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Abstract

Complex optimization problems, such as traffic routing and electric vehicle (EV) charging
scheduling, are becoming increasingly challenging for intelligent transportation systems
(ITSs), in particular as computational resources are limited and network conditions evolve
frequently. This paper explores a quantum computing approach to address these issues
by proposing a hybrid quantum-classical (HQC) workflow that leverages the variational
quantum eigensolver (VQE), an algorithm particularly well suited for execution on noisy
intermediate-scale quantum (NISQ) hardware. To this end, the EV charging scheduling
and traffic routing problems are both reformulated as binary optimization problems and
then encoded into Ising Hamiltonians. Within each VQE iteration, a parametrized quantum
circuit (PQC) is prepared and measured on the quantum processor to evaluate the Hamil-
tonian’s expectation value, while a classical optimizer—such as COBYLA, SPSA, Adam,
or RMSProp—updates the circuit parameters until convergence. In order to find optimal
or nearly optimal solutions, VQE uses PQCs in combination with classical optimization
algorithms to iteratively minimize the problem Hamiltonian. Simulation results exhibit
that the VQE-based method increases the efficiency of EV charging coordination and im-
proves route selection performance. These results demonstrate how quantum computing
will potentially advance optimization algorithms for next-generation ITSs, representing a
practical step toward quantum-assisted mobility solutions.

Keywords: intelligent transportation systems; quantum computing; variational quantum
optimization algorithms

MSC: 81P68

1. Introduction

Intelligent transportation systems (ITSs) constitute a crucial element of modern smart
city infrastructure, assisting in optimizing traffic management, minimizing environmental
impact, and facilitating in identifying scalable solutions concerning urban mobility [1].
However, rapid urbanization has rendered that transportation networks operate intensely,
resulting in increased traffic congestion, higher emissions, and enhanced complexity as-
sociated with integrating electric vehicle (EV) infrastructures [2]. In particular, ITSs are
confronted with numerous multifaceted challenges spanning technical, resource-related,
managerial, interoperability, economic, and personal domains [3]. At the technical level,
robust, secure, and efficient infrastructures are essential for handling the immense datasets
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generated by urban mobility networks. From the management and resource perspective,
it remains challenging to maintain and coordinate large connected vehicle fleets across
diverse geographic areas while safeguarding against cybersecurity threats. Furthermore,
interoperability issues and ongoing standardization efforts aimed at seamless integration
with existing transportation systems continue to pose significant hurdles. Additionally,
personal concerns regarding privacy and data protection, along with broader socioeco-
nomic implications such as potential disruptions to employment within the transportation
sector, further complicate the ITS adoption. Within these resource-constrained settings,
traffic routing optimization and EV charging scheduling mark two prominent computa-
tionally intensive problems [4,5]. Although various classical optimization techniques have
been extensively employed to address these problems, their effectiveness is fundamentally
limited by the exponential scaling inherent in combinatorial optimization problems that
characterize real-world transportation systems [6]. The computational complexity of these
problems, which frequently exhibit NP-hard characteristics, necessitates the investigation
of alternative computational methodologies [7]. Due to this computational constraint,
research into advanced computational paradigms has been spurred, with quantum comput-
ing emerging as a promising approach for addressing the inherent complexity of large-scale
transportation optimization problems, which has potentially superior efficiency compared
with classical methods [8].

Quantum computing has emerged as a promising computational paradigm for solving
complex optimization problems within ITSs, particularly those related to vehicle rout-
ing and traffic management [9]. Prior research has extensively applied quantum anneal-
ing to the capacitated vehicle routing problem and its extensions—such as the dynamic
multi-depot capacitated vehicle routing problem—to model these challenges as quadratic
unconstrained binary optimization problems, showing notable improvements in solution ef-
ficiency when executed on D-Wave hardware [10]. Similarly, the quantum approximate op-
timization algorithm has been utilized to solve the heterogeneous vehicle routing problem,
where simulation studies indicate that the required number of qubits grows quadratically
with the number of customers, underscoring significant scalability limitations in real-world
applications [11]. Moreover, quantum-inspired hybrid algorithms combining classical
heuristics with quantum annealing have achieved practical gains in dynamic routing and
signal-timing optimization, outperforming several traditional methods on benchmark in-
stances [12]. Together, these prior studies illustrate the transformative potential of quantum
methods in ITS contexts while underscoring urgent challenges surrounding algorithm
scalability, hardware fragility, and error resilience. However, existing implementations
have predominantly relied on simulations via platforms like PennyLane, leaving practical
hardware-level performance largely unexplored. Several works have demonstrated the
application of quantum annealing to real-world traffic optimization using D-Wave hard-
ware, including formulations of quadratic unconstrained binary optimization models for
traffic signal control and real-time routing, showing promising benefits in congestion reduc-
tion and solution quality compared with fixed-cycle methods [13]. Analogously, studies
deploying a quantum approximate optimization algorithm on noisy intermediate-scale
quantum (NISQ) devices have revealed that circuit depth, noise, and qubit counts critically
influence performance, with hardware implementations often exhibiting substantial degra-
dation compared with ideal simulations [14]. A recent noise-aware distributed quantum
approximate optimization algorithm framework further highlights how decomposing large
problems and incorporating error mitigation strategies can improve scalability and accu-
racy on current hardware [15]. These findings highlight the need for either a preliminary
hardware demonstration or a detailed analysis of noise effects, error mitigation, and circuit
design to enhance the practical relevance and technical robustness.
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Recent advances in quantum computing have led to the development of robust quan-
tum computational frameworks capable of addressing complex optimization problems
while exceeding the capabilities of classical algorithms, especially through hybrid quantum-
classical (HQC) methodologies [16]. In particular, a noteworthy advancement within
this paradigm is the variational quantum eigensolver (VQE), which exploits fundamental
quantum mechanical phenomena including superposition and entanglement in conjunc-
tion with classical optimization algorithms to approximate the ground-state energies of
complex Hamiltonians [17]. The effectiveness of VQE has been demonstrated across multi-
ple application domains, including quantum chemistry and combinatorial optimization
problems related to transportation networks. Ref. [18] investigated VQE's application
to the vehicle routing problem in transportation logistics, demonstrating its potential for
logistics optimization within current NISQ hardware constraints. Concurrently, quadratic
unconstrained binary optimization formulations mapped to Ising Hamiltonians have been
used to address unmanned aerial vehicle collision avoidance wherein a conditional value at
risk-enhanced VQE has shown robust performance for real-time operational scenarios [19].
The reliability of VQE has been further validated through quantum chemistry applications,
where optimized ansatz designs and noise mitigation strategies have enabled accurate
molecular ground-state energy estimations [20].

The development of specialized VQE variants for constrained and large-scale op-
timization challenges have been prioritized in emerging research directions. A major
methodological advancement is the VQE with a constraint framework, which integrates
Lagrangian duality with perturbed primal-dual optimization techniques to enable effective
resolution of complex constrained problems, such as quadratic unconstrained binary opti-
mization, MaxCut, stochastic and deterministic quadratic constrained binary optimization,
and linear programming formulations on NISQ devices [21]. Furthermore, the modified
deep VQE framework has improved local basis constructions and introduced penalty-based
methods for computing low-energy excited states in quantum chemistry, primarily focusing
periodic material systems [22]. In generalized assignment problems in vehicular network
contexts, conditional values at risk-based VQE implementations have shown substantial
performance improvements over classical computational approaches [23]. In addition,
the integration of quantum support vector machines with VQE has demonstrated im-
proved computational efficiency in vehicle routing applications, highlighting the critical
role of encoding methodologies in maintaining a balance between parametrized quantum
circuit (PQC) complexity and solution precision [24]. Despite these notable developments,
there is still a significant opportunity for impactful research contributions because the
application of VQE to traffic routing and EV charging scheduling problems within ITS
remains substantially unexplored.

This paper addresses the computationally intensive problems of traffic routing and
EV charging scheduling while explicitly exploring the VQE-based optimization framework
for ITS applications. The methodology reformulates both the aforementioned optimization
problems as binary polynomial formulations and systematically encodes them into Ising
Hamiltonians, thereby enabling operational quantum computational processing. The frame-
work uses PQCs (i.e., ansatzes) as variational trial states, which are iteratively refined using
an HQC optimization algorithm, which is designed to minimize the system Hamiltonian’s
expectation value. The optimization objectives include minimizing traffic congestion and
effectively scheduling EVs charging demands across the transportation network. Notwith-
standing NISQ limitations, the VQE-based framework demonstrates considerable per-
formance advantages, achieving improvements in route optimization efficiency and EV
charging coordination capabilities. These empirical findings conclusively establish the
technical viability and practical applicability of integrating HQC computational method-
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ologies within existing ITS architectures, thereby constituting a substantive advancement
toward quantum-enhanced algorithmic optimization for next-generation intelligent urban
transportation ecosystems. The primary contributions are summarized as follows.

*  We describe the VQE computational workflow and implementation details, including
the Hamiltonian formulation, ansatz design, HQC optimization, and measurement.

*  We apply the VQE framework to two critical optimization case studies within ITSs:
optimal traffic routing and EV charging scheduling. The simulation results and
comparative analyses demonstrate performance improvements over conventional
methods, highlighting the potential of quantum-assisted optimization strategies for
transportation networks.

This article is organized as follows: Section 2 describes the VQE algorithm. Section 3
details the VQE's application to optimal traffic routing and EV charging scheduling prob-
lems. Section 4 provides performance analysis of the experimental results. Finally, Section 5
concludes with future insights.

2. Methods

Specifically tailored for NISQ computers, the VQE algorithm is an HQC algorithm that
solves challenging optimization problems. The VQE methodology effectively combines the
computational reliability and convergence guarantees of classical optimization techniques
with the inherent ability of quantum computing in exploring exponentially large solution
spaces. This hybrid approach demonstrates exceptional effectiveness for complex optimiza-
tion applications, such as resource allocation, traffic routing optimization, and EV charging
scheduling (see Figure 1). In practice, the VQE algorithm works by following these main
steps as detailed below.

¢  Problem Formulation as Quantum Optimization:
The target optimization problem, which may include task assignment, vehicle routing,
or operational scheduling, is transformed into a Hamiltonian (H). The optimization
problem’s objective function and constraints are encoded by this Hamiltonian, while
quantifying the energy or cost associated with each potential solution configuration.
The optimization problem is usually formulated as a binary polynomial and subse-
quently mapped to an Ising Hamiltonian, a canonical form particularly well suited for
quantum computing.

*  Quantum Trial State Construction via Ansatz Design:
A variational quantum state is constructed through a PQC known as an ansatz. This
ansatz comprises quantum gates, including single-qubit rotation operations and two-
qubit entangling gates, enabling the coherent exploration of the solution space through
quantum superposition. The circuit contains adjustable parameters 8, which determine
the quantum state configuration. These variational parameters are initialized through
random assignment or heuristic-based methods to create the initial trial state.

e HQC Optimization:
In order to prepare the trial state |(8)), the quantum computing platform implements
the PQC. Then, it measures the expectation value of the problem Hamiltonian, which
represents the evaluation of the energy or cost function for the current parameter
configuration. The expectation value is computed as

E(0) = (w(0)| H[y(6)) . (1)

The optimization objective is to minimize this energy functional. A classical opti-
mization algorithm (such as COBYLA or SPSA) systematically adjusts the variational
parameters 0 to reduce the expectation value through iterative refinement. Through
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the adoption of this HQC feedback mechanism, configurations that yield minimal
energy values—that is, optimal or nearly optimal solutions—can be systematically
explored in the parameter space.
¢  Solution Extraction and Validation:

The optimized parameters (6opt) are decoded to produce a binary solution vector
that represents the ideal configuration for the initial optimization problem upon
algorithmic convergence, which is determined by the stabilization of energy reduction.
In relation to the initial problem specification, a thorough validation process confirms
constraint satisfaction and solution viability. After this, the quantum-derived solution
is analyzed and processed into practical recommendations for real-world application.

Problem Quantum State Expectation Value
Mapping Preparation Measurement

U R—

Ising
Hamiltonian

QUBO

Formulation

= Charging e= Charging

N

Optimal Solution

] ;
= Charging . = Charging
A Station 0 : A Station n — 1

Figure 1. Quantum computing for ITS: VQE methodology applied to EV charging scheduling.

3. Results

In the following, we demonstrate the application of VQE to the optimization problems of
optimal traffic routing and EV charging scheduling.

3.1. VQE for Optimal Traffic Routing

In this case study, the Miller-Tucker—Zemlin formulation is utilized to explore how
VQE can be used to solve a constrained version of the vehicle routing problem. In the
optimization scenario, two vehicles in a fleet are assigned to visit a series of predetermined
locations exactly once, making sure that each vehicle returns to a designated depot at
the end of its route. Such formulations hold significant practical implications for real-life
logistics and mobility management, as they represent fundamental challenges in ITSs.
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The formulation introduces continuous auxiliary variables at each node to impose
constraints that guarantee that each vehicle follows a complete, acyclic route, preventing
subtour formation—a prevalent issue in vehicle routing. Incorporating these constraints
transforms the original routing problem into a constrained binary polynomial optimization
model. This reformulation makes the problem suitable for HQC computational approaches,
such as VQE, enabling efficient problem solving under current NISQ hardware limitations.

The VQE implemented here comprises controlled-phase rotation gates and single-
qubit rotation gates around the Pauli-Y axis, parameterized by a vector of adjustable
variational parameters 6. Energy evaluation is carried out through measurements in the
computational basis, with the expectation value of each Hamiltonian term combined as a
weighted sum to obtain the total system energy. A classical optimization algorithm then
iteratively updates the parameters 0 to minimize this energy, thereby approximating the
optimal (ground-state) configuration.

Routing solutions are determined by analyzing the final sampling distribution from
the optimized PQC upon convergence. In order to validate the methodology, exam-
ples of two vehicles (k = 2) operating across routing networks with varying degrees
of complexity—that is, networks with n = 3,4,5 nodes—are systematically evaluated,
as shown in Figure 2.

-10°
0.0 I_”
—0.5 - B
>
N
5]
=
m
10} 11
— COBYLA
 SPSA (nk) = (3,2),(4,2),(5,2)
715 | | | | | | |
3 4 5 1 200 400 600 800 1000
Nodes Epochs
Nodes Qubits Parameters Depth
3 6 24 13
12 48 19
5 20 80 27

Figure 2. Traffic optimal routing: Comparison of COBYLA and SPSA optimizers for the VQE
performance upon application to the vehicle routing problem under n = 3,4,5 nodes and k = 2
vehicles showing energy convergence over 1000 epochs (top left). Ground-state energy reduction after
each iteration for the COBYLA optimizer for the aforementioned node and vehicle configurations
(n,k). The table describes the variational quantum circuit configurations, displaying the number of
qubits, number of parameters, and circuit depth.

3.2. VQE for EV Charging Scheduling

In this case study, we address the EV charging scheduling problem using quadratic
unconstrained binary optimization. In this scenario, we consider multiple EV charging
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stations that serve multiple vehicles, each requiring charging within specific time windows,
with constraints on available charging slots and station capacity.

Specifically, we assume that there are five charging stations, each represented by an
edge. Each station has two outlets, but due to constraints, only one outlet per station can be
active at a time, shown in Figure 3a. Vehicles awaiting charging are represented as nodes,
where each node is also associated with a power capacity. Additionally, when a vehicle
is charging at a node, it cannot distribute power to its forward adjacent nodes, which
is crucial for effective load management and maintaining network stability. Therefore,
optimal scheduling is required to ensure that all parked vehicles are charged without
disrupting the power distribution. If the node has a vehicle being charged, then x; = 0;
else, x; = 1. The problem is formulated as an optimization challenge, where the goal is to
maximize the objective function’s value, such that more cars can be charged at once. Each
edge (station) gives rise to a constraint as

1+ x4+ x; — 2x;x;, 2)

where the term is zero when exactly one of x; or xj is zero; ie., only one vehicle is
charging, which is desirable. In our case, the charging conflict pairs are nodes (cars)
as (1,4),(2,3),(4,5),(3,4),(3,6). We can write the function that acts as our quadratic
unconstrained binary optimization formulation of the given EV charging scheduling
problem as follows:

flxt,...,x6) = (14 x1 + x4 — 2x1x4) + (1 + x2 + x3 — 2x2x3)
+ (1 + x4 + x5 — 2x4%x5) + (1 + x3 + x4 — 2x3%4) (©)
+ (1 + x3 + x6 — 2x3%).

—4.0 T T
= Adam 1 = 0.1
i ====Adam n = 0.3
—5.0 |- = GradientDescent n = 0.1 ||
===+ GradientDescent n = 0.3
= RMSProp n = 0.1
—6.0 ===« RMSProp n = 0.3
o -70
—8.0
—9.0

—10.0
1

Epochs
(b)

Figure 3. EV charging scheduling: (a) case scenario of our problem and (b) convergence of expectation

value of the H plotted as a function of epochs for different classical optimizers with learning rate
7 =0.1,03.

This can be further simplified as

f(xq,...,x6) =5+ x1 + xp + 3x3 + 3x4 + X5 + X6 — 2X1X4

— ZXZX?, — ZX4X5 — 2X3X4 — ZX3X6.

(4)

In order to implement this optimization problem on a quantum computer, it is neces-
sary to convert the binary variables x; € {0,1} into spin variables z; € {—1,+1}, which
are compatible with the Ising model commonly used in quantum annealers and varia-
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tional quantum algorithms. This transformation is achieved using the change in variables
x; = (1 —z;) /2. Applying this substitution to the quadratic unconstrained binary optimiza-
tion’s objective function results in a new expression entirely in terms of the spin variables
z;, which can then be used as the cost Hamiltonian in VQE. Hence, after change in variable,
the equation now becomes

f(z1,...,26) = 0.5(15 — 2124 — 2023 — 2324 — 2326 — 2425). (5)

The provided function can be transformed into a Hamiltonian. This can be performed
by substituting the z; terms with the Pauli operator Z, the identity matrix I for any scalar,
and the dot product by a tensor product in the expression. This transformation can be
expressed as follows:

H=05(151-[Z1 ® Zs] — [Zy ® Z3] — [Z3 ® Z4) — [Z3 ® Ze] — [Z4 ® Z5]).  (6)

It is often more convenient to formulate optimization tasks as minimization problems.
Accordingly, the objective can be reformulated by reversing the sign of each term in (6),
thereby casting the problem into a minimization problem.

4. Discussion

For the first case study, the comparative performance of two classical optimization
algorithms—SPSA and COBYLA—within the VQE framework applied to traffic routing
optimization is presented by the experimental results shown in Figure 2. In all network
configurations (n = 3,4,5 nodes with k = 2 vehicles), the convergence analysis shows
that COBYLA has better optimization characteristics than SPSA, achieving lower energy
values with higher stability levels. This confirms the results of several studies showing that
COBYLA is more effective than SPSA in terms of energy minimization and convergence
speed in HQC optimization scenarios, particularly for constrained problems [25]. How-
ever, owing to its highly efficient gradient estimation capabilities under uncertainty, SPSA
exhibits superior robustness for high-dimensional parameter spaces and noisy quantum
hardware implementations, rendering it practical for NISQ applications [26]. As indicated
in the table, a fundamental challenge that is consistent with the existing literature on NISQ
algorithms is the progressive increase in computational resource requirements as problem
complexity scales, including qubit count, variational parameters, and PQC depth [27].
Such characteristics of resource scaling highlight how important it is to develop effective
ansatz architectures and traditional optimization techniques for practical quantum advan-
tage. Finally, the observed convergence behavior, where even larger problem instances
demonstrate effective energy minimization despite higher initial values, validates the VQE
framework’s potential scalability within current NISQ hardware constraints [28].

For the second case study of the EV charging scheduling problem, we ran the ex-
periment on a quantum simulator provided by PennyLane. In our experimental setup,
a parameterized quantum circuit consisting of 6 qubits (same as the number of nodes)
was employed. Each qubit underwent a Ry gate rotation, with the rotation angle 6 be-
ing iteratively optimized for 50 epochs. The circuit configuration is depicted in Figure 1,
where initial parameter values were selected randomly. We utilized three different types
of classical optimizers for the same problem with a variable learning rate # to learn about
their performance. Specifically, we employed the classical optimizers, i.e., Adam, Gradient
Descent, and RMSProp. Their respective performances are depicted in Figure 3b. The
Adam optimizer demonstrates robust performance with both learning rates, converging
to the minimum value of the cost function around epoch 30, which is around —10. RM-
SProp exhibits the fastest convergence, especially at 7 = 0.3, achieving the minimum value
in fewer than 10 epochs. In contrast, Gradient Descent shows the slowest convergence.
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With # = 0.1, it fails to reach the optimal value within the evaluated epochs, while a higher
learning rate # = 0.3 improves its performance, which is a trend seen in all optimizers.
Overall, adaptive optimizers (Adam and RMSProp) with a larger learning rate 7 outper-
form standard Gradient Descent with a smaller # in terms of both convergence speed and
final performance. In our problem, the ground state of the Hamiltonian corresponds to the
optimal solution of the quadratic unconstrained binary optimization problem, which in our
case is approximately —10, as shown in Figure 3b). To retrieve this solution, we sampled the
optimized configuration of the quantum circuit. In our circuit, qubits 1 to 6 represent nodes
in the order [1,4,2,3,6,5|, since PennyLane internally registers the wires based on their
order of first occurrence in the Hamiltonian definition. Upon sampling the final quantum
state corresponding to the minimum energy configuration, we obtained the binary solution
[01101 0], indicating that nodes (or car) 1, 3, and 5 are scheduled to charge during the first
time slot, followed by nodes 2, 4, and 6 in the subsequent slot, which is an optimal solution
to our scheduling problem. Furthermore, this problem only utilizes a small circuit depth,
which is well suited for current NISQ computers. Therefore, the aforementioned results can
be effectively demonstrated on quantum hardware, especially for small to medium-scale
quadratic unconstrained binary optimization problems.

While the aforementioned case studies currently focus on relatively small problem
sizes (up to 5 nodes for routing and 6 qubits for EV scheduling), scaling to realistic ITS
networks remains a significant challenge. In these instances, the HQC optimization reached
near-optimal solutions, e.g., finding the ground-state minimum corresponding to the op-
timal EV charging schedule and optimal route. The circuits required 620 qubits (for
3-5 nodes) with shallow depths (13-27 layers of gates), and convergence took on the order
of 50-1000 iterative epochs of the classical optimizer. Nevertheless, classical optimization
techniques currently outperform these quantum methods by a substantial margin. For in-
stance, modern mixed-integer linear programming solvers and branch-and-cut algorithms
comfortably handle vehicle routing problems with more than 100 customers, often finding
exact solutions within a few hours [29]. Additionally, advanced metaheuristics such as
adaptive large neighborhood search or variable neighborhood search regularly deliver
near-optimal solutions for routing problems of several hundred nodes within minutes, even
when faced with complex routing constraints such as time windows or pickup-and-delivery
tasks [30]. Similarly, classical mixed-integer linear programming and heuristic-based meth-
ods quickly optimize EV charging schedules for dozens of vehicles and chargers [31]. While
the VQE approach provides a promising proof of concept for quantum optimization in ITS,
it neither outperforms classical mixed-integer linear programming or metaheuristics in
solution quality nor approaches their scalability. In practical NISQ terms, classical solvers
and heuristics remain the primary choice for traffic routing and EV charging scheduling,
with quantum computing algorithms limited to small-scale demonstrations until hardware
advances—such as higher qubit counts and lower noise—enable it to tackle ITS’s realistic
problem sizes. In this regard, a recent HQC algorithmic research demonstrated a 13-node
vehicle routing problem requiring 156 qubits, but with circuit-level optimization and prob-
lem decomposition to achieve major reductions in circuit depth and gate count, showing
potential feasibility on near-term quantum hardware [32]. Additionally, VQE and related
algorithms reveal that increasing qubit counts negatively impact circuit depth, introduce
greater noise, and increase control overhead, thus requiring advanced techniques like
ansatz optimization and error mitigation to remain practical [28]. While generic ansatz de-
signs using rotations and controlled-phase gates are common, recent HQC approaches have
introduced specialized ansatzes such as the quantum alternating operator ansatz, explicitly
tailored for structural constraints in vehicle routing and EV charging scheduling [33]. These
tailored ansatz designs, incorporating domain-specific constraints like one-hot encoding
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and vehicle capacity limitations, significantly reduce circuit depth and improve algorithm
convergence, illustrating the importance of embedding ITS-specific problem structures
directly into PQC architectures. Therefore, addressing larger ITS problems will necessitate
thoughtful PQC design consideration while considering both hardware constraints and the
potential benefits of tailored HQC architectures.

5. Conclusions and Future Outlook

In this work, we explored the VQE algorithm in addressing critical optimization tasks
concerning ITSs, with particular emphasis on traffic routing and EV charging scheduling.
By formulating these combinatorial problems into Ising Hamiltonians, the HQC computa-
tional framework was effectively leveraged to identify optimal or near-optimal solutions.
When compared with conventional classical optimization techniques, the simulation-based
evaluations showed improved performance in traffic route optimization and EV charging
coordination. These results endorse the practicality and potential of quantum computing
approaches for easing the computationally demanding problems that are associated with
managing transportation infrastructure. Consequently, this study lays essential ground-
work for integrating quantum optimization frameworks into next-generation ITSs, particu-
larly those requiring responsive real-time decision-making capabilities.

In order to decrease PQC depth and improve the quality of obtained solutions, fu-
ture research should focus on developing specialized variational ansatzes tailored to the
inherent structural characteristics of ITS networks. To bridge the gap between idealized sim-
ulation environments and real-world quantum hardware implementations, comprehensive
error mitigation strategies specific for NISQ devices need comprehensive investigations.
Achieving near-term practical deployments will require advancing HQC algorithms, which
systematically distribute computational tasks between quantum processors and classi-
cal computational resources. Furthermore, to precisely define the operational bounds
for quantum advantage in ITS optimization scenarios, comprehensive scalability studies
across a range of network sizes and complexity levels are necessary. Experimental vali-
dation on current NISQ hardware platforms will finally offer crucial insights regarding
realistic performance capabilities and practical constraints of quantum-enhanced optimiza-
tion methodologies.

As ITSs increasingly adopt digital twin technologies and interconnected infrastruc-
tures, they face growing cybersecurity challenges, including data breaches, denial-of-service
attacks, and the exploitation of digital models [34]. Quantum computing presents a dual-
edged scenario for these systems—while it threatens to undermine traditional encryption
methods, it also opens doors to enhanced security through post-quantum cryptography
and sophisticated anomaly detection capabilities. Therefore, future ITSs developments
must carefully assess the security risks that quantum computing introduces against the
protective benefits it can provide. Based on recent advances in scalable IoT authentication
frameworks, upcoming research should explore how permissioned blockchain technology
can strengthen authentication processes and safeguard privacy in IoT environments [35].
Additionally, combining blockchain approaches with quantum-enhanced features offers
a promising strategy to safeguard ITS applications from quantum-based threats while
ensuring strong data integrity and maintaining system efficiency.
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