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Abstract

This paper proposes a new proximal iteratively reweighted nuclear norm method for a class
of nonconvex and nonsmooth optimization problems. The primary contribution of this
work is the incorporation of line search technique based on dimensionality reduction and ex-
trapolation. This strategy overcomes parameter constraints by enabling adaptive dynamic
adjustment of the extrapolation/proximal parameters («y, B, k). Under the Kurdyka—
Lojasiewicz framework for nonconvex and nonsmooth optimization, we prove the global
convergence and linear convergence rate of the proposed algorithm. Additionally, through
numerical experiments using synthetic and real data in matrix completion problems, we
validate the superior performance of the proposed method over well-known methods.

Keywords: nonconvex and nonsmooth optimization; proximal iteratively reweighted
method; line search; convergence analysis

MSC: 49M37; 65K05; 90C26

1. Introduction
1.1. Problem Description
This work addresses a nonconvex and nonsmooth optimization problem within the

real matrix space R"*"(m < n)

m

min ¥(X) = £(X) + L g(ei(X), M

where 0;(X) denotes the i-th singular value of X, f is differentiable and the gradient is
Lipschitz continuous with constant L¢, ¢ is differentiable concave and the gradient is
Lipschitz continuous with constant Ly and g’() > 0 for any ¢ € [0, 4-00).

m
It is easy to see that ) g(0;(X)) is nonconvex and nonsmooth due to the nonsmooth-
i=1

ness of 0;(X) and the co;mavity of g. Thus, the overall function ¥ is nonconvex and
nonsmooth even though f is differentiable (may be nonconvex). Note the generality of
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problem (1), it has a wide applications, such as image processing [1], machine learning [2]
and multiple category classification [3]. To illustrate this point, consider the well-known
image recovery problem. In such a scenario, f(X) = 3 || A(X) — b || (A is a linear operator
and b is a vector or matrix) generally represents the quadratic loss function, which is used
to measure recovery performance. Consequently, f is always differentiable. On the other

m
hand, Y g(0;(X)) is a nonconvex regularized term that is employed to obtain a low rank
i=1

solution. Some common nonconvex regularized terms, including L,, Log, ETP, Geman and
Laplace can be found in [1,4]. The validity of the assumption of ¢ can be verified through
the nonnegativity of its second order derivatives and the median theorem.

1.2. Related Work

It is precisely because of the popularity and scope of problem (1) that there is a
lot of related work, as can be seen in [5-13]. One of the more competitive methods is
the well-known General Iterative Shrinkage and Thresholding (GIST) algorithm [14,15].
Applying the GIST algorithm to solve (1) needs to compute the proximal operator of a

DC function f ¢(07(X)). Unfortunately, this assumption of f ¢(07(X)) is less likely to be
i=1 '

i=1

m

satisfied, since the DC decomposition of Y~ g(c;(X)) is not known in general. Thus, based
i=1

on the key fact that nonnegativity and monotone decrease of Vg, Lu et al. [4] proposed

Proximal Iteratively Reweighed Nuclear Norm algorithm (PIRNN). Sun et al. [16] refined
the related convergence conclusions. Later, Ge et al. [1] gave the PIRNN with a more
general Extrapolation (PIRNNE) and proved the convergence under the same assumptions.
The concrete iterative scheme can be read as

Yk .= xk + Ock(Xk — Xk_l)/ (2)
Zk = Xk + ,Bk(Xk _ Xk*l)/ (3)
k1. PIOXgn i uben(x) Yk — V£ (Z5)), (4)

where a; € [0,1), Br € [0,1] are the extrapolation stepsizes, {}} is a nondecreasing

parameter sequence, w¥ := ¢’(0;(X*)) and for any Y € R"*",
K 1 2
m Y = i 07 X - X — Y . 5
Proxg (V) 1= argming Y fer(X) + 51X VIR ©
i=1
(4) has a closed-form solution if 0 < w’l‘ < wé < 0 < w’,‘n In other words, for any

Y € R™*", onehas US(A)V' € PrOXym ke (x) (Y), where UAV T is the SVD of Y, S(A) =
diag{(A;; — uxwk) }1<icm with (a)+ = max{a, 0} forany a € R.

Meanwhile, Phan et al. [17] devised an acceleration framework utilizing the partial
singular value decomposition of reduced-dimensional matrices rather than full matrices,
conditioned upon parameter specifications with ay = 0, By = % and p = p. Xuetal. [18]
integrated rank estimation via enhanced Gerschgorin disk analysis with learnable sub-
matrix recovery, demonstrating state-of-the-art performance. Separately, Wen et al. [19]
formulated an alternative accelerated matrix completion methodology employing con-
tinuation protocols and randomized truncated SVD, parameterized by a, = B = 0
and py 1 = max{y g, kmin}, § < 1. Generalized framework [20] leveraged ADMM for
nonconvex nonsmooth low-rank recovery with rigorous convergence guarantees. Some
recent methods also combine other regularization techniques. Alternative regularization
strategies included an image reconstruction factorization model using a total variation
regularizer [21], a truncated error model using the difference between the nuclear norm and
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Frobenius norm for impulse noise processing [22], and an accelerated iterative reweighted
nuclear norm method combined with active manifold identification [23]. This paper focuses
on the efficient computation of (5) based on PIRNNE. To the best of our knowledge, suitable
parameter selection makes these algorithms have good numerical performance. The most
famous optimal parameter choice is the Nesterov’s acceleration, such as FISTA [24] and
APG [25]. The optimal choice involving the inertial and proximal parameters of PIRNNE
for the nonconvex nonsmooth problems considered in this paper are not explicit, which
makes the algorithm unable to maintain its advantage. Whether there is an adaptive
parameter selection is our concern.

1.3. Our Contribution

Fortunately, the line search strategy is widely used for nonconvex vector optimization
to overcome restrictions on the involved parameters [26-31]. This strategy allows the
parameters to be chosen initially with some aggressive values that are not below a specific
threshold, and then updates adaptively parameters at each iteration according to the line
search criterion, which can improve the numerical performance in implementation. A
natural approach is to incorporate the line search strategy to the PIRNNE by updating the
parameters ay, By and . adaptively. Therefore, the main contributions of this paper are
as follows:

*  We propose a Proximal Iteratively Reweighted Nuclear Norm algorithm with Extrapo-
lation and Line Search, denoted by PIRNNE-LS. This framework integrates line search
with extrapolation and dimensionality reduction, circumventing parametric limita-
tions. Parameters withinthe proposed method initialize aggressively above defined
thresholds then undergo criterion-driven adaptive recalibration per iteration.

*  We prove the subsequential convergence that each generated sequence converges
to a stationary point of the considered problem. Especially, when the line search is
monotone, we further establish its global convergence and linear convergence rate
under the Kurdyka—t.ojasiewicz framework.

¢ We conduct some experiments to evaluate the performance of the proposed method
for solving the matrix completion problem. Some numerical results are reported the
effectiveness and superiority of our proposed method.

The remainder of this paper is organized as follows. Section 2 provides the prelim-
inaries needed for the theoretical analysis in the subsequent sections. Section 3 details
PIRNNE-LS for the specified problem. Section 4 analyzes the subsequential convergence.
Specifically, we discuss the global convergence and linear convergence rate under the
Kurdyka-+Lojasiewicz framework in the case of monotone line search. Section 5 reports
numerical results on synthetic and empirical datasets. Concluding conclusions appear in
Section 6.

2. Preliminaries

In this section, we recall some definitions and properties which will be used in
the analysis.

2.1. Basic Concepts in Variational and Convex Analysis

For an extended-real-valued function | := R" — (—o0, 00}, its domain is defined by
dom(J) := {x € R" : J(x) < 4o0}.If dom(J) # @ and J(x) > —oo for any x € dom(]),
we say the function | is proper. If it is lower semicontinuous, we say it is closed. For any
subset T C R" and any point x € R", the distance from x to T is defined by dist(x, T) :=
inf{|ly — x|||y € T}, and we have that dist(x, T) = oo for all x when T = @.
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Next, we give the definition of subdifferential which plays a central role in nonconvex
optimization.

Definition 1 ([32,33]). (Subdifferentials) Let | : R" — (—o0, 00| be a proper and lower semicon-
tinuous function.

(i)  Fora given x € dom(]), the Fréchet subdifferential of | at x, written by 9] (x), is the set of
all vectors u € R" that satisfy

J) = I~y =x)

lim inf
ARy ly — x|

When x ¢ dom(]), we set 9] (x) = @.
(ii) The limiting subdifferential, or simply the subdifferential, of | at x, written by 0] (x), is
defined by

aJ(x) := {u e R"I* — x, s.t. J(x¥) = J(x) and u* € 9] (x¥) = wask — }. (6)

(iii) A point x* is called the (limiting) critical point or stationary point of | if it satisfies 0 € 9] (x*),
and the set of critical points of | is denoted by crit].

Assumption 1. ¥(X) — +oo iff || X||p — oo.

2.2. Kurdyka—tojasiewicz Property

Now we recall the Kurdyka—Lojasiewicz (KL) property [33-35], which would help us
to establish the global convergence. Many functions have KL properties, like semi-algebraic
functions defined in an 0 —minimal structure, and others discussed in [32].

Definition 2. (KL property and KL function) Let | : R" — (—o0,00] be a proper and lower
semicontinuous function.

(i) The function ] is said to have KL property at x* € dom(9]) if there exists 1 € (0, 40|, a
neighborhood U of x*, and a continuous and concave function ¢ : [0,17) — R™ such that

(a)  ¢(0) = 0and ¢ is continuously differentiable on (0,1) with ¢’ > 0;
(b) forall x € UnNn{z € R"[J(x*) < J(z) < J(x*)+n}, the following KL
inequality holds:
¢'(J(x) = J(x"))dist(0,0] (x)) = 1.

(it)  If ] satisfies the KL property at each point of dom(9]), then | is called a KL function.

Let @y, be the set of function ¢ which satisfies the involved conditions in Definition 2 (i).
In the following, we give a uniformized KL property which was established in [33].

Lemma 1 ([33], Lemma 6). (Uniformized KL property) Let Q) be a compact set and | : R" —
(—o0, 00| be a proper and lower semicontinuous function. Assume that | is a constant on Q) and
satisfies the KL property at each point of (). Then, there exists {,11 > 0 and ¢ € P, such that for
all € Q) and all x in the following intersection

{z e R"|dist(z, Q) < I} N{z e R"|J(x) < J(x) < J(%) + 7},

one has

¢'(J(x) — J(%))dist(0,9] (x)) > 1.
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3. The Proposed Method

This section advances a novel computational framework addressing the nonconvex
and nonsmooth optimization problem (1). Under the functional decomposition of f in (1),
we posit existence of convex functions f; and f, exhibiting Lipschitz continuous gradients
such that f := f; — f,. Consistent with established literature [1,36-39], the Lipschitz
constant Ly governing V f conforms to Ly < L, where V f and V f, possess respective
Lipschitz moduli L > 0 and / > 0 under the condition L > I. The formal computational
architecture is instantiated in Algorithm 1.

Algorithm 1 PIRNNE-LS for solving (1)

Choose 171, 12, T, Pmin € (0,1), ®max, Bmax, d > 0,6 € [0,1), 0 < ppmin < ﬁ < Hmax-
For given X0 € R"™*", X1 = X0, let Ey := ¥(X") and set k := 0.
while stopping criterion is not satisfied, do
Step 1. Choose ag € [0, &max], ,B,(z € [0, Bmax] and ;42 € [min, Pmax), set ay 1= ag,
Br = ,82, Ui = ‘ug, then
(1a) Compute Y*, Z¥ by (2) and (3), respectively.
(1b) Compute the SVD of Y* — 1,V f(ZF), i.e., Y& — iV f(ZF) := UFAK(VF)T; Com-
pute the singular value of X, and let w¥ := ¢’ (o;(X¥)) fori=1,--- ,m.
(1c) Compute

xk+1 . ljks(j\k)(?k)'r, ?)
where S(AF) := diag{(A; — k) h<icm.
ad) 1t i
Es(X, X5, ) — B < —5 | X1 - XK, ®)

is satisfied, go to Step 2, where E; is defined in (9). Otherwise, set a = 114k, Bx = 1712B+,
Hx = max{ T, hmin } and go to Step (1a).
Step 2. Ery1 = prEs(X*, XK, 1) + (1 — pi)Ex for px € [Pmin, 1], then let k = k +1
and go to Step 1.

end while

Within Algorithm 1, analogous to references [28,31], we postulate the potential function:
4 2
Es(U V) i=¥(V) + U= VI, ©)

where E; : R™*" x R"*" x RT — (—o00,00] and § € [0,1) signifies an assigned nonneg-
ative constant. Moreover, Algorithm 1 permits the selection of arbitrary initial values
042 € [0, &max), [32 € [0, Bmax) and ]/12 € (Mmin, Hmax) per iteration. Subsequent adaptive
refinement occurs governed by the line search criterion (8). This methodology markedly
enhances the procedure’s adaptability and numerical efficiency. Furthermore, contingent
upon specific conditions, users may initially and intuitively select pmin and pmax; subse-
quently, determination of d ensues based upon their stipulated conditions.

Remark 1. Observe that PIRNNE-LS still necessitates computing the singular value decom-
position of a large-scale Y* — N f(Z¥), potentially exorbitant. The subsequent lemma en-

sures X**1 is derivable through a reduced matrix’s SVD. YX — u, ¥ f(Z¥) has § singular values
~ ~ ~ . . —k~k —~k
Ai‘{l,il > > Ai’fg,iﬁ such that A;‘j’i}_ > kai-(].- Henceforth Algorithm 1 yields: Uy Ay (V5 )7 =
(ﬁ;‘l, e, ﬁg)diag(Ai-‘l,il, e ,Ai-‘q’iq)(?)z.‘lf - ,5@)105 the rank-§ SVD of YX — v £ (ZF), where
ﬁfj and z“ﬂl‘] denote left and right singular vectors for A;‘j i respectively.
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~k~k ,~k
Lemma 2 ([17]). Let Q be a R™*7 matrix with orthogonal columns, Uz N4 (Vj )T be the

rank-G SVD of Y* — iV (Z5), Ug Ag' (Vo)™ be the SVD of QT (Y — ueV £(Z5)), and
span(lT,jk) C span(Q), where g > §. Thus, X1 .= QLAIékS(X(Sk)(%k)T is a solution to (5),

—ky .k
where S(Aq') = diag([(Aq )iy, — e 1+ )iy <ij<iy;

4. Convergence Analysis

This section mainly delineates subsequential convergence, global convergence and
linear convergence rate. We start by analyzing the convergence of the subsequence.

4.1. Subsequential Convergence of Nonmontone Line Search

Initially, we establish monotone nonincreasing property of the sequence
{Es(X*1, X5, )}

Lemma 3. Let {X*} be the sequence generated by Algorithm 1. If for any k > 0, the parameters
g, By and py satisfy

1 o (1 — pgcL) O(1— L)
fl < A PR < . 10
R e T | T W .y (10
Then, we have
_ L—-1+6
Es(X}1, XK, ) — Es(X5, XK1,y ) < B0 Xkt xky2, (11)

4tk

Proof. Since X**! is a minimizer of the optimization problem in (4), we get

m
Y whoy(x*) <

i=1 i

T oiwk vk L vkl vk2
bk — YRR — xR k2, (12)
ZMkH ||F 2,14k|| ||F

who;(X*) + (Vf(ZF), xk — xk+1)

™=

Il
-

From the Lipschitz continuity of Vf with the modulus Lf and L f < L, it follows
from ([40], Lemma 1.2.3) that

FOXEE) < F(Z5) - (VA(ZR), X5 = 29 42X - 23, (13)

Similarly to the technique of ([1], Lemma 4), we get
k Nk oktl Ky NC ok k
FXEN) + Y wfoy (X — £(XF) = Y wfo(XF)
i=1 i=1
ook ke L oneksr vikp2 L Lywker k2, Lk kg2
< —|IXF =Y ——||X -Y —|| X —Z | X* — Z"||%. 14
< XY I3+ 51 B4 XE -z 9
Next, it follows from (2) and (3) that

Xk _ Yk _ _ak(xk _ Xk_l), Xk+1 _ Yk — Xk+1 _ Xk _ ka(xk _ Xk—l)’

15
Xk _ Zk _ _ﬁk(Xk _ Xk_l), Xk+1 _ Zk _ Xk+1 _ Xk _ ,Bk(Xk _ Xk_l). ( )

Merging (14), (15), the concavity of g and the definition of E; in (9), we have
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Es(XM1, XK, uy) — Es(XK, X7, pq)

— (X 1+ Y glon(x44)

i=1
T O R D XKR - () — Y glon(X) — Xk - Xk
4Vk i=1 4Vk71
m
< F(XEF) — F(XF) + Y o (03 (XFF) — (x5
i=1
O ka1 k2 0 ko vk—12
+ g X = X — - X

1 k k—l 2 1 k+1 k k k—1y112
< —a?|X —— (X" = X" — (X' = X

_ l _
- §||<xk+1 -~ X¥) —m(xk = XD+ S BHIXE - X
6 k _
X = xR - IIX - X2
k A
1 L
_ —27‘|Xk+1 _ XkH% + —<Xk+l _ Xk,Xk _ Xk71> + E”XkJrl _ XkH%
Mk Mk
L _ _ l _
S BRI — XU Ly (X X, Xk - X)Xk - X

) 1)
+ — | X = xKE - — | xF - X,
4 4y 1

By using the Young inequality, we obtain

1—u L 202
) R T G Gt gty o T k

Hi ~ 8k P (1 — L)

and

(16)

15— X",

_ 1—uL 2 AL _
k k k k
— LBkl XM — X¥|p - | xF = X < R PR | — X2+ ; ||Xk xk13.

Mk 1-

Substituting above two inequalities into (16), we have

Es(X¥1, XK, ) — Es(XK, X51, i _q)

< BE L0 ket — x|
4pk
202 L ! 2uB2L? )
+ 7k+72+72+ k _ Xk_Xk—l 2.
(Vk(l — L) 2Pkt bt 1 el Ap | I
Furthermore, it follows from (10) that
2712 2
(L+ l)ﬁ% n 2uipiL < ) and 202 - 5 ‘
2 T— L ™ 8 (1 — L) — 8pgq

Hence, the assertion (11) follows immediately. The proof is completed. [

Lemma 4. (Well-definedness of the line search criterion) Let {X*} be the sequence generated by

Algorithm 1. Then, for any k > 0, criterion (8) shall be satisfied within finite inner iterations.

Proof. This proof advances via contradiction. Initial focus rests upon k = 0. Observe that

mo = fip with pmin < fig < L+’2 5 holds incontrovertibly after finite inner iterations. Here,

YY = X%and Z% = XO. Then, from (4), we have
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0 1 0 0 0y 0 1 1 1 0|2
Zwi‘Ti(X ) < Zwi‘Tz’(X ) +(VF(XY), X" = X) - 2Tlo||X =Y,
i=1 i=1
where w? = ¢’(0;(X?)). From ([40], Lemma 1.2.3), we obtain
L
FIXT) = f(X) < (VAX?), X" = X%) + 2[IXT = X0
Together with the concavity of g, we have
¥(x') —¥(X°)
1 L 1 0 L 0
= f(X') + ) g(ei(Xh) — f(X°) = ) 8(ei(X7))
i=1 i=1
m
< F(XN) = F(XO) + L wh(e(X) = ai(X%))
i=1
L1 012 1 1 012
< Z|Ixt - — — .
< 51X = X7 - 2o X - X7
This inequality connotes that (11) holds. Since fiy < % < ﬁ, the criterion (8) shall

invariably hold. Suppose that there exists a smallest k > 0 such that the criterion (8) can
not be satisfied. It means that the line search criterion (8) is satisfied for the former k — 1
iterations. At the k — 1-th iteration, there exists p;_1 such that

_ ~ d -
Es(X*, X e q) — Epg < —§||Xk — X113,

Thus, we have E;,_; < E5(Xk, Xk_l,yk_l). Further, Step 2 of Algorithm 1 defines Ec_q,
and we obtain

Ep = pr1Es(X5, X0 1) + (1 — pr1) By
< e Es(XE, X5 er) + (1= preen) Es(XE, X571, pey)
= Es(X5, X7, upq). (17)

Since Algorithm 1’s Step (1d) necessitates yx < pmin, x = Hmin becomes admissible.
Similarly, from Step (1d) in Algorithm 1, we know that

urd(1 — L) O(1— L)
<y A1 7 d <
R s TR v o A )

must be satisfied. Consequently, yy = pmin and (10) are obtained. In addition, since d > 0
and 6 € [0,1), it holds that 0 < ppmin < % and, thus, %ﬁ;}” < —%. Together with
Lemma 3 and (17), we have

By (XK XK ) — B

< Es(XM, XF, pmin) — Es(X5, X571, g q)

UminL —1+6
4Vmin

d
=5 IX = X (18)

I — XM

IN

This necessitates satisfaction of line search criterion (8) at the k-th iteration, inducing
contradiction. The proof is completed. O
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We obtain the subsequential convergence of Algorithm 1 in the following Theorem.

Theorem 1. Let {X*} be the sequence generated by Algorithm 1. Then, we have

(i)  the sequence {Ey} is nonincreasing;
(ii)
lim || X" — XK||p = 0;

k—o0

(iii) {X*} is bounded and any cluster point X = klim Xki of {X¥} is a critical point of Y.
— 00

Proof. (i) Invoking line search criterion (8) and Ekﬂ’s definition in Algorithm 1, we have

Exs1 = peEs(X*™, X5, 1) + (1 — pi) Ex
_ 4 _
< pr(Ex — §||Xk+1 — XM13) + (1 — p) Ex

_ - .d
< B — PR S Xkt — xH 2, (19)

It indicates the sequence {E;} is nonincreasing.
(i) Summing up (19) fromk =1,--- , N, we obtain

Pmin "4\ ok+1 k|2
%HXJF - X*||E

N
<Y (Ex — Ext1)
k=1
=E1 —Enn1
= Es(X', X% o) — Es(XNFL XN, uy)

SY(X) + - lIX = XOYF - ¥ (XY)

0

4]10

<¥(x) + X - X2 ¥ < o,
4o

where the validity of the second inequality is deducible from (17), while the third
stems directly from the definition of E; specified in (9). And the last inequality follows
from X! € dom¥, Ho > 0and 6 > 0. From the fact that ppin, d > 0 and N — oo, the
assertion (ii) is consequently established.

(ili) The sequence {E;} exhibits a monotone decrease, an outcome established by the
result (i). We have

T < F = )
Bo< B <o B =YX+ o IX - X} <o
0
Again, from the definition of E; and (8), we have

é
\Ile +7X1—X02
(K1) + g 1K = XU

> Ep = pr 1 Es(X5, X5 ) + (1— pr1) By
> Es(XK, XK1, 1) > ¥(X5).

Consequently, ¥ is upper-bounded. Reiterating Assumption 1, the sequence {X*}
remains confined and contains at least one cluster point. Assign X as such a cluster point.

Then, there exists a subsequence {x%i} of X¥ such that lim X% = X. Then, next proof is
]
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similar to ([1], Proof of Theorem 1 (iii)); it is easy to derive that 0 € B‘I’()? ), which implies
that X € crit¥. This completes the proof. [J

4.2. Global Convergence and Linear Convergence Rate of Monotone Line Search

This subsection primarily discusses the global convergence and linear convergence
rate of the proposed monotone line search (p; = 1) Algorithm 1 under the KL framework.
First, we introduce the following two frequently used lemmas, whose proofs are similar
to ([1], Lemma 5) and ([1], Lemma 6), so we will not repeat them here. We proceed to use
the notation Ay := XK — X*~1 in this subsection.

Lemma 5. Let {X*} be the sequence generated by Algorithm 1. Then, there exist some K € N and
b > 0 such that for all k > K, there exists wktl e BE(;(Xk“, xk, ) such that

k
" e < bl Aallr + | Aklp)-

Denote the cluster point set of {X**1, X¥, 11, } by Z. Then, we summarize some proper-
ties of the cluster point set Z.

Lemma 6. Let { XX} be the sequence generated by Algorithm 1 with py = 1. Then, we have
(i) & is nonempty and E C critEs;
(i1)

lim dist((X*1, XX, 1), 8) = 0;

k—o0

(iii) Es and Y are equal and constant on &, i.e., there exists a constant x such that for any
(X, X, 1) € B Es(X, X, i) = ¥(X) = «.

Theorem 2. Let {X*} be the sequence generated by Algorithm 1 with py = 1 for k 's large enough
and Es is a KL function.

(i)  The whole sequence {X*} manifests finite length Y. ||Ari1|lp < +oo and {X*} globally
k=0
converges to a point X in crit¥.

(i) Moreover, if the KL function can be taken in the form ¢(s) = ps'~ for some t € (0,1/2], the
whole sequences {Xk } and {Eg (Xk“, xk, yk) } are linearly convergent.

Proof. (i) Assume that (55, 55,;1) € E C critEs. Then, there exists a subsequence
{(XK+L, XK, )} of {(XFE, X, i)} converging to (X, X, fi). Let ki € N be such
that py = 1 for all k > ki, and we know that Ex; = Es(X**1, X, ;). It follows

from Theorem 1 (iii) and the continuity of ¥ that im¥(X*) = ¥(X). Again from
1—00
Theorem 1 (i) and (ii), we have klim |Acllr = 0, and {E5(X*+1, X, 14)} is nonincreas-
—0c0
ing for all k > kq. Thus, we get klim Es(Xk1, XK 1) =, and Eg5(XK1, XK, 1) > «
N

for all k > k. o
If there exists an integer k such that E5(X*, X*=1, 4z ;) = «, then from (8), Vk > k,
we have

d _
§||Ak+1||12r < E5(XK, X571, g _q) — Es(XFT1, X5, )
< Eg(XN, X1 pup_q) — Es(XMFL, XK, g

< Es(X5, XL ) -«
=0.
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(i)

Thus, we have X¥*1 = X* for any k > k and the assertion Y ||Api1|F < +oo
k=0

holds directly. Otherwise, since {E;(X**1, X¥, )} is nonincreasing for all k >
ki, we have {Es(X**1, X, 1)} > « for all k > k;. Now, we consider the se-
quence { (X1, X*, ;) }2 . It follows from Lemma 6 that the cluster point set E
of {(X*+1, xk, Hi) 152 is nonempty and compact, and for any (X, X, fi) € &, we have

Es(X, X, 1) = ¥(X) =r.

Thus, for any 1 > 0, there exists a nonnegative integer ko > k; such that
Es(X*1, XK, 1) < x + 1 for any k > ky. In addition, for any x > 0, there exists
a positive integer k3 > k; such that dist((X**1, XX, u;), E) < « for all k > k3. Con-
sequently, for any #,x > 0, k > ks := max{ky, k3, K}, where K is given by Lemma 5,
we have

dist((X¥1, X5, 1), 8) <k, and & < Es((X*1, X5, ) < x + 1.
By using Lemma 1 with Q) := &, for any k > k,, we have
¢ (Es((X*, XK, ) — x)dlist (0, 9Es (X1, XK, uye)) > 1. (20)

The remaining global convergence arguments are similar to ([1], Theorem 2); { X} is
a Cauchy sequence and, hence, it is convergent. By using Lemma 6 (i), there exists
(X, X, fi) € critEs with X € crit¥ such that klim Xk =X.

—00

Denote Oy := E;(X*, X¥=1, 1, _1) — x. It follows from (20) that

1< ¢/ (1) dist(O, JEs (xk+1, xk, yk))
< (1= 1)pb(Ops1) " (| Akl + 1Ak
< (1= )pb(@p1) /20181 + 2] A
<(

1~ £)pb(@p ) " /4/d[Es (Xk~1, XK-2, jy_p) — B (XF+1, XK,y
= ¢(O41) ' VOk_1 — Opiy,
where ¢ = 2(1 — t)pb/+/d, the second inequality follows from Lemma 5 and the fourth
one follows from (8), together with the py = 1. Since ®; — 0, there exists ks such
that ©; < 1. Then, for all k > k¢ := max{ky, ks}, it follows from (20) that for any
k 2 k6 + 1/

Ok < ()% < A (O — O),
which means that

2

1+¢?
So, the sequences {E5 (szﬂ, X2, ,Mzk) } and {E§ <X2k, xX2%-1 ﬂZkfl) } are both Q-

O <

Or_».

linearly convergent. This indicates that the entire sequence { Es( X**1, X*, yk) } is
R-linearly convergent. By combining this with (8), we can infer that there exist N > 0
and kg and g € (0,1) so that for each k > ko, || Ar41]| < Ng*. Consequently,

<Y laiall < oo
i=k q
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which means that {X*} is R-linearly convergent. This completes the proof. [J

5. Numerical Results

This section evaluates the algorithm’s efficacy through resolution of the matrix
completion problem:

min Y g(ei(X) + 5 Pa(X) - Y, @
i=1

where Q) constitutes the sample index set while P, : R"*" — R™*" operates linearly, pre-
serving () entries intact and nullifying others. Define f := f; — f», fi 1= 1| Pa(X) — Y|3,
f2:=0; Vfi and V f, exhibit Lipschitz constants L = 1 and I = 0. Algorithm performance
manifests using both synthetic and empirical datasets. Implementation employed MATLAB
2020a on a Windows 10 platform with Intel(R) Core(TM) i7-1165G7 processor (2.80 GHz)
and 16 GB RAM. Testing prioritizes ETP and Log penalty functions, replicating parameter
selections from [1,4] as predominantly optimal.

5.1. Synthetic Data

Within this synthetic trial, we fabricate a rank —r matrix X* as MjMpg, where
M € R™", and Mg € R"™" originate from MATLAB’s rand command. Half of the ele-
ments in X* are randomly and uniformly missing. Here, the observed matrix Y = Pq(X*),
with Ag = ||Y|leo, and A: = A; = 1073Aq in the model. Termination occurs when
IPa(X) = Y]l <1072,

PIRNNE-LS integrates a line search strategy to eliminate parametric restrictions.
Validating this approach, we examine ETP and Log nonconvex penalties under four
px scenarios: py = p € {0.1,0.3,0.7,1}, noting monotonicity when p = 1 and non-
monotonicity for p < 1. Tests employ m = n = 500,7 = 50,4 = 0.1, = 0.1, u? = 1 for
each k € N, with Algorithm 1 (Step 1) parameters #; = 0.4,7, = 0.35,7 = 0.45,d = 0.1
and 6 = 0.1. Maximum iterations cap at 1000. Figure 1 charts error metric evolution
against CPU duration. Figure 1 indicates PIRNNE-LS with p = 0.7 and p = 1 markedly
outperforms alternatives.

ETP Log
05
[—2—pr=0.1] —A—pk=0.1
04 —6—pk=0.3| ] -05 —6—pk=0.3
—%—pk=0.7 —*—pk=0.7
-0.5 —8—pk=1_| 1 " —e—pk=1
- -15
-15 .
= -2
< =
s 2 =
[im} L -25
-25
-3
-3
35
-35
-4
-4
s 45 . . " . .
o 5 5 o B i 0 02 0.4 0.6 .0'8 1 12 1.4
CPU time CPU time

Figure 1. Evolution of the error value with respect to the CPU time.

5.2. Real Images

In this subsection, we primarily undertake a comparative analysis of our proposed
algorithm with APIRNN in [17] and PIRNNE in [1]. For the APIRNN and PIRNNE
algorithms, the choice of involved parameters «y, B is the same as in [1,17], respectively.
To better demonstrate algorithmic enhancements, we implement (i) monotone line search
(px = 1), designated PIRNNE-mLS, and (ii) nonmonotone line search (py = 0.7), designated
PIRNNE-nLS.

To more comprehensively demonstrate algorithmic efficacy, we constructed four 2D
images, “Boat (512 x 512)”, “Man (1024 x 1024)”, “City Wall (512 x 512)” and “Spillikins
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(512 x 512)”, alongside four 3D counterparts, “Bottles (512 x 512)”, “Texture (512 x 512)”,
“House (256 x 256)”, “Clock (512 x 512)”, visualized in Figures 2 and 3. It is universally
acknowledged that although not all authentic images possess low-rank characteristics, the
essential information is primarily determined by the higher singular values. Consequently,
it is feasible to recover corrupted images through low-rank approximation. For 3D imagery
containing three separate channels, matrix completion executes independently per channel.
The approach for selecting parameters remains identical to that employed in the artificial
example, and the termination criterion is || Pq(X) — Y|l < 1075.

Due to space constraints, we concentrate upon the ETP penalty function to demonstrate

recovery efficacy. The algorithm’s recovery capability quantifies via Signal-to-Noise Ratio

(SNR), defined as

_ lu — al?
SNR(M,M) = 1010g10 ﬁ,

where u and 1 signify the original image and mean of the original image, and u* the

reconstructed image.

Figure 2. The list of pictures in order: Boat, Man, City Wall and Spillikins. First row: original images,
second row: noisy images.

Figure 3. The list of pictures in order: Bottles, Texture, House and Clock. First row: original images,
second row: noisy images.

For this evaluation, random values perturb 50% of image elements, with () denoting a set
of random values. These corrupted images appear in Figures 2 and 3’s second row. SNR values
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relative to CPU duration—required by four methods to attain minimal processing time—are
plotted across Figures 4 and 5. The results in Figures 4 and 5 show that PIRNNE-LS (including
PIRNNE-mLS and PIRNNE-nLS) outperforms traditional APIRNN and PIRNNE.
Furthermore, we report the number of iterations and CPU time in seconds and SNR val-
ues in Table 1. In the presented results, we use “Iter.”, “Time” and “SNR” to denote the num-
ber of iterations, CPU time in seconds and SNR value, respectively. In color images, Iter.,
Time and SNR represent the mean values of the three channels. From Table 1, we observe
that our proposed PIRNNE-mLS and PIRNNE-nLS have better recovery performance.

Table 1. Numerical results of tested algorithms with Boat, Man, City Wall, Spillikins, Bottles, Texture,
House and Clock.

APIRNN PIRNNE PIRNNE-mLS PIRNNE-nLS

Iter. Time SNR Iter. Time SNR Iter. Time SNR Iter. Time SNR

Boat 121 394 1949 51 287 2396 43 190 2623 43 190 26.69
Man 117 30.02 2329 56 2390 26.64 45 1561 2635 44 1541 26.79
CityWall 56 143 17.88 40 161 19.08 38 1.05 1974 35 096 20.05
Spillikins 68 157 20.05 59 196 2239 34 103 2308 33 1.01 23.09
Bottles 66 4.76 2192 56 6.34 2226 46 3.10 2250 38 298 2274
Texture 57 4.72 19.81 52 6.09 1955 42 313 2094 35 280 2195
House 109 1.17 2196 114 274 2137 39 058 2394 38 055 2476
Clock 229 12.10 2043 155 17.36 2492 55 501 2428 47 330 2799

Boat Man

30 30

1 1
p Z
w [0}
L —&— APIRNN 4 -
-5 5 —— APIRNN
—o— PIRNNE e PIRNNE
-10 —&— PIRNNE-mLS 4 -104 —E&—PIRNNE-mLS | 1
f —— PIRNNE-LS —¥— PIRNNE-nLS
15 j ] ] 15 j | j i ;
0 1 2 3 4 5 6 0 5 10 15 20 25 30 35
CPU time CPU time
City Wall Spillikins
25 T 25 T T T
20 20
15 15
10 10
o o
=Z s = s
[9p] w
ot ol
_5 -5
—4— APIRNN l(j ~4—— APIRNN
-10 —&— PIRNNE 1 =10/ —&— PIRNNE
i —+8— PIRNNE-mLS _? —+8— PIRNNE-mLS
—— PIRNNE-nLS —— PIRNNE-nLS
-15 -1
0 0.5 4 1.5 2 25 3 3.5 4 4.5 JO 0.5 1 1.5 2 25 3 3.5 4
CPU time CPU time

Figure 4. Evolution of SNR values of Boat, Man, City Wall and Spillikins with respect to the CPU time.
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Bottles Texture
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Figure 5. Evolution of SNR values of Bottles, Texture, House and Clock with respect to the CPU time.

5.3. Movie Recommendation System

In order to further evaluate the performance of the proposed algorithm, we test our
algorithm on the MovieLens dataset [41]. MovieLens dataset contains anonymous ratings
of movies by users. Three subsets of the dataset are employed: 100 K, 1 M and 10 M, with
varying numbers of users, movies and ratings as described in Table 2.

Table 2. Dataset descriptions. The number of users, items and ratings used in each dataset.

Dataset Users Movies Ratings
100 K 943 1682 100,000

MovieLens 1M 6040 3449 999,714
10M 69,878 10,677 10,000,054

The experiments were conducted on a workstation equipped with an Intel Xeon Gold
5218R processor (20 cores/40 threads), 64 GB of RAM and dual NVIDIA GeForce RTX 4090
GPU. The software environment is Ubuntu 22.04.4 LTS and MATLAB R2020a. The key
measuring metrics are computational efficiency via GPU seconds (Time), recovery accuracy
via RMSE and the objective value, which are adopted to determine the algorithm’s superi-
ority. The comparative results of different algorithms on the MovieLens dataset subsets are
presented in Table 3. It should be emphasized that our advantages are not apparent with
small data. However, our algorithms have a marked advantage with big data.
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Table 3. Comparative results of tested algorithms on the MovieLens dataset subsets.
Dataset Method Time RMSE Objective Value

APIRNN 2.06 1.0410 6.4081 x 102

100 K PIRNNE 1.11 1.0216 7.8860 x 102

PIRNNE-mLS 2.00 1.0468 5.9634 x 10?

PIRNNE-nLS 1.98 1.0450 6.1770 x 102

APIRNN 6.24 0.8855 1.1575 x 10°

5

MovieLens 1M PIRNNE 7.88 1.0343 1.2641 x 105

PIRNNE-mLS 5.23 0.8844 1.0311 x 10

PIRNNE-nLS 522 0.8844 1.0311 x 10°

APIRNN 28.23 0.9483 1.9444 x 10°

10M PIRNNE 238.86 1.0063 2.1513 x 10°

PIRNNE-mLS 14.49 0.9483 1.9435 x 10°

PIRNNE-nLS 13.78 0.9483 1.9435 x 10°
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6. Conclusions

This paper addresses a class of nonconvex and nonsmooth optimization problems
that are commonly encountered in various applications. Based on existing dimension
reduction and extrapolation techniques, we propose a more generalized proximal iterative
reweighted nuclear norm method. This method utilizes a line search mechanism to avoid
parameter constraints, thereby providing greater flexibility in parameter selection. As a
result, it is feasible to expand the application of this method in the future. In theory, we
prove the subsequential convergence. Furthermore, for the case of monotone line search,
we prove the global convergence and linear convergence rate of the algorithm under the
KL framework. Finally, we validate the effectiveness of the algorithm through numerical
results on synthetic and real data. We will construct a new nonconvex optimization model
with distributed characteristics and design corresponding algorithms [42,43] based on the
low rank of matrix. This will be our future research work.
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