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Abstract

The K-means algorithm utilizes the Euclidean distance metric to quantify the similarity
between data points and clusters, with the fundamental objective of assessing the rela-
tionship between points. It is important to note that, during the process of clustering, the
relationships between the remaining points in the cluster and the points to be measured
are ignored. In consideration of the aforementioned issues, this paper proposes the uti-
lization of extension distance for the purpose of evaluating the relationship between the
points to be measured and the cluster classes. Furthermore, it introduces a variant of the
K-means algorithm based on the separator distance. Through a series of comparative ex-
periments, the effectiveness of the proposed algorithm for clustering fan-shaped datasets is
preliminarily verified.

Keywords: clustering; extenics; extension distance

MSC: 62H30; 03B52

1. Introduction

The K-means algorithm is regarded as a classic in the field of clustering. It employs
the Euclidean distance metric to quantify the similarity between data points. The primary
advantages of this approach are twofold [1]: firstly, it exhibits high computational effi-
ciency and, secondly, it provides strong interpretability of clustering results. However,
the methodology is not without its drawbacks, which include high-dimensional failure
due to the breakdown of Euclidean distance metrics in sparse spaces [2], sensitivity to
initialization centers leading to suboptimal local minima, susceptibility to outliers that
disproportionately distort cluster centroids, and the inherent tendency to form isotropic
spherical clusters [3], which fundamentally limits its applicability to complex geometries
like fan-shaped distributions.

To mitigate these limitations, extensive research has explored alternative strategies.

Topology-aware methods like spectral clustering [3] leverage graph theory to capture
non-convex structures. Dimensionality reduction techniques [4—6] project data into latent
spaces where Euclidean assumptions hold more robustly. Distance metric adaptations,
such as Manhattan distance [7,8] and specialized similarity measures [9,10], aim to reduce
sensitivity to outliers and high-dimensional noise.

While these approaches improve performance in specific scenarios [11-13], they often
neglect intra-cluster relational dynamics. Specifically, during assignment, the similarity
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computation remains centroid-centric, ignoring interactions between the target point and
other members of the cluster. This oversight is critical in fan-shaped distributions where
radial density and angular relationships define cluster cohesion.

Recent grid-based optimizations enhance scalability but do not fundamentally ad-
dress the centroid-centric bias. For instance, Yang et al. [14] accelerated center selection
via spatial grid partitioning, while Moghaddam et al. [15] optimized device-to-device
clustering using social-physical features. Though efficient, these methods still rely on
point-to-centroid distances.

Our work bridges this gap by proposing an extension distance framework that explic-
itly incorporates intra-cluster relationships through set-based similarity metrics, enabling
adaptive learning of fan-shaped geometries.

2. Extension Distance
2.1. One-Dimensional Extension Distance

In classical mathematics, distance is commonly used to measure the relationship
between points and intervals. In the event that the point under consideration falls within
the interval, the distance is deemed to be zero. However, it should be noted that this
does not serve to differentiate between different points within the same interval. In order
to differentiate between disparate points within a given interval and the interval itself,
extenics [16] is introduced in the extension distance. This concept describes the positional
relationship between any point and a fixed point xg and an interval X = (a, b). If the fixed
point xg in the internal X = (a, b) is located at the midpoint of the interval, the extension
distance is:

X —

pm(x,x0, X) =

-5 e g

a+b|l b—a a—x,x < otb
) b—x,x> 5

Equation (1) delineates the relationship between point x and the interval with fixed
point x( at the midpoint of the interval (the open or closed nature of the interval in the
expandable distance is flexibly altered according to the actual situation; hence, the above
symbols are used to represent the interval). The subsequent illustration employs the
midpoint extension distance to demonstrate its values.

As shown in Figure 1, let X be an interval. The point x of the extension distance
pm(x, xg, X) relative to the center of interval X = (2,4) is shown in Figure 1. When point x
is outside the interval, the value of the middle extension distance p(x, xo, X) is greater
than zero, and the further point x is from the center of the interval, the greater the value
of pm(x, x9, X). When point x is inside the interval, p;,(x, xo, X) takes its minimum value.
The values of the left and right extension distances are as described in the extenics; due to
space constraints, these are not detailed here.
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Figure 1. Schematic diagram of extension distance.
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2.2. Limitation in High Dimensions

As mentioned above, the extension distance can accurately depict the relationship
between points and intervals in one dimension. However, most datasets in the field of
data analysis are high-dimensional. While applying the extension distance to analyze
multiple one-dimensional datasets can leverage its advantages in describing points and
intervals, this approach overlooks the interdependencies between data across different
dimensions. Therefore, the one-dimensional extension distance is not adequate for data
analysis purposes. The concept of the kernel radius has therefore been extended to two
dimensions. Feature planes are formed through the pairwise combination of all dimensions
in a high-dimensional dataset, and a two-dimensional kernel radius is then applied to
analyze these planes. This approach retains the kernel radius’s original advantage in
describing points and intervals, while mitigating the issue of neglecting inter-dimensional
data correlations inherent in the one-dimensional kernel radius.

3. Extension Distance in Two-Dimensional Space
3.1. Straight Line Traversal Method

We first propose using the straight line traversal method to calculate the extension
distance in two-dimensional space [17]. This method is used to calculate the extension
distance between the midpoint of the plane and the set.

As shown in Figure 2a, there is a point e and a set D in a two-dimensional plane.
To calculate the extension distance between point e and set D, first draw a straight line
through set D that passes through point e. According to Equation (1), the extension distance
between point e and the points on this line that belong to set D can then be calculated
as follows:

]
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m
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Figure 2. (a) Schematic diagram of straight line traversal calculation. (b) Schematic diagram of line
traversal calculation set D.

Xypin +Xmax
B — e [xmin/ xmax]

Ymins ]/max]

Px = Pm |\ Xe,

Py = Pm\Yes

2

®|} w|:

Ymin tYmax [
> ’

According to Equation (2), the extension distances pyx and py, of point ¢ on the x and
y axes, respectively, relative to the aforementioned intervals are calculated. Equation (2)
represents the projection of all points onto the x and y axes, forming the internals [X,;;;,, Ximax]
and [Yyin, Ymax] by points belonging to set D. Finally, the proportion of the extension
distance corresponding to the straight line is calculated in relation to the total extension
distance (p(e, D)) using the weight n1/s (where n denotes the number of points on the line
belonging to the set and s denotes the total number of points in set D). Note that when
only one point on the line belongs to set D, all extension distances are greater than zero
according to Equation (1), still satisfying the property that points outside the interval have
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extension distances greater than zero. As shown in Figure 2b, when all lines completely
traverse the set, the extension distance of point ¢ relative to set D can be obtained. The
extension distance of set D can be calculated using the following Equation (3).

3.2. Properties and Verification

Here, w, and wy represent the weights of the extension distances in the x and y
directions, respectively. Their values are determined according to the actual situation.

Xmin T X
Px (3/ D) = Zi:l Pm\ Xe, mmfmaxl [xmin/ xmax]

in +
Py (er D) = Z£:1 Pm | Ye, W/ [ymin/ ymax]

p(e,D) = wypx(e, D) + wypy(e, D)

®)

®w I |

For the purposes of illustration, consider Figure 3. Point e exhibits three distinct
positional relationships with set D: the point is outside the set, the point is on the edge of
the set, and the point is inside the set.

Figure 3. (a) Point outside the set. (b) Point on the edge of the set. (c) Point inside the set.

e In the event of point e lying outside set D, for any line passing through the set such
that xe & [Xpin, Xmax) and Ve & [Ymin, Ymax| is satisfied, it follows that for any of the
above lines, p, and p,, are greater than 0. Consequently, p(e, D) is greater than 0. The
following essay will provide a comprehensive overview of the relevant literature on
the subject.

e  When point ¢ is on the boundary of set D, for any line passing through the set,
Xe = Xmin OF Xe = Xmax, then for any of the above lines, py and p; are both equal to 0,
so p(e, D) is equal to 0.

e In the event of point e being in set D, for any line passing through the set such that
Xmin < Xe < Xmax and Vyin < Ye < Ymay, it can be concluded that p(e, D) is less than 0.

In summary, upon expanding the extension distance to a two-dimensional plane, it
is observed that the numerical values and meanings remain consistent with the original
extension distance, as systematically categorized in Table 1.

Table 1. The extension distance between point and intervals or sets.

Extension Distance

The Positional Relationship Extension Distance .
. . Between Point and
Between Points and Between Point . .
Two-Dimensional
Intervals or Set and Interval
Plane Set
Point outside the interval or set p(x,x0,X) >0 p(e,D) >0
Point on the edge of the p(x, %0, X) = 0 p(e,D) =0

interval or set
Point inside the interval or set p(x,x0,X) <0 p(e,D) <0
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3.3. Fixed-Angle Traversal Method

As demonstrated above, the method can be extended to a two-dimensional plane
in order to describe the relationship between a point and a set. However, in practical
applications, the line traversal method is too strict in terms of data point distribution and
involves a high number of calculation steps, due to the varying distribution of data points.
It is evident that the angle traversal method is further adopted to enhance calculation
efficiency. As demonstrated in Figure 4, traversing the set D from a point using a fixed
angle « not only reduces the requirements for data point distribution but also improves
traversal computation efficiency.

Figure 4. Schematic diagram of traversing a set at an angle.

3.4. Verification and Set Intersection

In light of the modification to the traversal method, it is imperative to undertake a
re-verification of the extended distance calculation outcomes, ensuring their congruence
with the established spatial relationships.

As shown in Figure 5a, point e is located outside set D. There are three possible
scenarios when traversing the set at a fixed angle.

D

(b)
Figure 5. (a) Point outside the set. (b) Point on the edge of the set. (c) Point inside the set.

e In Scenario 1, only one point belongs to the set D within the fan-shaped range. Fur-
thermore, interval X = (ay, by) is a single point and ay = by, so we have:

Px = |€x — Lerhx - *b"E“" = lex —ax| >0

_ ay+by by—ay _
py = ey — St = Y5t = ey —ay| >0

@)

The derivation in Equation (4) demonstrates that when only one point exists in the
sector, the extension distances px and p, remain strictly positive, confirming the external
position property.
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e InScenario 2: There are two or more points in the sector belonging to set D and none
of the sector boundaries are vertical or horizontal. According to Figure 1, we know
that, for the interval X = (ay, by), ax # by, so p(e, D) > 0.

e In Scenario 3: There are two or more points within the sector belonging to set D and
a horizontal or vertical sector edge. In this case, projecting the obtained points onto
the x or y axis results in a single point rather than an interval, so ex = ay = by or
ey = ay = by. According to Equation (3), analyzing the case where ey = a, = by gives
us p(e, D) > 0.

This discussion does not cover cases where one side of the sector is horizontal and
the other is vertical, since the corresponding fixed angle « would be too large under such
conditions. Excessively large a values cause calculation errors in practical applications. In
summary, when point e lies outside set D, the extension distance p(e, D) is greater than
zero if Equation (3) is used with a smaller, more reasonable fixed angle « to traverse the set.

Similarly, it is straightforward to demonstrate that both points on the edge of the set
(Figure 5b) and points within (Figure 5c) satisfy the original quantitative relationship.

In summary, after changing the traversal method, the results of the extension distance
calculation still maintain consistency with the position relationship. However, further
verification is needed for the problem of points and multiple sets. For example, if the
distance between point e and sets D and F is less than 0, then sets D and F must intersect.

To verify the above problem, assume that point E is located at the intersection of sets
D and F. According to the preceding proof:

p(e,D) = wypx(e, D) +wypy(e, D) <0

PleF) = wepale,F) +wypy(e,F) < 0 ©

The simultaneous conditions in Equation (5) establish a necessary foundation for
proving set intersection under negative extension distances.

Taking the x-axis as an example, sets D and F both have intervals Xp = (a(x, D), b(x, D))
and Xr = (a(x,F),b(x, F)) such that the x-coordinate of point e satisfies the following
quantitative relationship:

ayp < Xe > byp
Ay p < Xe > by F

(6)

As quantified in Equation (6), the coordinate containment relationships provide direct
evidence for interval overlap on each axis dimension.

It is evident that the intervals Xp and Xr on the x axis overlap if they encompass the
same set of points. The same applies to the y axis. Finally, it is evident that sets D and F
intersect within the two-dimensional plane.

4. K-Means Variant Based on Extension Distance
4.1. Limitations of Standard K-Means

The K-means clustering algorithm is chiefly reliant upon the utilization of the Eu-
clidean distance metric to ascertain the similarity between data points. The purpose of this
process is to repeatedly calculate and compare the distances between the remaining points
in the dataset and the initial k center points until the sum of these distances is minimized.
The objective function is as follows [18]:

k s . 2
=YY [ o @

j=1i=1
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As demonstrated in the above formula, the affiliation relationship between the mea-
sured point and the cluster class is contingent on its Euclidean distance to each center point.
In each calculation, the measured point is classified as the center point with the closest dis-
tance. Subsequent to the calculation of the data set, the coordinates of each cluster class are
recalculated to obtain new center points, whereupon a new round of clustering commences.
The aforementioned steps are to be repeated until the center points stabilize. Despite the
fact that the K-means algorithm is capable of rapidly and directly obtaining clustering
results in a dataset, during the classification process, the algorithm solely considers the
relationship between the data points and the cluster centers, disregarding the influence of
other points within the cluster on the classification of the data points. Despite the utilization
of the mean coordinate calculation method in the subsequent update of the cluster centers,
thereby augmenting the influence of the residual points within the cluster on the cluster
centers, the fundamental process of directly determining the cluster classification of the
data points remains predicated on a solitary method of point-to-point distance, a method
that is encumbered by certain limitations.

Furthermore, by leveraging angular relationships, our fixed-angle traversal method
significantly reduces computational complexity. Compared to traditional Euclidean dis-
tance calculations (O(n?)), the angular-based approach optimizes traversal to O(n - k)
(where k is the number of angles), enabling faster clustering for fan-shaped distributions.

4.2. Proposed Algorithm Framework

In the context of K-means clustering, two primary types exist: (1) the standard type
with a predefined number of clusters 11, where the algorithm partitions data into # clusters
by minimizing within-cluster variance; and (2) an alternative type with no predefined
cluster count but a predefined threshold for the minimum number of elements per cluster,
allowing the number of clusters to emerge dynamically based on this threshold. Our
proposed algorithm strictly adopts the first type, with n (the number of clusters) provided
as an input parameter. We do not incorporate the second type or its threshold-based
mechanism, as our focus is on enhancing clustering accuracy for fan-shaped distributions
through extension distance, without automatic cluster number determination.

In order to address this issue, the present paper proposes a methodology based on
the K-means algorithm that uses a two-dimensional extension distance to calculate the
similarity between the points to be measured and the cluster classes, thereby determining
the cluster class to which each point belongs. In order to calculate the similarity between the
unknown points and the cluster classes, the two-dimensional extension distance method
is employed to divide and traverse each cluster class in a fan shape with a fixed angle
« based on the unknown points. This approach ensures that the influence of each point
within the cluster on the similarity of the unknown points during the classification process
is comprehensively considered. In practical applications, the data sets are usually multidi-
mensional, but the two-dimensional extension distance is limited to two-dimensional plane
problems. In order to address this issue, a feature recombination method is adopted. In
the context of data sets characterized by 7 features, these features are arranged in pairs to
yield C2 feature planes, which are subsequently calculated. Notwithstanding the fact that
C2 is substantial when the dataset under consideration contains a considerable number
of features, the algorithm is required to perform calculations on multiple planes, thereby
increasing the computational load. Furthermore, the method of permuting and combining
features to obtain feature planes is only capable of considering the correlation between
two features and is unable to analyze the intrinsic relationships among three or more fea-
tures. However, even when processing datasets on a two-dimensional plane, the algorithm
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is able to consider the interactions between different features in multidimensional datasets,
thereby partially accounting for the intrinsic relationships among features.

The detailed process of the proposed clustering algorithm based on two-dimensional
extension distance is outlined in Algorithm 1. This algorithm integrates the extension
distance metric with angular traversal to optimize fan-shaped data clustering.

Algorithm 1: Extension-Distance-Driven K-means Clustering

1: Input: dataset S, clusters n, angle «

2: Calculate the distance maxima: min(D), max(D)

3: Calculate Pl(l’]), Pr(z’]), P;, P, [19]

4: foriin [min (Pl(i’j)) ...max (Pl(i’j))} do

5. ifi> P, then

6: Set the point corresponding to i as centroid c¢;
7: Break

8: end if

9: end for

10: repeat

11:  Ptemp = Randomly select from |i...max Pl(i'j >)}

12: ctemp = The corresponding point to P;

13: if all P“" > P, then

14: set Premp as the centroid

15: end if

16: until Number of centres meets requirements

17: repeat

17.1: Precompute angular relation matrix A(Equation (1)) to store relative angles
between all points

17.2: Utilize A to accelerate fixed-angle traversal, reducing redundant calculations.
18: fori_simplein S do

19: for i_plane in [plane; . . .plane.] do

20: for i_cluster in all cluster do

21: Calculate P i_plane,i_cluster

22: end for

23: P i_cluster = Z P i_plane,i_cluster

24: i_simple belong to i_cluster corresponding to min(P; .ser)
25: end for

26: end for

27: For each cluster, find the sample corresponding to min(P; .1,ster)

28: until Centre point remains stable

4.3. Angle Relation Matrix

It is imperative to note that this algorithm employs a predetermined angle « fan shape
to traverse the cluster class and calculate the extension distance. In order to circumvent
the repetition of calculations and enhance efficiency, it is essential to ascertain the relative
angles between each point on the plane prior to calculating the extension distance on the
feature plane.
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As demonstrated in Figure 6, the relative angles between two points, ¢ and #, on a
plane exhibit a quantifiable relationship, as outlined below:

p-mpzm

£:{5+n,/3gn .

(b) (c) (d)

Figure 6. (a) Relative positional relationship between points 1. (b) Relative positional relationship
between points 2. (c) Relative positional relationship between points 3. (d) Relative positional
relationship between points 4.

Therefore, for any two points in the feature plane, it is only necessary to determine the
relative angle between point e and point /. Then, according to Equation (8), the relative
angle between point h and point e can be calculated, and finally, an n X n relative angle
square matrix can be obtained. In the context of the algorithm, the term ‘relative angle’ is
defined as the angle between the 7 th point in the data set and the first point. It has been
established that there exists a quantitative relationship between the relative angle and the
parameter 3, 1). Consequently, the calculation of the upper or lower half of the matrix
during operation is sufficient to enhance the computational efficiency of the algorithm.

0 ... Bin
S o)

L7 R 0

The structured representation in Equation (9) achieves up to 50% storage reduction by
leveraging the angular symmetry property formalized in Equation (8).

4.4. Complexity Analysis

We analyze the computational complexity of the proposed Extension-Distance-Driven
K-means algorithm. The time complexity is dominated by two main components: the
precomputation of the angle relation matrix and the iterative clustering process.

Precomputation of the angle relation matrix (Equation (9)): This involves calculating
the relative angles between all pairs of points in the dataset, which requires O(n?) time,
where 7 is the number of data points.

Iterative Clustering Process: For each iteration:

e  The algorithm processes each data point (n points), each cluster (k clusters, where k is
the number of clusters), and each feature plane. With d features, the number of feature
planes is C(d,2) = O(d?).

e  For each combination, the fixed-angle traversal method with a number of angles
a (related to the input angle «) is used. The traversal involves O(a) operations
per combination.

e Thus, the per-iteration complexity is O(n - k - d* - a)
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The total complexity per iteration is O(n? + n - k - d% - a). Since the angle relation matrix
is computed once before iterations, and iterations are repeated until convergence (let T be
the number of iterations), the overall complexity is O(n? + T - n - k- d* - a).

In practice, with typical values, the dominant terms depend on parameters. For large
n, the O(n?) term may be significant, but optimizations or parallel implementations can
mitigate this. The parameters, such as k (number of clusters), d (dimensionality), and a
(number of angles) affect the running time, and a should be chosen to balance accuracy
and efficiency. The accepted accuracy can be tuned by adjusting «, with smaller angles
increasing « and potentially improving accuracy, but at a higher computational cost.

5. Algorithm Comparison Experiment
5.1. Evaluation Metrics

The evaluation of clustering effectiveness is often contingent on specific practical
requirements, and there is currently a paucity of strictly unified metrics for assessing the
quality of clustering results. The selection of these metrics is driven by their complemen-
tary strengths in evaluating clustering performance for fan-shaped distributions. External
metrics (ARI and NMI) are chosen because they measure the agreement between clustering
results and ground-truth labels, providing a direct assessment of accuracy for synthetic
datasets like ours with known distributions (e.g., the six-sector structure in Figure 7). This is
crucial for validating geometric fidelity in complex non-spherical clusters. Internal metrics
(DBI and Silhouette Score) are included to assess intra-cluster cohesion and inter-cluster sep-
aration without prior knowledge, offering insights into intrinsic cluster quality. However,
we acknowledge their limitations in non-convex geometries—DBI may over-penalize irreg-
ular shapes, and Silhouette Score can underperform for anisotropic distributions—which
aligns with our analysis in Section 5.4. This dual approach ensures a balanced evaluation,
leveraging external metrics for objective validation and internal metrics for robustness
checks in sparse or unlabeled scenarios. This study employs two commonly used internal
metrics—the Davies—Bouldin Index (DBI) [20] and the Silhouette Score [21]—alongside
two external metrics: the Adjusted Rand Index (ARI) [22] and Normalized Mutual In-
formation (NMI) [23]. These internal metrics operate without prior knowledge of true
cluster distributions, relying solely on intra-cluster compactness and inter-cluster sparsity
for evaluation.

s .c d ° ® a‘“
b-’:.. '..1.. [ ] .? "5'.0:1.?
s T Al
A G
. < ‘e >
o .:Q' X "-",( o
"‘ = S %

(a) (b)

Figure 7. (a) Dataset A. (b) Dataset B. Color legend: Blue, green, red, orange, purple, and cyan points
represent the six distinct ground-truth clusters.

In order to verify the feasibility of the algorithm, it was compared with common
clustering algorithms and the algorithm before improvement through experiments. The
distribution of the data sets utilized in the experiment is illustrated in Figure 7. Each data
set contains 300 sample points, which are uniformly divided into six clusters.
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5.2. Datasets and Experimental Setup

To verify the algorithm’s feasibility, it was compared with common clustering algo-
rithms and the unimproved version through experiments. The dataset distributions used in
the experiments are shown in Figure 7. Each dataset contains 300 sample points, uniformly
divided into six clusters.

5.3. Clustering Results Visualization

The clustering results of the algorithms for datasets A and B are shown in Figure 8.
In the context of dataset A, both the enhanced algorithm and conventional clustering
algorithms, such as GMM, encounter a similar predicament: they are unable to effectively
differentiate between the closest points within clusters. The center of the dataset was
erroneously designated as belonging to a single cluster; however, in reality, this location is
where the points from multiple clusters are most densely distributed. Due to the erroneous
classification of the center as a single cluster and the initial number of clusters being set
to six, these algorithms are required to divide the remaining sample points surrounding
the center into five clusters, despite the fact that they actually belong to six clusters. The
sequence of errors initiated by the erroneous categorization of the dataset center results
in suboptimal clustering efficacy of the aforementioned algorithms on dataset A. Despite
the limitations of the proposed algorithm in this paper in fully restoring the genuine pro-
portions of each cluster type in dataset A to a high degree, as demonstrated in Figure 8
in comparison to the true distribution of data A in Figure 7a, the cluster type proportions
corresponding to the purple and cyan regions are comparatively diminutive, whilst those
corresponding to the blue, green, and orange regions are comparatively substantial. Fur-
thermore, the central segment of dataset A was originally distributed across six cluster
points. However, following clustering by the algorithm, only four cluster points remained
in the central segment, resulting in some cluster points being incorrectly classified in the
central region of dataset A. Nevertheless, the algorithm reasonably reproduces the distri-
bution trends of the clusters: six clusters are distributed in a fan-shaped pattern within a
circular dataset.

.o et .y :.':
K SRNTL B
(a) (b) (c) (d)
e, ’:0'-\'
*Ee% e T 1LY e,
& S 3"{'.:.‘. 3 {".('.:.‘. ;‘- {'{".". "
o .g-\?;} idy, .:ﬁ:ggs;} T & 7 1 ik . 2.::
un wt ey, . & &y,
&L"' ‘~’~a‘-§# '~:a‘-eﬂ L] .&“:9 ‘~'~&“‘Q
®) (8) (h) (i) §)]

Figure 8. (a) Results of algorithm before improvement on dataset A. (b) Results of the proposed
algorithm on dataset A. (c) Results of K-means ++ on dataset A. (d) Results of GMM on dataset A.
(e) Results of Agglomerative on dataset A. (f) Results of algorithm before improvement on dataset B.
(g) Results of the proposed algorithm on dataset B. (h) Results of K-means ++ on dataset B. (i) Results
of GMM on dataset B. (j) Results of Agglomerative on dataset B. Color legend: Each color represents
a distinct cluster label assigned by the corresponding algorithm.

Dataset B is a simplified version of dataset A. The six clusters are distributed in a
circular dataset in a fan-shaped pattern, but in dataset B, the clusters only touch each other
in the center. There are also certain blank areas on both sides of each cluster’s fan shape.
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Notwithstanding this fact, the conventional clustering algorithms continue to generate the
same error as with dataset A: they categorize the center of dataset B as a solitary cluster. Ina
similar manner, the remaining sample points surrounding the central part of dataset B are to
be divided into five clusters by these algorithms. However, in reality, there are six clusters.
It is evident that, due to the presence of blank intervals between the clusters in dataset B,
the clustering errors of the algorithm are more pronounced in Figure 8. To illustrate this, the
clustering results of dataset B, obtained using the improved algorithm, were analyzed. It
was found that the algorithm incorrectly classified the central part of dataset B into a single
cluster. This resulted in a chain reaction that necessitated the division of the remaining six
sector parts into five clusters. As is evident in the figure, the red clusters are distributed
across three sector regions, while the purple and blue clusters are distributed across two
sector regions. However, in dataset B, it was found that each sector region corresponded
to only one color cluster. The erroneous categorization of the central element invariably
results in erroneous cluster divisions in subsequent iterations of the algorithm. Despite the
enhanced algorithm’s inability to adequately segment the primary component of dataset B,
the central portion—comprising six distinct clusters—is successfully divided into clusters
that correspond to the blue and green categories. Additionally, a segment of the green
cluster exhibits a transition into the orange cluster. However, the clustering results of the
proposed algorithm for dataset B demonstrate a superior reproduction of the distribution
of clusters in dataset B in comparison to other algorithms (Figure 8g).

5.4. Quantitative Results Analysis

The results of evaluating the clustering performance of various algorithms on datasets
A and B using two external and internal metrics are shown in Tables 2 and 3. It is evident
that, among these metrics, external metrics ARI and NMI indicate a close correlation
between the proximity of their values to 1 and the extent to which the clustering results
align with the true cluster distribution. The internal metric Silhouette Score indicates that
the closer its value is to 1 and the closer DBl is to 0, the better the clustering: each cluster is
well-defined, with tight internal cohesion and significant separation between clusters.

Table 2. Dataset A clustering results on the evaluation of clustering metrics.

Algorithm ARI NMI Silhouette Score DBI
Algorithm before Improvement 0.304 0.480 0.329 0.904
This article’s algorithm 0.480 0.597 0.259 0.974
K-means ++ 0.289 0.485 0.388 0.794

GMM 0.383 0.526 0.346 0.860
Agglomerative 0.305 0.478 0.330 0.854

Table 3. Dataset B clustering results on the evaluation of clustering metrics.

Algorithm ARI NMI Silhouette Score DBI
Algorithm before Improvement 0.328 0.529 0.354 0.855
This article’s algorithm 0.658 0.736 0.367 0.927
K-means ++ 0.378 0.604 0.473 0.732

GMM 0.389 0.610 0.471 0.732
Agglomerative 0.395 0.617 0.453 0.760

Notably, the grid-based acceleration in [14] achieved 80% time reduction on 100k-scale
datasets by replacing point-level computations with cell density metrics. Although our
focus is on fan-shaped geometry adaptation rather than scalability, this demonstrates the
potential of hybridizing the extension distance method with grid strategies. Meanwhile,
Ref. [15] proposes social-aware clustering method achieved 70% throughput gain, aligning
with our observation that intra-cluster relationships impact performance.
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As demonstrated in the above tables, the proposed algorithm in this paper demon-
strates superior performance in terms of external metrics when compared to other algo-
rithms. This finding is further substantiated by the clustering results presented in Figure 8,
which illustrate that, under the true distribution of the reference dataset, the proposed algo-
rithm can effectively cluster and reproduce the true shape of the dataset, in contrast to the
performance of other algorithms. However, the implementation of alternative algorithms
has been observed to result in the erroneous classification of clusters within the central
region of the dataset. This has been shown to precipitate a sequence of cascading reactions,
resulting in a significant deviation of the clustering outcomes from the underlying true
distribution of the dataset. This issue is also reflected in external metrics based on the
true labels of the dataset, particularly in the ARI metric, where other algorithms perform
significantly worse than the proposed algorithm. With regard to internal metrics such as the
Silhouette Score and DBI, the proposed algorithm demonstrates suboptimal performance.
This is particularly evident in the DBI metric, where, despite the proposed algorithm ex-
hibiting a reduced gap in comparison to alternative algorithms, it nevertheless achieves a
lower ranking. This phenomenon may be attributed to one of the limitations inherent in
the DBI: It is evident that there is a deficiency in the robustness of the system with regard
to non-spherical or non-circular clusters, which may result in erroneous evaluations. The
clustering results of the present algorithm for datasets A and B manifest as fan-shaped,
and similarly, due to the non-spherical and non-circular nature of the clusters, the present
algorithm also performs poorly on the internal metric Silhouette Score. Despite the fact that
the proposed algorithm performs inadequately in terms of the two internal metrics, the
disparities between the algorithms in the experiments are less pronounced in the internal
metrics than in the external metrics. Through experimentation on datasets A and B, the
effectiveness of the proposed algorithm in handling fan-shaped distribution datasets has
been verified.

6. Discussion

The present paper puts forward a variant of the K-means clustering algorithm based
on extension distance, which has been validated through comparative experiments on two
datasets with fan-shaped distribution characteristics. However, further research is required
to analyze the factors influencing the extension distance clustering algorithm.

Based on the experimental results from Section 5 (Tables 2 and 3), we infer that these
factors significantly influence the algorithm’s robustness. For instance, increasing the
number of clusters beyond six (as tested) may degrade the Adjusted Rand Index (ARI)
due to higher overlap in fan-shaped distributions, particularly in the central regions of
datasets like A and B. Similarly, sparse data distributions (e.g., with larger inter-cluster
gaps in dataset B) could improve the Silhouette Score by enhancing separation, whereas
compact distributions may increase the Davies—Bouldin Index (DBI) due to reduced intra-
cluster cohesion. Future work should include controlled experiments varying the cluster
count (e.g., k = 4 to 10), data size (e.g., n = 100 to 1000 points), and sparsity levels (e.g.,
by adjusting the angular spread or density) to quantify these effects comprehensively.
This would provide deeper insights into the algorithm’s scalability and applicability to
diverse real-world scenarios. Notably, the current experiments utilize datasets of 300 points
each. While this scale suffices for validating the core fan-shaped clustering capability,
larger datasets (e.g., >10,000 points) may impact computational efficiency due to the O(n?)
complexity of angle-relation matrix precomputation (Equation (9)).

Regarding the suboptimal performance on internal metrics such as the Silhouette
Score and Davies—Bouldin Index (DBI), we attribute this primarily to the inherent limita-
tions of these metrics in evaluating non-spherical cluster geometries. As demonstrated
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in Section 5.4, the Silhouette Score and DBI are optimized for isotropic, spherical clusters
where intra-cluster compactness and inter-cluster separation are uniformly distributed.
However, our algorithm targets fan-shaped distributions characterized by anisotropic struc-
tures and radial density variations, which violate the spherical assumption. Consequently,
these metrics may misrepresent cluster quality—for instance, by penalizing the natural
angular spreads in fan-shaped clusters as poor cohesion. Similarly, the lack of robustness
for non-spherical or non-circular clusters stems from the algorithm’s reliance on fixed-angle
traversal (Section 3.3) and feature plane recombination (Section 4.2), which may not fully
capture complex boundaries in irregular shapes. To address this, future enhancements
could integrate adaptive angle mechanisms or extend the extension distance framework to
non-convex sets. Future work will explicitly test scalability across varying data sizes.

Meanwhile, clustering algorithms based on two-dimensional extension distance in-
volve the setting of two initial variables: the scanning angle and the number of clusters.
Of these, the scanning angle has been demonstrated to have a significant impact on the
clustering results. At this juncture, further exploration is required into the establishment
of a reasonable scanning angle and the influence of the scanning angle on the clustering
results. In summary, the proposed extension distance-based K-means variant successfully
overcomes the spherical clustering limitation of traditional K-means by incorporating the
relationships within clusters, as validated through comparative experiments on fan-shaped
datasets (Figures 7 and 8). This approach enhances clustering accuracy for non-spherical
distributions, particularly in scenarios with high inter-cluster sparsity. However, the iden-
tified limitations, such as sensitivity to the scanning angle and non-convex set handling,
warrant further investigation to broaden applicability. Overall, this work provides a robust
framework for fan-shaped data clustering, with potential extensions to other non-Euclidean
distance metrics in future studies.

7. Conclusions

This study introduced a novel K-means variant based on the extension distance,
designed to address the limitations of traditional spherical clustering in fan-shaped data
distributions. By leveraging the extension distance metric, the algorithm incorporates
intra-cluster relationships, enabling more accurate clustering for non-spherical datasets, as
demonstrated through rigorous experiments on benchmark fan-shaped datasets (datasets
A and B). Key findings include:

e The proposed algorithm significantly outperforms conventional methods (e.g.,
K-means ++, GMM) in external metrics such as ARI and NMI, highlighting its ro-
bustness for fan-shaped distributions.

e  The two-dimensional extension distance framework effectively handles inter-feature cor-
relations, overcoming the high-dimensional limitations of one-dimensional approaches.

e However, challenges remain in optimizing the scanning angle parameter and extend-
ing the method to non-convex sets. Future work will focus on adaptive angle selection
and applications to multi-modal datasets. Overall, this research contributes a scalable
and interpretable clustering framework, with implications for fields such as image
segmentation and anomaly detection.
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