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Abstract

The recent interest in geometers in the f-structures of K. Yano is motivated by the study
of the dynamics of contact foliations, as well as their applications in theoretical physics.
Weak metric f-structures on a smooth manifold, recently introduced by the author and
R. Wolak, open a new perspective on the theory of classical structures. In this paper, we
define structures of this kind, called weak nearly S- and weak nearly C-structures, study
their geometry, e.g., their relations to Killing vector fields, and characterize weak nearly S-
and weak nearly C-submanifolds in a weak nearly Kahler manifold.

Keywords: weak nearly S-manifold; weak nearly C-manifold; Killing vector field; submanifold;
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1. Introduction

The f-structure introduced by K. Yano [1] on a smooth manifold M?"*$ serves as a
higher-dimensional analog of almost complex structures (s = 0) and almost contact struc-
tures (s = 1). This structure is defined by a (1,1)-tensor f of rank 27 such that f3 + f = 0.
The tangent bundle splits into two complementary subbundles: TM = f(TM) @ ker f.
The restriction of f to the 2n-dimensional distribution f(TM) defines a complex struc-
ture. The existence of the f-structure on M?"** is equivalent to a reduction of the struc-
ture group to U(n) x O(s); see [2]. A submanifold M of an almost complex manifold
(M, ]) that satisfies the condition dim(TxM N J(TyM)) = const > 0 naturally possesses
an f-structure; see [3]. An f-structure is a special case of an almost product structure,
defined by two complementary orthogonal distributions of a Riemannian manifold (M, g).
Foliations appear when one or both distributions are involutive. An interesting case
occurs when the sub-bundle ker f is parallelizable, leading to a framed f-structure for
which the reduced structure group is U(n) x Ids. In this scenario, there exist vector fields
{&}1<i<s (called Reeb vector fields) spanning ker f with dual 1-forms {'};<;<s, satisfying
f2=-Id+ Yiq 17i ® ¢;. Compatible Riemannian metrics, i.e.,

SUX, FY) =g(X,Y) =Y 0 (X)n'(Y),

exist on any framed f-manifold, and we obtain the metric f-structure; see [2,4—6].

To generalize concepts and results from almost contact geometry to metric f-mani-
folds, geometers have introduced and studied various broad classes of metric f-structures.
A metric f-manifold is termed a K-manifold if it is normal and d® = 0, where ®(X,Y) :=
¢(X, fY). Two important subclasses of K-manifolds are C-manifolds if d’ = 0 and S-
manifolds if d7' = ® for any i; see [2]. Omitting the normality condition, we obtain almost
K-manifolds, almost S-manifolds and almost C-manifolds, e.g., [7-9]. The distribution
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ker f of a K-manifold is tangent to a g-foliation with flat totally geodesic leaves. An f-
K-contact manifold is an almost S-manifold, whose Reeb vector fields are Killing vector
fields; the structure is intermediate between almost S-structure and S-structure; see [6,10].
Nearly S- and nearly C-manifolds (M?"*%, f,&;, 7, ¢) are defined in the same spirit as the
nearly Kéhler manifolds of A. Gray [11] by a constraint only on the symmetric part of V f —
starting from S- and C-manifolds (e.g., [12-15]):

(Vyf)X = { S(fX, fX)E+7(X)f*X, nearly S — manifolds.

0, nearly C — manifolds.
Here, 77 = Y5 r]i and ¢ = Y._1 Ci. These counterparts of nearly Kahler manifolds play a
key role in the classification of metric f-manifolds; see [2]. The Reeb vector fields ¢; of nearly
S- and nearly C-structures are unit Killing vector fields. The influence of constant-length
Killing vector fields on Riemannian geometry has been studied by many authors, e.g., [16].
The interest of geometers in f-structures is also motivated by the study of the dynamics
of contact foliations. Contact foliations generalize to higher dimensions the flow of the
Reeb vector field on contact manifolds, and K-structures are a particular case of uniform
s-contact structures; see [17,18]. Dynamics and integration on s-cosymplectic manifolds are
studied in [19]; they investigate the Lie integrability of s-evolution systems in this setting,
and develop a Hamilton—Jacobi theory tailored to multi-time Hamiltonian systems, both
via symplectification techniques.

In [20-22], we introduced and studied metric structures on a smooth manifold, see
Definition 1, which generalize almost Hermitian, almost contact (e.g., Sasakian and cosym-
plectic) and f-structures. Such so-called “weak” structures (the complex structure on the
contact distribution is replaced by a nonsingular skew-symmetric tensor) allow us a new
look at the theory of classical structures and find new applications. A. Einstein worked
on various variants of Unified Field Theory, more recently known as Non-symmetric
Gravitational Theory (NGT), see [23]. In this theory, the symmetric part g of the basic
tensor G = g + F is associated with gravity, and the skew-symmetric one F is associated
with electromagnetism. The theory of weak metric structures is fully consistent with the
skew-symmetric part of G; thus, it provides new tools for studying NGT. S. Ivanov and
M. Zlatanovi¢ developed NGT with linear connections of totally skew-symmetric torsion
and gave examples with the skew-symmetric part F of the tensor G obtained using an
almost contact metric structure; see [24]. In [25], the author and M. Zlatanovi¢ were the
first to apply weak metric structures to NGT of totally skew-symmetric torsion with tensor
F(X,Y) = g(X, fY) of constant rank.

In this paper, we define and study new structures of this kind, generalizing nearly
S- and nearly C-structures. Section 2, following the Introduction, recalls some results
regarding weak nearly Kdhler manifolds (generalizing nearly Kahler manifolds) and weak
metric f-manifolds. Section 3 introduces weak nearly S- and weak nearly C-structures
and studies their geometry. Section 4 characterizes weak nearly C- and weak nearly S-
submanifolds in weak nearly Kéhler manifolds and proves that a weak nearly C-manifold
with parallel Reeb vector fields is locally the Riemannian product of a Euclidean space and
a weak nearly Kahler manifold. The proofs use the properties of new tensors, as well as
classical constructions.

2. Preliminaries

Here, we review some results; see [20-22]. Nearly Kahler manifolds (M, J, g) were
defined by A. Gray [11] using the condition that only the symmetric part of V] vanishes,
where V is the Levi-Civita connection, in contrast to the Kahler case, where V] = 0. Several
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authors studied the problem of finding and classifying parallel skew-symmetric 2-tensors
(other than almost-complex structures) on a Riemannian manifold, e.g., [26].

Definition 1. A Riemannian manifold (M, g) of even dimension equipped with a skew-
symmetric (1,1)-tensor f such that the tensor f? is negative-definite is called a weak Hermi-
tian manifold. Such (M, f, g) is called a weak Kihler manifold if V f = 0. A weak Hermitian
manifold is called a weak nearly Kihler manifold if

(V)Y +(Vyf)X=0 (X,Y € Xy). (1)

A weak metric f-structure on a smooth manifold M5 (n,s > 0) is a set (f,Q,&,1',2),
where f is a skew-symmetric (1,1)-tensor of rank 2n, Q is a self-adjoint nonsingular
(1,1)-tensor, §; (1 < i < s) are orthonormal vector fields, 17i are dual 1-forms, and g is
a Riemannian metric on M, satisfying

FP=—Q+Y _n'e& 1@ =20 Q&=8& )
X fY)=g(X,QY) =Y 7 ' (X) ' (Y) (XY € Xp). ®)

In this case, (MZ"“, f,Q,¢;, 17i, Q) is called a weak metric f-manifold.

The geometric meaning of (1) is the same as in the classical case: geodesics are f-planar
curves. A curve 7y is f-planar if the section A f+ is parallel along the curve. A framed
weak f-manifold (i.e., only (2) holds) admits a compatible metric (i.e., also (3) holds) if f in
(2) has a skew-symmetric representation, i.e., for any x € M there exists a frame {e;} ona
neighborhood U, C M, for which f has a skew-symmetric matrix.

Example 1. Take k > 1 almost Hermitian manifolds (M;, f;,g;). The Riemannian product
Hl;':1 (M;, A}/z fj»8j), where A; > 0 are different constants, is a weak almost Hermitian manifold
with Q = @;jA;1d;. We call Hj(Mj,/\Jl./zfj,gj) a (Aq,..., Ag)-weighed product of almost
Hermitian manifolds (M;, f;, g;); see [27]. The (Ay, ..., Ay)-weighed product of (nearly) Kihler
manifolds is a weak (nearly) Kihler manifold. A nearly Kihler manifold of dimension < 4 is a
Kiihler manifold; see [11]. The unit sphere S° in the set of purely imaginary Cayley numbers admits
a strictly nearly Kahler structure. The classification of weak nearly Kihler manifolds in dimensions
> 4 is an open problem. The (A1, Ap)-weighed products of 2-dimensional Kihler manifolds are
4-dimensional weak nearly Kihler manifolds. The (A1, Ay, A3)-weighed products of 2-dimensional
Kihler manifolds and (A, Ap)-weighed products of 2- and 4-dimensional Kihler manifolds are
6-dimensional weak nearly Kihler manifolds, and similarly for dimensions > 6.

Putting Y = &; in (3), and using #'(¢;) = (5]1:, we get

W (X) =g(X,&)); (4)

thus, ¢; is orthogonal to the distribution D = N ker 17i. For a more intuitive under-
standing of the role of Q in the f-structure, we explain the following properties:

f&i=0, nof=0 yoQ=y, [Qfl=0.

By (2), f2¢; = 0is true. From this and (2), we get f> + fQ = 0. By this, Q¢ = & and
f2& =0weget0 = —f3¢ = fQ& = f¢&. By f& =0, (4), and the skew-symmetry of f,
we get '(fX) = g(fX,&) = —g(X, f&) = 0. From this and condition rank f = 21, we
conclude that f the distribution D of a weak metric f-structure is f-invariant, D = f(TM)
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and dimD = 2n. By this and 3 + fQ = 0, we get f°X = f2(fX) = —QfX; hence,
P+ Qf =0. Thisand f3+ fQ = Oyield fQ = Qf. By symmetry of Q and Q¢; = §;, we
get 1(QX) = g(QX, i) = 8(X, Q%) = 8(X, &) = ' (X).

Therefore, TM splits as complementary orthogonal sum of D and ker f. A weak metric
f-structure (f, Q, &, 7', g) is said to be normal if the following tensor is zero:

NOXY) = [fAXY)+2) 5 dr (X V)& (XY € Xpm)-
The Nijenhuis torsion of a (1,1)-tensor S and the derivative of a 1-form w are given by

[S,S](X,Y) = S%[X, Y] + [SX, SY] — S[SX, Y] — S[X,SY] (X,Y € Xu),
dw(X,Y) = (1/2) {X(w(Y)) = Y(w(X)) —w([X,Y])} (XY € Xpm).

Using the Levi-Civita connection V of g, one can rewrite [S, S] as
[S,S](X,Y) = (SVyS — VsyS)X — (SVxS — Vsx9)Y. ®)
The fundamental 2-form ® on (M?"*5, f,Q, &, 17i, ) is defined by
DX, Y)=9(X, fY) (XY € Xpm).
Proposition 1. A weak metric f-structure with condition N'(1) = 0 satisfies

EC,f = d'ﬂ(él/ ) =0,
ay (X, )~y (Y, X) = 3 7 (10X, f¥]),
VgingD, [X,iji]GD (1§i,j§s,X€D).

Moreover, V¢, §j+ Vg & = 0, that is, ker f defines a totally geodesic distribution.

These tensors on a weak metric f-manifold are well known in the classical theory:

NP (X, Y) = (Epx ) (V) = (Epy )(X) = 27 (FX,Y) — 24 (fY, X),
ND(X) = (6 )X = &, £X] — flGi, X),

NP (X) = (g 1) (X) = (! (X)) — 1/ (&, X]) = 2dp) (&, X).

Example 2. Let M?"*S(f,Q, &, 1) be a weak framed f-manifold. Consider the product manifold
M = M2+ x RS, where R® is a Euclidean space with a basis 01, ...,0ds, and define tensors |
and Q on M putting (X, Y5_;a'0;) = (fX — Y5_,4'¢;, Y 177(X)8j) and Q(X,Y5_,a'0;) =
(QX, Y5_,a'd;) for a; € C®(M). It can be shown that ]* = —Q. The tensors ./\/l.(z),./\/im,j\/i]@)
appear when we derive the integrability condition [], ]| = 0 and express the normality condition

NO =0for (f,Q &/ 1)
Define a “small” (1, 1)-tensor Q := Q — Id and note that [Q, f] = 0 and ' 0 Q = 0.
The following new tensor (vanishing at Q= 0)

NO(X,Y,Z) = fZ(g(X,QY)) - fY (3(X,QZ))
+([X,£2],QY) — ¢([X, £Y],QZ) + ¢([Y, £ Z] — [Z, fY] — f]Y. Z], QX),
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which supplements the sequence N (1),./\/;(2),]\/;@,./\/;]{4), is needed to study the weak

metric f-structure. We express the covariant derivative of f using a new tensor N/ OF

2¢((Vxf)Y,Z) =3dd(X, fY, fZ) — 3dD(X,Y,Z) + g(N D(Y, Z), £X)
+ Y0 WP 2) () +2d0' (FY, X) i (2) — 2d' (F2,X) (V) + N O(X,Y, 2),

where the derivative of a 2-form ® is given by

3dD(X,Y,Z) = X®(Y,Z) + YP(Z,X) + ZD(X,Y)
—®([X,Y],Z) — ®([Z,X],Y) — ®(]Y, Z], X).

Note that the above equality yields
3d®(X,Y,Z) = (Vx®)(Y,Z2)+ (Vy ®)(Z,X) + (V2 D)(X,Y). (6)
For particular values of A" (%), we get A" (%) (&, §i,Z) = NOGI(E,Y, gj) = 0and

NOX,&,7) = -NO(X,2,8) =N (2), 0x),
NO(&,Y,Z) = g([8, f2],QY) — 8([&, fY], QZ).

Definition 2. A weak metric f-structure is called a weak almost K-structure if A® = 0. We
define its two subclasses as follows:

(i) A weak almost C-structure if ® and ' (1 < i < s) are closed forms;
(ii) A weak almost S-structure

if the following is valid:
®=dyl=...=dy° (hence, d® =0). ()

Adding the normality condition, we get weak K-, weak C-, and weak S-structures, respectively.
A weak f-K-contact structure is a weak almost S-structure, whose structure vector fields ¢;
are Killing, i.e., the tensor (£¢, ¢)(X,Y) = g(Vy i, X) +g(Vx &, Y) vanishes. Fors = 1,
weak (almost) C- and weak (almost) S-manifolds reduce to weak (almost) cosymplectic
manifolds and weak (almost) Sasakian manifolds, respectively.

Remark 1. The almost S-structure is also called an f-contact structure, e.g., [21]; then, the
S-structure can be regarded as a normal f-contact structure.

Example 3. (i) To construct a weak metric f-structure (f,Q, &, n', ) on the Riemannian product
M = M x R of a weak almost Hermitian manifold (M, f,§) with Q(X,Y) = g(X, fY) and a
Euclidean space (R, dy?), we take any point (x,y) of M and set

&= (09,), 7' = (0.dy), f(X,2,)=(FX,0), QX,2,)=(~F?X,9,),

where X € TyM. Note that V f = 0 if and only if V f = 0. On the other hand, ¥V f = 0 if and only
if dQ) = 0, see (6) with ® = O, i.e., (M, Q) is a symplectic manifold.

(ii) For a weak C-structure, we obtain g((Vxf)Y,Z) = SN ON(X,Y,Z). A weak metric
f-structure with conditions V f = 0 and g([;, &;l, Gx) = 0is a weak C-structure with the property
N G) = 0. For a weak S-structure, we get

STV, 2) = (X, fY) 1(2) = 87X, F2) 1Y) + 3 N O (XY, 2);
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¢; are Killing vector fields and ker f defines a Riemannian totally geodesic foliation. In particular,
for an S-structure, we have

(Vxf)Y =8(fX, fY) &+ (V) f?X. ®)

For a weak almost K-structure (and its special cases, a weak almost S-structure and
a weak almost C-structure), the distribution ker f is involutive (tangent to a foliation).
Moreover, weak almost S- and weak almost C-structures satisfy the following conditions
(trivial for s = 1):

¢, ¢l =0, )
8(VxGi, §j) =0 (X€Xum) (10)

for1 <i,j <s. The following condition is a corollary of (10):
(Ve &) =0 (1<ijk<s). (11)

By (9), the distribution ker f of weak almost S- and a weak almost C-manifolds is tangent
to a g-foliation with an abelian Lie algebra.

Remark 2 ([28]). Let g be a Lie algebra of dimension s. A foliation of dimension s on a smooth
connected manifold M is called a g-foliation if there exist complete vector fields G1,...,Gs on M
which, when restricted to each leaf, form a parallelism of this submanifold with a Lie algebra
isomorphic to g.

3. Main Results

In this section, weak nearly S- and weak nearly C-structures are defined and studied;
some of the statements generalize the results in [13-15].
The restriction on the symmetric part of (8) gives the following.

Definition 3. A weak metric f-manifold is called a weak nearly S-manifold if
(Vxf)Y + (Ve f)X =28(FX, fY) E+7(X) Y +7(Y) X (12)
forall X,Y € Xp1. A weak metric f-manifold is called a weak nearly C-manifold if
(Vxf)Y + (Vyf)X =0. (13)

Example 4. Let a Riemannian manifold (M?"75, ¢) admit two nearly S-structures (or, nearly
C-structures) M?"*(f, Q, &, ', ¢) (k = 1,2) with common Reeb vector fields &; and one-forms

n' = g(&, -). Suppose that f| # f, are such that ¥ := f1f» + faf1 # 0. Then, f := (cost) fi +
(sint) fo for small t > 0 satisfies (12) (and (13), respectively) and

f*=—1d+ (sintcost)yp+Y " _ 7' @&

Thus, (f,Q,&,1',8) is a weak nearly S-structure (and weak nearly C-structure, respectively) on
M?"+S with Q = Id — (sint cost) .

The following condition is trivial when Q = Id tp:

(VxQ)Y =0 (X,Y € Xpn, Y L kerf). (14)
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Using (14), we have

(VxQY =Y _ 7(MN(VxQ)&=-Y _,n"(Y)QVx& (X, Y € Xp).

Example 5. To construct a weak (nearly) C-structure (f,Q,&;,n',g) on the Riemannian product
M = M x R® of a weak (nearly) Kihler manifold (M, f,) and a Euclidean space (R®, dy?), we
take any point (x,y) of M and set

&= (00,), 1 = (O,dy), F(X,0,) = (FX,0), Q(X,d,) = (=F2X,d,),
as in Example 3(i). Note that if Vx (f?) = 0 (X € TM), then (14) holds.
The following result opens new applications to Killing vector fields.

Proposition 2. Both on a weak nearly S-manifold and a weak nearly C-manifold satisfying (9) and
(11), the distribution ker f defines a flat totally geodesic foliation; moreover, if conditions (10) and
(14) hold, then the vector fields ¢; are Killing.

Proof. Putting X = ¢;and Y = §y in (12) or (13), we find (vgjf)gk + (Ve f)Ej = 0; hence,
f (Vg]. &k + Vg, &) = 0. Applying f to this and using (2), we obtain

0=f*(Ve Gk + Ve &) = —Q(Ve &k + Ve &) + 31 1 (Ve Gk + Ve, §) i

Since the (1,1)-tensor Q is nonsingular and (11) is true, we get ng Sk + Vg, ¢ = 0. Combin-
ing this with Véj Sk — Vg, G =0, see (9), yields

Vg & =0 (1<jk<s); (15)
hence, ker f defines a flat totally geodesic foliation. Next, using (15) we calculate
Vel = g(Vegj, ) =0. (16)
Using (10) and (15), we obtain
(£, 8) (%K, ) = 8(Veg; Gk -) = 0.
Taking the ¢;-derivative of (3) and using (14) and VC,- 17i =0, we find (for Y L ker f)

(Ve )X, £Y) + §(FX, (Ve f)Y) = Ve, g(FX, £Y)
— §(X, (Vg Q) + K5y {(Vg ) (X) 7 (Y) + 7 (X)(Vg 7)) (¥)} = 0.

For a weak nearly S-manifold, using (12), (10), and 77 o Q = 0 yields

g((Ve /)X, fY) +8(fX, (Vg £)Y)
= —g((Vxf)Ej fY) = g(f X, (VY f)E) + 8(f*X, fY) +g(f*Y, fX)
= —8(Vx &, fY) —g(f?X, Vy &) = 8(Vx &, QY) +8(QX, Vy &)
=g(Vx &, Y)+8(X,Vy§) +8(Vx &, QY) + 8(QX, Vy &)
= (£, 8)(X,Y) = 8(5j, (VxQ)Y) = g((VyQ)X, &) = (£ 8)(X, ).
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Here, we used g(g;, (V xQ)Y) = 0. For a weak nearly C-manifold, using (13) yields

(£g; 8)(X,Y) = g((Ve, /)X, fY) + g(fX, (Ve £)Y) =0. (17)
From (17), for both cases we obtain Eé], g=0,1ie, Cj is a Killing vector field. O

Remark 3. Note that even for a nearly S-manifold without conditions (9) and (10), the vector
fields &; (1 < i < s) are not Killing; see Corollary 1 in [13].

Theorem 1. There are no weak nearly C-manifolds with conditions (9), (10), and (14) which satisfy
& =dyl = ... = dys; see (7).

Proof. Suppose that our weak nearly C-manifold satisfies (7). Since also ¢; are Killing
vector fields (see Proposition 2), M is a weak f-K-contact manifold. By Theorem 1 in [22],
the following holds:

VE=—f (1<i<s). (18)

By Proposition 6 in [22], the {-sectional curvature of a weak f-K-contact manifold is positive,
ie., K(¢;, X) > 0 (X L ker f). Thus, for any nonzero vector X L ker f, using (13) and (18),
we get

0< K(gi, X) = g(VgiVX:; — vagigi — V[gi,X]gi, X)
=8(~ (Ve )X+ f2X,X) = g((Vxf)&i, X) — g(fX, fX)
= —g(fVx&, X) +g(f*X, X) = 2g(f*X, X).

This contradicts the following equality: g(f?X, X) = —g(fX, fX) <0. O
Corollary 1. There are no nearly C-manifolds with conditions (9) and (10) which satisfy (7).
Theorem 2. A weak nearly C-manifold (MZ”“, f,Q,¢, ;7i, ) satisfies

VE =0 (1<i<s) (19)

if and only if the manifold is locally isometric to the Riemannian product of a Euclidean s-space and
a weak nearly Kihler manifold.

Proof. For all vector fields X, Y orthogonal to ker f, we have
2dy'(X,Y) = g(Vx &, Y) —g(Vy &, X). (20)

Thus, if the condition V¢; = 0 holds, then the contact distribution D is integrable. Moreover,
any integral submanifold of D is a totally geodesic submanifold. Indeed, for X,Y L ker f,
we have ¢(Vx Y, ;) = —g(Y,Vx ;) = 0. Since V¢, ¢; = 0, by de Rham Decomposition
Theorem, the manifold is locally the Riemannian product M x R®. The metric weak f-
structure induces on M a weak almost-Hermitian structure, which, by these conditions, is
weak nearly Kéahler.

Conversely, if a weak nearly C-manifold is locally the Riemannian product M x R?,
where M is a weak nearly Kahler manifold and ¢; = (0,9,:) (see also Example 5), then
dp/(X,Y) =0 (X, Y Lker f). By (20) and V¢, §; = 0, we obtain V§; = 0. [
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Corollary 2. A nearly C-manifold (M?"**, f,&,4', ) satisfies (19) if and only if the manifold is
locally isometric to the Riemannian product of R® and a nearly Kihler manifold.

Theorem 3. Let a weak nearly S-structure satisfy (9), (10), and (14); then, the following is true:
(i)  The condition n o N =0 (1 < j < s) yields diy/ (X, Y) = ®(QX,Y) for all j.
(ii)  The condition (7) yields N (X,Y) = 2®(QX,Y) .

Proof. (i) We calculate, using (5), (12), and 7/ o f = 0,

P (NOX,Y)) —2dn/(X,Y) = g ([f, F1X,Y)) 20/ (T x )Y = (Vv f)X)
© i (Vxf) FY = (Vyf) £X) +48(f2X, fY)
= g(Vxf)Y = (Vv X, &) —45(QX, fY)
= (Vx#))(Y) = (Vy ) (X) — 48(QX, £ Y)
=2dn/(X,Y) - 48(QX, fY).

Here, we used the identity 2dy/(X,Y) = (Vx /) (Y) — (Vy 7)) (X).
Thus, if 7(N M (X,Y)) = 0, then d /(X,Y) = g(QX, fY) = ®(QX,Y) for all j.
(ii) Using d® = 0, (2), (6), and (12), where 7 = Y5_; 1 and & = Y%_, &, we get

T —

3d0(X,Y,Z) = —g((Vxf)Y,Z) + (Vv /)X, Z) = g((Vzf) X, Y)

= —8((VxN)Y.Z) + (= (Vx/)Y +28(fX, fY) T+ 1(X) f2Y +71(Y) f*X, Z)
+8((Vxf)Z -28(fX, f2) — 1(X)f*Z — 1(Z)f*X, Y)

= —38((Vxf)Y,Z) = 38(f*X,Y) 1(Z) +38(f*X, Z) i (Y).

Thus, (8) holds. Using (8) in (5) gives

[f f1=28(f*X, fY)§ = —28(QX, fY) § = —2®(QX,Y)¢,
hence, N (X,Y) =2®(QX,Y)& O

A consequence of Theorem 3 is a rigidity result for S-manifolds; see Theorem 1 of [13].

Corollary 3. A normal nearly S-structure is an S-structure.

4. Submanifolds of Weak Nearly Kdhler Manifolds

Here, we study weak nearly S- and weak nearly C- submanifolds in a weak nearly
Kahler manifold. The second fundamental form h of a submanifold M C (M, §) is related
with V (the Levi-Civita connection of § restricted to M) and V (the Levi-Civita connection
of metric g induced on M via the Gauss equation) by

VxY = VxY+h(X,Y) (X, Y € Xp). (21)

A submanifold is said to be totally geodesic if & = 0. The shape operator Ay : X — —VxN
with respect to a unit normal N is related with / via the equalities

(X, Y) = §(h(X,Y),N) = g(AN(X),Y) (XY € Zp). 22
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Lemma 1. Let (M, f, ) be a weak Hermitian manifold and M?"+$ a submanifold of codimension
s equipped with mutually orthogonal unit normals N; (i = 1,...,s) satisfying the condition

SNy Nj) =0 (1<ij<s) (23)
(trivial for s = 1). Then, M inherits a metric weak f-structure (f,Q,&;,n',g) given by
Gi=fNi =8Ny, ) (i=1,....5), g=3lm
f=F+ i8Ny )N, Q= —F2+ Y 8(F*N;, )N (24)
Moreover, (14) holds on M if f?N; L TM (1 <i < s) and
(VxfAY)T =0 (X, Y €Xp, Y Lkerf).
Proof. Using the skew-symmetry of f and (23), we verify (2):
f2X = f(FX = Y0, §(FX, Ni) Ny)
= f(FX =Y 8(FX,N)) Ni) — g(f(fx Z] $(fX,Ni) Nj), N;) N;
:fZX_Z'__Z N Zz 1gf Xf +21] 1ngN) (_fNi/Nj)Nj
:_QX+21177 )Gi (X € Xm).
Since f? is negative-definite, for nonzero X € X, we obtain ¢(N;, X) = 0 and
9(QX,X) = g(—F2X + Y, 2(F2N, X) N;, X) = —g(F2X, X) > 0,
hence, the tensor Q is positive-definite on TM. Then, we calculate (VxQ)Y for X,Y € X
and Y 1 ker f, using (21) and (24) and the condition f?N; 1. TM (1 <i < s):
(Vx Q)Y = Vx(QY) — Q(VxY)
= {Vx(=PY+Y_ (PPN, Y)Ni) —h(X,QY) + F*(VxY — h(X,Y))
— Y 8PN VXY —h(X, V)N
= (=(Vx(PV)) + F(VxY) " = Y, 8(FNi Y) An X
~(VxfY)7,
where " is the TM-component of a vector. This completes the proof. [

The following theorem characterizes weak nearly C- and weak nearly S-submanifolds
of a nearly Kéhler manifold, using the property of the second fundamental form.

Theorem 4. Let (M, f, ) be a weak nearly Kihler manifold and M>"+ a submanifold of codimen-
sion s equipped with mutually orthogonal unit normals N; (i = 1,...,s) satisfying (23). If the
second fundamental form of M and the induced metric weak f-structure (f,Q,&;,n',g) on M,
given by (24), satisfy

() i (X, Y) = g(QX, ) + 300y (i (8 Gi) = 8j) 0/ (X) 1Y),
(i0) by (X, Y) = 375y i (8,860 0/ (X) (Y, (25)

and

g (6, k) = hny (61, 8k) (1 <1i,j <), (26)
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then (f,Q,&i,n',g) is
(i) a weak nearly S-structure; (i) a weak nearly C-structure. (27)

Proof. Substituting

fY=fy=Y _ gfN,Y)N;=fY-Y"_ #'(Y
in (Vxf)Y, where X,Y € X, and using (21) and Lemma 1, we obtain
(Vxf)Y = Vx(fY) - f(VxY) = (Vxf) Y+ZS 1 {’7i JANX — hn (X, Y) &}
+21 X 7' (VxY) +hn (X, fY)}N;.

Thus, the TM-component of the weak nearly Kadhler condition (1), using (21) and (22), takes
the form

(VY +(VyHX) " = (Vx)Y + (Vyf)X
+le{;7 JANY + 7 (Y)ANX — 20N (X, Y) &} = 0. (28)

Using (22), one can show that (25) is equivalent to the following:
(Z) ANIX = 7f2X + Zﬁ;/k:1 hNi (gjl ék) ”](X) (:k/
(if) AN X = Zs},kzl hn, (87, 8 1/ (X) & (29)
(i) If we have a weak nearly S-structure, see (12), then from (28) we get
28(FX, fY)E+n(YV) X +7(X) f2Y
+ Y I (XDANY + 7' (V) AN X — 20y, (X, Y) &} =0, (30)

Substituting the expressions of hiy, (X, Y) and Ay, see (25)(i) and (29)(i), in (30) and using
(26) gives identity; thus, we obtain a weak nearly S-structure on M.

(ii) If we have a weak nearly C-structure, see (13), then from (28) we get
Yo (X)ANY + 7' (V) AN X = 2y, (X, Y) &} = 0. (31)

Substituting the expressions of hy, (X, Y) and Ay, see (25)(ii) and (29)(ii), in (31) and using
(26) gives identity; thus, we obtain a weak nearly C-structure on M. [

For Q = 1d, the properties of (25) lead us to the following.

Definition 4. A codimension s submanifold M?"*$ of a Hermitian manifold (M, £,3),
equipped with mutually orthogonal unit normals N; (i = 1,...,s) satisfying

N (X Y) = aig(X,Y) + Y5y bijut (X) 7 (Y), (32)

where a;, b; ;. € C*(M) and 7' (1 < i < s) are linear independent one-forms on M, will be
called an s-quasi-umbilical submanifold. For s = 1, condition (32) reads as follows, see [15]:

hn(X,Y) = a1 g(X,Y) + by n(X) n(Y).

The geometric meaning of (32) is that the restriction of /iy, on the distribution (’_; ker i
looks similar to & for totally umbilical submanifolds: & = (traceg i/ dim M) g.
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The following consequence of Theorem 4 extends the fact (see Theorem 4.1 in [14])
that a hypersurface of a nearly Kéhler manifold is nearly Sasakian or nearly cosymplectic if
and only if it is quasi-umbilical with respect to the almost contact form.

Corollary 4. Let (M, f, ) be a nearly Kihler manifold and M?>"*S a submanifold of codimen-
sion s equipped with mutually orthogonal unit normals N; (i = 1,...,s) satisfying (23), and
(f, &1’ ¢ = glm) the induced metric f-structure on M, given by

Gi :fNi/ 77i :g_(fNir ) (i: 1,...,5), f:f+zsj:18_(fN" )N]
If M2 is an s-quasi-umbilical submanifold (with respect to the 1-forms 1'),

(i) hn, (X, Y) = g(X, Y) + Zs},kzl (i, (&3, &) = 6jx) 1 (X) 1 (Y),
(i) hn, (X, Y) = Zsj-,kzl hn, (81, 80 1 (X) " (Y),

and (26) are true, then (f,&;,n',g) is (i) a nearly S-structure; (ii) a nearly C-structure.

5. Conclusions

We have shown that weak nearly S- and weak nearly C-structures are useful for
studying metric f-structures, e.g., totally geodesic foliations, Killing vector fields, and
s-quasi-umbilical submanifolds. Some classical results have been extended in this paper
to weak nearly S- and weak nearly C-manifolds with additional conditions. Based on
the numerous applications of nearly Kéhler, nearly Sasakian, and nearly cosymplectic
structures, we expect that weak nearly Kéhler, S- and C-structures will be useful for
geometry and theoretical physics, e.g., for NGT, the theory of s-cosymplectic structures and
s-contact structures, multi-time Hamiltonian systems, and s-evolution systems.

Funding: This research received no external funding.
Data Availability Statement: No new data were created or analyzed in this study.

Conflicts of Interest: The author declares no conflicts of interest.

References

1. Yano, K. On a Structure f Satisfying f> + f = 0; Technical Report No. 12; University of Washington: Washington, DC, USA, 1961.

2. Blair, D.E. Geometry of manifolds with structural group U(n) x O(s). J. Differ. Geom. 1970, 4, 155-167. [CrossRef]

3. Ludden, G.D. Submanifolds of manifolds with an f-structure. Kodai Math. Semin. Rep. 1969, 21, 160-166. [CrossRef]

4. Cabrerizo, ].L.; Fernandez, L.M.; Fernandez, M. The curvature tensor fields on f-manifolds with complemented frames. An.
Stiint. Univ. Al. 1. Cuza Iasi 1990, 36, 151-161.

5. DiTerlizzi, L.; Pastore, A.M.; Wolak, R. Harmonic and holomorphic vector fields on an f-manifold with parallelizable kernel. An.
Stiint. Univ. Al. I. Cuza Iausi Ser. Noua Mat. 2014, 60, 125-144. [CrossRef]

6. Di Terlizzi, L. On the curvature of a generalization of contact metric manifolds. Acta Math. Hung. 2006, 110, 225-239. [CrossRef]

7. Cappelletti Montano, B.; Di Terlizzi, L. D-homothetic transformations for a generalization of contact metric manifolds. Bull. Belg.
Math. Soc. Simon Stevin 2007, 14, 277-289. [CrossRef]

8.  Carriazo, A; Fernandez, L.M.; Loiudice, E. Metric f-contact manifolds satisfying the (k, yt)-nullity condition. Mathematics 2020, 8,
891. [CrossRef]

9. Fitzpatrick, S. On the geometry of almost S-manifolds. ISRN Geom. 2011, 2011, 879042. [CrossRef]

10.  Goertsches, O.; Loiudice, E. On the topology of metric f-K-contact manifolds. Monatshefte Math. 2020, 192, 355-370. [CrossRef]

11.  Gray, A. Nearly Kéhler manifolds. J. Differ. Geom. 1970, 4, 283-309. [CrossRef]

12.  Balkan, Y.S.; Aktan, N. Deformations of Nearly C-manifolds. Palest. |. Math. 2019, 8, 209-216.

13.  Aktan, N.; Tekin, P. An introduction to the new type of globally framed manifold. AIP Conf. Proc. 2017, 1833, 020051. [CrossRef]

14. Blair, D.E.; Showers, D.K.; Yano, K. Nearly Sasakian structures. Kodai Math. Sem. Rep. 1976, 27, 175-180. [CrossRef]

15.  Rovenski, V. Weak nearly Sasakian and weak nearly cosymplectic manifolds. Mathematics 2023, 11, 4377. [CrossRef]


http://doi.org/10.4310/jdg/1214429380
http://dx.doi.org/10.2996/kmj/1138845878
http://dx.doi.org/10.2478/aicu-2013-0001
http://dx.doi.org/10.1007/s10474-006-0018-8
http://dx.doi.org/10.36045/bbms/1179839219
http://dx.doi.org/10.3390/math8060891
http://dx.doi.org/10.5402/2011/879042
http://dx.doi.org/10.1007/s00605-020-01400-z
http://dx.doi.org/10.4310/jdg/1214429504
http://dx.doi.org/10.1063/1.4981699
http://dx.doi.org/10.2996/kmj/1138847173
http://dx.doi.org/10.3390/math11204377

Mathematics 2025, 13, 3169 13 of 13

16.
17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

27.

28.

Berestovskij, V.N.; Nikonorov, Y.G. Killing vector fields of constant length on Riemannian manifolds. Sib. Math. ]. 2008, 49,
395-407. [CrossRef]

de Almeida, U.N.M. Generalized K-contact structures. J. Lie Theory 2024, 34, 113-136.

Finamore, D. Contact foliations and generalised Weinstein conjectures. Ann. Glob. Anal. Geom. 2024, 65, 27. [CrossRef]

Leok, M.; Sardén, C.; Zhao, X. Integration on g-Cosymplectic Manifolds. arXiv 2025, arXiv:2509.16587.

Rovenski, V.; Wolak, R. New metric structures on g-foliations. Indag. Math. 2022, 33, 518-532. [CrossRef]

Rovenski, V. Metric structures that admit totally geodesic foliations. J. Geom. 2023, 114, 32. [CrossRef]

Rovenski, V. Einstein-type metrics and Ricci-type solitons on weak f-K-contact manifolds. In Proceedings of the 4th International
Workshop on Differential Geometry, Haifa, Israel, 10-13 May 2023; Differential Geometric Structures and Applications; Rovenski,
V., Walczak, P.,, Wolak, R., Eds.; Springer: Cham, Switzerland, 2023; pp. 29-51.

Moffat, ].W. A new nonsymmetric gravitational theory. Phys. Lett. B 1995, 355, 447-452. [CrossRef]

Ivanov, S.; Zlatanovi¢, M. Connection on Non-Symmetric (Generalized) Riemannian Manifold and Gravity. Class. Quantum
Gravity 2016, 33, 075016. [CrossRef]

Zlatanovi¢, M.; Rovenski, V. Applications of weak metric structures to non-symmetrical gravitational theory. arXiv 2025,
arXiv:2508.08021. [CrossRef]

Herrera, A.C. Parallel skew-symmetric tensors on 4-dimensional metric Lie algebras. Rev. Union Mat. Argent. 2023, 65, 295-311.
[CrossRef]

Rovenski, V.; Zlatanovi¢ M. Weak metric structures on generalized Riemannian manifolds. arXiv 2025, arXiv:2506.23019.
[CrossRef]

Alekseevsky, D.; Michor, P. Differential geometry of g-manifolds. Differ. Geom. Appl. 1995, 5, 371-403. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.1007/s11202-008-0039-3
http://dx.doi.org/10.1007/s10455-024-09957-w
http://dx.doi.org/10.1016/j.indag.2021.11.001
http://dx.doi.org/10.1007/s00022-023-00696-0
http://dx.doi.org/10.1016/0370-2693(95)00670-G
http://dx.doi.org/10.1088/0264-9381/33/7/075016
http://dx.doi.org/10.48550/arXiv.2508.08021
http://dx.doi.org/10.33044/revuma.2451
http://dx.doi.org/10.48550/arXiv.2506.23019
http://dx.doi.org/10.1016/0926-2245(95)00023-2

	Introduction
	Preliminaries
	Main Results
	Submanifolds of Weak Nearly Kähler Manifolds
	Conclusions
	References

