-tensor f of rank 2n such that f 3 + f = 0.
The tangent bundle splits into two complementary subbundles: TM = f (TM)⊕ ker f .
The restriction of f to the 2n-dimensional distribution f (TM) defines a complex struc-
ture. The existence of the f -structure on M2n+s is equivalent to a reduction of the struc-
ture group to U(n) × O(s); see [2]. A submanifold M of an almost complex manifold
(M̄, J) that satisfies the condition dim(Tx M ∩ J(Tx M)) = const > 0 naturally possesses
an f -structure; see [3]. An f -structure is a special case of an almost product structure,
defined by two complementary orthogonal distributions of a Riemannian manifold (M, g).
Foliations appear when one or both distributions are involutive. An interesting case
occurs when the sub-bundle ker f is parallelizable, leading to a framed f -structure for
which the reduced structure group is U(n)× Ids. In this scenario, there exist vector fields
{ξi}1≤i≤s (called Reeb vector fields) spanning ker f with dual 1-forms {ηi}1≤i≤s, satisfying
f 2 = −Id + ∑s

i=1 ηi ⊗ ξi. Compatible Riemannian metrics, i.e.,

g( f X, f Y) = g(X, Y)− ∑s
i=1 ηi(X) ηi(Y),

exist on any framed f -manifold, and we obtain the metric f -structure; see [2,4–6].
To generalize concepts and results from almost contact geometry to metric f -mani-

folds, geometers have introduced and studied various broad classes of metric f -structures.
A metric f -manifold is termed a K-manifold if it is normal and dΦ = 0, where Φ(X, Y) :=
g(X, f Y). Two important subclasses of K-manifolds are C-manifolds if dηi = 0 and S-
manifolds if dηi = Φ for any i; see [2]. Omitting the normality condition, we obtain almost
K-manifolds, almost S-manifolds and almost C-manifolds, e.g., [7–9]. The distribution
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ker f of a K-manifold is tangent to a g-foliation with flat totally geodesic leaves. An f -
K-contact manifold is an almost S-manifold, whose Reeb vector fields are Killing vector
fields; the structure is intermediate between almost S-structure and S-structure; see [6,10].
Nearly S- and nearly C-manifolds (M2n+s, f , ξi, ηi, g) are defined in the same spirit as the
nearly Kähler manifolds of A. Gray [11] by a constraint only on the symmetric part of ∇ f –
starting from S- and C-manifolds (e.g., [12–15]):

(∇X f )X =

{
g( f X, f X) ξ̄ + η̄(X) f 2X , nearly S − manifolds.

0 , nearly C − manifolds.

Here, η̄ = ∑s
i=1 ηi and ξ̄ = ∑s

i=1 ξi. These counterparts of nearly Kähler manifolds play a
key role in the classification of metric f -manifolds; see [2]. The Reeb vector fields ξi of nearly
S- and nearly C-structures are unit Killing vector fields. The influence of constant-length
Killing vector fields on Riemannian geometry has been studied by many authors, e.g., [16].
The interest of geometers in f -structures is also motivated by the study of the dynamics
of contact foliations. Contact foliations generalize to higher dimensions the flow of the
Reeb vector field on contact manifolds, and K-structures are a particular case of uniform
s-contact structures; see [17,18]. Dynamics and integration on s-cosymplectic manifolds are
studied in [19]; they investigate the Lie integrability of s-evolution systems in this setting,
and develop a Hamilton–Jacobi theory tailored to multi-time Hamiltonian systems, both
via symplectification techniques.

In [20–22], we introduced and studied metric structures on a smooth manifold, see
Definition 1, which generalize almost Hermitian, almost contact (e.g., Sasakian and cosym-
plectic) and f -structures. Such so-called “weak” structures (the complex structure on the
contact distribution is replaced by a nonsingular skew-symmetric tensor) allow us a new
look at the theory of classical structures and find new applications. A. Einstein worked
on various variants of Unified Field Theory, more recently known as Non-symmetric
Gravitational Theory (NGT), see [23]. In this theory, the symmetric part g of the basic
tensor G = g + F is associated with gravity, and the skew-symmetric one F is associated
with electromagnetism. The theory of weak metric structures is fully consistent with the
skew-symmetric part of G; thus, it provides new tools for studying NGT. S. Ivanov and
M. Zlatanović developed NGT with linear connections of totally skew-symmetric torsion
and gave examples with the skew-symmetric part F of the tensor G obtained using an
almost contact metric structure; see [24]. In [25], the author and M. Zlatanović were the
first to apply weak metric structures to NGT of totally skew-symmetric torsion with tensor
F(X, Y) = g(X, f Y) of constant rank.

In this paper, we define and study new structures of this kind, generalizing nearly
S- and nearly C-structures. Section 2, following the Introduction, recalls some results
regarding weak nearly Kähler manifolds (generalizing nearly Kähler manifolds) and weak
metric f -manifolds. Section 3 introduces weak nearly S- and weak nearly C-structures
and studies their geometry. Section 4 characterizes weak nearly C- and weak nearly S-
submanifolds in weak nearly Kähler manifolds and proves that a weak nearly C-manifold
with parallel Reeb vector fields is locally the Riemannian product of a Euclidean space and
a weak nearly Kähler manifold. The proofs use the properties of new tensors, as well as
classical constructions.

2. Preliminaries
Here, we review some results; see [20–22]. Nearly Kähler manifolds (M, J, g) were

defined by A. Gray [11] using the condition that only the symmetric part of ∇J vanishes,
where ∇ is the Levi-Civita connection, in contrast to the Kähler case, where ∇J = 0. Several
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authors studied the problem of finding and classifying parallel skew-symmetric 2-tensors
(other than almost-complex structures) on a Riemannian manifold, e.g., [26].

Definition 1. A Riemannian manifold (M, g) of even dimension equipped with a skew-
symmetric (1,1)-tensor f such that the tensor f 2 is negative-definite is called a weak Hermi-
tian manifold. Such (M, f , g) is called a weak Kähler manifold if ∇ f = 0. A weak Hermitian
manifold is called a weak nearly Kähler manifold if

(∇X f )Y + (∇Y f )X = 0 (X, Y ∈ XM). (1)

A weak metric f -structure on a smooth manifold M2n+s (n, s > 0) is a set ( f , Q, ξi, ηi, g),
where f is a skew-symmetric (1, 1)-tensor of rank 2 n, Q is a self-adjoint nonsingular
(1, 1)-tensor, ξi (1 ≤ i ≤ s) are orthonormal vector fields, ηi are dual 1-forms, and g is
a Riemannian metric on M, satisfying

f 2 = −Q + ∑s
i=1 ηi ⊗ ξi, ηi(ξ j) = δi

j, Q ξi = ξi, (2)

g( f X, f Y) = g(X, Q Y)− ∑s
i=1 ηi(X) ηi(Y) (X, Y ∈ XM). (3)

In this case, (M2n+s, f , Q, ξi, ηi, g) is called a weak metric f -manifold.

The geometric meaning of (1) is the same as in the classical case: geodesics are f -planar
curves. A curve γ is f-planar if the section γ̇ ∧ f γ̇ is parallel along the curve. A framed
weak f -manifold (i.e., only (2) holds) admits a compatible metric (i.e., also (3) holds) if f in
(2) has a skew-symmetric representation, i.e., for any x ∈ M there exists a frame {ei} on a
neighborhood Ux ⊂ M, for which f has a skew-symmetric matrix.

Example 1. Take k > 1 almost Hermitian manifolds (Mj, f j, gj). The Riemannian product
∏k

j=1(Mj, λ1/2
j f j, gj), where λj > 0 are different constants, is a weak almost Hermitian manifold

with Q =
⊕

j λj Id j. We call ∏ j(Mj, λ1/2
j f j, gj) a (λ1, . . . , λk)-weighed product of almost

Hermitian manifolds (Mj, f j, gj); see [27]. The (λ1, . . . , λk)-weighed product of (nearly) Kähler
manifolds is a weak (nearly) Kähler manifold. A nearly Kähler manifold of dimension ≤ 4 is a
Kähler manifold; see [11]. The unit sphere S6 in the set of purely imaginary Cayley numbers admits
a strictly nearly Kähler structure. The classification of weak nearly Kähler manifolds in dimensions
≥ 4 is an open problem. The (λ1, λ2)-weighed products of 2-dimensional Kähler manifolds are
4-dimensional weak nearly Kähler manifolds. The (λ1, λ2, λ3)-weighed products of 2-dimensional
Kähler manifolds and (λ1, λ2)-weighed products of 2- and 4-dimensional Kähler manifolds are
6-dimensional weak nearly Kähler manifolds, and similarly for dimensions > 6.

Putting Y = ξ j in (3), and using ηi(ξ j) = δi
j, we get

η j(X) = g(X, ξ j); (4)

thus, ξ j is orthogonal to the distribution D =
⋂s

i=1 ker ηi. For a more intuitive under-
standing of the role of Q in the f -structure, we explain the following properties:

f ξi = 0, ηi ◦ f = 0, ηi ◦ Q = ηi, [Q, f ] = 0.

By (2), f 2ξi = 0 is true. From this and (2), we get f 3 + f Q = 0. By this, Qξi = ξi and
f 2ξi = 0 we get 0 = − f 3ξi = f Qξi = f ξi. By f ξi = 0, (4), and the skew-symmetry of f ,
we get ηi( f X) = g( f X, ξi) = −g(X, f ξi) = 0. From this and condition rank f = 2n, we
conclude that f the distribution D of a weak metric f -structure is f -invariant, D = f (TM)
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and dimD = 2 n. By this and f 3 + f Q = 0, we get f 3X = f 2( f X) = −Q f X; hence,
f 3 + Q f = 0. This and f 3 + f Q = 0 yield f Q = Q f . By symmetry of Q and Qξi = ξi, we
get ηi(QX) = g(QX, ξi) = g(X, Qξi) = g(X, ξi) = ηi(X).

Therefore, TM splits as complementary orthogonal sum of D and ker f . A weak metric
f -structure ( f , Q, ξi, ηi, g) is said to be normal if the following tensor is zero:

N (1)(X, Y) = [ f , f ](X, Y) + 2 ∑s
i=1 dηi(X, Y) ξi (X, Y ∈ XM).

The Nijenhuis torsion of a (1,1)-tensor S and the derivative of a 1-form ω are given by

[S, S](X, Y) = S2[X, Y] + [SX, SY]− S[SX, Y]− S[X, SY] (X, Y ∈ XM),

dω(X, Y) = (1/2) {X(ω(Y))− Y(ω(X))− ω([X, Y])} (X, Y ∈ XM).

Using the Levi-Civita connection ∇ of g, one can rewrite [S, S] as

[S, S](X, Y) = (S∇YS −∇SYS)X − (S∇XS −∇SXS)Y. (5)

The fundamental 2-form Φ on (M2n+s, f , Q, ξi, ηi, g) is defined by

Φ(X, Y) = g(X, f Y) (X, Y ∈ XM).

Proposition 1. A weak metric f -structure with condition N (1) = 0 satisfies

£ξi f = dη j(ξi, ·) = 0,

dηi( f X, Y)− dηi( f Y, X) =
1
2

ηi([Q̃X, f Y]),

∇ξi ξ j ∈ D, [X, ξi] ∈ D (1 ≤ i, j ≤ s, X ∈ D).

Moreover, ∇ξi ξ j +∇ξ j ξi = 0, that is, ker f defines a totally geodesic distribution.

These tensors on a weak metric f -manifold are well known in the classical theory:

N (2)
i (X, Y) := (£ f X ηi)(Y)− (£ f Y ηi)(X) = 2 dηi( f X, Y)− 2 dηi( f Y, X),

N (3)
i (X) := (£ξi f )X = [ξi, f X]− f [ξi, X],

N (4)
ij (X) := (£ξi η j)(X) = ξi(η

j(X))− η j([ξi, X]) = 2 dη j(ξi, X).

Example 2. Let M2n+s( f , Q, ξi, ηi) be a weak framed f -manifold. Consider the product manifold
M̄ = M2n+s × Rs, where Rs is a Euclidean space with a basis ∂1, . . . , ∂s, and define tensors J
and Q̄ on M̄ putting J(X, ∑s

i=1 ai∂i) = ( f X − ∑s
i=1 aiξi, ∑ j η j(X)∂j) and Q̄(X, ∑s

i=1 ai∂i) =

(QX, ∑s
i=1 ai∂i) for ai ∈ C∞(M). It can be shown that J 2 = −Q̄. The tensors N (2)

i ,N (3)
i ,N (4)

ij
appear when we derive the integrability condition [J, J] = 0 and express the normality condition
N (1) = 0 for ( f , Q, ξi, ηi).

Define a “small” (1, 1)-tensor Q̃ := Q − Id and note that [Q̃, f ] = 0 and ηi ◦ Q̃ = 0.
The following new tensor (vanishing at Q̃ = 0)

N (5)(X, Y, Z) := f Z (g(X, Q̃Y))− f Y (g(X, Q̃Z))

+ g([X, f Z], Q̃Y)− g([X, f Y], Q̃Z) + g([Y, f Z]− [Z, f Y]− f [Y, Z], Q̃X),
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which supplements the sequence N (1),N (2)
i ,N (3)

i ,N (4)
ij , is needed to study the weak

metric f -structure. We express the covariant derivative of f using a new tensor N (5):

2 g((∇X f )Y, Z) = 3 dΦ(X, f Y, f Z)− 3 dΦ(X, Y, Z) + g(N (1)(Y, Z), f X)

+ ∑s
i=1

(
N (2)

i (Y, Z) ηi(X) + 2 dηi( f Y, X) ηi(Z)− 2 dηi( f Z, X) ηi(Y)
)
+N (5)(X, Y, Z),

where the derivative of a 2-form Φ is given by

3 dΦ(X, Y, Z) = X Φ(Y, Z) + Y Φ(Z, X) + Z Φ(X, Y)

− Φ([X, Y], Z)− Φ([Z, X], Y)− Φ([Y, Z], X).

Note that the above equality yields

3 dΦ(X, Y, Z) = (∇X Φ)(Y, Z) + (∇Y Φ)(Z, X) + (∇Z Φ)(X, Y). (6)

For particular values of N (5), we get N (5)(ξi, ξ j, Z) = N (5)(ξi, Y, ξ j) = 0 and

N (5)(X, ξi, Z) = −N (5)(X, Z, ξi) = g(N (3)
i (Z), Q̃X),

N (5)(ξi, Y, Z) = g([ξi, f Z], Q̃Y)− g([ξi, f Y], Q̃Z).

Definition 2. A weak metric f -structure is called a weak almost K-structure if dΦ = 0. We
define its two subclasses as follows:

(i) A weak almost C-structure if Φ and ηi (1 ≤ i ≤ s) are closed forms;
(ii) A weak almost S-structure

if the following is valid:

Φ = dη1 = . . . = dηs (hence, dΦ = 0). (7)

Adding the normality condition, we get weak K-, weak C-, and weak S-structures, respectively.
A weak f -K-contact structure is a weak almost S-structure, whose structure vector fields ξi

are Killing, i.e., the tensor (£ξi g)(X, Y) = g(∇Y ξi, X) + g(∇X ξi, Y) vanishes. For s = 1,
weak (almost) C- and weak (almost) S-manifolds reduce to weak (almost) cosymplectic
manifolds and weak (almost) Sasakian manifolds, respectively.

Remark 1. The almost S-structure is also called an f -contact structure, e.g., [21]; then, the
S-structure can be regarded as a normal f -contact structure.

Example 3. (i) To construct a weak metric f -structure ( f , Q, ξi, ηi, g) on the Riemannian product
M = M̄ ×Rs of a weak almost Hermitian manifold (M̄, f̄ , ḡ) with Ω(X, Y) = ḡ(X, f̄ Y) and a
Euclidean space (Rs, dy2), we take any point (x, y) of M and set

ξi = (0, ∂ yi ), ηi = (0, dyi), f (X, ∂ yi ) = ( f̄ X, 0), Q(X, ∂ yi ) = (− f̄ 2X, ∂ yi ),

where X ∈ Tx M̄. Note that ∇ f = 0 if and only if ∇ f̄ = 0. On the other hand, ∇ f̄ = 0 if and only
if dΩ = 0, see (6) with Φ = Ω, i.e., (M, Ω) is a symplectic manifold.

(ii) For a weak C-structure, we obtain g((∇X f )Y, Z) = 1
2 N (5)(X, Y, Z). A weak metric

f -structure with conditions ∇ f = 0 and g([ξi, ξ j], ξk) = 0 is a weak C-structure with the property
N (5) = 0. For a weak S-structure, we get

g((∇X f )Y, Z) = g( f X, f Y) η̄(Z)− g( f X, f Z) η̄(Y) +
1
2
N (5)(X, Y, Z);
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ξi are Killing vector fields and ker f defines a Riemannian totally geodesic foliation. In particular,
for an S-structure, we have

(∇X f )Y = g( f X, f Y) ξ̄ + η̄(Y) f 2X . (8)

For a weak almost K-structure (and its special cases, a weak almost S-structure and
a weak almost C-structure), the distribution ker f is involutive (tangent to a foliation).
Moreover, weak almost S- and weak almost C-structures satisfy the following conditions
(trivial for s = 1):

[ξi, ξ j] = 0, (9)

g(∇X ξi, ξ j) = 0 (X ∈ XM) (10)

for 1 ≤ i, j ≤ s. The following condition is a corollary of (10):

ηk(∇ξi ξ j) = 0 (1 ≤ i, j, k ≤ s). (11)

By (9), the distribution ker f of weak almost S- and a weak almost C-manifolds is tangent
to a g-foliation with an abelian Lie algebra.

Remark 2 ([28]). Let g be a Lie algebra of dimension s. A foliation of dimension s on a smooth
connected manifold M is called a g-foliation if there exist complete vector fields ξ1, . . . , ξs on M
which, when restricted to each leaf, form a parallelism of this submanifold with a Lie algebra
isomorphic to g.

3. Main Results
In this section, weak nearly S- and weak nearly C-structures are defined and studied;

some of the statements generalize the results in [13–15].
The restriction on the symmetric part of (8) gives the following.

Definition 3. A weak metric f -manifold is called a weak nearly S-manifold if

(∇X f )Y + (∇Y f )X = 2 g( f X, f Y) ξ̄ + η̄(X) f 2Y + η̄(Y) f 2X (12)

for all X, Y ∈ XM. A weak metric f -manifold is called a weak nearly C-manifold if

(∇X f )Y + (∇Y f )X = 0. (13)

Example 4. Let a Riemannian manifold (M2n+s, g) admit two nearly S-structures (or, nearly
C-structures) M2n+s( fk, Q, ξi, ηi, g) (k = 1, 2) with common Reeb vector fields ξi and one-forms
ηi = g(ξi, ·). Suppose that f1 ̸= f2 are such that ψ := f1 f2 + f2 f1 ̸= 0. Then, f := (cos t) f1 +

(sin t) f2 for small t > 0 satisfies (12) (and (13), respectively) and

f 2 = −Id + (sin t cos t)ψ + ∑s
i=1 ηi ⊗ ξi.

Thus, ( f , Q, ξi, ηi, g) is a weak nearly S-structure (and weak nearly C-structure, respectively) on
M2n+s with Q = Id − (sin t cos t)ψ.

The following condition is trivial when Q = Id TM:

(∇X Q)Y = 0 (X, Y ∈ XM, Y ⊥ ker f ). (14)
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Using (14), we have

(∇X Q)Y = ∑s
i=1 ηi(Y)(∇X Q)ξi = −∑s

i=1 ηi(Y) Q̃∇X ξi (X, Y ∈ XM).

Example 5. To construct a weak (nearly) C-structure ( f , Q, ξi, ηi, g) on the Riemannian product
M = M̄ ×Rs of a weak (nearly) Kähler manifold (M̄, f̄ , ḡ) and a Euclidean space (Rs, dy2), we
take any point (x, y) of M and set

ξi = (0, ∂ yi ), ηi = (0, dyi), f (X, ∂ yi ) = ( f̄ X, 0), Q(X, ∂ yi ) = (− f̄ 2X, ∂ yi ),

as in Example 3(i). Note that if ∇X ( f̄ 2) = 0 (X ∈ TM̄), then (14) holds.

The following result opens new applications to Killing vector fields.

Proposition 2. Both on a weak nearly S-manifold and a weak nearly C-manifold satisfying (9) and
(11), the distribution ker f defines a flat totally geodesic foliation; moreover, if conditions (10) and
(14) hold, then the vector fields ξi are Killing.

Proof. Putting X = ξ j and Y = ξk in (12) or (13), we find (∇ξ j f )ξk + (∇ξk f )ξ j = 0; hence,
f
(
∇ξ j ξk +∇ξk ξ j

)
= 0. Applying f to this and using (2), we obtain

0 = f 2(∇ξ j ξk +∇ξk ξ j
)
= −Q

(
∇ξ j ξk +∇ξk ξ j

)
+ ∑s

i=1 ηi(∇ξ j ξk +∇ξk ξ j
)
ξi.

Since the (1,1)-tensor Q is nonsingular and (11) is true, we get ∇ξ j ξk +∇ξk ξ j = 0. Combin-
ing this with ∇ξ j ξk −∇ξk ξ j = 0, see (9), yields

∇ξ j ξk = 0 (1 ≤ j, k ≤ s); (15)

hence, ker f defines a flat totally geodesic foliation. Next, using (15) we calculate

∇ξi η j = g(∇ξi ξ j, ·) = 0. (16)

Using (10) and (15), we obtain

(£ξ j g)(ξk, ·) = g(∇ξ j ξk, ·) = 0.

Taking the ξ j-derivative of (3) and using (14) and ∇ξ j ηi = 0, we find (for Y ⊥ ker f )

g((∇ξ j f )X, f Y) + g( f X, (∇ξ j f )Y) = ∇ξ j g( f X, f Y)

= g(X, (∇ξ j Q)Y) + ∑s
i=1

{
(∇ξ j ηi)(X) ηi(Y) + ηi(X)(∇ξ j ηi)(Y)

}
= 0.

For a weak nearly S-manifold, using (12), (10), and η ◦ Q̃ = 0 yields

g((∇ξ j f )X, f Y) + g( f X, (∇ξ j f )Y)

= −g((∇X f )ξ j, f Y)− g( f X, (∇Y f )ξ j) + g( f 2X, f Y) + g( f 2Y, f X)

= −g(∇X ξ j, f 2Y)− g( f 2X,∇Y ξ j) = g(∇X ξ j, QY) + g(QX,∇Y ξ j)

= g(∇X ξ j, Y) + g(X,∇Y ξ j) + g(∇X ξ j, Q̃Y) + g(Q̃X,∇Y ξ j)

= (£ξ j g)(X, Y)− g(ξ j, (∇XQ̃)Y)− g((∇YQ̃)X, ξ j) = (£ξ j g)(X, Y).
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Here, we used g(ξ j, (∇XQ̃)Y) = 0. For a weak nearly C-manifold, using (13) yields

(£ξ j g)(X, Y) = g((∇ξ j f )X, f Y) + g( f X, (∇ξ j f )Y) = 0. (17)

From (17), for both cases we obtain £ξ j g = 0, i.e., ξ j is a Killing vector field.

Remark 3. Note that even for a nearly S-manifold without conditions (9) and (10), the vector
fields ξi (1 ≤ i ≤ s) are not Killing; see Corollary 1 in [13].

Theorem 1. There are no weak nearly C-manifolds with conditions (9), (10), and (14) which satisfy
Φ = dη1 = . . . = dηs; see (7).

Proof. Suppose that our weak nearly C-manifold satisfies (7). Since also ξi are Killing
vector fields (see Proposition 2), M is a weak f -K-contact manifold. By Theorem 1 in [22],
the following holds:

∇ξi = − f (1 ≤ i ≤ s). (18)

By Proposition 6 in [22], the ξ-sectional curvature of a weak f -K-contact manifold is positive,
i.e., K(ξi, X) > 0 (X ⊥ ker f ). Thus, for any nonzero vector X ⊥ ker f , using (13) and (18),
we get

0 < K(ξi, X) = g(∇ξi∇Xξi −∇X∇ξi ξi −∇[ξi ,X]ξi, X)

= g(−(∇ξi f )X + f 2X, X) = g((∇X f )ξi, X)− g( f X, f X)

= −g( f∇Xξi, X) + g( f 2X, X) = 2 g( f 2X, X).

This contradicts the following equality: g( f 2X, X) = −g( f X, f X) ≤ 0.

Corollary 1. There are no nearly C-manifolds with conditions (9) and (10) which satisfy (7).

Theorem 2. A weak nearly C-manifold (M2n+s, f , Q, ξi, ηi, g) satisfies

∇ξi = 0 (1 ≤ i ≤ s) (19)

if and only if the manifold is locally isometric to the Riemannian product of a Euclidean s-space and
a weak nearly Kähler manifold.

Proof. For all vector fields X, Y orthogonal to ker f , we have

2 dηi(X, Y) = g(∇X ξi, Y)− g(∇Y ξi, X). (20)

Thus, if the condition ∇ξi = 0 holds, then the contact distribution D is integrable. Moreover,
any integral submanifold of D is a totally geodesic submanifold. Indeed, for X, Y ⊥ ker f ,
we have g(∇X Y, ξi) = −g(Y,∇X ξi) = 0. Since ∇ξi ξ j = 0, by de Rham Decomposition
Theorem, the manifold is locally the Riemannian product M̄ × Rs. The metric weak f -
structure induces on M̄ a weak almost-Hermitian structure, which, by these conditions, is
weak nearly Kähler.

Conversely, if a weak nearly C-manifold is locally the Riemannian product M̄ ×Rs,
where M̄ is a weak nearly Kähler manifold and ξi = (0, ∂yi ) (see also Example 5), then
dη j(X, Y) = 0 (X, Y⊥ ker f ). By (20) and ∇ξi ξ j = 0, we obtain ∇ξi = 0.
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Corollary 2. A nearly C-manifold (M2n+s, f , ξi, ηi, g) satisfies (19) if and only if the manifold is
locally isometric to the Riemannian product of Rs and a nearly Kähler manifold.

Theorem 3. Let a weak nearly S-structure satisfy (9), (10), and (14); then, the following is true:

(i) The condition η j ◦ N (1) = 0 (1 ≤ j ≤ s) yields dη j(X, Y) = Φ(QX, Y) for all j.
(ii) The condition (7) yields N (1)(X, Y) = 2 Φ(Q̃X, Y) ξ̄.

Proof. (i) We calculate, using (5), (12), and η j ◦ f = 0,

η j(N (1)(X, Y))− 2 dη j(X, Y) = η j([ f , f ](X, Y))
(5)
= η j((∇ f X f )Y − (∇ f Y f )X

)
(12)
= η j((∇X f ) f Y − (∇Y f ) f X

)
+ 4 g( f 2X, f Y)

= g
(
(∇X f 2)Y − (∇Y f 2) X, ξ j

)
− 4 g(QX, f Y)

= (∇X η j)(Y)− (∇Y η j)(X)− 4 g(QX, f Y)

= 2 dη j(X, Y)− 4 g(QX, f Y).

Here, we used the identity 2 dη j(X, Y) = (∇X η j)(Y)− (∇Y η j)(X).
Thus, if ηi(N (1)(X, Y)) = 0, then d η j(X, Y) = g(QX, f Y) = Φ(QX, Y) for all j.

(ii) Using d Φ = 0, (2), (6), and (12), where η̄ = ∑s
i=1 ηi and ξ̄ = ∑s

i=1 ξi, we get

3 d Φ(X, Y, Z) = −g((∇X f )Y, Z) + g((∇Y f )X, Z)− g((∇Z f )X, Y)

= −g((∇X f )Y, Z) + g
(
− (∇X f )Y + 2 g( f X, f Y) ξ̄ + η̄(X) f 2Y + η̄(Y) f 2X, Z

)
+ g

(
(∇X f )Z − 2 g( f X, f Z) ξ̄ − η̄(X) f 2Z − η̄(Z) f 2X, Y

)
= −3 g((∇X f )Y, Z)− 3 g( f 2X, Y) η̄(Z) + 3 g( f 2X, Z) η̄(Y).

Thus, (8) holds. Using (8) in (5) gives

[ f , f ] = 2 g( f 2X, f Y) ξ̄ = −2 g(QX, f Y) ξ̄ = −2 Φ(QX, Y) ξ̄,

hence, N (1)(X, Y) = 2 Φ(Q̃X, Y) ξ̄.

A consequence of Theorem 3 is a rigidity result for S-manifolds; see Theorem 1 of [13].

Corollary 3. A normal nearly S-structure is an S-structure.

4. Submanifolds of Weak Nearly Kähler Manifolds
Here, we study weak nearly S- and weak nearly C- submanifolds in a weak nearly

Kähler manifold. The second fundamental form h of a submanifold M ⊂ (M̄, ḡ) is related
with ∇ (the Levi-Civita connection of ḡ restricted to M) and ∇ (the Levi-Civita connection
of metric g induced on M via the Gauss equation) by

∇XY = ∇XY + h(X, Y) (X, Y ∈ XM). (21)

A submanifold is said to be totally geodesic if h = 0. The shape operator AN : X 7→ −∇X N
with respect to a unit normal N is related with h via the equalities

hN(X, Y) = ḡ(h(X, Y), N) = g(AN(X), Y) (X, Y ∈ XM). (22)
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Lemma 1. Let (M̄, f̄ , ḡ) be a weak Hermitian manifold and M2n+s a submanifold of codimension
s equipped with mutually orthogonal unit normals Ni (i = 1, . . . , s) satisfying the condition

ḡ( f̄ Ni, Nj) = 0 (1 ≤ i, j ≤ s) (23)

(trivial for s = 1). Then, M inherits a metric weak f -structure ( f , Q, ξi, ηi, g) given by

ξi = f̄ Ni, ηi = ḡ( f̄ Ni, ·) (i = 1, . . . , s), g = ḡ|M,

f = f̄ + ∑s
i=1 ḡ( f̄ Ni, ·) Ni, Q = − f̄ 2 + ∑s

i=1 ḡ( f̄ 2Ni, ·) Ni. (24)

Moreover, (14) holds on M if f̄ 2Ni ⊥ TM (1 ≤ i ≤ s) and

((∇X f̄ 2)Y)⊤ = 0 (X, Y ∈ XM, Y ⊥ ker f ).

Proof. Using the skew-symmetry of f̄ and (23), we verify (2):

f 2X = f ( f̄ X − ∑s
i=1 ḡ( f̄ X, Ni) Ni)

= f̄
(

f̄ X − ∑s
i=1 ḡ( f̄ X, Ni) Ni

)
− ḡ( f̄ ( f̄ X − ∑s

i,j=1 ḡ( f̄ X, Ni) Ni), Nj) Nj

= f̄ 2X − ∑ j ḡ( f̄ 2Nj, X) Nj − ∑s
i=1 ḡ( f̄ Ni, X) f̄ Ni + ∑s

i,j=1 ḡ( f̄ X, Ni) ḡ( f̄ Ni, Nj) Nj

= −QX + ∑s
i=1 ηi(X) ξi (X ∈ XM).

Since f̄ 2 is negative-definite, for nonzero X ∈ XM we obtain ḡ(Ni, X) = 0 and

g(QX, X) = ḡ(− f̄ 2X + ∑s
i=1 ḡ( f̄ 2Ni, X) Ni, X) = −ḡ( f̄ 2X, X) > 0,

hence, the tensor Q is positive-definite on TM. Then, we calculate (∇XQ)Y for X, Y ∈ XM

and Y ⊥ ker f , using (21) and (24) and the condition f̄ 2Ni ⊥ TM (1 ≤ i ≤ s):

(∇X Q)Y = ∇X(QY)− Q(∇XY)

=
{
∇X

(
− f̄ 2 Y + ∑s

i=1 g( f̄ 2Ni, Y)Ni
)
− h(X, QY) + f̄ 2(∇XY − h(X, Y)

)
− ∑s

i=1 g
(

f̄ 2Ni, ∇XY − h(X, Y)
)

Ni
}⊤

= (−(∇X( f̄ 2Y)) + f̄ 2(∇XY))⊤ − ∑s
i=1 g

(
f̄ 2Ni, Y) ANi X

= −((∇X f̄ 2)Y)⊤,

where ⊤ is the TM-component of a vector. This completes the proof.

The following theorem characterizes weak nearly C- and weak nearly S-submanifolds
of a nearly Kähler manifold, using the property of the second fundamental form.

Theorem 4. Let (M̄, f̄ , ḡ) be a weak nearly Kähler manifold and M2n+s a submanifold of codimen-
sion s equipped with mutually orthogonal unit normals Ni (i = 1, . . . , s) satisfying (23). If the
second fundamental form of M and the induced metric weak f -structure ( f , Q, ξi, ηi, g) on M,
given by (24), satisfy

(i) hNi (X, Y) = g(QX, Y) + ∑s
j,k=1

(
hNi (ξ j, ξk)− δj,k

)
η j(X) ηk(Y),

(ii) hNi (X, Y) = ∑s
j,k=1 hNi (ξ j, ξk) η j(X) ηk(Y), (25)

and

hNi (ξ j, ξk) = hNj(ξi, ξk) (1 ≤ i, j ≤ s), (26)
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then ( f , Q, ξi, ηi, g) is

(i) a weak nearly S-structure; (ii) a weak nearly C-structure. (27)

Proof. Substituting

f̄ Y = f Y − ∑s
i=1 ḡ( f̄ Ni, Y) Ni = f Y − ∑s

i=1 ηi(Y) Ni

in (∇X f̄ )Y, where X, Y ∈ XM, and using (21) and Lemma 1, we obtain

(∇X f̄ )Y = ∇X( f̄ Y)− f̄ (∇XY) = (∇X f )Y + ∑s
i=1

{
ηi(Y)ANi X − hNi (X, Y) ξi

}
+ ∑s

i=1

{
X(ηi(Y))− ηi(∇XY) + hNi (X, f Y)

}
Ni.

Thus, the TM-component of the weak nearly Kähler condition (1), using (21) and (22), takes
the form (

(∇X f̄ )Y + (∇Y f̄ )X
)⊤

= (∇X f )Y + (∇Y f )X

+ ∑s
i=1

{
ηi(X)ANi Y + ηi(Y)ANi X − 2 hNi (X, Y) ξi

}
= 0. (28)

Using (22), one can show that (25) is equivalent to the following:

(i) ANi X = − f 2X + ∑s
j,k=1 hNi (ξ j, ξk) η j(X) ξk,

(ii) ANi X = ∑s
j,k=1 hNi (ξ j, ξk) η j(X) ξk. (29)

(i) If we have a weak nearly S-structure, see (12), then from (28) we get

2 g( f X, f Y) ξ̄ + η̄(Y) f 2X + η̄(X) f 2Y

+ ∑s
i=1

{
ηi(X)ANi Y + ηi(Y)ANi X − 2 hNi (X, Y) ξi

}
= 0, (30)

Substituting the expressions of hNi (X, Y) and ANi , see (25)(i) and (29)(i), in (30) and using
(26) gives identity; thus, we obtain a weak nearly S-structure on M.

(ii) If we have a weak nearly C-structure, see (13), then from (28) we get

∑s
i=1

{
ηi(X)ANi Y + ηi(Y)ANi X − 2 hNi (X, Y) ξi

}
= 0. (31)

Substituting the expressions of hNi (X, Y) and ANi , see (25)(ii) and (29)(ii), in (31) and using
(26) gives identity; thus, we obtain a weak nearly C-structure on M.

For Q = Id, the properties of (25) lead us to the following.

Definition 4. A codimension s submanifold M2n+s of a Hermitian manifold (M̄, f̄ , ḡ),
equipped with mutually orthogonal unit normals Ni (i = 1, . . . , s) satisfying

hNi (X, Y) = ai g(X, Y) + ∑s
j,k=1 bi,j,k η j(X) ηk(Y), (32)

where ai, bi,j,k ∈ C∞(M) and ηi (1 ≤ i ≤ s) are linear independent one-forms on M, will be
called an s-quasi-umbilical submanifold. For s = 1, condition (32) reads as follows, see [15]:

hN(X, Y) = a1 g(X, Y) + b1 η(X) η(Y).

The geometric meaning of (32) is that the restriction of hNi on the distribution
⋂s

i=1 ker ηi

looks similar to h for totally umbilical submanifolds: h = (traceg h/ dim M) g.
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The following consequence of Theorem 4 extends the fact (see Theorem 4.1 in [14])
that a hypersurface of a nearly Kähler manifold is nearly Sasakian or nearly cosymplectic if
and only if it is quasi-umbilical with respect to the almost contact form.

Corollary 4. Let (M̄, f̄ , ḡ) be a nearly Kähler manifold and M2n+s a submanifold of codimen-
sion s equipped with mutually orthogonal unit normals Ni (i = 1, . . . , s) satisfying (23), and
( f , ξi, ηi, g = ḡ|M) the induced metric f -structure on M, given by

ξi = f̄ Ni, ηi = ḡ( f̄ Ni, ·) (i = 1, . . . , s), f = f̄ + ∑s
j=1 ḡ( f̄ Nj, ·) Nj.

If M2n+s is an s-quasi-umbilical submanifold (with respect to the 1-forms ηi),

(i) hNi (X, Y) = g(X, Y) + ∑s
j,k=1

(
hNi (ξ j, ξk)− δj,k

)
η j(X) ηk(Y),

(ii) hNi (X, Y) = ∑s
j,k=1 hNi (ξ j, ξk) η j(X) ηk(Y),

and (26) are true, then ( f , ξi, ηi, g) is (i) a nearly S-structure; (ii) a nearly C-structure.

5. Conclusions
We have shown that weak nearly S- and weak nearly C-structures are useful for

studying metric f -structures, e.g., totally geodesic foliations, Killing vector fields, and
s-quasi-umbilical submanifolds. Some classical results have been extended in this paper
to weak nearly S- and weak nearly C-manifolds with additional conditions. Based on
the numerous applications of nearly Kähler, nearly Sasakian, and nearly cosymplectic
structures, we expect that weak nearly Kähler, S- and C-structures will be useful for
geometry and theoretical physics, e.g., for NGT, the theory of s-cosymplectic structures and
s-contact structures, multi-time Hamiltonian systems, and s-evolution systems.
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