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Abstract

Generative adversarial networks (GANs)-based image deep learning methods are useful to
improve object visibility in nighttime driving environments, but they often fail to preserve
critical road information like traffic light colors and vehicle lighting. This paper proposes
a method to address this by utilizing both unpaired and four-channel paired training
modules. The unpaired module performs the primary night-to-day conversion, while the
paired module, enhanced with a fourth channel, focuses on preserving road details. Our
key contribution is an inverse road light attention (RLA) map, which acts as this fourth
channel to explicitly guide the network’s learning. This map also facilitates a final cross-
blending process, synthesizing the results from both modules to maximize their respective
advantages. Experimental results demonstrate that our approach more accurately preserves
lane markings and traffic light colors. Furthermore, quantitative analysis confirms that our
method achieves superior performance across eight no-reference image quality metrics
compared to existing techniques.

Keywords: cycle-consistent generative adversarial network (CycleGAN); four-channel
paired training; L-channel; road light attention mask

MSC: 68T45

1. Introduction

Generative adversarial networks (GANs) have gained significant attention in the
field of computer vision for generating new data and have been widely applied across
diverse industries [1]. Among these GAN-based models, pix2pix, a conditional GAN, uses
paired datasets comprising input and target images to learn image-to-image translation [2].
This model can be employed for various tasks, such as image synthesis or grayscale-to-
color conversion of photos to color images [3]. However, pix2pix requires paired datasets,
limiting the data collection process.

Thus, cycle-consistent GAN (CycleGAN), which employs unpaired datasets, has
been proposed to address this problem [4]. Due to its advantages, CycleGAN has been
widely used in diverse fields [5], including medical image enhancement, photograph style
transfer, and nighttime image conversion. The vision system in autonomous driving plays a
crucial role in recognizing road information to enhance driving safety. Recent studies have
employed CycleGAN to detect road object information in nighttime driving settings [6].
However, the visibility of essential visual elements (e.g., traffic lights and road noise), which
are critical in nighttime driving, remains challenging to improve.
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As CycleGAN learns nighttime-to-daytime image conversion using unpaired datasets,
it acquires data more easily than models that employ paired datasets. However, by training
on unpaired datasets, CycleGAN can convert nighttime images to daytime images but loses
critical object information that a driver must recognize during driving. Figure 1 illustrates
how an unpaired training module loses traffic light colors and vehicle taillight information.
During image conversion, dark areas are selectively enhanced, removing light information
(e.g., traffic signal lights or vehicle illumination) due to the learning process. This limitation
arises because unpaired datasets are employed for training, making it difficult to specify
and convert certain features, limiting the effectiveness of nighttime-to-daytime conversion.
The proposed method applies the unpaired training module and supplements it with a
paired training module to address this problem.

(b)

Figure 1. Input (night images) and resulting images using the unpaired training module: (a) input

images and (b) unpaired training module images.

A sufficient dataset is required to effectively train the paired learning module. Oth-
erwise, the learning module may overfit the results to the characteristics of the limited
data, leading to poor conversion performance on general images [7]. However, collecting
perfectly aligned night-day image pairs in real-world conditions is challenging.

In this paper, daytime images are first processed through the unpaired module to gen-
erate synthetic nighttime counterparts, which are then paired with their original daytime
images to construct a paired dataset. Additionally, a four-channel learning approach with
light-road information is introduced to enhance the learning performance of the paired
learning module. This paper complementarily employs the unpaired learning module and
four-channel paired learning module to preserve or enhance traffic light colors, vehicle
lighting, and road information when converting images from nighttime to daytime. A road
light attention (RLA) map is applied to the images generated by each module to maximize
their advantages, and a cross-blending technique is proposed to combine the results from
the two modules.

In summary, this study makes the following contributions.

e A dual-module framework integrating an unpaired training module for global, stylistic
conversion and a four-channel paired module for preserving fine details.
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e An inverse road light attention (RLA) map utilized as a fourth input channel to
explicitly guide the network in preserving critical luminous features like traffic lights.

e An RLA-map-based cross-blending technique to seamlessly fuse the outputs, combin-
ing natural backgrounds from the unpaired module with the detailed foregrounds
from the paired module.

This paper is organized as follows. Section 2 reviews studies related to image enhance-
ment methods and image-to-image translation using learning techniques. Next, Section 3
explains the proposed method, including the CycleGAN training strategy, the application
of the RLA map, and the cross-blending approach. Then, Section 4 presents the experimen-
tal results and comparative analysis. Finally, Section 5 concludes the paper and suggests
directions for future research.

2. Related Work
2.1. Low-Light Surrounding Image Enhancement

Low luminance image enhancement is a technique that improves the visual quality
of images, aiming to produce sharper, more natural images by adjusting the contrast and
reducing color distortion in footage taken in low-light environments. High dynamic range
(HDR) enhancement and tone mapping techniques are crucial methods for effectively
preserving details in images where dark and bright areas coexist. The HDR enhancement
processes images with a wide range of contrasts, preserving details in dark areas and
preventing overexposure in bright areas. The multiexposure fusion technique is a repre-
sentative method that combines several images captured with various exposure values to
achieve an optimal contrast balance [8].

Additionally, the Retinex-based HDR processing technique separates lighting and
reflection components to ensure color constancy while adjusting the image brightness and
contrast. Approaches based on the Retinex theory reduce color distortion and enhance
details, even in low-light images [9,10]. Along with HDR enhancement, tone mapping
techniques are critical in converting HDR images to a range that can be represented on a
typical display [11,12].

Global tone mapping adjusts the brightness range by applying the same transformation
function to the entire image, offering the advantage of simplicity and low computational
cost. However, tone mapping can result in excessive contrast reduction in some image
regions, and local tone mapping is applied when more sophisticated adjustments are
needed. Local tone mapping adjusts the local contrast of the image, allowing for more
detailed control of brightness, but this can increase the computational cost due to the
calculation complexity.

In addition, histogram-based methods are also widely used as image enhancement
techniques [13]. For example, histogram equalization adjusts the luminance distribution
of the image to improve overall contrast uniformly [14]. However, the HE technique
can result in unnatural artifacts due to excessive contrast enhancement, leading to the
development of contrast-limited adaptive histogram equalization [15], which performs
histogram equalization on localized regions of the image and applies a contrast limitation
to prevent excessive contrast adjustment. Although these traditional methods have been
widely used for image enhancement tasks, they have limitations in handling complex image
characteristics or adapting to various image types. Learning-based approaches to overcome
these limitations have recently gained attention, with ongoing research on image-to-image
translation [1-4].
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2.2. Image-to-Image Translation

Image-to-image translation transforms an input image into a different domain while
retaining essential structural content and adapting to the target domain’s characteristics [3,4,16].
Image-to-image translation is widely employed in diverse tasks, including style transfer, image
synthesis, and image segmentation [17,18]. Learning the mapping between various image
domains is essential to enable image-to-image translation, and generative models are
crucial for performing this task [19,20].

Generative models learn the distribution of given data and can generate new data.
Representative examples of such models include GANs and variational autoencoders
(VAEs) [1,2,20,21]. Further, GANs operate via a competitive learning process between
two networks: the generator and discriminator. The generator creates data, whereas the
discriminator determines whether the generated data are real or fake. This process enables
the generation of increasingly realistic data. For example, GANSs can transform a horse
into a zebra or change a summer landscape into a winter landscape. In addition, VAEs
approximate data distributions and can generate new data by learning the latent space of
the data. For instance, VAEs can generate new images of digits by learning the MNIST
dataset of handwritten numbers or produce new facial images using the CelebA dataset of
faces [22].

The generative model employed in this paper, CycleGAN, learns to transform images
using two domain datasets without paired images. In addition, CycleGAN comprises
two generators (G and F) and two discriminators (Dx and Dy) to mitigate the problem of
mode collapse, where the generator does not consider the input features, and all inputs are
crowded into one mode [23]. The first generator (G) performs the forward transformation,
converting the input image into an output image. The second generator (F) performs
the reverse transformation, converting the output image back into the input image. The
forward and reverse transformations apply the standard adversarial loss, represented
as follows:

LGAN(G/ Dy, X, Y) = Eywpdﬂtﬂ(y) [ZOgDy(]/)] + Eprdata(x) [log(l — Dy(G(X))], (1)

where G denotes the generator responsible for transforming domain X into domain Y, and
Dy represents the discriminator that distinguishes whether an image from domain Y is real
or fake. Moreover, X represents the original domain before transformation, and samples
from this domain are denoted by x ~ pu(y)- Similarly, Y indicates the target domain after
transformation, and samples from this domain are denoted by y ~ p,,(,)- In addition,
E represents the expectation. The first term encourages discriminator Dy to recognize
images y belonging to the real domain Y as real. In contrast, the second term forces
discriminator Dy to recognize the fake Y image G(x), generated by G from an image x
belonging to domain X, as fake.

After passing through the generators G and F, the image returns to its original form,
and this process is referred to as cycle consistency, which can be achieved by introducing
the adversarial loss described earlier and the cycle-consistency loss. The cycle-consistency
loss calculates the difference between the original image and transformed image when the
generated image is converted back into the input image, using this difference as the loss
value. Equation (2) represents the cycle-consistency loss:

Leyete(G/ F) = Exppya (I F(G(x)) = % [l1] + Eymppay Il GEEW)) =y [h], ()

where the first term represents the expectation of the absolute difference between the
original image x from domain X and the result of applying the forward mapping G(x)
followed by the reverse mapping F(G(x)). Similarly, the second term represents the
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Ltotal (G, F, DX/ Dy)

expectation of the absolute difference between the original image y from domain Y and the
outcome of applying reverse mapping F(y) followed by forward mapping G(F(y)).

In addition, to preserve the color composition of the image, an identity loss (L;gentity)
is used. This loss encourages the generator to be identity mapping when a real image from
the target domain is provided as input. It is defined as follows:

Lidentity(GrF) = EyNPdm(y) [H G(]/) -y ”1] + EXNPdm(x) [H F(x) - X ||1], (3)

where the first term calculates the expectation of the L1 difference between a target domain
image y and the output of the generator G(y). This encourages G to be identity mapping
when real images from its target domain Y are provided as input. Similarly, the second
term measures the difference between an original domain image x and the output F(x),
encouraging generator F to also preserve the attributes of inputs from domain X. This loss
is particularly effective at preserving the color composition of the original image.

Equation (4) represents the final loss, combining the adversarial loss, cycle-consistency
loss, and identity loss described earlier:

= Lcan(G, Dy, X,Y) + Lgan(F, Dx, Y, X) + AcyeLeyete (G, F) + Aigentity Lidentity, 4)

where Lyoq1 (G, F, Dx, Dy) denotes the combined adversarial loss, cycle-consistency loss,
and identity loss of the two domains. The Acyec and Ajgentir, are hyper-parameters that
control the relative importance of the cycle-consistency and identity losses.

The main task of this study can be performed using CycleGAN. Recent research on
CycleGAN has applied it to address the problem of nighttime vehicle detection [6]. A
method has been proposed where a synthetic nighttime image is generated using daytime
images to reduce the domain gap between daytime and nighttime environments, and this
synthetic nighttime image is applied to train a nighttime vehicle detection model. This
approach enables learning without nighttime data annotations, but due to the transforma-
tion limitations of CycleGAN, unrealistic lighting effects may occur, making it challenging
to replicate nighttime environments perfectly. Generating synthetic nighttime images is
relatively more straightforward than generating fake daytime images, but this process
causes the loss of object information.

Additionally, night-to-day image translation enables improved object and location
estimation in nighttime environments [24]. To this end, methods like ToDayGAN and Com-
boGAN have been proposed to enhance the original CycleGAN framework [25]. However,
as these methods still struggle with the inherent trade-off between stylistic conversion and
content preservation, the fine details of critical objects are often not adequately preserved.

Addressing this challenge of detail preservation has become a primary research direc-
tion with several key strategies emerging. One strategy focuses on enhancing the feature
representation within the GAN itself using data-driven attention. For instance, the Self-
Attention GAN (SAGAN) incorporates self-attention layers to capture long-range spatial
dependencies, improving global coherence [26]. Another strategy involves creating hy-
brid models that combine generative approaches with other image enhancement theories.
Recent studies have explored this by integrating principles from physical models like
dehazing [27] or by using Retinex-based methods with fuzzy logic to more faithfully restore
color and illumination [28]. A third direction aims to improve real-world generalization
and reduce artifacts, which is crucial when training on synthetic data. To this end, recent
work in related fields like image deblurring has employed meta-tuning strategies to help
networks adapt to new types of real-world degradation, thereby enhancing robustness [29].

In contrast to these approaches that rely on dynamically learned attention, hybrid
theories, or advanced training strategies, the method proposed in this paper introduces
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an explicit guidance strategy. This involves providing a pre-computed RLA map, based
on domain-specific knowledge (e.g., nighttime road lighting), as an additional guidance
channel to the network. The goal is to supply a strong, deterministic prior to the translation
process, thereby ensuring the preservation of critical object details.

3. Proposed Method
3.1. Overview of the Proposed Method

Figure 2a illustrates the training stage, which comprises an unpaired training module
and a four-channel paired training module. In contrast, Figure 2b shows the image syn-
thesis stage, where a cross-blending technique is applied to combine the results from both
modules, maximizing their respective advantages to produce the final output.

Unpaired Dataset

(" Unpaired Night-To-Day Module

(Synthetic Night Images)

Unpaired Training Module 4-Channel Paired Training Module
Paired Dataset
CycleGAN CycleGAN
= B |
{ e " PRI VYR Sy Lo LA Generator
2y p
PatchGAN PatchGAN
Discriminator| I
Discriminator|
Night Day Inverse *RLA_Map
[Next Module
Input Data l
Linear
lightmap Paired Night-to-Day Module

* Road Light Attention_Map

(a)
Image Area Selection q
. . . Cross Blendin
Using Road Light Attention Map 8
Unpaired Training Module Inverse Generated Image
RLA_map .
with Inverse
' RLA_map
2 e i (1» . 1
Unpaired j ] N ' =
Module el i
- Proposed Result
. Generated 3
Testing Input ! ;
\ Image / S -
4-Channel Paired Training Module Generated
s RLA_map Image with
B RLA_map
P ¢ l’ﬂi
Paired b ]
Module
Testing I Generated
\estmg nput Image /

® : This symbol denotes 'combine’

(b)

Figure 2. Overview of the flow chart: (a) a training stage where an unpaired module generates
synthetic data for a four-channel paired module and (b) an image synthesis stage where the outputs
are fused using RLA-map-based cross-blending to produce the final image.
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The first CycleGAN module focuses on unpaired training to generate daytime im-
ages, which effectively support night-to-day translation. However, the detailed object
information that must be recognized in real driving scenarios may be lost. An additional
paired training CycleGAN module, based on four-channel input, is designed to address
this problem. This module was created by augmenting data and adding a light information
channel. The upper area of the daytime images (generated by the unpaired training mod-
ule) and the lower area of the daytime images (converted via the paired training module)
were selectively blended using the RLA map to preserve road details while effectively
performing nighttime-to-daytime image translation. Sections 3.2 and 3.3 provide further
details on the night-to-day image conversion training process and the image area selection
and cross-blending process, respectively.

3.2. Night-to-Day Image Conversion Training Process

The first CycleGAN module, the unpaired module, focuses on nighttime-to-daytime
image translation across the entire image and is employed for data augmentation with
limited paired day and night images. The nighttime images generated by the first module
are paired with daytime images of the same background to form the dataset for the second
CycleGAN module, the four-channel paired training module. During this process, artifacts
are often observed in the upper region of the generated nighttime images, which can be re-
solved by applying a linear light map to the image. Figure 3 presents the results of applying
a linear light map to the nighttime images generated by the unpaired training module.

Paired Data Augmentation

Synthetic Night Images

Final Synthetic Night Images Paired with
Corresponding Day Images

Linear Light Map

Figure 3. Data augmentation using an unpaired training module.

Equation (5) defines the linear light map that is applied to mitigate this noise and
enhance the quality of the image:

min (255, 724 + 1)

Mlineur_light_map (y) = 255 ,0<y<H-1, (5)

where Mlimm_light_map(y) denotes the linear light map function, y represents the vertical
coordinate in the image, and H denotes the total height of the image. As y increases from 0
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to H — 1, Miinear_tight_map(y) increases linearly from the average intensity value (1) of the
image to 255. After applying the min function to ensure that the value does not exceed
255, the value is normalized by dividing it by 255, resulting in a value between 0 and 1.
Algorithm 1 illustrates the data augmentation process, including creating the TodayGAN
light map in the unpaired training module.

Algorithm 1 Unpaired Training Module

Require: Unpaired input images: I M gayr TN iant
. synthetic
1: Let Imgnight
. synthetic
21 night
3: Compute the linear light map Myinear 1ight_map (¥)as follows:

min (255,22 4
: Miinear_light_map (v) = %

be the output of the unpaired training module

= UnpairedTrainingModule(Img 5, , Img o)

: where 0 <y < H — 1, and u denotes the mean intensity of the image
synthetic
night

inal_synthetic __ synthetic
D Im night - gnight x Mlineur?light?map (]/)

: Compute the final Img using the linear light map:

©® N o da e

inal_synthetic

: Return Im night

The CycleGAN method was initially designed for unpaired image translation. How-
ever, this study employs a paired training strategy to preserve local lighting details during
night-to-day translation, as unpaired training often fails to maintain critical object informa-
tion essential for driving environments. Figure 4 depicts the daytime images converted
via the unpaired and paired CycleGANSs, respectively. Figure 4b presents the result of
training with the unpaired CycleGAN, highlighting artifacts such as distortions in traffic
light and vehicle taillight colors. In contrast, the daytime images converted using the paired
training module display better transformation of the traffic lights and preserve vital road
information, demonstrating that the paired training module outperforms the unpaired
training module in terms of traffic light representation. In this paper, the paired CycleGAN
module is applied complementarily to the unpaired CycleGAN module to preserve the
object details in the input images.

Figure 4. Image comparison of the unpaired and paired training modules: (a) input images, (b) un-
paired resulting images, and (c) paired resulting images.
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As mentioned, using the paired training module to convert input nighttime images
to daytime images preserves traffic light and vehicle taillight color information. A four-
channel paired training module is introduced to maximize the advantages of this paired
training, including additional light information in the input compared to the conventional
red, green, and blue (RGB) three-channel approach. This expansion increases the channel
dimension of the input tensor from three to four, and the filter size in the first convolutional
layer of the generator and discriminator changes from k x k x 3 to k x k x 4. The key
to four-channel paired training is to prevent artifacts by slowing the learning of bright
light-source regions, which are physically prone to saturation, and to achieve natural results
by strengthening the learning of the perceptually more important surrounding background
regions. To achieve this, an inverse RLA map is introduced and learned in the fourth
dimension. Figure 5 illustrates the process of generating the inverse RLA map.

Inverse Road Light Attention Map

Night Image

Bilateral
Filter

Light Information

RLA_map Inverse RLA_map

Exponential Light Map

Figure 5. Inverse road light attention map process.

The proposed inverse RLA map can be generated by processing the light information
extracted from the input nighttime image using a bilateral filter, followed by applying
an exponential light map. Unlike the linear light map in the unpaired training module,
the exponential function enables the construction of a steep gradient map. By applying
the exponential function, the paired training module can select critical areas to focus on
via four-channel training. In addition, applying the inverse to the generated RLA map
and darkening the traffic light and taillight areas enhance the training of these regions.
Equation (6) mathematically represents the process of generating the inverse RLA map:

) ¥
I”WVSBRLAMMW =1- leateral([night(x,y) X (%) ), (6)

where the input is the brightness information of the nighttime image I;;jo, and a bi-
lateral filter preserves the edges while generating a natural lighting distribution. Then,
an exponential light map is generated by applying an exponential coefficient y to the
normalized vertical coordinate (#), where y denotes the vertical coordinate in the
image and H indicates the total image height. This light map, combined with the
bilateral filter, smoothly extracts the influence of bright lighting areas in the night-
time image and generates an RLA map that increases the relative weight of the lower
road areas. Finally, the inverse RLA map is obtained by applying an inversion op-
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eration to the generated RLA map. In this study, 7 is set to 2, which results in
a brightness weight that gradually increases from the top and sharply increases to-
ward the bottom. Algorithm 2 details the process of generating the inverse RLA map.

Algorithm 2 Inverse Road Light Attention (RLA) Map Generation

Require: Input: Im gﬁ;zl;sy nihetic

1: Convert the RGB images to the LAB color space:

. inal_syntheti
Img; ., = Lab converted version of Imgifizngsyn e

2: Extract the L-channel: L., = 1 mgliub

3: Apply the bilateral filter: Ly, pijaterqs = BilateralFilter(Ly,)

4: Compute the exponential light map: My, jigni(y) = (%), where v =2
5. Generate the RLA map:

MRLA_map (X, y) = Lchbi,mm, (X, y) X Mexp_light (y)

6: Invert the attention map:

MinvﬁRLAfmap (x, y) =1- MRLA_mup (X, y)

7: Return MinvﬁRLAfmap

By incorporating the generated inverse RLA map into the existing RGB three-channel
input method during training, a four-channel paired training module is created, which per-
forms nighttime-to-daytime image conversion and detail enhancement. Figure 6 illustrates
the four-channel paired training process.

4 Channel Paired Training

Inverse RLA_map

4 Channel Input Data
4 Channel Paired
Night Image 3 Channel RGB g‘é Training Module
A — i Resnet PatchGAN
Generator Discriminator

1 Channel Inverse
RLA_map

Figure 6. Four-channel paired training process.

This paired training approach preserves critical road features, such as traffic lights
and vehicle lighting, and ensures stable transformation of road areas. This four-channel
paired training module maximizes the advantages of paired training in maintaining critical
road information. Figures 7 and 8 demonstrate the benefits of this four-channel paired
training module.

Figure 7 reveals that the four-channel paired training module produces daytime
images with more stable transformation of road areas than the three-channel paired training
module. In the four-channel training, the incorrect light transformation effects observed
in the lower regions in the three-channel training are considerably reduced, resulting in a
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clearer and more natural preservation of essential visual road information, such as lane
markings and surrounding objects.

Figure 7. Input (night images) and resulting images highlighting light conversion errors: (a) input
images, (b) three-channel paired training images, and (c) four-channel paired training images.

(@) (b) (©

Figure 8. Input (night images) and resulting images highlighting light clarity: (a) input images,
(b) three-channel paired training images, and (c) four-channel paired training images.

The proposed method addresses problems that could not be resolved by the conven-
tional three-channel training approach, such as the reduced clarity of vehicle lights and
excessive light diffusion. In nighttime scenes, bright light sources near vehicle lights often
excessively diffuse during the image conversion process, leaving abnormal light bleeding
in the converted daytime image.

In contrast, the results from the proposed method in Figure 8 demonstrate that the
saturation of vehicle lights is enhanced, and the light spreading effect is minimized. The
first row in Figure 8 indicates that the traffic light colors are preserved, and the saturation
of the vehicle stop light increased in the four-channel paired training. The spreading and
blurring of light around the vehicle lights is significantly reduced in the second row.

In summary, Section 3.2 introduces two CycleGAN modules to perform nighttime-
to-daytime image translation while preserving critical visual information relevant to road
environments. The first module learns the transformation from nighttime to daytime
images using an unpaired approach and is also applied for data augmentation to expand
the limited paired image dataset. The second module focuses on preserving and enhancing
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details based on paired data and reflects the road lighting and reflection information via
a four-channel input. Adding a light information channel to the input images allows for
brightness weighting adjustment during training, enhancing the representation of critical
objects, such as traffic lights and vehicle taillights.

3.3. Image Area Selection and Blending

Applying the input nighttime images to the unpaired and paired training modules
revealed that although the unpaired training performs intuitive nighttime-to-daytime
conversion across the entire image (global), the paired training module excels at enhancing
detailed information in the near-field areas. This proposed method employs the RLA map
applied in the four-channel paired training module to perform both tasks simultaneously.
For the unpaired training module, which transforms the sky area during the nighttime-to-
daytime conversion, the inverse RLA map is applied to select the upper part of the image.
For the paired training module, which preserves road details, the RLA map is applied
to select the light information and lower part of the image. Figure 9 illustrates how the
regions of the converted daytime images from each module are selected via the RLA map.

Image Area Selection Using Road Light Attention Map & Cross Blending

Unpaired Training Module Inverse RLA_map Unpaired Training Module

Generated Day Image Inverse RLA_map

Generated Day Image with

4-Channel 4-Channel

RLA_map Paired Training Module

Paired Training Module

Generated Day Image with RLA_map

Generated Day Image

Figure 9. Image area selection using the road light attention (RLA) map.

Based on the RLA map, the unpaired training module performs well in transforming
the upper region, and the paired training module excels in the lower region. Applying
these complementary characteristics, a cross-blending process is performed to integrate
the results of the two modules into a single image. In this process, the RLA map and its
inverse are employed as maps to select specific regions from the two daytime image results.
In the daytime image generated by unpaired training, the inverse of the attention map is
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applied to extract the upper region, whereas in the paired training result, the attention map
is applied as-is to select the lower region. The selected portions from both images are fused
based on the maps. Cross-blending is an effective approach that simultaneously reflects the
advantages of both CycleGAN modules via simple masking and selective merging, without
the need for complex operations. The overall visual quality of the resulting image can be
significantly enhanced by integrating the natural colors of the sky and distant backgrounds
provided by the unpaired module with the precise details of roads, vehicles, and traffic
lights preserved by the paired module.

In summary, Section 3.3 proposes an image selection and merging process to achieve
optimal region-specific transformation performance using the complementary characteris-
tics of unpaired and paired training. The RLA map distinguishes important regions of the
image based on road brightness information. Through this information, regions located at
the top (e.g., the sky or distant backgrounds) employ the unpaired training results, whereas
regions at the bottom containing critical near-field objects (e.g., roads, vehicles, and traffic
lights) are selected from the paired training results. The two results are combined via atten-
tion map-based cross-blending, resulting in the final daytime image that achieves detail
preservation and style transformation performance. Algorithm 3 details the entire process.

Algorithm 3 Image Area Selection and Cross-Blending Process

Require: Imgday/ Imgnjght/ Minv_RLA_map/ MRLAJnap

1. Definition: Gy paires denotes the generator trained in the unpaired module

2. Definition: Gpgjreq denotes the generator trained in the four-channel paired module
3. Unpaired translation:

unpaired
Imgday - G”"Pﬂ“‘@d (Imgday' Imgnight)
4. Paired translation:

aired inal_synthetic
Imggay = Gpaired (Imgduyr Im night Y ’ MinviRLAJnup)
5: Weight-unpaired result:

weight_unpaired unpaired
Im day =1Im day X MinvﬁRLA?map

6: Weight-paired result:

weight_paired aired
Imgduyg s = Imggay X MRLAfmap
. inal weight_Unpaired weight_Paired
7: Cross-blending: I "t _ 1 ght_tmp I
Cross-blending mg{iﬂy day + mgday
inal
8: Return Im day

4. Experiments and Results
4.1. Simulation Settings

We conducted the training and experiments on a Windows 10 Education (64-bit)
system with an Intel i5-6500 central processing unit (Intel, Santa Clara, CA, USA) at
3.2 GHz and 16.0 GB of RAM, along with a TITAN RTX graphics processing unit
(Nvidia, Santa Clara, CA, USA). For the training parameters, we set the image crop size to
256 x 256 and the batch size to 1, initialized the learning rate to 0.0002 with linear decay
every 50 epochs, and trained for a total of 400 epochs.

Figure 10 plots the training loss curves, which confirm the stable convergence of
both our modules. For each module, the content preservation losses (cycle-consistency
and identity) steadily decrease and then stabilize, proving that the generators learned to
maintain the image’s core structure and color. At the same time, the adversarial losses
reached a stable equilibrium, indicating a healthy training dynamic free from mode collapse.
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Figure 10. Training loss curves demonstrating the stable convergence of (a) the unpaired training module
and (b) the four-channel paired training module. For each module, the left plot shows the adversarial
losses (G for generator, D for discriminator) reaching a stable equilibrium. The right plot shows the
content preservation losses (L_cycle for cycle-consistency, idt for identity) successfully converging.
Subscript “A” denotes the day-to-night direction, and “B” denotes the night-to-day direction.

The training objective was guided by the standard CycleGAN loss function, composed
of an adversarial loss, a cycle-consistency loss, and an identity loss. These coefficients were
determined experimentally, and the corresponding weights for the cycle-consistency loss
(Acyc) and identity loss (Aidentity) were set to 10.0 and 0.5, respectively [4].

The training dataset for the unpaired training module comprises 2800 images from
the BDD73k dataset. To create the paired dataset, we then used an additional 3000 daytime
images, which were not employed in training, to generate synthetic night images via the
unpaired training module. The paired training module combined 3000 pairs of daytime
images, their corresponding synthetic night images generated by the unpaired training
module, and the corresponding inverse RLA map as the training data.

4.2. Ablation Experiments

We performed an ablation study to evaluate the contribution of each module. As
detailed in Table 1, this involved systematically removing components from our proposed
four-stage method to analyze their individual impact.



Mathematics 2025, 13, 2998 15 of 33
Table 1. Configurations for each case in the ablation study.
Name Components of Each Stage
Case 1 Denoising Diffusion Probabilistic Models (DDPMs)
Case 2 3-channel paired module
Case 3 4-channel paired module
Case 4 unpaired module + 4 — channel paired module with = 0.5
Case 5 unpaired module + 4 — channel paired module with 7y =2

e Case 1: Employs Denoising Diffusion Probabilistic Models (DDPMs) to serve as a
comparative benchmark against our CycleGAN-based approach.

e Case 2: Serves as the baseline, consisting of our paired module with a standard
three-channel (RGB) input.

e Case 3: Adds the inverse RLA map as a fourth input channel to Case 2 to assess the
map’s contribution.

e  Case 4: Represents the full model, which blends the paired and unpaired modules,
but uses a suboptimal blending parameter (- = 0.5) to validate our choice of .

e  Case 5: Our final model, which combines the four-channel paired module with the
unpaired module using the optimal parameter (7y = 2).

The qualitative results from the ablation study first validate our selection of the
CycleGAN framework over alternatives such as DDPMs [30]. As shown in Figures 11b and
12b, the output from Case 1 fails to preserve the structural and color integrity of critical light
sources. In contrast, our CycleGAN-based approach in Case 2 provides a more effective
baseline (Figures 11c and 12¢). While it shows initial signs of restoring the traffic signal, the
preservation is minor. Furthermore, this process introduces prominent artifacts into the sky
region. This trade-off is addressed by the subsequent components. In Case 3, the addition
of the inverse RLA map renders the colors of luminous objects significantly more vivid
(Figures 11d and 12d), but this enhanced focus concurrently exacerbates the noise in the
sky. The cross-blending mechanism was designed specifically to resolve this issue. Case
4 (Figures 11e and 12e), which employs a suboptimal parameter of y = 0.5, demonstrates
a substantial reduction in this sky noise. Finally, Case 5 (Figures 11f and 12f) uses the
optimal parameter of ¢y = 2 to eliminate artifacts while achieving the highest clarity and
color fidelity for traffic signals and vehicle lights.

(@) (b)

Figure 11. Cont.
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(e) (f)

Figure 11. Qualitative comparison in ablation experiments: (a) input, (b) case 1, (c) case 2, (d) case 3,
(e) case 4, and (f) case 5.

Figure 12. Cont.
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Figure 12. Qualitative comparison in ablation experiments: (a) input, (b) case 1, (c) case 2, (d) case 3,
(e) case 4, and (f) case 5.

4.3. Comparative Experiments

To evaluate the performance of our night-to-day image conversion, we conducted
comparative experiments with several baseline methods: a paired-data CycleGAN, To-
DayGAN, and the SLAT DayConv technique [31]. The input images for this evaluation
consist of nighttime driving scenes where fundamental information, such as lane markings
and vehicle lights, remains perceivable. The results are presented in Figures 13-19. While
achieving perfect photorealism remains a challenging goal for all methods, the following
comparisons demonstrate our proposed framework’s superior ability to maintain vital road
information where other methods struggle.

Figure 13. Cont.
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(e)

Figure 13. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

Figure 14. Cont.
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(@

Figure 14. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

Figure 15. Cont.
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Figure 15. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

Figure 16. Cont.
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Figure 16. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

(e)

Figure 17. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.
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Figure 18. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

Figure 19. Cont.



Mathematics 2025, 13, 2998

23 of 33

Figure 19. Input and resulting images: (a) input image, (b) paired CycleGAN, (c) ToDayGAN,
(d) SLAT DayConv [31], and (e) proposed method.

Figures 13-15 showcase general driving scenes. Here, conventional methods often
introduce significant visual artifacts and unnatural light distortions around light sources.
In contrast, our method (e) produces a more stable and coherent translation. While some
background textures may exhibit artifacts—a limitation discussed further in Section 5—our
approach successfully maintains the sharpness of crucial elements like lane markings and
road signs, avoiding the noticeable degradation seen in other results.

This challenge is most critical in preserving colored lights, a key focus of our work. As
shown in Figures 16 and 17, competing methods consistently fail in this regard, causing
the red color of vehicle stop lights to either wash out, spread unnaturally, or disappear
entirely. This failure to preserve the signal’s color represents a critical loss of semantic
information for safety-related applications. Our method, however, robustly preserves the
distinct red color of these lights. This is a direct result of the RLA map guiding the paired
module to prioritize learning in these specific luminous regions, proving its effectiveness
in maintaining semantic color integrity.
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Similarly, preserving the structure of headlights is vital for recognizing the presence
of other vehicles. Figures 18 and 19 depict scenarios where competing methods cause
headlights to blur excessively or blend into the background. Our framework, again, ensures
that headlights are preserved with clear boundaries. By maintaining the integrity of these
essential visual cues, our approach directly contributes to the goal of enhancing driver
perception and safety in low-light environments.

4.4. Quantitative Evaluations

We quantitatively evaluated the performance of the proposed method using image
quality metrics. The blind /referenceless image spatial quality evaluator (BRISQUE) is a no-
reference assessment metric that evaluates image quality without a reference image. This
model analyzes the statistical image features to detect and quantify distortions by modeling
the visual perception of sharpness. The BRISQUE method evaluates the degree to which an
image preserves naturalness and details, with lower scores indicating better quality.

The perception-based image quality evaluation (PIQE) is another no-reference assess-
ment metric that detects and quantifies perceptual distortions in images. This method is
based on the human visual system and does not employ subjective training data. Instead,
this method detects distortions at the block level based on local characteristics, generating
block-level quality maps to assess the image quality more precisely [32].

The spatial and spectral entropy-based quality (SSEQ) is a no-reference metric that
evaluates the image quality based on its spatial and spectral entropy. The SSEQ metric
precisely detects image distortions by comprehensively analyzing spatial and spectral char-
acteristics to compute the quality score. This metric performs well across diverse distortion
types and demonstrates a high correlation with human subjective quality assessments.

The cumulative probability of blur detection (CPBD) is a no-reference metric for
detecting image blur. This method applies a probabilistic model based on human sensitivity
to blur recognition to estimate the probability of detecting blur at each edge, and this
method accumulates these probabilities to generate the final quality score. This metric
quantifies the blur in an image, with higher values indicating a sharper image [33].

The JPEG_2000 metric evaluates the image quality of the JPEG 2000 format by ana-
lyzing the spatial characteristics and artifacts. This method quantifies the visual quality
degradation caused by compression [34].

The spatial-spectral sharpness (S3) metric measures image sharpness, calculated by
combining the spectral gradient and spatial changes of the image. This approach allows for
the identification of sharp regions in the image and is employed for blur estimation and
no-reference quality assessment [35].

The convolutional neural network (CNN)-based image quality assessment (CNNIQA)
is another no-reference assessment model that uses a dual-channel CNN to predict the
quality of an image. This method evaluates the image objectively based on the Visual
Information Fidelity framework and extracts rich features by combining max and average
pooling [36].

The multimedia assessment and inference of quality with attention (MANIQA) is a
model for no-reference image quality assessment. This method employs a transformer-
based attention mechanism to enhance global and local interactions in the image, demon-
strating superior performance on GAN-based distorted images [37].

Figure 20 presents the evaluation results for 25 comparative images. Figure 21 de-
picts the test images used for score measurement. These images consist of nighttime
driving environments where fundamental information, such as well-defined lane markings
and vehicle lights, remains perceivable. The proposed method consistently ranks highly
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Figure 20. Metric scores: (a) blind/reference less image spatial quality evaluator (BRISQUE),
(b) perception-based image quality evaluation (PIQE), (c) spatial and spectral entropy-based quality
(SSEQ), (d) cumulative probability of blur detection (CPBD), (e) JPEG_2000 score, (f) spatial-spectral
sharpness (S3) score, (g) convolutional neural networks for no-reference image quality assessment
(CNNIQA) score, and (h) multidimension attention network for no-reference image quality assess-
ment (MANIQA). (The y-axis represents the metric score; the x-axis indicates the image number; The
arrows in the titles indicate whether a higher score (1) or a lower score (]) is better.)
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Figure 21. Test images (the numbers in figures are the image numbers in Figure 20).

Additionally, Table 2 compares the average values for the 25 experimental images
among the proposed method and existing methods, including the paired CycleGAN,
ToDayGAN, and SLAT DayConv techniques [31].

Table 2. Comparison of metric scores. (1) Higher scores are preferable, and () lower scores are
preferable. Bold font highlights the best results in each corresponding metric.

CyI:ei:réiN TodayGAN Das;é) T;IV' Proposed

BRISQUE () 30.468 31.880 27.713 19.350
PIQE () 42.705 58.276 45.001 34.999
SSEQ (1) 26.565 35.499 27.075 21.183
CPBD (1) 0.530 0.450 0.551 0.644
JPEG_2000 (1) 80.210 79.906 80.170 80.253
S3 (1) 0.227 0.104 0.182 0.270
CNNIQA ({) 21.835 25.870 21.195 19.935
MANIQA (1) 0.455 0.274 0.451 0.509

The proposed method achieves the highest ranking across eight quality assessment
metrics, demonstrating superior performance. In the BRISQUE evaluation, which quantifies
visual distortions, the proposed method recorded the lowest score of 19.350, indicating
excellent performance. This result is approximately 30.18% lower than the second-lowest
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score of 27.713, indicating that the proposed method produces images with minimal
visual distortion.

Regarding the PIQE metric, the proposed method achieves the best performance
with a score of 34.999. This result is about 18.04% lower than the second-lowest score of
42.705, indicating that the proposed method minimizes visual distortions, noise, and other
degradations well while maintaining a natural image quality.

For the SSEQ metric, the proposed method achieved the best score of 21.183, which is
about 20.26% lower than the second-best score of 26.565. This result demonstrates that the
proposed method preserves structural quality well, maintaining a clear structure without
compromising details.

With the CPBD metric, the proposed method demonstrates the best performance with
a score of 0.644 in terms of the image detail representation and contrast. This measure is
16.88% higher than the second-lowest score of 0.551.

Concerning the JPEG_2000 metric, the proposed method achieved an excellent score
of 80.253, exceeding the second-highest score of 80.210 by about 0.05%. This outcome
demonstrates that the proposed method performs well by maintaining a high compression
ratio while preserving the details of the original image.

Regarding the S3 metric, the proposed method achieved a score of 0.270, which is
about 18.94% higher than the second-highest score of 0.227. This result demonstrates that
the proposed method performs well in evaluating structural similarity, which quantifies
quality by measuring the structural differences between images.

For the CNNIQA metric, the proposed method achieved the best score of 19.935,
which is approximately 5.94% lower than the second-best score of 21.195. This outcome
demonstrates that the proposed method excels in deep learning-based image quality
assessment, preserving image details and perceptual quality.

Finally, concerning the MANIQA metric, the proposed method achieved a score
of 0.509, exceeding the second-highest score of 0.455 by nearly 11.87%. This measure
demonstrates the outstanding performance of the proposed method on attention-based
image quality assessment.

We also benchmarked the computational performance of our framework against the
same baselines, with results summarized in Table 3. On an NVIDIA TITAN RTX GPU
with a 256 x 256 input, our method (10.21 s) achieved a highly competitive inference
time, outperforming major models like SLAT DayConv and Paired CycleGAN. While our
model’s GFLOPs are higher than ToDayGAN’s, this complexity is a direct trade-off for
the dual-module architecture, which was intentionally designed for the superior visual
quality demonstrated in Table 2. These results highlight our framework’s excellent balance
between high-fidelity translation and practical efficiency.

Table 3. Comparison of computational complexity (GFLOPs) and inference time (seconds): Lower
values are preferable for both metrics.

Paired SLAT

CycleGAN TodayGAN DayConv. Proposed
Process time (s) 10.55 9.21 13.19 10.21
GFLOPs (GFLOPs) 282.81 56.53 94.27 188.95

However, as it prioritizes accuracy, the proposed method faces limitations in real-
time applications due to its sequential, dual-module processing. Future research will
therefore focus on optimizing the framework. A promising direction is to develop a unified,
lightweight network that incorporates our guided generation principle or to apply model
compression techniques like knowledge distillation for deployment in real-world systems.
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5. Discussion

In this study, we introduced a dual-module framework designed to preserve critical
road information, such as traffic light colors, during night-to-day image translation. The
core of our approach is a pre-defined RLA map used as a fourth conditional channel, which
guides the network to focus on luminous objects. The effectiveness of this guided approach
is confirmed by our quantitative results in Table 2, where our method consistently outper-
formed prior techniques across eight no-reference image quality metrics. Higher scores
in metrics like MANIQA and CPBD suggest that our method successfully preserves the
fine-scale details of road markings and vehicle contours, which is crucial for driver safety.

Despite these promising results, we acknowledge several limitations that offer clear
avenues for future work. A primary consideration is the computational complexity of the
dual-module architecture, which presents a challenge for real-time applications. Future
work could address this by developing a more efficient, unified network architecture
that incorporates the guided attention mechanism or by applying model optimization
techniques such as knowledge distillation. Another limitation is the framework’s reliance
on synthetic data, which can create a domain gap, leading to qualitative artifacts. To
improve generalization and reduce these artifacts, a promising direction is to incorporate
advanced training strategies, such as the meta-tuning approaches used in recent studies [29].
Finally, to fully validate our method’s utility, the evaluation could be extended beyond
perceptual metrics. A critical next step is to quantify the impact on downstream tasks, such
as measuring object detection performance on the translated images. Such an analysis
would provide direct evidence of the benefits for autonomous systems.

6. Conclusions

This paper addresses the critical challenge of preserving road information, such as
traffic light colors, during night-to-day image translation. We proposed a novel framework
that integrates an unpaired training module for global style conversion and a four-channel
paired training module for fine-detail preservation. The core of our method is the introduc-
tion of an inverse RLA map. This map serves as a conditional fourth channel to guide the
paired module’s training and also facilitates a final cross-blending stage that synthesizes
the outputs from both modules.

Experimental results demonstrated that our approach is highly effective in enhancing
road details and ensuring accurate color reproduction compared to existing techniques.
By successfully preserving this vital information, our method can significantly aid driver
perception in low-light environments and is expected to contribute to accident prevention.

Our future work aims to build on these results by broadening the framework’s ap-
plicability. We plan to test its robustness and generalization on more diverse datasets,
particularly under adverse weather conditions like rain and fog. Successfully validating
our approach in these challenging scenarios would reinforce the broader principle of this
study: that combining the generative power of deep learning with explicit, domain-specific
guidance leads to more robust and trustworthy outcomes in high-stakes applications. We
believe this principle of “guided generation” holds significant potential in other fields
where information integrity is critical, such as medical imaging and satellite analysis,
paving the way for more controllable generative models.
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