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Abstract

Intelligent video analysis tools have advanced significantly, with numerous cameras in-
stalled in various locations to enhance security and monitor unusual events. However, the
effective detection and monitoring of violent incidents often depend on manual effort and
time-consuming analysis of recorded footage, which can delay timely interventions. Deep
learning has emerged as a powerful approach for extracting critical features essential to
identifying and classifying violent behavior, enabling the development of accurate and
scalable models across diverse domains. This study presents the Int.2D-3D-CNN architec-
ture, which integrates a two-dimensional convolutional neural network (2D-CNN) and
3D-CNNs for video-based violence recognition. Compared to traditional 2D-CNN and
3D-CNN models, the proposed Int.2D-3D-CNN model presents improved performance
on the Hockey Fight, Movie, and Violent Flows datasets. The architecture captures both
static and dynamic characteristics of violent scenes by integrating spatial and temporal
information. Specifically, the 2D-CNN component employs lightweight MobileNetV1 and
MobileNetV2 to extract spatial features from individual frames, while a simplified 3D-CNN
module with a single 3D convolution layer captures motion and temporal dependencies
across sequences. Evaluation results highlight the robustness of the proposed model in
accurately distinguishing violent from non-violent videos under diverse conditions. The
Int.2D-3D-CNN model achieved accuracies of 98%, 100%, and 98% on the Hockey Fight,
Movie, and Violent Flows datasets, respectively, indicating strong potential for violence
recognition applications.

Keywords: 2D convolutional neural network; 3D convolutional neural network; deep
feature extraction; frame-level deep features; video violence recognition

MSC: 68T07

1. Introduction
The technology involved in video surveillance systems has significantly advanced.

Many private and public areas have cameras installed to secure, monitor, and prevent
unusual events. The recognition of violent or abnormal behavior in videos is categorized
under human action recognition, which is a crucial process for improving the efficiency of
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the detection system for various tasks, such as monitoring theft in a mall and attacks in a
park, patient behavior tracking in hospitals, and the detection of falls by the elderly [1–3].
However, monitoring unusual events in videos still relies on manual methods for analyzing
and detecting visual information, which is labor-intensive and time-consuming [4]. Fur-
thermore, human operations are inaccurate and cannot be acted upon immediately when
anomalous events occur [5]. Ensuring the safety of human beings and preventing violence
are of utmost importance. Therefore, developing an automatic system with efficiency and
accuracy is especially crucial for analyzing and detecting the risk of violent human behavior
and providing timely warnings.

There are two types of violent behaviors: global and local abnormal actions [6]. A local
abnormal action refers to the actions of one or two individuals that deviate from the norm
and result in harm, such as physical violence, fighting, altercations, theft, and accidents.
In comparison, a global action involves many people engaging in violent behavior, such
as fighting, sniping, and assaults. The challenge lies in distinguishing between violent
behaviors and common gestures when categorizing violent videos. Instances of violent
and simple behaviors share close similarities; for example, fighting may appear similar to
hugging, and hitting may resemble raising hands in greeting.

Video recognition differs from image recognition in that training the model requires
multiple frames for each video, whereas image recognition relies on a single image. Videos
with high frame rates are particularly time-consuming to process. Additionally, factors such
as different viewpoints, scales, and video resolutions; the number of people in the area; crowd
scenes; and dynamic environments can significantly impact recognition performance, rendering
action recognition more challenging in capturing practical and discriminative features.

Numerous researchers have proposed methods to enhance the effectiveness of video
violence recognition [7–9]. In the literature, violence recognition involves feature extraction
and classification. Several years ago, local and global feature extraction methods were
employed as handcrafted approaches to recognize violence in surveillance videos. For
instance, Souza et al. [7] proposed a violence detector based on local spatiotemporal
features. Meanwhile, Das et al. [8] utilized the histogram of oriented gradients method
to extract gradient edges and the orientation in localized areas of an image. Additionally,
various studies have suggested approaches for global feature extraction. For example,
Gao et al. [9] enhanced the violent flow feature descriptor by incorporating orientation
information from optical flow, specifically oriented violent flow. This approach considers
both magnitude and orientation information, encoding the obtained features into a bag
of words. Subsequently, a classifier, such as a support vector machine, is employed to
recognize violence in the video.

Deep learning is a core methodology widely used across various areas of machine
learning due to its models’ strong ability to learn from given data [10]. A convolutional
neural network (CNN) represents one of the most effective neural networks for deep
learning. Many researchers utilize a CNN as a robust deep feature extraction method.
Khan et al. [11] proposed a lightweight deep learning method that employs the softmax
function to classify frames based on spatial features. Carneiro et al. [12] utilized a pre-
trained model of the VGG16 architecture to generate spatial features, temporal features,
rhythm features, and depth information from videos for violent detection. Their approach
significantly improved recognition efficiency.

Additionally, Soliman et al. [13] employed the pre-trained VGG16 and long short-
term memory (LSTM) models to extract both spatial and temporal features from videos.
Meanwhile, Ullah et al. [14] and Li et al. [15] presented the effectiveness of the 3D-CNN ar-
chitecture for spatiotemporal feature extraction. Ullah et al. [14] achieved good recognition
performance using 3D-CNNs to learn complex sequential patterns in surveillance video
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streams for violence prediction. Similarly, Li et al. [15] obtained an effective recognition
model by utilizing the 3D-CNN model to extract spatiotemporal features of multiplayer
violence, further emphasizing the potential of these methods.

1.1. Contribution

This study aims to enhance the performance of violent video recognition while main-
taining low computational complexity. The main contributions are as follows:

1. A lightweight architecture is constructed for violent video recognition by integrat-
ing MobileNet-based 2D-CNNs with a simplified 3D-CNN module. The proposed
framework is designed to achieve an optimal balance between classification accuracy
and computational efficiency. By combining spatial features extracted from individ-
ual frames with temporal patterns captured across sequences, the model effectively
represents the essential characteristics of violent actions in video data.

2. The proposed method employs spatial features extracted by the 2D-CNN component
as input to the 3D-CNN module, instead of processing raw video data directly. This
approach significantly reduces the computational cost while preserving the capacity
of the model to learn spatiotemporal patterns for accurate violence detection.

1.2. Paper Outline

Section 2 provides a comprehensive review of related studies on violent video recogni-
tion. Section 3 introduces our proposed method, which integrates 2D-CNNs and 3D-CNNs
for violence recognition. The violent video datasets used in the experiments are described
in Section 4, followed by the evaluation metrics presented in Section 5. Sections 6 and 7
report the experimental results and provide an in-depth discussion. Finally, Section 8
summarizes the main contributions and outlines directions for future research.

2. Related Work
In this section, we provide a concise overview of violence recognition in videos.

Additionally, we discuss relevant research on deep learning techniques, including CNNs,
spatial and temporal feature extraction, and 3D-CNNs, that have been proposed for violence
recognition in video data.

2.1. Violence Recognition in Videos

In previous studies, violence recognition in videos had relied on a handcrafted feature
extraction approach to distinguish violent from nonviolent actions. First, the robust features
are encoded and aggregated using encoding strategies, and then machine learning is
applied as a classifier [16]. For instance, Dalal and Triggs [17] introduced the histogram
of oriented gradients (HOG) method, which quantifies the occurrences of gradients in an
image. These gradients are extracted from localized areas, resulting in robust features.
Subsequently, the support vector machine (SVM) method is employed to create a model
that classifies the localized areas as either containing people or not. Their approach has
achieved superior results and has led many researchers [8,18] to adopt their methodology
for feature extraction, recognition, and detection tasks. Das et al. [8] proposed a system
for detecting violent situations in videos. They employed the HOG method as a feature
descriptor to extract robust features from the images. These features were then trained
using various classifiers. Subsequently, a majority voting technique was utilized as the final
decision mechanism to determine whether a video clip contained violence.

Numerous research studies have investigated and analyzed motion characteristics
in videos with the aim of detecting violence. Souza et al. [7] introduced a framework for
detecting video violence. In their method, the videos were initially divided into various im-
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ages, and interest points were subsequently detected. Local descriptor methods, specifically
the scale-invariant feature transform (SIFT) and space–time interest points (STIPs), were
then employed to extract robust features from the identified interest points. Subsequently,
a visual codebook was constructed using the bag of visual words (BoW) approach. Finally,
the SVM method was utilized to create a model that classified instances as non-violent
or violent.

Nievas et al. [19] employed the BoW method to construct a visual codebook based on
the SIFT and motion SIFT (MoSIFT) features. Subsequently, these features were classified
using the SVM classifier. To assess the efficacy of their proposed method, they gathered the
Hockey Fight dataset, comprising 1000 video clips categorized into fights and non-fights
from hockey games. In their experimental evaluation, the proposed method achieved an
accuracy exceeding 90% on the Hockey Fight dataset. Xu et al. [20] proposed a violence
detection framework based on MoSIFT and sparse coding. Initially, local spatiotemporal
features, referred to as low-level features, were extracted using the MoSIFT algorithm.
Then, the kernel density estimation (KDE) method was employed to select features from
the MoSIFT descriptor to enhance feature discriminability. Subsequently, sparse coding was
applied to transform these low-level features into mid-level representations that capture
highly discriminative information. The max-pooling method was then utilized to create
a feature vector (video-level features). Finally, the SVM classifier was trained on these
video-level features. Their proposed method achieved accuracies of 89.05% and 94.3% on
the Crowd Violence and Hockey Fight datasets, respectively.

Hassner et al. [21] introduced the violent flow (ViF) descriptor for real-time detection
of violent crowd behavior. The ViF descriptor uses the optical flow method to compute
a sequence of frames, which calculates the magnitude of changes between consecutive
frames. The features extracted using the ViF descriptor are also fed into a linear SVM
classifier to construct a robust model. The results indicated that their method achieved
an accuracy of 81.31% on the Crowd Violence dataset. However, their method yielded
results with an accuracy of 82.90% on the Hockey Fight dataset. Furthermore, Gao et al. [9]
enhanced the ViF descriptor by incorporating orientation information from optical flow,
namely the oriented violent flow (OViF) descriptor. The OViF descriptor considers both
the motion magnitude and motion orientation information derived from optical flow. The
results showed that the OViF descriptor achieved superior performance when compared
to the ViF descriptor. Additionally, when integrated with the SVM classifier, the OViF
descriptor surpassed the ViF descriptor, achieving an accuracy of 84.20%. The combination
of the ViF and OViF descriptors with the Adaboost and SVM classifiers increased violence
detection accuracy and achieved an accuracy of 87.50% on the Hockey Fight dataset.

Table 1 presents a summary of the methods used for violence recognition in videos.

Table 1. Comparison of methods for violence recognition in videos.

Reference Year Method Dataset (Acc.%)

Nievas et al. [19] 2011 (SIFT-BoW, MoSIFT) + SVM Hockey Fight (90.00%)
Hassner et al. [21] 2012 ViF + SVM Crowd Violence (81.31%)

Hockey Fight (82.90%)
Xu et al. [20] 2014 (MoSIFT, KDE, Sparse Crowd Violence (89.05%)

Coding) + SVM Hockey Fight (94.30%)
Gao et al. [9] 2016 (ViF, OViF) + Adaboost/SVM Hockey Fight (87.50%)
Patil et al. [18] 2017 HOG + SVM UT-Interaction (N/A)
Das et al. [8] 2019 HOG + Various Classifiers +

Majority Voting
Hockey Fight (86.00%)

Li et al. [16] 2019 3D-CNN Hockey Fight (98.30%)
Movie (100%)
Violent Flows (97/17%)
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2.2. Convolutional Neural Networks

Recently, deep learning methods, specifically CNN architectures, have gained
widespread adoption as robust feature extractors for recognizing violent activities in
videos [11,12,22,23]. Khan et al. [11] employed the lightweight MobileNet model to train
salient frames selected from videos. The process involved three main steps: Firstly, the
videos were segmented into frames. Subsequently, a histogram-based method was applied
to each frame to identify salient frames. Secondly, they employed a kernel-density-based
saliency estimation method, selecting key frames based on maximum information. Thirdly,
they fine-tuned the MobileNet model using a transfer learning approach to classify videos
as violent or non-violent. Their method achieved accuracies of 87.0%, 97.0%, and 99.5% on
the Hockey Fight, Violent Scene Detection, and Violent in Movie datasets, respectively.

Zhou et al. [22] introduced the FightNet architecture, which was adapted from the in-
ception of batch normalization (BN-Inception). Within the FightNet architecture, two inputs
are employed. The first input comprises RGB images, while the optical flow algorithm is
applied to these RGB images and used as the second input. Additionally, Carneiro et al. [12]
proposed a multi-stream fight detection framework that utilizes four input modalities: RGB,
optical flow, depth estimation, and visual rhythms. Initially, each input image undergoes
processing in a modified VGG16 model to calculate weight vectors. Subsequently, these
images are fed into separate VGG16 models (called individual stream learners) pre-trained
on the ImageNet and UCF101 datasets. The pre-training ensures that the model can effec-
tively distinguish motion patterns in videos. Finally, the outputs from each stream learner
are combined and used for classification via the SVM method. The FightNet model [22]
achieved remarkable accuracy rates on both the Movie and Hockey Fight datasets. Specif-
ically, it attained 100% accuracy on the Movie dataset and 97% accuracy on the Hockey
Fight dataset. Furthermore, the multi-stream fight detection approach [12] also achieved
strong performance. The FightNet model reached 100% accuracy on the Movie dataset and
89.10% accuracy on the Hockey Fight dataset.

The summary of the methods based on CNNs is presented in Table 2.

Table 2. Comparison of methods for convolutional neural networks.

Reference Year Method Dataset (Acc.%)

Zhou et al. [22] 2017 FightNet with RGB, Movie (100%)
Optical Flow Hockey Fight (97.00%)

Khan et al. [11] 2019 MobileNet Hockey Fight (87.00%)
Violent Scene Detection (97.00%)
Violent in Movie (99.50%)

Carneiro et al. [12] 2019 Multi-Stream (SVM) Movie (100%)

2.3. Spatial and Temporal Feature Extraction

Extracting robust features is an essential process in reducing computational costs and
dimensionality [24]. In traditional video recognition, researchers commonly extract robust
features based on various techniques such as interest points, regions of interest, and geome-
try [7,17,19,20]. However, these methods can be challenging to apply to complex scenarios
and only sometimes guarantee extracted robustness and high-accuracy recognition.

Deep learning is highly effective in extracting deep features from images, a capability
that surpasses traditional feature extraction methods [25]. However, the process of extract-
ing deep features from a single image in an image recognition task differs significantly from
extracting deep features from a sequence of images in a video recognition task. In video
recognition, the feature extraction method is responsible for computing spatial features
and extracting relevant information from consecutive images. Consequently, extensive
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research has focused on extracting both spatial and temporal features using a combination
of 2D-CNNs and LSTM architectures [13,26–28].

Sudhakaran and Lanz [26] introduced a new CNN architecture that combines CNNs
with convolutional LSTM (convLSTM) to detect the characteristics of violent scenes in
videos. The CNN and convLSTM focus on extracting discriminant features, while the
convLSTM component encodes spatial and temporal frame-level changes from consecutive
frames. Sumon et al. [27] initially proposed a CNN architecture comprising only two
convolutional layers. Subsequently, dropout and batch normalization layers were attached
to each convolutional layer. After that, a fully connected layer with the softmax function was
employed. Additionally, they utilized the LSTM architecture for training and classifying
violent and non-violent categories. Finally, they combined both the CNN and LSTM in
their approach. However, their experimental results showed that combining the CNN and
LSTM yielded lower precision performance than using only the CNN model.

Hanson et al. [29] introduced a new spatiotemporal encoder architecture, which repre-
sents a unique fusion of spatial encoding, a temporal encoder, and classifier components.
In their proposed architecture, the spatial encoding module is specifically designed to ex-
tract spatial features using a VGG13 architecture. Meanwhile, the bidirectional convLSTM
(BiConvLSTM) model captures and encodes the spatiotemporal information from each
video frame. The resulting spatiotemporal encoding was then subjected to an elementwise
max-pooling operation and sent to the classifier, a fully connected layer. Their architec-
ture achieved impressive accuracy rates of 96.32%, 98.1%, and 100% on the Violent Flows,
Hockey Fight, and Movie datasets, respectively.

Furthermore, considerable research efforts have been directed toward combining
CNN and LSTM models for video violence recognition. Researchers have utilized several
advanced CNN architectures, such as VGGNet, ResNet, and MobileNet, to extract robust
spatial features [11,30–32]. Moreover, they have explored the fusion of multiple CNN
architectures rather than relying solely on a single CNN model [5].

Table 3 summarizes the methods based on spatial and temporal feature extraction.

Table 3. Comparison of methods for spatial and temporal feature extraction.

Reference Year Method Dataset (Acc.%)

de Souza et al. [7] 2010 (SIFT, STIP, and BoVW) +
SVM

Violent Dataset on Social
Networks (85.35%)

Sudhakaran & Lanz [26] 2017 CNNs + Hockey Fight (97.10%)
ConvLSTM Movie (100%)

Violent Flows (94.57%)
Sumon et al. [27] 2019 VGG13 + BiConvLSTM Violent Collected from

YouTube (89.79%)
Soliman et al. [13] 2019 VGG16 + LSTM Hockey Fight (95.10%)

Movie (99.00%)
Violent Flows (90.01%)

Hanson et al. [29] 2019 VGG13 + Violent Flow (96.32%)
Bi-ConvLSTM Hockey Fight (98.10%)

Movie (100%)
Naik & Gopalakrishna [28] 2021 Mask-RCNN + KTH (93.40%)

LSTM Weizmann (73.10%)
Jahlan & Elrefaei [5] 2022 (AlexNet, Movie (100%)

SqueezeNet) Violent Flows (96.00%)
+ ConvLSTM

Vosta &Yow [30] 2022 ResNet50 + ConvLSTM UCF Crime (62.50%)
Getsopon & Surinta [31] 2022 Fusion-CNNs + Hockey Fight (97.20%)

BiLSTM Movie (100%)
Violent Flows (96.77%)
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2.4. Three-Dimensional Convolutional Neural Networks

Three-dimensional CNNs are now utilized to analyze videos, detecting anomalies
in crowded scenes [33–35]. Hu et al. [33] proposed a novel method for detecting spatial–
temporal cuboids by utilizing varied cell-size structures. They employed an optical flow
algorithm to identify moving objects based on cell size. Subsequently, the 3D-CNN was
applied to detect abnormalities within the cuboids. Maqsood et al. [35] employed a 3D-
CNN architecture with five convolutional layers to extract anomalous spatiotemporal
features from videos. They evaluated their approach using the UCF Crime dataset, which
contains 14 different classes of anomalies. The results indicated that their proposed 3D-
CNN outperformed existing state-of-the-art methods for anomaly detection on the UCF
Crime dataset.

Furthermore, Kokila et al. [34] and Pratama et al. [36] employed two-stream 3D-CNN
architectures. In their approach, the first stream utilized a 3D-CNN to extract contex-
tual and spatial features, while the second stream focused on extracting temporal deep
motion features using a 3D-CNN optical flow. Kokila et al. [34] combined the output of
these two streams through a concatenation operation, followed by an attentive bidirec-
tional LSTM (BiLSTM) architecture, to classify videos as normal or abnormal. In contrast,
Pratama et al. [36] attached a softmax function to each stream and then aggregated the
output from both streams to obtain the final result of their proposed method.

Keceli and Kaya [37] addressed the classification of violent activity in videos using
transfer deep features and a 3D-CNN. Their approach comprised several essential steps.
Initially, a person detection algorithm combined the HOG with a linear SVM classifier.
Subsequently, the AlexNet architecture was employed to extract robust spatial features from
the region of interest corresponding to the detected individual. These spatial features were
then reshaped and computed using trilinear interpolation, resulting in a 3D prism structure.
Finally, these 3D prism features were fed into the 3D-CNN model. Their proposed method
was evaluated on three benchmark datasets: Violent Flows, Hockey Fight, and Movie.
Impressively, their approach achieved an accuracy of 88% on the Violent Flows dataset,
92.90% on the Hockey Fight dataset, and 98.7% on the Movie dataset.

Table 4 summarizes the methods based on 3D-CNNs.

Table 4. Comparison of methods for 3D-CNNs.

Reference Year Method Dataset (Acc.%)

Hu et al. [33] 2020 Parallel Spatial-Temporal UCSD (96.73%)
CNN UMN (96.37%)

Maqsood et al. [35] 2021 3D ConvNets UCF Crime (45.00%)
Kokila et al. [34] 2023 2MPD-3DFCN UCSD (96.00%)

-AttBiDLSTM UCF Crime (87.20%)
LV (81.00%)

Pratama et al. [36] 2023 Two-Stream 3D-CNN RWF-2000 (90.50%)
Keceli & Kaya [37] 2023 3D Prism + 3D-CNN ViolentFlows (88.00%)

Hockey FIght (92.90%)
Movie (98.70%)

2.5. Transformer Models

Transformer-based models are increasingly recognized as a powerful alternative to
traditional CNNs for video-understanding tasks, including action and violence recognition.
The transformer architectures frequently encounter challenges in modeling long-range
temporal dependencies, ensuring scalability, and capturing global contextual information.
To address these limitations, transformer-based models, such as ViViT, TimeSformer, and
the video Swin transformer, have been proposed, offering a novel framework for both
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video classification and understanding [38–40]. By employing self-attention mechanisms,
transformers enable each frame to dynamically interact with all others, thereby facilitating
the comprehensive modeling of global temporal relationships.

Particularly, the TimeSformer architecture [38] is distinguished by its separation of
spatial and temporal attention, which facilitates more efficient training and improved gen-
eralization, a methodology commonly referred to as joint spatiotemporal feature learning.
ViViT addresses the complexity of video input by factorizing attention into distinct spatial
and temporal components. This decomposition significantly reduces the computational
overhead while preserving the ability of the model to capture essential spatiotemporal fea-
tures required for accurate video classification [39]. The video Swin transformer factorizes
attention into spatial and temporal components. Hence, it also captures global self-attention
by shifting windows across layers so that information can propagate across the entire video
sequence over layers, allowing global dependencies to be learned indirectly [40].

Singh et al. [41] introduced an end-to-end framework for automatic violence detec-
tion in videos based on the video vision transformer (ViViT) architecture. In their study,
various image augmentation techniques, such as Gaussian blur, random rotation, uniform
perturbations, and horizontal flipping, were applied during the training process. How-
ever, the ViViT model requires 56 input video frames, which increases the computational
demand. Although this increases the computational demand, the method achieved im-
pressive accuracy rates of 97.14% on the Hockey Fight dataset and 98.46% on the Violent
Flows dataset.

Despite the transformative impact of transformers on video classification, particularly
their capacity to capture long-range spatiotemporal dependencies, these models present
several critical limitations. One significant drawback is their high computational complexity.
The self-attention mechanism scales quadratically with the input sequence length, leading
to substantial memory usage and prolonged training and inference times. Additionally,
transformers are highly data-dependent, often requiring large-scale annotated datasets
to achieve effective generalization. Inherent inductive biases, such as spatial locality, are
also absent in transformer architectures, reducing efficiency compared to CNNs in visual
processing tasks [42,43].

To address the limitations of existing approaches, this study proposes a new frame-
work that integrates deep spatial features from two lightweight CNNs (MobileNetV1 and
MobileNetV2) with a 3D-CNN model to effectively capture both spatial and temporal
information. In contrast to the deep features fusion technique [5], which uses AlexNet and
SqueezeNet combined with ConvLSTM modules for temporal modeling, the proposed
method eliminates the complexity and high computational cost of recurrent layers by
applying a 3D-CNN for temporal aggregation, thereby improving efficiency and scalability.
Compared to the multi-stream (SVM) approach [12], which relies on handcrafted high-level
features (e.g., depth and visual rhythm) and traditional classifiers (SVM), the proposed
framework employs an end-to-end deep learning model to learn discriminative represen-
tations directly from raw video data, avoiding manual feature engineering. Furthermore,
while the two-stream 3D-CNN architecture [36] independently processes RGB and optical
flow streams and combines them at a later stage, the proposed model learns from fused
spatial features extracted by two CNNs and feeds them directly into a single 3D-CNN
stream, thus reducing redundancy and enhancing the modeling of temporal information.

Details of the proposed integrated 2D- and 3D-CNN architecture are described in
Section 3.
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3. Proposed Integrated 2D and 3D Convolutional Neural Networks
The effectiveness of violence recognition in videos is essential for a range of applica-

tions, including crowd events. A primary contributors to this effectiveness is the extraction
of robust deep features, which are fundamental to the accurate identification and classifica-
tion of violent behaviors within video data [7,19,20,25,26]. The primary objective of this
research is to design a deep learning architecture capable of efficiently classifying violent
actions in videos. To achieve this, we propose a new approach that integrates robust deep
features with a 3D convolutional neural network (3D-CNN). Specifically, we extracted
spatial features using state-of-the-art lightweight CNN architectures and subsequently
create temporal features by learning from the spatial representations using the 3D-CNN.
The proposed model is named Int.2D-3D-CNN.

The architecture of the proposed Int.2D-3D-CNN model, as presented in this study, is
illustrated in Figure 1. A detailed explanation of the proposed architecture, which integrates
deep features extracted by a 2D-CNN with a 3D-CNN, is provided in the following subsections.

Figure 1. The proposed Int.2D-3D-CNN architecture for video violence recognition.

3.1. Deep Feature Extraction

Deep feature extraction, the primary operation in identifying robust deep features,
was carried out using the 2D-CNN model, which is widely recognized for its effectiveness
in image and video recognition tasks and was our chosen architecture. In the context of
violent video analysis, we focused on deep feature extraction at the frame level. Each frame
was processed by two pre-trained lightweight 2D-CNN models, namely MobileNetV1 and
MobileNetV2. Brief details of the two lightweight models are explained below.

3.1.1. MobileNetV1

MobileNetV1 [44] is a lightweight architecture designed by using depthwise separable
convolutions to construct deep networks. It separates the standard convolution process into
two distinct layers: depthwise and pointwise convolution operations, collectively known
as depthwise separable convolutions. The application of depthwise separable convolutions
significantly reduces the number of network parameters, making the architecture more
efficient. The MobileNetV1 architecture begins with a standard convolution layer followed
by 13 depthwise separable convolution blocks, a global average pooling layer, and a
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fully connected layer for classification. A brief overview of the standard convolution and
depthwise convolution operations is provided below.

In the standard convolution operation, a kernel of size DK × DK, where DK is the
spatial dimension of the square kernel, performs multiplications across the entire image
to generate a feature map (G) of size DG × DG. Here, DG represents the spatial width and
height of the square output feature map. The standard convolution operation is illustrated
in Figure 2a.

The depthwise separable convolution operation, a specialized form of convolutional
operation, is partitioned into two processes: depthwise convolution and pointwise con-
volution [44]. In the first process, depthwise convolution, a single convolutional kernel is
utilized for each input channel, contrasting standard convolutions that execute computa-
tions across the entire input channels. The second process, called pointwise convolution,
creates a linear combination of the output by applying a 1 × 1 convolution that integrates
the outputs derived from the depthwise convolution [38]. The depthwise convolution and
pointwise convolution operations are illustrated in Figure 2b and 2c, respectively.

(a)

(b)

(c)

Figure 2. Architecture of the convolution operations: (a) the standard convolution kernel, (b) the
depthwise convolution, and (c) the pointwise convolution [44].

The number of parameters in a standard convolution operation is given by DK × DK × M× N,
while for a depthwise separable convolution, it is reduced to M × DK × DK + M × N.
In terms of the computational cost, the standard convolution requires approximately
DK × DK × M × N × DF × DF operations, whereas the depthwise separable convolution
reduces this to DK × DK × M × DF × DF + M × N × DF × DF. Here, DK is the kernel size
(e.g., three for a 3 × 3 filter); M is the number of input channels; N is the number of output
channels; and DF is the spatial dimension (width or height) of the input feature map.
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Furthermore, in the standard convolution operation, the feature map (O), characterized
by dimensions of DK × DK × N, is derived from a kernel (K) with dimensions of DK × DK.
The kernel is applied to the entire input image (F) with dimensions of DK × DK × M. The
standard convolution operation is computed using Equation (1), where

Ok,l,n = ∑
i,j,m

Ki,j,m,n · Fk+i−1,l+j−1,m (1)

In the depthwise separable convolution, firstly, a depthwise convolution (K̂) with
dimensions of 3 × 3 is applied to each image channel. Subsequently, a kernel with dimen-
sions of 1 × 1 (pointwise convolution) is employed to combine the output derived from the
depthwise convolution operation [45]. The computation of the depthwise convolution and
pointwise convolution is represented as Equations (2) and (3), where

Ôk,l,m = ∑
i,j

K̂i,j,m · Fk+i−1, l+j−1,m (2)

Ok,l,m = ∑
m

K̃m,n · Ôk−1,l−1,m (3)

The depthwise separable convolution block and the architecture of MobileNetV1 are
illustrated in Figure 3a,b.

(a)

(b)

Figure 3. Architecture of MobileNetV1: (a) depthwise separable convolution block and (b) overall
architecture of MobileNetV1 [44].



Mathematics 2025, 13, 2665 12 of 35

3.1.2. MobileNetV2

MobileNetV2 [46] incorporates an inverted residual module combined with a linear
bottleneck. The inverted residual module first expands the channels to a higher dimension-
ality and then applies a depthwise separable convolution to compress the dimensionality
back to match the input dimension. A skip connection is also strategically employed within
the inverted residual module, linking the beginning and the end of the convolution blocks.
Additionally, the network expands the layer using a 1 × 1 convolution, followed by a
3 × 3 depthwise convolution to reduce the network parameters, and then compresses the
dimensionality again using another 1 × 1 convolution.

The MobileNetV2 architecture consists of an initial standard convolution layer and
17 inverted residual blocks, followed by a convolution layer, a global average pooling layer
to aggregate the features, and a fully connected layer for classification. The bottleneck
residual block and architecture of MobileNetV2 are shown in Figure 4a,b.

(a)

(b)

Figure 4. Illustration of MobileNetV2: (a) bottleneck residual block and (b) overall architecture of
MobileNetV2 [46].

3.2. Fusion of Frame-Level Deep Features

In the fusion process of frame-level deep features, this study aggregates spatial repre-
sentations extracted by two state-of-the-art CNNs: MobileNetV1 and MobileNetV2. These
networks were employed to capture spatial characteristics from individual video frames,
which are called frame-level deep features. Specifically, the extracted features from both
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MobileNetV1 and MobileNetV2 have dimensions of DG × DG × N × F, where DG × DG

denotes the spatial resolution of the square output feature maps (7 × 7), N indicate the
number of channels (set to 1024), and F represents the number of video frames (set to 16).
To fuse the frame-level deep features from the two MobileNet architectures, a concatenation
operation was applied. This operation is mathematically expressed in Equation (4).

Fconcat = Concat(FMobileNetV1, FMobileNetV2) (4)

where Fconcat denotes the concatenated feature map obtained by combining FMobileNetV1 and
FMobileNetV2 along the channel dimension. Both FMobileNetV1 and FMobileNetV2 represent the
frame-level deep feature maps extracted from MobileNetV1 and MobileNetV2, respectively,
each with dimensions of DG × DG × N × F. After concatenation, the resulting feature map
has dimensions of DG × DG × 2N × F, reflecting the doubling of the channel dimension
due to deep feature integration.

Consequently, the final frame-level deep feature representation is configured as
7 × 7 × 2048 × 16. These concatenated features are then passed to the subsequent 3D-CNN
module for spatiotemporal learning, as detailed in the following section.

3.3. Three-Dimensional Convolution

Due to the limitations of the 2D-CNN approach, which only processes spatial infor-
mation within individual frames, we employed a 3D-CNN architecture that effectively
captures complex spatiotemporal features from sequence patterns [33]. The 3D-CNN
enables the network to understand patterns and dynamic content across a sequence of
video frames. The proposed 3D-CNN performs two primary functions. First, it refines
the learning of spatial features at the individual frame level. Second, it extracts temporal
features by analyzing the patterns across the sequence of frames.

The operation of 3D convolution is executed by employing a 3D kernel that slides
over sequential frames, utilizing element-wise multiplication for computation. Within
our 3D-CNN architecture, the input for the 3D layer is derived from the fusion of frame-
level features. Consequently, the depth size (D) depends on the number of frames. The
computation of the 3D convolution operation is represented by Equation (5).

O(i, j, k) =
kH−1

∑
p=0

kW−1

∑
q=0

kD−1

∑
r=0

I(i + p, j + q, k + r) · K(p, q, r) (5)

where I represents the input volume (e.g., video frames) with dimensions of H × W × D
(height, width, and depth), while K is the 3D kernel with dimensions of kH × kW ×
kD. Note that, in our implementation, the depth size corresponds to 16 consecutive
video frames.

To capture spatiotemporal features from sequence patterns, we proposed a 3D-CNN
architecture that included a batch normalization layer, a 3D convolution layer, a dropout
layer, and a global average pooling layer. The 3D convolution layer used a kernel size of
1 × 2 × 2 with a stride of 1. The spatiotemporal features were reduced by transforming the
feature map into 1024 feature maps. Subsequently, a global average pooling layer reduced
the feature size to 512, followed by a fully connected layer with 2048 units. The final output
consisted of two nodes (violent and non-violent) using a softmax function, as shown in
Figure 5. In the proposed network, ReLU was applied as the activation function following
the 3D convolution layer, and a dropout rate of 0.4 was employed.

We compared the proposed 3D-CNN architecture with C3D [47], a well-known 3D-
CNN architecture, in terms of floating-point operations per second (FLOPS) [48] (see
Equation (12)) and the number of network parameters. The proposed 3D-CNN achieved
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superior performance in FLOPS, with values of 5.21 × 102 for our model and 6.17 × 102

for C3D. Additionally, the proposed 3D-CNN had 10.504 million parameters, which was
significantly fewer than the 78 million parameters of C3D. The network configuration of
the proposed 3D-CNN architecture is detailed in Table 5.

Figure 5. Architecture of the proposed 3D-CNN.

Table 5. Network architecture and configuration of the proposed 3D-CNN.

Layer Kernel Size Input Size Output Size Parameter
(W × H × D) (W × H × D × F) (W × H × D × F) (M)

BN - 7 × 7 × 2048 × 16 7 × 7 × 2048 × 16 0.008
3D Conv 2 × 2 × 1 7 × 7 × 2048 × 16 7 × 7 × 2048 × 16 8.389
BN - 6 × 6 × 1024 × 16 6 × 6 × 1024 × 16 0.004
Dropout - 6 × 6 × 1024 × 16 6 × 6 × 1024 × 16 -
3D GAP - 6 × 6 × 1024 × 16 512 -
FC - 512 2.099
softmax - 2048 2 0.004

Total parameters 10.504

FLOPS (×102) 5.21
BN is the batch normalization layer. GAP is the global average pooling layer. FC is the fully connected layer. W
is the width. H is the height. D is the dimensional. F is the feature map, and M is a million.

4. Violent Video Datasets
Three violent video datasets, namely Hockey Fight, Movie, and Violent Flows, were

used as benchmarks to evaluate the proposed architecture. Each dataset comprises two
classes: violent and non-violent. Additionally, the combined violence dataset was con-
structed for training purposes. The details of all datasets are described in the following
subsections.

4.1. Hockey Fight Dataset

The Hockey Fight dataset was collected by Nievas et al. [19]. It consists of 1000 short
video clips extracted from hockey games, with each video containing 50 frames at a resolu-
tion of 720 × 576 pixels. The videos are categorized into two classes: fight (representing
violent actions) and non-fight (indicating non-violent actions). The dataset is balanced,
comprising 500 videos in each class. Figure 6 illustrates examples of violent and non-violent
videos from the Hockey Fight dataset by showing five video frames.
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(a) (b)

Figure 6. Examples of (a) violent and (b) non-violent videos from the Hockey Fight dataset [19].

4.2. Movie Dataset

In 2011, Nievas et al. [19] collected the Movie dataset, which consists of 200 video clips
sourced from action movies. The dataset is evenly divided into 100 non-fight and 100 fight
scenes. Each video clip has a duration of approximately 2 s. The video resolution for the non-
fight category is 720 × 480, while the resolution for the fight category is 720 × 576 pixels.
Examples of violent and non-violent videos from the Movie dataset are illustrated in
Figure 7.

(a) (b)

Figure 7. Examples of (a) violent and (b) non-violent videos from the Movie dataset [19].

4.3. Violent Flows Dataset

The Violent Flows dataset, which was collected by Hassner et al. [21], is a collection
of 246 videos sourced from YouTube. This dataset is split into two categories, namely
violent and non-violent, with each category containing 123 videos. The average duration
of each video is approximately 3.60 s. The videos were processed using the DivX codec
software, yielding a resolution of 320 × 240 pixels. The Violent Flows dataset comprises
videos captured from a distance during violent occurrences in crowded environments, as
shown in Figure 8.

4.4. Combined Violence Dataset

The motivation for combining violence datasets is due to the fact that each dataset
exhibits diverse characteristics in terms of violent scenarios, camera angles, environments,
and motion patterns. Additionally, combining datasets allows the model to learn from
a broader range of non-violent patterns. The primary objective of this combination is to
construct a more diverse and representative training set.

To construct the combined training dataset, each of the three violence datasets was
initially partitioned using an 80:20 ratio for training and testing. Only the training sets were
then used for combination. Specifically, the combined violence dataset includes 800 videos
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from the Hockey Fight dataset, 160 videos from the Movie dataset, and 197 videos from the
Violent Flows dataset, resulting in a total of 1157 training videos.

(a) (b)

Figure 8. Examples of (a) violent and (b) non-violent video from the Violent Flows dataset [21].

5. Evaluation Metrics
To evaluate the performance of the recognition method, we used various metrics, in-

cluding accuracy, a receiver operating characteristics (ROC) curve, the area under the curve
(AUC), a precision–recall curve, and the area under the precision–recall curve (AUC-PR).

The evaluation metrics are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

Recall =
TP

TP + FN
(7)

Precision =
TN

TN + FP
(8)

where TP, TN, FP, and FN stand for true positive, true negative, false positive, and false
negative, respectively. Recall and precision represent the true positive rate (TPR) and the
true negative rate (TNR) [49,50].

The ROC curve was used to analyze the performance of the violence recognition
methods. Two parameters, recall and precision, were computed and plotted on a graph,
with precision on the x-axis and recall on the y-axis [49]. Further, the AUC [51] was
calculated to measure performance across all recognition thresholds, indicating how well
the model distinguishes between classes. An AUC of 1 indicates perfect model performance.
The AUC was computed using Equation (9).

AUC =
n−1

∑
i=1

(FPRi+1 − FPRi)×
(

TPRi+1 + TPRi
2

)
(9)

where FPR stands for the false positive rate [51] and is calculated using Equation (10),
where

FPR =
TP

TP + FN
(10)

The AUC-PR was evaluated by plotting precision against recall [51] and calculated
using Equation (11), where

AUC − PR =

∑n−1
i=1 (Recalli+1 − Recalli)×

(
Precisioni+1+Precisioni

2

) (11)
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Additionally, the floating-point operations per second (FLOPS) were calculated to
evaluate the computational efficiency of the deep learning architectures and to determine
how many floating-point operations can be executed each second [48]. A lower FLOPS
value indicates better efficiency and reduced computational resource requirements. The
FLOPS were calculated using Equation (12):

FLOPS =
FLOPs
cycle

× cycles
second

× cores (12)

where FLOPs denotes the number of floating-point operations that need to be performed
by the model, cycles (or clock cycles) refers to the number of cycles needed for a processor
to execute one floating-point operation, cycles

second represents the clock speed of the processor,
and cores refer to the number of processing cores in the CPU or GPU.

6. Experiment Results
Experimental Settings: The proposed Int.2D-3D-CNN architecture was implemented

on the Google Colab platform utilizing a Tesla T4 GPU. The implementation was performed
in Python 3.13.0, using the Keras 3.10.0 API within TensorFlow 2.19.0 as the deep learning
framework. Model training employed the stochastic gradient descent (SGD) optimizer
with a momentum of 0.9, and experiments were conducted using learning rates of 0.01,
0.001, 0.0001, and 0.00001. Batch sizes of four and eight were tested, and each model was
trained for 500 epochs. The proposed architecture used 16 video frames as the input, which
helped reduce the computational cost.

According to previous studies, the Movie dataset was partitioned into training and test
sets using an 80:20 ratio. For the Hockey Fight and Violent Flows datasets, both 80:20 and
75:25 ratios were evaluated. To ensure an unbiased distribution and avoid systematic ordering
effects, data splitting was performed randomly using the ‘train_test_split’ function from
the Scikit-learn 1.4.1 library [52], with a fixed random seed to ensure reproducibility.

To illustrate the evaluation results, quantitative comparisons are provide between
the proposed architecture and other state-of-the-art deep learning techniques on three
benchmark violent video datasets, namely Hockey Fight, Movie, and Violent Flows, as
presented in Sections 6.1–6.5.

6.1. Results of MobileNetV1, MobileNetV2, and C3D for Violence Recognition

The efficiency of pre-trained CNN models in recognizing violent content in videos
was evaluated using MobileNetV1 and MobileNetV2 across three violent video datasets.
Sixteen non-overlapping frames were selected for each video, with frames chosen by
skipping one frame at a time to minimize data redundancy. The selected frames were
sized 16 × 224 × 224 × 3, where 16 represents the number of frames, 224 represents the
width and height, and 3 represents the channels. Both MobileNetV1 and MobileNetV2
models were independently retrained on the three datasets, with the final layer replaced
by a softmax layer to classify violent or non-violent videos. The results were compared
using different batch sizes (four and eight) and learning rates (0.01, 0.001, 0.0001, and
0.00001). The experimental results for MobileNetV1 and MobileNetV2 are presented in
Tables 6 and 7, respectively.

Table 6 presents the experimental results obtained using the MobileNetV1 architecture.
The model achieved an accuracy of 95.99% on the Hockey Fight dataset when trained with
a batch size of eight and learning rates ranging from 0.01 to 0.0001. On the Movie dataset,
the highest accuracy of 98.00% was attained using a batch size of four and a learning rate of
0.001. In the Violent Flows dataset, the model consistently achieved an accuracy of 91.94%
across all configurations.
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Table 6. Evaluation results of MobileNetV1 for violence recognition.

Dataset Batch Size Learning Rate Accuracy (%)
Time

Train (h) Test (ms)

Hockey Fight

4

0.01 94.80 0.58

20.001 95.99 0.59
0.0001 95.20 0.58
0.00001 95.20 0.58

8

0.01 95.99 0.53

20.001 95.99 0.53
0.0001 95.99 0.53
0.00001 95.60 0.53

Movie

4

0.01 95.99 0.11

10.001 98.00 0.11
0.0001 93.99 0.11
0.00001 93.99 0.11

8

0.01 92.00 0.11

20.001 93.99 0.11
0.0001 95.99 0.11
0.00001 92.00 0.11

Violent Flows

4

0.01 91.94 0.14

10.001 91.94 0.14
0.0001 91.94 0.14
0.00001 91.94 0.14

8

0.01 91.94 0.13

10.001 91.94 0.13
0.0001 91.94 0.13
0.00001 91.94 0.13

Table 7 presents the results for MobileNetV2. The model achieved accuracies of 95.99%
on the Hockey Fight dataset, 98.00% on the Movie dataset, and 91.94% on the Violent Flows
dataset. The optimal configuration for the Hockey Fight dataset was a batch size of four
with a learning rate of 0.00001. For the Movie dataset, all configurations yielded the highest
observed accuracy. In the Violent Flows dataset, the best performance was achieved with a
batch size of eight and a learning rate of 0.01.

MobileNetV2 achieved equivalent maximum accuracy performance to MobileNetV1
across the Hockey Fight, Movie, and Violent Flows datasets.

The experiments also included C3D, a 3D convolution architecture, to compare the
performance of 2D-CNN and 3D-CNN models. The results for C3D are detailed in Table 8.
In the experimental setup, a sequence of 16 consecutive frames was used as the input, each
with dimensions of 112× 112× 3, representing the width, height, and channels, respectively.
The C3D model achieved accuracies of 76.40%, 86.00%, and 75.81% on the Hockey Fight,
Movie, and Violent Flows datasets, respectively. However, the experimental results showed
that the MobileNet architectures outperformed C3D across all three violence datasets.
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Table 7. Evaluation results of MobileNetV2 for violence recognition.

Dataset Batch Size Learning Rate Accuracy (%)
Time

Train (h) Test (ms)

Hockey Fight

4

0.01 95.60 0.68

30.001 95.20 0.69
0.0001 95.20 0.68
0.00001 95.99 0.53

8

0.01 95.20 0.60

30.001 95.20 0.61
0.0001 95.20 0.61
0.00001 95.20 0.59

Movie

4

0.01 98.00 0.17

20.001 98.00 0.17
0.0001 98.00 0.17
0.00001 98.00 0.16

8

0.01 98.00 0.16

20.001 98.00 0.15
0.0001 98.00 0.16
0.00001 98.00 0.17

Violent Flows

4

0.01 87.10 0.17

20.001 88.71 0.16
0.0001 87.10 0.16
0.00001 88.71 0.16

8

0.01 91.94 0.15

20.001 82.26 0.15
0.0001 87.10 0.15
0.00001 88.71 0.15

Table 8. Evaluation results of C3D for violence recognition.

Dataset Batch Size Learning Accuracy Time Model
Rate (%) Train (h) Test (ms) Size (M)

Hockey 4 0.0001 76.40 1.87 13

298

Fight
0.00001 72.80 1.75

8 0.0001 70.80 1.48 30.00001 72.80 1.95

Movie
4 0.0001 86.00 0.24 20.00001 82.00 0.37

8 0.0001 84.00 0.24 20.00001 84.00 0.38

Violent 4 0.0001 70.97 0.52 2

Flows
0.00001 72.58 0.50

8 0.0001 70.97 0.48 20.00001 75.81 0.47

6.2. Experimental Results of the Proposed Int.2D-3D-CNN Models

As shown in Section 6.1, using only the 3D-CNN architecture for video violence
recognition did not result in high accuracy. In contrast, the 2D-CNN models achieved strong
performance, reaching 98% accuracy on the Movie dataset. However, the performance was
lower on the Hockey Fight and Violent Flows datasets, yielding accuracies of approximately
95% and 91%, respectively.
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In this experiment, an architecture was proposed to enhance violence recognition mod-
els by integrating the strengths of 2D-CNN and 3D-CNN architectures. Spatial features were
extracted from video frames using the lightweight 2D-CNN architectures (MobileNetV1
and MobileNetV2). These robust features were then aggregated and passed to the 3D-CNN
model to learn temporal information between adjacent frames. For the 2D-CNN models,
features were extracted from the last convolution layer, producing a size of 7 × 7 × 1024.
The feature maps were concatenated to form a size of 7 × 7 × 2048 before being fed into the
3D-CNN. To identify the most suitable 3D-CNN model, we designed and experimented
with five different 3D-CNN models, as shown in Table 9.

The experimental results for the integrated 2D-CNN and 3D-CNN (Int.2D-3D-CNN)
model on three violent datasets are presented in Tables 10–12.

Table 9. Network architectures of five different 3D-CNN models.

Models Model 1 Model 2 Model 3 Model 4 Model 5

Input Deep Feature (16 × 7 × 7 × 2048)

Batch Normalization (16 × 7 × 7 × 2048)

Conv3D Conv3D Conv3D Conv3D Conv3D
(1024) (1024) (1024) (1024) (1024)
K (1 × 2 × 2) K (1 × 2 × 2) K (1 × 2 × 2) K (1 × 2 × 2) K (1 × 2 × 2)

BN Conv3D Conv3D Conv3D Conv3D
(512) (512) (512) (512)
K (1 × 2 × 2) K (1 × 2 × 2) K (1 × 2 × 2) K (1 × 2 × 2)

Dropout BN BN BN BN
(0.2)

GAP Dropout Dropout GAP Dropout
(1024) (0.2) (0.2) (512) (0.2)

Dense GAP GAP Dense GAP
(2048) (512) (512) (2048) (512)
Dense Dense Dense Dense Dense
(2) (2048) (2048) (2) (2048)

Dense Dense Dense
(2) (2) (2)

Param 10,499,074 6,303,746 11,019,778 11,547,138 11,547,138

FLOPS (×102) 5.21 4.31 5.75 5.75 5.75

Table 10 presents the accuracy performance of five 3D-CNN models (Models 1–5)
tested on the Hockey Fight dataset. The integrated 2D-CNN and 3D-CNN (Model 1)
model, referred to as Int.2D-3D-CNN (M1), was trained for 2.06 h and required only ten
milliseconds (ms) to recognize each video. Additionally, Int.2D-3D-CNN (M1) achieved
the highest accuracy of 97.20% when trained with a learning rate of 0.01.

As shown in Table 11, the Int.2D-3D-CNN models achieved impressive performance
on the Movie dataset. Specifically, Int.2D-3D-CNN (M1) achieved 100% accuracy with a
learning rate of 0.001 and a batch size of eight. Training for Int.2D-3D-CNN (M1) took
approximately 0.48 h, and the model required only 11 milliseconds to recognize violence in
each video. However, the accuracy of other Int.2D-3D-CNN models was also above 96%.
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Table 10. Accuracy performance of the proposed Int.2D-3D-CNN models on the Hockey Fight dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 2.06 10 97.20 2.20 10 96.00

80.170.001 2.05 10 96.00 2.11 10 95.20
0.0001 2.06 10 95.60 2.03 10 96.40

2
0.01 1.27 6 95.60 1.26 6 96.40

48.170.001 1.27 6 96.00 1.26 6 95.20
0.0001 1.29 6 96.00 1.26 6 96.00

3
0.01 2.06 11 95.60 2.27 11 95.60

84.150.001 2.07 11 96.40 2.29 11 95.60
0.0001 2.09 11 96.00 2.29 11 95.60

4
0.01 2.03 11 96.00 2.26 11 95.60

88.170.001 2.06 11 95.60 2.29 11 95.60
0.0001 2.06 11 96.40 2.12 11 95.60

5
0.01 2.38 11 96.00 2.29 10 96.00

88.170.001 2.39 11 95.60 2.31 10 96.00
0.0001 2.38 11 95.60 2.36 10 95.60

Table 11. Accuracy performance of the proposed Int.2D-3D-CNN models on the Movie dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 0.47 9 97.37 0.47 11 97.37

80.170.001 0.48 9 97.37 0.47 11 100
0.0001 0.48 9 97.37 0.47 11 97.37

2
0.01 0.26 6 96.00 0.26 6 96.00

48.170.001 0.26 5 96.00 0.25 6 94.00
0.0001 0.27 6 96.00 0.27 6 96.00

3
0.01 0.52 11 96.00 0.52 11 96.00

84.150.001 0.52 11 96.00 0.52 11 96.00
0.0001 0.53 11 94.00 0.53 11 96.00

4
0.01 0.42 11 96.00 0.42 11 96.00

88.170.001 0.42 11 96.00 0.42 11 96.00
0.0001 0.43 11 94.00 0.47 11 94.00

5
0.01 0.45 9 96.00 0.44 11 96.00

88.170.001 0.45 9 96.00 0.45 11 94.00
0.0001 0.47 9 92.00 0.48 11 96.00

The experimental results in Table 12 indicate that Int.2D-3D-CNN (M1) achieved
the highest accuracy on the Violent Flows dataset, outperforming other models with an
accuracy of 96.77% at a learning rate of 0.0001 and a batch size of eight.
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Table 12. Accuracy performance of the proposed Int.2D-3D-CNN models on the Violent Flows dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 0.47 9 95.65 0.46 11 93.48

80.170.001 0.46 9 95.65 0.46 11 95.65
0.0001 0.47 9 93.48 0.46 11 96.77

2
0.01 0.32 6 87.10 0.30 6 91.94

48.170.001 0.32 6 93.55 0.31 6 93.55
0.0001 0.34 6 90.32 0.32 6 91.94

3
0.01 0.54 11 91.94 0.52 11 93.55

84.150.001 0.55 11 91.94 0.53 11 91.94
0.0001 0.53 11 91.94 0.53 11 93.55

4
0.01 0.54 11 93.55 0.53 11 91.94

88.170.001 0.55 11 93.55 0.52 11 93.55
0.0001 0.53 11 93.55 0.53 11 93.55

5
0.01 0.56 9 91.94 0.55 11 93.55

88.170.001 0.56 9 90.32 0.55 11 93.55
0.0001 0.56 9 93.55 0.58 11 93.55

Figure 9 illustrates the training and validation loss curves of the Int.2D-3D-CNN
(M1) model across the three violence datasets. The loss curves gradually decreased until
converging at their minimum, indicating close alignment. The closely matched training
and validation loss curves indicate the effective learning capability of the proposed model
and suggest that overfitting was well managed.

(a) (b) (c)

Figure 9. Training and validation loss curves of the proposed Int.2D-3D-CNN (M1) model on the
(a) Hockey Fight, (b) Movie, and (c) Violent Flows datasets.

Based on the experimental results presented in Sections 6.1 and 6.2, the integrated
2D-CNN and 3D-CNN models, particularly Model 1 (Int.2D-3D-CNN (M1)), exhibited the
highest performance on all three violence datasets: Hockey Fight, Movie, and Violent Flows.

6.3. Experimental Results of Training Int.2D-3D-CNN Models on the Combined Violence Dataset

In this experiment, the training sets of three violence datasets were combined, resulting
in a total of 1157 training videos. The model was then evaluated separately on the test set
of each individual dataset. The experimental results on the test set of these evaluations are
presented in Tables 13–15.
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Table 13. Accuracy results of the proposed Int.2D-3D-CNN models trained on the combined dataset
and evaluated on the test set of the Hockey Fight dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 2.35 11 95.60 2.06 11 96.80

80.170.001 2.35 11 96.40 2.24 11 97.60
0.0001 2.39 11 96.00 2.32 11 96.80

2
0.01 1.27 11 96.00 1.28 8 96.40

48.170.001 1.27 11 95.60 1.25 8 96.40
0.0001 1.31 11 96.40 1.28 8 96.40

3
0.01 2.05 11 96.00 2.37 11 94.40

84.150.001 2.07 11 89.60 2.36 11 84.40
0.0001 2.11 11 88.80 2.37 11 87.20

4
0.01 2.03 11 96.40 2.07 11 95.20

88.170.001 2.11 11 96.40 2.12 11 96.40
0.0001 2.10 10 96.00 2.21 11 96.00

5
0.01 2.38 11 95.60 2.29 11 95.60

88.170.001 2.39 11 95.60 2.31 11 96.00
0.0001 2.38 11 96.00 2.33 11 96.40

The results shown in Table 13 present the classification accuracy of the proposed
Int.2D-3D-CNN (M1) model, which was evaluated on the test set of the Hockey Fight
dataset. The model achieved an accuracy of 97.60% with a learning rate of 0.001 and a batch
size of eight.

Table 14. Accuracy results of the proposed Int.2D-3D-CNN models trained on the combined dataset
and evaluated on the test set of the Movie dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 0.44 11 98.00 0.47 11 98.00

80.170.001 0.47 11 96.00 0.47 11 96.00
0.0001 0.47 11 100.00 0.47 11 96.00

2
0.01 0.26 6 968.00 0.26 6 96.00

48.170.001 0.26 6 98.00 0.26 6 96.00
0.0001 0.27 6 96.00 0.27 5 96.00

3
0.01 0.42 11 98.00 0.42 11 96.00

84.150.001 0.43 11 98.00 0.42 11 98.00
0.0001 0.44 11 96.00 0.45 11 96.00

4
0.01 0.42 11 98.00 0.42 11 98.00

88.170.001 0.42 11 98.00 0.42 11 96.00
0.0001 0.44 11 96.00 0.46 11 96.00

5
0.01 0.43 11 98.00 0.43 11 96.00

88.170.001 0.43 11 98.00 0.43 11 96.00
0.0001 0.44 11 98.00 0.47 11 98.00

Table 14 presents the accuracy results of the Int.2D-3D-CNN (M1) model evaluated on
the test set of the Movie dataset. The highest performance was achieved with a learning
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rate of 0.0001 and a batch size of four, yielding an accuracy of 100.00% and indicating
optimal classification under this configuration.

Table 15. Accuracy results of the proposed Int.2D-3D-CNN models trained on the combined dataset
and evaluated on the test set of the Violent Flows dataset.

Model Learning
Batch Size of 4 Batch Size of 8 Model

Rate Time Acc. Time Acc. Size

Train (h) Test (ms) (%) Train (h) Test (ms) (%) (M)

1
0.01 0.51 11 93.55 0.72 11 88.71

80.170.001 0.51 11 88.71 0.72 11 90.32
0.0001 0.51 11 85.45 0.72 11 87.10

2
0.01 0.32 5 87.10 0.31 6 88.71

48.170.001 0.33 6 88.71 0.31 6 88.71
0.0001 0.34 5 87.10 0.32 6 88.71

3
0.01 0.52 11 90.32 0.52 11 90.32

84.150.001 0.52 11 85.48 0.52 11 87.10
0.0001 0.52 11 87.10 0.53 11 87.10

4
0.01 0.52 10 93.55 0.52 11 90.32

88.170.001 0.52 11 87.10 0.52 11 90.32
0.0001 0.52 11 87.10 0.53 11 90.32

5
0.01 0.53 11 91.94 0.53 11 88.71

88.170.001 0.53 11 88.71 0.53 11 88.71
0.0001 0.53 11 87.10 0.55 11 88.71

Table 15 shows the accuracy performance of the Int.2D-3D-CNN (M4) model on the
test set of the Violent Flows dataset. The highest accuracy, 93.55%, is obtained using a
learning rate of 0.01 and a batch size of four.

Based on the experimental results of the Int.2D-3D-CNN models in Sections 6.2 and 6.3,
the model trained on the combined dataset outperformed the model trained on the individ-
ual dataset when evaluated on the Hockey Fight dataset, achieving a 0.4% improvement
in accuracy. However, the accuracy on the Violent Flows dataset was slightly lower, with
a decrease of 3.27%. In contrast, both models achieved the same accuracy of 100% on the
Movie dataset under both experimental settings.

6.4. Performance Evaluation of Int.2D-3D-CNN Models Using ROC, AUC-PR Curves, and
Confusion Matrices

This section evaluates the proposed Int.2D-3D-CNN models using established classi-
fication metrics, including ROC curves and AUC-PR, as shown in Figures 10 and 11. In
addition, the confusion matrix is presented to highlight the classification and misclassifica-
tion performance of the Int.2D-3D-CNN (M1) model.

Figure 10 shows the ROC curves for the Int.2D-3D-CNN models evaluated on the
Hockey Fight (Figure 10a), Movie (Figure 10b), and Violent Flows (Figure 10c) datasets.
The Int.2D-3D-CNN (M1) model achieved impressive AUC values, reflecting its excellent
classification accuracy. Specifically, the Hockey Fight dataset yielded an AUC of 0.9956.
The Movie dataset resulted in an AUC of 1.0, and the Violent Flows dataset achieved an
AUC of 0.9936. These high AUC values confirm the efficacy and reliability of the proposed
model in violence recognition, reflecting the performance of the model in achieving high
true positive rates while minimizing false positives.
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(a) (b) (c)

Figure 10. ROC curves and AUC for the Int.2D-3D-CNN models on the (a) Hockey Fight, (b) Movie,
and (c) Violent Flows datasets.

(a) (b) (c)

Figure 11. PR curves and AUC-PR values for the Int.2D-3D-CNN models on the (a) Hockey Fight,
(b) Movie, and (c) Violent Flows datasets.

Figure 11 presents the precision–recall (PR) curves for the Int.2D-3D-CNN (M1) model
evaluated on the Hockey Fight, Movie, and Violent Flows datasets. The model achieved
remarkable precision and recall, with the Hockey Fight dataset producing an AUC-PR
value of 0.9956, the Movie dataset achieving a perfect AUC-PR of 1.0, and the Violent Flows
dataset obtaining an AUC-PR of 0.9864.

Figure 12 illustrates the confusion matrices for the Int.2D-3D-CNN (M1) model evalu-
ated on the Hockey Fight, Movie, and Violent Flows datasets. The matrices indicate the
high performance of the proposed model in distinguishing between violent and non-violent
instances. For the Hockey Fight dataset, the model misclassified only four non-violent
videos as violent and two violent videos as non-violent, indicating minimal FPs and FNs.
A similar pattern of high accuracy and precision was observed with the Violent Flows
dataset. Notably, the model achieved perfect classification on the Movie dataset, with
no misclassifications.

Figure 13a illustrates an example of a FP prediction in the Hockey Fight dataset. In
this instance, the players appear very small relative to the scene, limiting the model capacity
to extract meaningful spatial features. Additionally, the close proximity of the players
can confuse the model, leading to a misclassification of the event as violent when it is
not. In Figure 13b, a FN prediction is shown, where the model failed to identify a violent
event and instead classified it as non-violent. The player in the frame exhibits minimal
aggressive motion, which reduced the effectiveness of the 2D-CNN in capturing spatial
features related to violence, resulting in this misclassification.
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(a) (b) (c)

Figure 12. Confusion matrices for the Int.2D-3D-CNN models on the (a) Hockey Fight, (b) Movie,
and (c) Violent Flows datasets.

For the Violent Flows dataset, Figure 13c shows a video where the model incorrectly
classified a non-violent scene as violent. The crowded scene and significant motion caused
the model to misinterpret the situation as violent. In contrast, Figure 13d shows a FP case
where a violent video was misclassified as non-violent. The poor lighting in this sequence
likely impaired the detection of critical details, such as body movements or aggressive
postures, resulting in an incorrect prediction.

(a) (b)

(c) (d)

Figure 13. Examples from the Hockey Fight dataset (a,b) and the Violent Flows dataset (c,d) illustrate
videos that were correctly classified only by our Int.2D-3D-CNN model, while other 2D-CNN and
3D-CNN models misclassified these videos.

6.5. Performance Comparison of the Proposed Int.2D-3D-CNN Model and
State-of-the-Art Methods

This section compares the experimental results of the proposed model with state-
of-the-art methods for recognizing violent scenes in videos across three datasets. The
comparison results are presented in Tables 16–18.

The comparison results in Table 16 indicate that the proposed model achieved an
accuracy of 98%, surpassing several state-of-the-art methods. Furthermore, the model
maintained strong performance with 97.6% accuracy when the dataset was divided into
75% for training and 25% for testing, outperforming many existing approaches under this
configuration. However, the Hybrid CNN and 3D-ResNet+ATDS models achieved slightly
higher accuracies of over 99%, exceeding the performance of the proposed method by
approximately 1% to 1.3%.

As indicated in Table 17, most methods achieved a perfect accuracy of 100% on the
Movie dataset, with the exception of the CNN+ConvLSTM2D method, which attained an



Mathematics 2025, 13, 2665 27 of 35

accuracy of 99.2%. Notably, while previous approaches were evaluated using sequences of
20, 40, and 50 frames, the proposed model achieved comparable performance using only
16 frames.

Table 16. Comparison of the Int.2D-3D-CNN (M1) model with state-of-the-art methods on the Hockey
Fight dataset.

Year/Reference Method No. of Data Splitting Acc.
Frame (Train/Test) (%) (%)

2019 [11] MobileNet N/A 75/25 87.00
2019 [13] VGG16 + LSTM 20 80/20 88.20
2019 [12] Multi-Stream (SVM) 40 90/10 89.10
2019 [14] 3D-CNN 16 75/25 96.00
2020 [53] Keyframe + AlexNet (SVM) 50 80/20 98.14
2021 [28] VGG13 + BiConvLSTM 20 80/20 96.96
2022 [5] (AlexNet, SqueezNet) 20 80/20 97.00

+ ConvLSTM
2022 [54] VD-Net N/A 80/20 98.50
2022 [55] 3D ConvNet + 40 80/20 99.40

Spatial Attention
2022 [41] ViViT + Data Augmentation 56 60/40 97.14
2024 [56] CNN + ConvLSTM2D 20 80/20 97.96
2024 [57] Hybrid CNN N/A N/A 99.30
2025 [58] 3D-ResNet + ATDS N/A 80/20 99.00

Int.2D-3D-CNN (M1) 16 80/20 98.00
(Our proposed) 16 75/25 97.60

Table 17. Comparison of the Int.2D-3D-CNN (M1) model with state-of-the-art methods on the
Movie dataset.

Year/Reference Method No. of Data Splitting Acc.
Frame (Train/Test) (%) (%)

2019 [12] Multi-Stream (SVM) 40 90/10 100
2020 [53] Keyframe + AlexNet (SVM) 50 80/20 100
2021 [28] VGG13 + BiConvLSTM 20 80/20 100
2022 [5] (AlexNet, SqueezNet) 20 80/20 100

+ ConvLSTM
2024 [56] CNN + ConvLSTM2D 20 80/20 99.2

Int.2D-3D-CNN (M1) 16 80/20 100
(Our proposed)

As shown in Table 18, the proposed method achieved an accuracy of 98%, outper-
forming the (AlexNet and SqueezeNet) + ConvLSTM and 3D ConvNet + Spatial Attention
approaches. Notably, while these comparative methods trained on 20 and 40 input frames,
the proposed model achieved comparable results using only 16 frames. Only the hy-
brid CNN, Keyframe + AlexNet (SVM), and ViViT + Data Augmentation models slightly
outperformed the proposed approach, with marginal accuracy differences ranging from
approximately 0.46% to 0.65%. It is important to note that both the ViViT + Data Augmenta-
tion and Keyframe + AlexNet (SVM) models utilized a greater number of input frames, and
the ViViT + Data Augmentation model further incorporated data augmentation techniques
during training.
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Table 18. Comparison of the Int.2D-3D-CNN (M1) model with state-of-the-art methods on the Violent
Flows dataset.

Year/Reference Method No. of Data Splitting Acc.
Frame (Train/Test) (%) (%)

2019 [13] VGG16 + LSTM 20 80/20 90.01
2021 [28] VGG13 + BiConvLSTM 20 80/20 90.60
2020 [53] Keyframe + AlexNet (SVM) 50 80/20 98.65
2022 [5] (AlexNet, SqueezNet) 20 80/20 96.00

+ ConvLSTM
2022 [55] 3D ConvNet + 40 80/20 97.49

Spatial Attention
2022 [41] ViViT + Data Augmentation 56 60/40 98.46
2024 [56] CNN + ConvLSTM2D 20 80/20 91.01
2024 [57] Hybrid CNN 16 80/20 98.46

Int.2D-3D-CNN (M1) 16 80/20 98.00
(Our proposed) 16 75/25 96.77

7. Discussion
Based on the experimental results and analysis, this section outlines the aspects that

impact the performance of the proposed architecture, followed by a discussion of the
limitations and directions for future research.

7.1. Performance Analysis

First Analysis: As presented in Section 6.3, training on the combined violence dataset,
which integrates videos from the Hockey Fight, Movie, and Violent Flows datasets, does not
consistently result in improved performance when compared to training on each dataset
individually. This limitation is primarily attributed to domain-specific variations among
the datasets, such as differences in scene structure, motion patterns, and representations of
violent behavior. These discrepancies introduce distributional inconsistencies that challenge
the model to generalize across diverse data sources. Additionally, dataset-specific biases
may cause the model to overfit to dominant patterns from one source while failing to
capture distinctive features of others.

Second Analysis: The int.2D-3D-CNN architectures often outperforms the use of
2D-CNN architectures alone, particularly for tasks involving video data. While 2D-CNN
architectures capture spatial features within individual frames, they cannot understand
temporal information and contextual changes over time. In contrast, 3D-CNN architectures
extend feature extraction to the temporal dimension, capturing motion and sequential
patterns across multiple frames. The 3D-CNNs provide a more detailed representation of
dynamic contexts, enhancing the ability of the model to detect temporal dependencies and
motion patterns from violent videos, which are essential for action recognition and video
classification tasks. By integrating 2D-CNNs and 3D-CNNs, the model capitalized on the
strengths of both spatial and temporal feature extraction, improving performance in tasks
that require an understanding of both static and dynamic aspects of the data, as presented
in Figure 13.

Figure 13a,b show the effectiveness of the integrated 2D-CNN and 3D-CNN model
in video violence recognition. The rapid movements of hockey players lead to blurriness
across frames, causing misclassification when using only the 2D-CNN or 3D-CNN models.
Additionally, in Figure 13c,d, it is seen that the Int.2D-3D-CNN model successfully ex-
tracted patterns of violence from the crowd, even under low-light conditions, and correctly
classified these videos.
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Third Analysis: The consistent accuracy achieved by MobileNetV1 and MobileNetV2
(95.99% on the Hockey Fight dataset, 98.00% on the Movie dataset, and 91.94% on the
Violent Flows dataset), as shown in Tables 6 and 7, can be attributed to several factors. First,
each dataset may exhibit relatively homogeneous characteristics with limited intra-class
variability, which reduces sensitivity to variations in training parameters. Second, the
models may have reached their representational capacity on these datasets, resulting in a
saturation point where additional hyperparameter tuning yields no substantial improve-
ment in performance. Third, given the relatively small size of the datasets, modifications of
the batch size and learning rate are likely to have a limited impact on generalization per-
formance. This observation is further supported by the regularization effect of depthwise
separable convolutions in MobileNets, which contribute to model stability across different
training configurations.

Fourth Analysis: The comparison with state-of-the-art methods, as presented in
Tables 16–18, indicates that the proposed Int.2D-3D-CNN (M1) model outperforms existing
approaches on the Hockey Fight and Violent Flows datasets and achieves complete accuracy
on the Movie dataset. While LSTM-based methods are effective in capturing long-term de-
pendencies in sequential data, their method tend to be computationally intensive, especially
when combined with larger CNN architectures, such as VGG13 or VGG16 [13,28].

In comparison, the proposed Int.2D-3D-CNN (M1) model utilizes lightweight CNNs
(MobileNetV1 and MobileNetV2), which not only enhance performance efficiency but
also reduce computational costs. Moreover, the Int.2D-3D-CNN (M1) model processes
fewer frames (16 frames), compared to LSTM-based methods (typically 20 frames), which
generally require a higher number of frames to effectively capture temporal dependencies.
By analyzing fewer frames, the proposed model reduces memory usage and processing
time, making it more suitable for real-time applications. This indicates the capability of
our model to extract essential features for violent video recognition while maintaining
computational efficiency. These characteristics are essential for deploying the model in
resource-constrained environments or time-sensitive applications, such as video surveil-
lance systems.

7.2. Limitations and Future Work

For future work, efforts will focus on improving both the robustness and efficiency of
the proposed model to support real-world deployment. This includes expanding the exper-
imental scope to incorporate more diverse video content that reflects varied environments,
lighting conditions, camera angles, and cultural contexts. To this end, we plan to include
datasets that encompass a wider range of violent activities, such as riots, domestic violence,
street fights, robberies, burglaries, and assaults, using real-world surveillance footage from
sources like UCF-Crime, RWF-2000, and VioPeru [59–61]. Furthermore, we aim to evaluate
the proposed model on more recent and challenging benchmarks, including RLVS, UBI
Fights, CCTV-Fights, and SCVD, under consistent experimental settings. This will enable a
more comprehensive assessment of the model in terms of both recognition accuracy and
computational efficiency, thereby strengthening its generalization capabilities in diverse
and practical scenarios.

To optimize performance for real-time applications, several efficiency-oriented tech-
niques will be explored, including model pruning, quantization, and architectural refine-
ment [62]. In addition, attention mechanisms, including spatiotemporal, temporal, and
self-attention, will be investigated to enable the model to focus on salient regions and
time frames, particularly in complex scenes where violent behaviors are subtle or visually
similar to non-violent actions [48,63,64]. Future work will also involve a comparative
analysis of the Int.2D-3D-CNN model using alternative backbone architectures, such as
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EfficientNet [65], to evaluate the trade-off between classification accuracy and computa-
tional efficiency. To further enhance recognition performance, upcoming experiments will
incorporate video vision transformers (ViViT) [39] within the evaluation framework.

In terms of practical deployment, the proposed model shows potential for integration
into real-time monitoring systems, smart city infrastructure, and in-vehicle safety platforms
aimed at enhancing passenger protection [66]. These systems facilitate early threat detection
and enable timely interventions, thereby helping to prevent violent incidents in both public
and private environments. However, the use of AI-based monitoring technologies necessi-
tates careful consideration of associated ethical implications. The adoption of automated
violence detection models raises significant concerns related to privacy, informed consent,
and the risk of misuse. To mitigate surveillance overreach and uphold civil liberties, it is
imperative to ensure transparency, accountability, and strict adherence to legal and ethical
standards. Future research should involve interdisciplinary collaboration to examine these
concerns in depth and to support the responsible integration of AI technologies in public
safety domains [67,68].

8. Conclusions
This research proposes an integrated 2D-CNN and 3D-CNN architecture, namely

Int.2D-3D-CNN, aimed at improving video-based violence recognition. The model com-
bines spatial and temporal analysis, combining lightweight MobileNetV1 and MobileNetV2
for extracting frame-level spatial features, with a streamlined 3D-CNN that includes a single
3D convolutional layer to capture motion and sequential patterns across frames. Experimen-
tal results on three benchmark datasets, namely Hockey Fight, Movie, and Violent Flows,
indicate that the proposed architecture consistently outperforms conventional 2D-CNN-
and C3D-based models. The Int.2D-3D-CNN model effectively capture both static and
dynamic characteristics of violent scenes, achieving robust performance under challenging
conditions, including distant viewpoints, occlusions, high crowd density, and low-light
environments. The model achieved accuracies of 98%, 100%, and 98% on the Hockey
Fight, Movie, and Violent Flows datasets, respectively, indicating strong generalization and
competitive performance compared to state-of-the-art methods.
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Abbreviations
The following abbreviations are used in this manuscript:

2D-CNN Two-Dimensional Convolutional Neural Network

2MPD-3DFCN-AttBiDLSTM
Two-Stream Multi-Scale Patch-based Pyramidal Dilated 3D Fully
Connected Network with Attentive Bidirectional Long
Short-Term Memory
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3D Three-Dimensional
3D Conv Three-Dimensional Convolution Layer
3D GAP Three-Dimensional Global Average Pooling
3D-CNN Three-Dimensional Convolutional Neural Network

3D-ResNet+ATDS
Three-Dimensional Residual Network with Adaptive Temporal
Down-Sampling

Acc. Accuracy
AI Artificial Intelligence
AlexNet Alex Network
AUC Area Under the Curve
AUC-PR Area Under the Precision–Recall Curve
BiConvLSTM Bidirectional Convolutional LSTM
BiLSTM Bidirectional LSTM
BN Batch Normalization
BoW Bag of Visual Words
C3D Deep 3-Dimensional Convolutional Network
convLSTM Convolutional Long Short-Term Memory
DL-STFEE Double-Layer Spatial–Temporal Feature Extraction and Evaluation
FC Fully Connected
FLOPS Floating-Point Operations per Second
FLOPs Number of Floating-Point Operations
FN False Negative
FP False Positive
FPR False Positive Rate
HOG Histogram of Oriented Gradients
hr Hour
Int.2D-3D-CNNs Integrated 2D and 3D Convolutional Neural Networks
KDE Kernel Density Estimation
KTH KTH Action Database
LSTM Long Short-Term Memory
LV Realistic Surveillance Video Dataset
MobileNet Convolutional Neural Networks for Mobile Vision
MoSIFT Motion SIFT
ms Millisecond
OviF Oriented Violent Flow
ResNet Residual Network
ROC Receiver Operating Characteristics
RWF-2000 Open Large Scale Video Database for Violence Detection
SGD Stochastic Gradient Descent
SIFT Scale-Invariant Feature Transform
STIPs Space–Time Interest Points
SVM Support Vector Machine
TN True Negative
TNR True Negative Rate
TP True Positive
TPR True Positive Rate
UCF Crime University of Central Florida Crime Dataset
UCF-101 University of Central Florida-101 Dataset
UCSD University of California, San Diego. Anomaly Detection Dataset
UMN University of Minnesota. Abnormal Events Detection Dataset
VD-Net Violence Detection Network
VGGNet Visual Geometry Group Network
ViF Violent Flow
ViViT Video Vision Transformer
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