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Abstract

The shallow water equations (SWEs) model fluid flow in rivers, coasts, and tsunamis. Their
nonlinearity challenges analytical solutions. We present a numerical algorithm combining
the finite integration method with Chebyshev polynomial expansion (FIM-CPE) to solve
one- and two-dimensional SWEs. The method transforms partial differential equations
into integral equations, approximates spatial terms via Chebyshev polynomials, and uses
forward differences for time discretization. Validated on stationary lakes, dam breaks, and
Gaussian pulses, the scheme achieved errors below 10−12 for water height and velocity,
while conserving mass with volume deviations under 10−5. Comparisons showed superior
shock-capturing versus finite difference methods. For two-dimensional cases, it accurately
resolved wave interactions over complex topographies. Though limited to wet beds and
small-scale two-dimensional problems, the method provides a robust simulation tool.

Keywords: shallow water equations; Chebyshev polynomials; finite integration method;
numerical simulation; dam break; fluid dynamics

MSC: 35L05; 65M22; 65N35

1. Introduction
The shallow water equations (SWEs), first introduced by Saint-Venant [1] in 1871 to

model open-channel flow, are also referred to as Saint-Venant’s equations. These equations
form a mathematical model for understanding water movement in shallow regions such as
rivers and beaches. They find applications in simulating various phenomena, including
dam breaks, tsunamis, and floods, see [2–5] for more details. The behavior of these flows is
also influenced by the bottom topography, and significant research has been dedicated to
wave interactions over various topographies [6]. Study of the SWEs facilitates the analysis
of how topography affects water flow.

The shallow water model is predicated on the assumption that the horizontal length
scale of the flow is significantly larger than the water’s depth. This assumption permits a
simplification of the governing equations by averaging the mass and momentum conser-
vation equations over the depth, thereby eliminating the vertical dimension. The SWEs
manifest as a system of partial differential equations (PDEs) that characterize shallow water
behavior through its height and velocity. They are derived from the principles of mass and
momentum conservation. The model comprises two main components. The first is the
continuity equation, which arises from the conservation of mass and describes the temporal
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variation in water height, accounting for water flux into and out of a given area. The second
component is the momentum equation, derived from momentum conservation principles,
which governs the horizontal movement of water. This equation considers the forces acting
on the water, notably gravity and pressure gradients, that influence its velocity. Assuming
frictionless flow over a wet bottom topography, the one- and two-dimensional SWEs can be
expressed without a friction term, similarly to the formulation in [7]. The one-dimensional
SWEs are then given by 

∂h
∂t

+
∂

∂x
(hu) = 0,

∂

∂t
(hu) +

∂

∂x

(
hu2 +

gh2

2

)
= −gh

∂z
∂x

,
(1)

where x is the spatial variable, t is the temporal variable, h represents the water height, u is
the horizontal velocity, g is the gravitational constant, and z denotes the bottom topography,
as visualized in Figure 1a. The two-dimensional SWEs extend the one-dimensional model
by incorporating the spatial variable y and its associated velocity component:

∂h
∂t

+
∂

∂x
(hu) +

∂

∂y
(hv) = 0,

∂

∂t
(hu) +

∂

∂x

(
hu2 +

gh2

2

)
+

∂

∂y
(huv) = −gh

∂z
∂x

,

∂

∂t
(hv) +

∂

∂x
(huv) +

∂

∂y

(
hv2 +

gh2

2

)
= −gh

∂z
∂y

,

(2)

where x and y are the spatial variables, and u and v are the horizontal velocity components
in their respective directions, as depicted in Figure 1b.

z(x)

h(x, t)
g

u(x, t)

x

h + z

(a) One-dimensional SWE

z(x, y)

h(x, y, t)

gu(x, y, t)

y

h + z

x

v(x, y, t)

(b) Two-dimensional SWE

Figure 1. Physical variables for one- and two-dimensional shallow water models.

The SWEs are a nonlinear hyperbolic system of conservation equations that include a
source term for topography, making their analytical solution challenging. Consequently,
numerical methods are essential for simulating water flow. A diverse set of numerical
schemes has been developed to solve the SWEs. These include Finite Difference Methods
(FDMs), such as those by Hudson [8] and Crowhurst and Li [9], which are often straightfor-
ward to implement but can face challenges with complex topographies and shock capturing.
In contrast, Finite Volume Methods (FVMs), such as the adaptive FVM by Peng [10] and
Godunov-type methods by LeVeque [11], are well-regarded for their conservation proper-
ties and robust shock-capturing capabilities. For scenarios requiring a higher precision with
smooth solutions, high-order approaches like the Spectral Difference Method (SDM) by San
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and Kara [12] and the Summation-By-Parts Operators with Simultaneous Approximation
Terms (SBP-SAT) by Lundgren [13] offer excellent accuracy, though often at the cost of
increased complexity. While methods based on a fundamental solution, or Green’s function,
can be powerful, a simple Green’s function is not available for the full nonlinear SWEs,
necessitating the development of direct numerical methods.

A common feature of many of these methods is their reliance on differential approxi-
mation, which can be sensitive to round-off errors, especially with small spatial step sizes.
To address this limitation, this paper presents a Finite Integration Method with Chebyshev
Polynomial Expansion (FIM-CPE) [14], a technique that transforms the governing PDEs into
integral equations, before discretization to mitigate round-off errors. Because our method
operates on an integral form, it is relevant to situate it with respect to other established
techniques for solving integral equations. Unlike weighted residual methods such as the
Galerkin method, which require complex inner product integrations, our FIM-CPE is a
collocation-based approach. It ensures that the integral equation is satisfied exactly at a
discrete set of points (the zeros of Chebyshev), often leading to a more straightforward
formulation. This approach, combined with the spectral accuracy of Chebyshev polynomial
expansions, enables a high-order accurate algorithm, see [15–17] for more details. The pri-
mary objective of this work is to develop a robust numerical algorithm using FIM-CPE for
the accurate simulation of one- and two-dimensional SWEs and to validate its effectiveness
in resolving both smooth and discontinuous solutions across various topographies.

2. Developed FIM-CPE
This section details the construction of one- and two-dimensional Chebyshev integra-

tion matrices, which form the cornerstone of the FIM-CPE. We begin by defining Chebyshev
polynomials and outlining their key properties, as established in [15].

Chebyshev polynomials are specifically chosen for this work due to their optimal prop-
erties in function approximation. They possess the minimax property, which minimizes the
maximum approximation error over the interval. Furthermore, the use of Chebyshev nodes
for collocation, which are the roots of the polynomials, clusters points near the boundaries.
This non-uniform distribution is highly effective at mitigating Runge’s phenomenon, pre-
venting the large oscillations that can occur at the edges of an interval when using equally
spaced points with high-degree polynomials.

Definition 1 ([15]). The Chebyshev polynomial of degree n ≥ 0 is defined by

Rn(x) = cos
(

n arccos
(

2x− a− b
b− a

))
for x ∈ [a, b]. (3)

Lemma 1 ([15]). The following are properties of the Chebyshev polynomials:

(i) The zeros of the Chebyshev polynomial Rn(x) for x ∈ [a, b] are given by

xk =
1
2

(
(b− a) cos

(
2k− 1

2n
π

)
+ a + b

)
, k ∈ {1, 2, 3, . . . , n}. (4)

(ii) The single-layer integrals of the Chebyshev polynomial Rn(x) are given for n ≥ 2 by

R0(x) =
∫ x

a
R0(ξ)dξ = x− a,

R1(x) =
∫ x

a
R1(ξ)dξ =

(x− a)(x− b)
b− a

,

Rn(x) =
∫ x

a
Rn(ξ)dξ =

b− a
4

(
Rn+1(x)

n + 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
.
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(iii) The Chebyshev matrix R at each zero xk defined in (4) is given by

R =


R0(x1) R1(x1) · · · Rn−1(x1)

R0(x2) R1(x2) · · · Rn−1(x2)
...

...
. . .

...
R0(xn) R1(xn) · · · Rn−1(xn)

.

Its multiplicative inverse is R−1 = 1
n diag{1, 2, 2, . . . , 2}R⊤.

For the construction of a two-dimensional Chebyshev integration matrix, it is essential
to introduce the Kronecker product [18] and its properties.

Definition 2 ([18]). Let A = [aij] ∈ Rm×n and B = [bij] ∈ Rp×q. Then, the Kronecker product
A⊗ B ∈ Rmp×nq is defined by the block matrix as follows:

A⊗ B =


a11B . . . a1nB

...
. . .

...
am1B . . . amnB

.

Theorem 1 ([18]). The Kronecker product possesses the following characteristics:

(i) Let A ∈ Rm×n, B ∈ Rp×q and Ik denote an k× k identity matrix. Then,

A⊗ B = (A⊗ Ip)(Im ⊗ B) = (Im ⊗ B)(A⊗ Iq).

(ii) Let A ∈ Rm×n, B ∈ Rp×q, C ∈ Rn×r, and D ∈ Rq×s. Then,

(A⊗ B)(C⊗D) = (AC)⊗ (BD).

(iii) Let A ∈ Rm×m and B ∈ Rn×n. Let ei be an m× 1 standard unit vector with a 1 in the
i-th position and 0s elsewhere, i.e., ei = [0, . . . , 0, 1, 0, . . . , 0]⊤. If an mn×mn permutation
matrix is defined as P = [In ⊗ e1, In ⊗ e2, . . . , In ⊗ em], then P(A⊗ B)P⊤ = B⊗A.

2.1. One-Dimensional Chebyshev Integration Matrix

Next, we construct the one-dimensional Chebyshev integration matrix, which is
instrumental for handling integral terms. First, let M ∈ N and a < b ∈ R. Consider a
function f that can be approximated by the Chebyshev polynomial expansion

f (x) =
M−1

∑
n=0

c f ,nRn(x) for x ∈ [a, b], (5)

where c f ,n are the unknown coefficients of the function f to be determined and Rn(x) are
the Chebyshev polynomials of degree n as defined in (3). Let x1 < x2 < . . . < xM ∈ [a, b]
be nodal points discretized by the zeros of the Chebyshev polynomial RM(x), as defined
in (4). Substituting each xk into (5), the expression can be written in matrix form as

f (x1)

f (x2)
...

f (xM)

 =


R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)
...

...
. . .

...
R0(xM) R1(xM) · · · RM−1(xM)




c f ,0

c f ,1
...

c f ,M−1

.
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This is compactly denoted by f = Rc f . Consequently, the coefficient vector c f can
be expressed as c f = R−1f, where R−1 is defined in Lemma 1(iii). Next, we consider the
single-layer integral of f from a to xk, denoted by F(xk):

F(xk) =
∫ xk

a
f (ξ) dξ =

M−1

∑
n=0

c f ,n

∫ xk

a
Rn(ξ) dξ =

M−1

∑
n=0

c f ,nRn(xk), (6)

for k ∈ {1, 2, 3, . . . , M}, where each Rn(xk) is defined in Lemma 1(ii). In matrix form,
this becomes 

F(x1)

F(x2)
...

F(xM)

 =


R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)
...

...
. . .

...
R0(xM) R1(xM) · · · RM−1(xM)




c f ,0

c f ,1
...

c f ,M−1

.

This is compactly denoted by F = Rc f . Substituting c f = R−1f, we obtain F = RR−1f.
We then define A := RR−1 = [aki]M×M as the ‘one-dimensional Chebyshev integration
matrix’. Thus, F = Af and (6) can be written in terms of discrete values as

F(xk) =
∫ xk

a
f (ξ) dξ =

M

∑
i=1

aki f (xi). (7)

2.2. Two-Dimensional Chebyshev Integration Matrix

Let M, N ∈ N and a, b, c, d ∈ R. The computational nodes xk and yk are defined over
the domain [a, b]× [c, d], corresponding to the zeros of Chebyshev polynomials RM(x) and
RN(y) along the horizontal and vertical directions, respectively. For convenience, we use
a global numbering system for grid points along the x-direction (Figure 2a) and a local
numbering system for the y-direction (Figure 2b).

...

. . .M+3M+2 2MM+1

. . . M321

3M2M+32M+22M+1 . . .

MN. . .(N–1)M+3(N–1)M+2(N–1)M+1

(a) Global numbering system

...

2 (M–1)N+2N+2 2N+2 . . .

1 N+1 2N+1 (M–1)N+1. . .

. . .3 N+3 2N+3 (M–1)N+3

N 2N 3N . . . MN

(b) Local numbering system

Figure 2. The indices of the grid points globally and locally.

Let us consider the single-layer integrals with respect to the variables x and y, denoted
by Fx(x, y) and Fy(x, y), respectively. Using (7) with a fixed constant y, we can express
Fx(xk, y) in the global numbering system as

Fx(xk, y) =
∫ xk

a
f (ξ, y) dξ =

M

∑
i=1

aki f (xi, y). (8)
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For k ∈ {1, 2, 3, . . . , M}, (8) can be expressed by Fx(·, y) = AMf(·, y), where AM =

RR−1 is an M × M matrix. Thus, for each varying y ∈ {y1, y2, y3, . . . , yN}, we form a
block matrix: 

Fx(·, y1)

Fx(·, y2)
...

Fx(·, yN)

 =


AM 0 · · · 0

0 AM
. . .

...
...

. . . . . . 0
0 · · · 0 AM


︸ ︷︷ ︸

N blocks


f(·, y1)

f(·, y2)
...

f(·, yN)

.

This is denoted by Fx = Axf, where Ax = IN⊗AM is the ‘two-dimensional Chebyshev
integration matrix along the x-axis’. Similarly, using (7) with a fixed constant x, we have

Fy(x, yh) =
∫ yh

c
f (x, η) dη =

N

∑
j=1

ahj f (x, yj). (9)

For h ∈ {1, 2, 3, . . . , N}, (9) can be expressed by Fy(x, ·) = ANf(x, ·), where AN =

RR−1 is an N × N matrix. Thus, for each varying x ∈ {x1, x2, x3, . . . , xM}, we obtain a
block matrix: 

Fy(x1, ·)
Fy(x2, ·)

...
Fy(xM, ·)

 =


AN 0 · · · 0

0 AN
. . .

...
...

. . . . . . 0
0 · · · 0 AN


︸ ︷︷ ︸

M blocks


f(x1, ·)
f(x2, ·)

...
f(xM, ·)

.

This is denoted by F̃y = Ãy f̃, where Ãy = IM ⊗AN and f̃ is in the local numbering
system. Note that the elements of f and f̃ are the same values, but their positions differ in
the numbering systems. Thus, we can transform F̃y and f̃ from local to global numbering
systems using a permutation matrix P = [pij]MN×MN , where each pij is defined by

pij =

1 ; i = (h− 1)M + k and j = (k− 1)N + h,

0 ; otherwise,
(10)

for all k ∈ {1, 2, 3, . . . , M} and h ∈ {1, 2, 3, . . . , N}. We obtain that Fy = PF̃y and f = Pf̃.
Therefore, Fy = Ayu, where Ay = PÃyP−1 = P(IM ⊗ AN)P⊤ is the ‘two-dimensional
Chebyshev integration matrix along the y-axis’ in the global numbering system.

Next, we consider the double-layer integral with respect to both variables x and y,
denoted by Fxy(xk, yh). By using (8) and (9), we have

Fxy(xk, yh) =
∫ yh

c

∫ xk

a
f (ξ, η) dξdη =

N

∑
j=1

M

∑
i=1

ahjaki f (xi, yj). (11)

For k ∈ {1, 2, 3, . . . , M} and h ∈ {1, 2, 3, . . . , N}, this can be analyzed as two types:
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• Type I: If yh is fixed but xk is varied, (11) becomes Fxy(·, yh) = ∑N
j=1 ahjAMf(·, yj),

where ahj is an element of the Chebyshev integration matrix AN at position (h, j). By
varying all yh ∈ {y1, y2, y3, . . . , yN}, we obtain the block matrix:


Fxy(·, y1)

Fxy(·, y2)
...

Fxy(·, yN)

 =


a11IM a12IM · · · a1NIM

a21IM a22IM · · · a2NIM
...

...
. . .

...
aN1IM aN2IM · · · aNNIM




AM 0 · · · 0

0 AM
. . .

...
...

. . . . . . 0
0 · · · 0 AM


︸ ︷︷ ︸

N blocks


f(·, y1)

f(·, y2)
...

f(·, yN)

.

This is denoted by Fxy = (AN ⊗ IM)(IN ⊗AM)f = AyAxf.

• Type II: If xk is fixed but yh is varied, (11) becomes Fxy(xk, ·) = ∑M
i=1 akiANf(xi, ·),

where aki is an element of the Chebyshev integration matrix AM at position (k, i). By
varying all xk ∈ {x1, x2, x3, . . . , xM}, we obtain the block matrix:


Fxy(x1, ·)
Fxy(x2, ·)

...
Fxy(xM, ·)

 =


a11IN a12IN · · · a1MIN

a21IN a22IN · · · a2MIN
...

...
. . .

...
aM1IN aM2IN · · · aMMIN




AN 0 · · · 0

0 AN
. . .

...
...

. . . . . . 0
0 · · · 0 AN


︸ ︷︷ ︸

M blocks


f(x1, ·)
f(x2, ·)

...
f(xM, ·)

.

This is denoted by F̃xy = (AM ⊗ IN)(IM ⊗ AN)f̃ = ÃxÃy f̃ for the local numbering
system. We can transform it globally by employing the aforementioned permutation
matrix P, defined in (10). Then, we obtain

Fxy = PF̃xy = P
(
ÃxÃy f̃

)
= P

(
P−1AxP

)(
P−1AyP

)(
P−1f

)
= AxAyf.

Hence, we conclude from both types I and II that Fxy = AyAxf = AxAyf.

Remark 1. From Theorem 1, the Chebyshev integration matrices Ax and Ay are commutative,
namely, AyAx = (AN ⊗ IM)(IN ⊗AM) = AN ⊗AM = (IN ⊗AM)(AN ⊗ IM) = AxAy.

3. One-Dimensional SWEs

In this section, we propose a numerical algorithm for approximating the solutions to
the one-dimensional SWEs (1) for various types of initial heights and bottom topographies,
incorporating reflecting boundaries [13], using the suggested FIM-CPE from Section 2.

3.1. Numerical Algorithm for One-Dimensional SWEs

Before deriving the algorithm, let the quantity hu be expressed by the discharge q. The
one-dimensional system (1) can then be rewritten as

∂h
∂t

+
∂q
∂x

= 0

∂q
∂t

+
∂

∂x

(
q2

h
+

gh2

2

)
+ gh

dz
dx

= 0
(12)

for all (x, t) ∈ (a, b)× (0, T] such that a < b and T > 0. Here, h is the water depth, u is the
flow velocity in the x-direction, q = hu is the discharge, g is the acceleration due to gravity,
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and z is the bottom elevation. We assume that h and u are smooth real-valued functions of
the temporal coordinate. This system is subject to the initial conditions:

h(x, 0) = ϕ1(x) and u(x, 0) = ϕ2(x) for x ∈ [a, b] (13)

and the reflecting boundary conditions:

u(a, t) = ψ1(t) and u(b, t) = ψ2(t) for t ∈ (0, T]. (14)

The FIM-CPE for one-dimensional SWEs begins by discretizing the computational
spatial domain (a, b) into M nodes generated by the zeros of Chebyshev polynomial RM(x)
as defined in (4) in ascending order, i.e., xk for k ∈ {1, 2, 3, . . . , M}. Then, we divide the
temporal domain (0, T] by the step-size of time τ, which will be defined later such that
tm+1 = tm + τ for all m ∈ N with t0 = 0.

Next, we handle the temporal variable t in (12) by specifying the time step tm, denoted
by a superscript ⟨m⟩. Since h and u are assumed to be smooth functions of time t, then
q = hu is also smooth. Consequently, the functions h and q at any two consecutive times are
very close. Specifically, for any two consecutive times 0 ≤ tm < tm+1 with |tm − tm+1| → 0,
we have |h⟨m+1⟩ − h⟨m⟩| → 0 and |q⟨m+1⟩ − q⟨m⟩| → 0. This assumption is sufficient to
employ linearization for nonlinear terms under the time variable t and to approximate
derivatives with respect to time t.

Afterward, we apply the first-order forward difference quotient to the time derivatives
in (12) and utilize a linearization method to manipulate the nonlinear terms in the second
equation of (12). Hence, the system of SWEs (12) become

h⟨m+1⟩ − h⟨m⟩

τ
+

dq⟨m+1⟩

dx
= 0, (15)

q⟨m+1⟩ − q⟨m⟩

τ
+

d
dx

(
q⟨m⟩q⟨m+1⟩

h⟨m⟩
+

gh⟨m⟩h⟨m+1⟩

2

)
+ gh⟨m+1⟩ dz

dx
= 0, (16)

where h⟨m⟩ = h(x, tm) and q⟨m⟩ = q(x, tm) represent the numerical values at the m-th time
step. Thus, we obtain u⟨m⟩ = q⟨m⟩/h⟨m⟩. Next, we multiply (15) and (16) by τ to mitigate the
round-off errors caused by division by a small step size. To apply the proposed FIM-CPE,
we first eliminate all derivatives from (15) and (16) by taking the single-layer integral on
both sides of them from a to the zero xk. This yields∫ xk

a

(
h⟨m+1⟩(ξ)− h⟨m⟩(ξ)

)
dξ + τq⟨m+1⟩(xk) + s1 = 0, (17)∫ xk

a

(
q⟨m+1⟩(ξ)− q⟨m⟩(ξ)

)
dξ + τu⟨m⟩(xk)q⟨m+1⟩(xk)

+
τg
2

h⟨m⟩(xk)h⟨m+1⟩(xk) + τg
∫ xk

a

dz(ξ)
dξ

h⟨m+1⟩(ξ) dξ + s2 = 0, (18)

where s1 and s2 are integration constants. These constants arise from the integration process
for the functions h⟨m⟩ and q⟨m⟩. Note that the resulting system at each time step consists
of linear Volterra integral equations of the second kind. After discretization, these are
transformed into a linear algebraic system, which yields a unique solution, provided the
system’s matrix is non-singular, a condition consistently met in our numerical experiments.
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Next, we transform (17) and (18) into matrix forms by employing the Chebyshev
integration matrix. By evaluating at each zero xk for k ∈ {1, 2, 3, . . . , M}, we obtain the
following simplified matrix equations:

A
(
h⟨m+1⟩ − h⟨m⟩

)
+ τq⟨m+1⟩ + s1e = 0, (19)

A
(
q⟨m+1⟩ − q⟨m⟩

)
+ τU⟨m⟩q⟨m+1⟩ +

τg
2

H⟨m⟩h⟨m+1⟩ + τgAZh⟨m+1⟩ + s2e = 0, (20)

where A = RR−1 is the one-dimensional Chebyshev integration matrix described in
Section 2.1, e = [1, 1, 1, . . . , 1]⊤ is an M-entry column vector of ones and 0 = [0, 0, 0, . . . , 0]⊤

is an M-entry column vector of zeros. Other parameters in (19) and (20) are defined as

h⟨m⟩ =
[
h⟨m⟩(x1), h⟨m⟩(x2), h⟨m⟩(x3), . . . , h⟨m⟩(xM)

]⊤,

q⟨m⟩ =
[
q⟨m⟩(x1), q⟨m⟩(x2), q⟨m⟩(x3), . . . , q⟨m⟩(xM)

]⊤,

H⟨m⟩ = diag
{

h⟨m⟩(x1), h⟨m⟩(x2), h⟨m⟩(x3), . . . , h⟨m⟩(xM)
}

,

U⟨m⟩ = diag
{

u⟨m⟩(x1), u⟨m⟩(x2), u⟨m⟩(x3), . . . , u⟨m⟩(xM)
}

and

Z = diag
{ dz

dx

∣∣
x=x1

, dz
dx

∣∣
x=x2

, dz
dx

∣∣
x=x3

, . . . , dz
dx

∣∣
x=xM

}
.

Now, (19) and (20) have 2M + 2 unknown variables, namely h⟨m+1⟩, q⟨m+1⟩, s1 and s2,
but only 2M equations. Therefore, two additional equations are required. From the given
reflecting boundary conditions (14) and q⟨m⟩ = h⟨m⟩u⟨m⟩, these can be written in vector
form by employing the Chebyshev polynomial expansion (5) at the m-th time step:

h⟨m⟩(a) =
M−1

∑
n=0

ch,nRn(a) := ρ⊤a ch = ρ⊤a R−1h⟨m⟩,

h⟨m⟩(b) =
M−1

∑
n=0

ch,nRn(b) := ρ⊤b ch = ρ⊤b R−1h⟨m⟩,

q⟨m⟩(a) =
M−1

∑
n=0

cq,nRn(a) := ρ⊤a cq = ρ⊤a R−1q⟨m⟩ = ψ1(tm)ρ
⊤
a R−1h⟨m⟩ and

q⟨m⟩(b) =
M−1

∑
n=0

cq,nRn(b) := ρ⊤b cq = ρ⊤b R−1q⟨m⟩ = ψ2(tm)ρ
⊤
b R−1h⟨m⟩.

Thus, we obtain two additional equations at time tm+1, as follows:

ψ1(tm+1)ρ
⊤
a R−1h⟨m+1⟩ − ρ⊤a R−1q⟨m+1⟩ = 0, (21)

ψ2(tm+1)ρ
⊤
b R−1h⟨m+1⟩ − ρ⊤b R−1q⟨m+1⟩ = 0, (22)

where ρa = [R0(a), R1(a), . . . , RM−1(a)]⊤ and ρb = [R0(b), R1(b), . . . , RM−1(b)]
⊤. Notably,

the Chebyshev polynomials at the endpoints are Rn(a) = (−1)n and Rn(b) = 1 for all
non-negative integers n. Finally, we construct a system of linear equations from (19)–(22),
which has a total of 2M + 2 unknowns, including h⟨m+1⟩, q⟨m+1⟩, s1 and s2 as follows:

A τI e 0
τg
2 H⟨m⟩ + τgAZ A + τU⟨m⟩ 0 e

ψ1(tm+1)ρ
⊤
a R−1 −ρ⊤a R−1 0 0

ψ2(tm+1)ρ
⊤
b R−1 −ρ⊤b R−1 0 0




h⟨m+1⟩

q⟨m+1⟩

s1

s2

 =


Ah⟨m⟩

Aq⟨m⟩

0

0

. (23)

Here, I is the M×M identity matrix, e and 0 are, respectively, the M-dimensional one
and zero column vectors. Therefore, we can solve (23) to obtain the numerical solutions
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h⟨m+1⟩ and q⟨m+1⟩. This process begins with the initial conditions (13) written in vector
form as

h⟨0⟩ = [ϕ1(x1), ϕ1(x2), ϕ1(x3), . . . , ϕ1(xM)]⊤,

u⟨0⟩ = [ϕ2(x1), ϕ2(x2), ϕ2(x3), . . . , ϕ2(xM)]⊤ and

q⟨0⟩ = h⟨0⟩ ⊙ u⟨0⟩.

Consequently, the solution u⟨m+1⟩ is directly obtained by u⟨m+1⟩ = q⟨m+1⟩ ⊘ h⟨m+1⟩.
The notations ⊙ and ⊘ denote the Hadamard product and division [19], respectively,
signifying the element-wise product and division of two vectors.

However, the stability of this scheme requires careful consideration. For the obtained
approximations to converge to their analytical solution on a refined grid, the Courant–
Friedrichs–Lewy (CFL) condition must be satisfied [10]. This condition mandates setting
the time step τ as

τ = CFL
mini(∆xi)

maxk

(∣∣u⟨m⟩(xk)
∣∣+√gh⟨m⟩(xk)

) , (24)

where CFL represents the Courant number. To ensure stability, the CFL number must be
less than one, which implies that the distance traveled by the wave within a single time step
must not exceed the distance between adjacent nodes or cells in the mesh. This prevents
uncontrolled water movement and ensures that the numerical solution accurately captures
the wave propagation without aliasing across cells. Since τ dynamically varies throughout
the approximation process, directly determining the precise number of steps required to
reach a desired final time T is not straightforward. Therefore, the simulation proceeds by
selecting the time step τ at each iteration such that the accumulated time t does not exceed
T, potentially stopping exactly at T in the final step.

Corollary 1. At the final iteration, the obtained solutions h⟨m+1⟩ and u⟨m+1⟩ can be approximately
expressed corresponding to the functions h(x, T) and u(x, T), respectively, at the terminal time T
over x ∈ [a, b], by using (5), i.e.,

h(x, T) =
M−1

∑
n=0

ch,nRn(x) := ρ⊤x ch = ρ⊤x R−1h⟨m+1⟩ and

u(x, T) =
M−1

∑
n=0

cu,nRn(x) := ρ⊤x cu = ρ⊤x R−1u⟨m+1⟩,

where ρx = [R0(x), R1(x), R2(x), . . . , RM−1(x)]⊤ and R−1 is defined in Lemma 1(iii).

For computational convenience, we summarize all the procedures mentioned above
into the pseudocode for finding numerical solutions h⟨m+1⟩ and u⟨m+1⟩ at the terminal time
T of the one-dimensional SWEs (1) by using FIM-CPE, as provided in Algorithm 1.
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Algorithm 1 Numerical algorithm for solving the one-dimensional SWEs via FIM-CPE

Input: a, b, M, T, z(x), ϕ1(x), ϕ2(x), ψ1(x), ψ2(x) and CFL.

Output: The numerical solutions h⟨m⟩ and u⟨m⟩ at time T.

1: for k← 1 to M do

2: Generate nodes xk ← 1
2
(
(b− a) cos

( 2k−1
2M π

)
+ a + b

)
in ascending order.

3: end for

4: Compute parameters e, ρa, ρb, A, Z, R, R and R−1.

5: Initialize water height vector: h⟨0⟩ ← [ϕ1(x1), ϕ1(x2), . . . , ϕ1(xM)]⊤.

6: Initialize velocity vector: u⟨0⟩ ← [ϕ2(x1), ϕ2(x2), . . . , ϕ2(xM)]⊤.

7: Initialize discharge vector: q⟨0⟩ ← h⟨0⟩ ⊙ u⟨0⟩.

8: Set current simulation time t← 0.

9: Set iteration index m← 0.

10: while t ≤ T do

11: Calculate time step τ ← CFL mini(∆xi)

maxk

(
|u⟨m⟩(xk)|+

√
gh⟨m⟩(xk)

) .

12: if t + τ > T then

13: Adjust τ ← T − t for the final step to reach T exactly.

14: end if

15: Compute diagonal matrices H⟨m⟩ from h⟨m⟩ and U⟨m⟩ from u⟨m⟩.

16: Find solutions h⟨m+1⟩ and q⟨m+1⟩ by solving the linear system (23).

17: Compute the new velocity u⟨m+1⟩ ← q⟨m+1⟩ ⊘ h⟨m+1⟩.

18: Update current simulation time t← t + τ.

19: Update iteration index m← m + 1.

20: end while

21: return The final solutions h⟨m⟩ and u⟨m⟩ at time T.

3.2. Discussion on Theoretical Foundations for One-Dimensional SWEs

A complete theoretical proof of stability, convergence, and accuracy for the proposed FIM-
CPE scheme is a substantial undertaking and beyond the scope of this application-focused
paper. However, the scheme’s design is founded on well-established numerical principles that
ensure its robustness, which is confirmed by the numerical experiments presented.

• Stability: The stability of the numerical algorithm is primarily governed by the time-
stepping component. For the explicit forward difference scheme used for temporal
discretization, stability is ensured by adhering to the CFL condition. This condition,
standard for hyperbolic systems like the SWEs, requires the time step τ to be dynam-
ically adjusted to prevent numerical instabilities, ensuring that waves do not travel
more than one spatial grid cell per time step. Our algorithm strictly implements this
condition in every iteration to maintain a stable simulation.

• Accuracy and Convergence: The high accuracy of the FIM-CPE method stems from its
two core components. First, the use of Chebyshev polynomial expansion for spatial
approximation provides spectral accuracy for smooth functions, leading to very low
approximation errors. Second, by transforming the partial differential equations into
integral equations, the method avoids direct numerical differentiation and is thus less
sensitive to the round-off errors that can affect traditional finite difference methods.
For a well-posed problem, a stable and consistent scheme will converge. The method’s
demonstrated stability and high accuracy provide strong evidence for its convergence,
while a formal proof remains a direction for future research.
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3.3. Numerical Simulations for One-Dimensional SWEs

In this section, we investigate the efficiency, accuracy, and stability of our proposed
numerical Algorithm 1 through four one-dimensional SWE examples. To quantify accuracy,
the mean absolute error (MAE) is defined by

MAE =
1
M

M

∑
k=1

∣∣ f ∗(xk, T)− f (xk, T)
∣∣, (25)

where f ∗ and f are exact and numerical solutions, respectively. These examples, covering
different types of wet-bed bottom topography, include a lake at rest, dam break flows
(an important type of disaster), and Gaussian pulse propagation. Extensive research
has been dedicated to understanding and mitigating dam break disasters using various
approaches, from small- and large-scale experiments to numerical modeling. Therefore,
the experimental examples chosen for verification of the scheme’s accuracy include dam
break problems with both flat and non-flat bottoms, as well as a lake at rest. For all data
processing and analysis in this study, we utilized an AMD Ryzen 7 4800HS CPU with 16.0
GB of RAM and MATLAB software (R2025a).

Example 1 (Lake at rest [13]). The lake at rest problem is a simple and well-defined scenario, where
the water surface height and horizontal velocity are both constant over time and space. Consequently,
it serves as a good benchmark for testing the accuracy of numerical schemes for solving SWEs. The
computational domain is [0, 10]. The initial velocity is zero. The bottom topography is defined by

z(x) = 5 exp

{
−
(

x− 5
0.8

)2
}

and the initial water height is h(x, 0) = 10− z(x).

In this computation, we simulated M = 100 grid points over a long period of T = 10 s.
Through implementation with CFL values ranging from 0.1 to 0.9, we found that CFL = 0.5
provided the best accuracy for our algorithm. For this example and consistently for the
other examples, we employed our proposed Algorithm 1 with CFL = 0.5. The result,
shown in Figure 3, demonstrated stability over time with a run time of 30.0897 s. At the
final time, the MAEs for water height h and velocity u were 6.45× 10−12 and 8.49× 10−13,
respectively. To evaluate mass conservation, we computed the total volume using

1
2

(
(x2 − a)h⟨m⟩1 + (b− xM−1)h

⟨m⟩
M +

M−2

∑
i=1

(xi+2 − xi)h
⟨m⟩
i+1

)

where x1, x2, x3, . . . , xM are nodal points, h⟨m⟩1 , h⟨m⟩2 , h⟨m⟩3 , . . . , h⟨m⟩M are the water heights at
each time tm from the simulation, and M is the number of nodal points. Experimental
results show that the total water volume varied minimally, not exceeding 10−5 throughout
the simulation period. Similar results are observed for Examples 2–4.

Example 2 (Gaussian Pulse [13]). This example aims to demonstrate our method’s advantage in
handling smooth solutions with reflecting boundary conditions over a flat bottom [13]. The initial
Gaussian pulse for water height is defined by

h(x, 0) = 1 + 0.1 exp
{
−
(

x− 0.5
0.1

)}
.
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Figure 3. Water height at time T = 10 s in Example 1.

We simulated this experiment with M = 60 grid points. The results from our numerical
Algorithm 1 are shown in Figure 4. The wave consistently remained smooth. Initially, it
separated into left and right propagating components, which then reflected off the walls
and coalesced into a hump. This cycle continued over time, with the height gradually
decreasing until the velocity approached zero, ultimately leading to a constant wave. This
final state can be referred to as a steady state. Therefore, we observed that at time T = 9.5,
the experiment reached a steady state within a tolerance of 10−5 and with a run time of
8.6104 min.

Figure 4. Water height h(x, t) at various times T in Example 2.

Example 3 (Dam break over flat bottom [20]). This dam break problem is a fundamental study
based on the SWEs, characterized by a flat topography where z(x) = 0. The computational domain
is [0, 1]. The initial velocity is zero and the initial water height is

h(x, 0) =

1 for 0 ≤ x < 1
2 ,

1
2 for 1

2 ≤ x ≤ 1.
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This setup represents a discontinuity at x = 1
2 , acting as a barrier separating two different

initial water heights. The exact solution to this problem was provided by Stoker [20], specifically,

h∗(x, t) =



1 for x < 1
2 − t

√
g,

1
9g

(
2
√

g− 2x−1
2t

)2
for 1

2 − t
√

g ≤ x ≤ 1
2 + (v− w)t,

w2

g for 1
2 + (v− w)t < x ≤ 1

2 + St,
1
2 for x > 1

2 + St

and

u∗(x, t) =


0 for x < 1

2 − t
√

g,
1
3t
(
2x− 1 + 2t

√
g
)2 for 1

2 − t
√

g ≤ x ≤ 1
2 + (v− w)t,

v for 1
2 + (v− w)t < x 1

2 + St,

0 for x > 1
2 + St,

where v = S − g
8S

(
1 +

√
1 + 16S2

g

)
, w =

√
g
4

(√
1 + 16S2

g − 1
)

and S = 2.9579181201875.

For a more in-depth analysis of how the value S was obtained, readers are referred to Stoker [20].

The numerical results obtained from our Algorithm 1 demonstrated good accuracy
when compared with this exact solution. Comparisons, measured by the MAE from (25)
at the final time T, are presented in Table 1 for different grid point values M. The error in
Table 1 does not show a significant reduction as the grid is refined because the initial water
height was discontinuous at x = 1

2 . This discontinuity hindered the accurate capturing
of the solution around the shock. Despite this, we further compared our algorithm’s
approximate solutions with those obtained by the FDM [8] for various nodal points M, as
shown in Table 1. It is evident that for the same number of nodes M, our scheme yielded
solutions closer to the analytical solutions than the FDM. Additionally, increasing the
number of nodes M generally led to increasingly accurate solutions. The computational
times are also indicated in Table 1.

Table 1. Comparisons of exact and numerical solutions at T = 0.1 for Example 3.

M
FDM [8] Algorithm 1

Run Time (s)
MAEh MAEu MAEh MAEu

100 2.02× 10−2 7.53× 10−2 4.73× 10−3 1.65× 10−2 0.4147
200 1.31× 10−2 4.82× 10−2 2.88× 10−3 1.07× 10−2 2.6712
300 9.96× 10−3 3.64× 10−2 2.05× 10−3 7.72× 10−3 8.4295
400 8.15× 10−3 2.98× 10−2 1.63× 10−3 6.19× 10−3 20.0024

Furthermore, we visualized the solutions for both water height h and velocity u
obtained using our algorithm with M = 200 at T = 0.1, as depicted in Figure 5. From
Figure 5, the initial water height broke at x = 1

2 as time progressed. Our scheme effectively
captured the shock propagation and showed good agreement with the exact solution.
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(a) Water height h(x, T)

(b) Water velocity u(x, T)

Figure 5. Graphical solutions with M = 200 at time T = 0.1 in Example 3.

Example 4 (Dam break over a bump [11]). This problem, discussed by LeVeque [11], involves a
non-flat, smooth bottom topography, implying that z′(x) ̸= 0 for certain values of x. This test case
features a smooth bump defined by

z(x) =

 1
4 (cos(10x− 5)π + 1) for 0.4 ≤ x ≤ 0.6,

0 otherwise.

The computational domain for this problem is [0, 1]. The initial velocity is zero and the initial
water height is defined in relation to the bump z(x) as

h(x, 0) =


1− z(x) for x < 0.1,
6
5 − z(x) for 0.1 ≤ x ≤ 0.2,

1− z(x) for x > 0.2.

This problem describes an initial water height shaped like a pulse that subsequently breaks into
two waves propagating in opposite directions. The square-wave pulse moving towards the right
passes through the bump in the riverbed, undergoing partial reflection and causing a disturbance
behind the bump. The other wave reflects off the left wall.
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In the experiment, our presented numerical Algorithm 1 was applied to find the
approximate solutions for h(x, t) and u(x, t). Using M = 100 grid points, we simulated
the behavior of wave propagation at different times t ∈ {0.01, 0.03, 0.05, 0.1, 0.15, 0.2}, as
depicted in Figure 6 for water height and velocity. The run time for this simulation was
11.9876 s. We observed that at the initial time, the wave pulse moved to the right, with h + z
around 1.1. After the wave pulse encountered the bump, it was partially reflected, leading
to a decrease in h + z as it continued to move forward. Behind the bump, the wave pulse
continued to decrease. The wave pulse also moved towards the left, with h + z around
1.1. After reaching the left wall, its height increased at T = 0.05 and then returned to its
previous level T = 0.1. The behavior of the left wave was analogous to the right wave
when passing the bump. This problem has also been studied using several methods by
Hudson [8]. Our algorithm produced the same right wave behavior as those methods,
given the reflection from the left wall.

(a) Water height h(x, T) + z(x) at time T = 0.01, 0.03, 0.05, 0.1, 0.15, 0.2

(b) Water velocity u(x, T) at time T = 0.01, 0.03, 0.05, 0.1, 0.15, 0.2

Figure 6. Graphical solutions for Example 4 (Dam break over a bump) with M = 100 at different
times T. (a) Water height h(x, T) + z(x). The solid red line is the water surface, the dashed black
line is the initial water surface and the gray area represents the bottom topography z(x). (b) Water
velocity u(x, T). The solid red line is the water velocity and the dashed blue line indicates the
zero-velocity axis.
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3.4. Convergence Analysis

To numerically demonstrate the convergence of the proposed FIM-CPE scheme, a
study was conducted to analyze the error decay as the spatial resolution increased. The
dam break over a flat bottom (Example 3) was selected as the benchmark case for this
analysis, due to the availability of an exact analytical solution.

The simulation was performed at a final time of T = 0.1 s with an increasing number
of Chebyshev nodes (Mi). The MAE for the water height (Ei), as defined in (25), was
calculated for each case. The results, presented in Table 2 and Figure 7, clearly illustrate the
convergence of the solution.

Table 2. Convergence study for the dam break problem at T = 0.1 s.

Index i Number of Nodes
(Mi)

MAE for Water Height
(Ei)

Order of Convergence
(pi)

1 50 7.6815× 10−3 -
2 100 4.7312× 10−3 0.6992
3 200 2.8839× 10−3 0.7142
4 400 1.6271× 10−3 0.8257
5 800 8.6563× 10−4 0.9105

The numerical order of convergence (pi) was calculated using the formula

pi =
log(Ei−1/Ei)

log(Mi/Mi−1)
,

where Ei−1 and Ei are the errors corresponding to node counts Mi−1 and Mi, respectively.
The order is approximately 0.7–0.9. While spectral methods achieve higher orders for
smooth problems, this result is consistent with expectations for problems involving a shock,
where the overall accuracy is limited by the discontinuity.

Figure 7. Log–log plot of the mean absolute error for water height (MAEh) versus the number of
nodes (M) for the dam break problem. The plot clearly shows the linear trend on a logarithmic scale,
which demonstrates the convergence of the numerical scheme as the spatial resolution increases.

The data in Table 2 and the trend in Figure 7 confirm that the error consistently
decreased as the number of nodes increased, providing strong numerical evidence for the
convergence of the FIM-CPE algorithm.

4. Two-Dimensional SWEs

This section presents a numerical method based on the FIM-CPE to solve the two-
dimensional SWEs (2) with reflecting boundary conditions, as described in [13].
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4.1. Numerical Algorithm for Two-Dimensional SWEs

Before deriving the algorithm, let q1 = hu and q2 = hv be the discharges. Then, (2)
can be rewritten as

∂h
∂t

+
∂q1

∂x
+

∂q2

∂y
= 0,

∂q1

∂t
+

∂

∂x

(
q2

1
h
+

gh2

2

)
+

∂

∂y

( q1q2

h

)
+ gh

∂z
∂x

= 0,

∂q2

∂t
+

∂

∂x

( q1q2

h

)
+

∂

∂y

(
q2

2
h
+

gh2

2

)
+ gh

∂z
∂y

= 0,

(26)

for all (x, y, t) ∈ (a, b)× (c, d)× (0, T], where a, b, c, d ∈ R and T ∈ R+. We assume that h,
u and v are smooth real-valued functions of the temporal coordinate. This system is subject
to the initial conditions

h(x, y, 0) = ϕ0(x, y), q1(x, y, 0) = ϕ1(x, y) and q2(x, y, 0) = ϕ2(x, y) (27)

for (x, y) ∈ Ω, where Ω := [a, b]× [c, d] is the spatial domain. Let ∂Ω be the boundary of
the domain Ω. The reflecting boundary conditions [13] at any time t ∈ (0, T] are given by

q1(x, y, t) = ψ1(x, y) and q2(x, y, t) = ψ2(x, y) for (x, y) ∈ ∂Ω. (28)

The FIM-CPE for two-dimensional SWEs employs procedures similar to those used for
one-dimensional SWEs. Initially, the computational domain (a, b)× (c, d) is discretized into
H := M× N nodes. This is achieved by utilizing the zeros of the Chebyshev polynomials
RM(x) and RN(x), as defined in (4), which denote them by X := {x1, x2, x3, . . . , xM} and
Y := {y1, y2, y3, . . . , yN}, respectively. The nodes are globally numbered and obtained from
elements in the set of Cartesian product X×Y, i.e., (xk, yk) ∈ X×Y for k ∈ {1, 2, 3, . . . , H}.
Concurrently, the temporal domain (0, T] is divided into discrete time steps tm+1 = tm + τ

for all m ∈ N, with t0 = 0. The time step τ will be defined later.
Next, the time derivatives in the two-dimensional SWEs (26) are approximated using

the first-order forward difference quotient. To manage the nonlinear terms effectively, a
linearization method is applied. Consequently, the equations in (26) are transformed into

h⟨m+1⟩ − h⟨m⟩

τ
+

∂q⟨m+1⟩
1
∂x

+
∂q⟨m+1⟩

2
∂y

= 0,

q⟨m+1⟩
1 − q⟨m⟩1

τ
+

∂

∂x

(
q⟨m⟩1 q⟨m+1⟩

1

h⟨m⟩
+

gh⟨m⟩h⟨m+1⟩

2

)
+

∂

∂y

(
q⟨m⟩1 q⟨m+1⟩

2

h⟨m⟩

)
+ gh⟨m+1⟩ ∂z

∂x
= 0,

q⟨m+1⟩
2 − q⟨m⟩2

τ
+

∂

∂y

(
q⟨m⟩2 q⟨m+1⟩

2

h⟨m⟩
+

gh⟨m⟩h⟨m+1⟩

2

)
+

∂

∂x

(
q⟨m⟩2 q⟨m+1⟩

1

h⟨m⟩

)
+ gh⟨m+1⟩ ∂z

∂y
= 0,

where h⟨m⟩ = h(x, y, tm), q⟨m⟩1 = q1(x, y, tm) and q⟨m⟩2 = q2(x, y, tm) represent the numerical

values at the m-th time step. Then, the water velocities are obtained by u⟨m⟩ = q⟨m⟩1 /h⟨m⟩

and v⟨m⟩ = q⟨m⟩2 /h⟨m⟩, respectively. To eliminate all derivatives, a double-layer integral
with respect to the variables x and y is applied to both sides of the above system at time tm.
The integration is performed from a to xk and from c to yk, respectively, yielding
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∫ yk

c

∫ xk

a

(
h⟨m+1⟩(ξ, η)− h⟨m⟩(ξ, η)

)
dξdη

+ τ
∫ yk

c
q⟨m+1⟩

1 (xk, η) dη + τ
∫ xk

a
q⟨m+1⟩

2 (ξ, yk) dξ + r0(xk) + s0(yk) = 0, (29)

∫ yk

c

∫ xk

a

(
q⟨m+1⟩

1 (ξ, η)− q⟨m⟩1 (ξ, η)
)

dξdη + τ
∫ yk

c
u⟨m⟩(xk, η)q⟨m+1⟩

1 (xk, η) dη

+
τg
2

∫ yk

c
h⟨m⟩(xk, η)h⟨m+1⟩(xk, η) dη + τ

∫ xk

a
u⟨m⟩(ξ, yk)q

⟨m+1⟩
2 (ξ, yk) dξ

+ τg
∫ yk

c

∫ xk

a

∂z(ξ, η)

∂ξ
h⟨m+1⟩(ξ, η) dξdη + r1(xk) + s1(yk) = 0, (30)

∫ yk

c

∫ xk

a

(
q⟨m+1⟩

2 (ξ, η)− q⟨m⟩2 (ξ, η)
)

dξdη + τ
∫ xk

a
v⟨m⟩(ξ, yk)q

⟨m+1⟩
2 (ξ, yk) dξ

+
τg
2

∫ xk

a
h⟨m⟩(ξ, yk)h⟨m+1⟩(ξ, yk) dξ + τ

∫ yk

c
v⟨m⟩(xk, η)q⟨m+1⟩

1 (xk, η) dη

+ τg
∫ yk

c

∫ xk

a

∂z(ξ, η)

∂η
h⟨m+1⟩(ξ, η) dξdη + r2(xk) + s2(yk) = 0, (31)

where ri(xk) and si(yk) for i ∈ {0, 1, 2} are arbitrary functions introduced during the
integration process. To handle these unknown functions, Chebyshev interpolation is used
to approximate them by

ri(x) =
M−1

∑
n=0

ri,nRn(x) for i ∈ {0, 1, 2} and (32)

si(y) =
N−1

∑
n=0

si,nRn(y) for i ∈ {0, 1, 2}, (33)

where {ri,n}M−1
n=0 and {si,n}N−1

n=0 are unknown coefficients that will be determined according
to the specified boundary conditions (28). Note that the total number of these unknown
coefficients is ∑2

i=0(M + N) = 3M + 3N.
Subsequently, each of the Equations (29)–(31) is rearranged into matrix form using the

Chebyshev integration matrix. By substituting all zeros (xk, yk), k ∈ {1, 2, 3, . . . , H} into
these equations, the following matrix equations are obtained:

AxAyh⟨m+1⟩ + τAyq⟨m+1⟩
1 + τAxq⟨m+1⟩

2 + Φxr0 + Φys0 = AxAyh⟨m⟩, (34)

AxAyq⟨m+1⟩
1 + τAyU⟨m⟩q⟨m+1⟩

1 +
τg
2

AyH⟨m⟩h⟨m+1⟩

+ τAxU⟨m⟩q⟨m+1⟩
2 + τgAxAyZxh⟨m+1⟩ + Φxr1 + Φys1 = AxAyq⟨m⟩1 , (35)

AxAyq⟨m+1⟩
2 + τAxV⟨m⟩q⟨m+1⟩

2 +
τg
2

AxH⟨m⟩h⟨m+1⟩

+ τAyV⟨m⟩q⟨m+1⟩
1 + τgAxAyZyh⟨m+1⟩ + Φxr2 + Φys2 = AxAyq⟨m⟩2 , (36)

where Ax and Ay are the two-dimensional Chebyshev integration matrices along the x-axis
and y-axis, respectively, described in Section 2.2. Other parameters in the system (34)–(36)
are defined by

h⟨m⟩ =
[
h⟨m⟩(x1, y1), h⟨m⟩(x2, y2), h⟨m⟩(x3, y3), . . . , h⟨m⟩(xH , yH)

]⊤,

q⟨m⟩1 =
[
q⟨m⟩1 (x1, y1), q⟨m⟩1 (x2, y2), q⟨m⟩1 (x3, y3), . . . , q⟨m⟩1 (xH , yH)

]⊤,

q⟨m⟩2 =
[
q⟨m⟩2 (x1, y1), q⟨m⟩2 (x2, y2), q⟨m⟩2 (x3, y3), . . . , q⟨m⟩2 (xH , yH)

]⊤,



Mathematics 2025, 13, 2492 20 of 30

H⟨m⟩ = diag
{

h⟨m⟩(x1, y1), h⟨m⟩(x2, y2), h⟨m⟩(x3, y3), . . . , h⟨m⟩(xH , yH)
}

,

U⟨m⟩ = diag
{

u⟨m⟩(x1, y1), u⟨m⟩(x2, y2), u⟨m⟩(x3, y3), . . . , u⟨m⟩(xH , yH)
}

,

V⟨m⟩ = diag
{

v⟨m⟩(x1, y1), v⟨m⟩(x2, y2), v⟨m⟩(x3, y3), . . . , v⟨m⟩(xH , yH)
}

,

Zx = diag
{

zx(x1, y1), zx(x2, y2), zx(x3, y3), . . . , zx(xH , yH)
}

,

Zy = diag
{

zy(x1, y1), zy(x2, y2), zy(x3, y3), . . . , zy(xH , yH)
}

,

ri =
[
ri,0, ri,1, ri,2, . . . , ri,M−1

]⊤ for i ∈ {0, 1, 2} and

si =
[
si,0, si,1, si,2, . . . , si,N−1

]⊤ for i ∈ {0, 1, 2}.

From (32) and (33), we have their coefficient matrices as

Φx =


R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)
...

...
. . .

...
R0(xH) R1(xH) · · · RM−1(xH)


and

Φy =


R0(y1) R1(y1) · · · RN−1(y1)

R0(y2) R1(y2) · · · RN−1(y2)
...

...
. . .

...
R0(yH) R1(yH) · · · RN−1(yH)

.

Since the integral system (29)–(31) incorporates the additional 3M + 3N unknown
coefficients denoted as ri,n and si,n, it is necessary to generate an extra 3M + 3N equa-
tions, derived from the rectangular boundary conditions given by (28). For the boundary
condition on q1, this approach involves formulating M equations from its left boundary,
N equations from its lower boundary, ⌈M

2 ⌉ equations from its right boundary, and ⌈N
2 ⌉

equations from its upper boundary. Specifically, over the right and upper boundaries of q1,
these additional equations are constructed at the zero points of Chebyshev polynomials
that are indexed in odd positions, as depicted in Figure 8a.

Conversely, the boundary condition on q2 requires constructing M equations from
its right boundary, N equations from its upper boundary, ⌊M

2 ⌋ equations from its left
boundary, and ⌊N

2 ⌋ equations from its lower boundary. In particular, over the left and
lower boundaries of q2, these equations are constructed at the zero points of Chebyshev
polynomials that are indexed in even positions, as depicted in Figure 8b.

Afterward, these specified boundary conditions (28) are converted into matrix form
using Theorem 2, which extends the one-dimensional Chebyshev polynomial expansion (5)
to two dimensions, as described below.

Theorem 2. Let X := {x1, x2, x3, . . . , xM} ⊆ (a, b) and Y := {y1, y2, y3, . . . , yN} ⊆ (c, d) be
sets of zeros of the Chebyshev polynomials RM(x) and RN(y), respectively. If f is a function of x
and y on [a, b]× [c, d] ⊆ R2, it can be approximated at any x ∈ [a, b] or y ∈ [c, d] by the Chebyshev
polynomial expansion in the matrix form as

f(x, ·) =
(
IN ⊗ ρ⊤x R−1

M
)
f and (37)

f(·, y) =
(
IM ⊗ ρ⊤y R−1

N
)
P−1f (38)

where ρx = [R0(x), R1(x), R2(x), . . . , RM−1(x)]⊤, ρy = [R0(y), R1(y), R2(y), . . . , RN−1(y)]⊤,
RM and RN are the M×M and N × N Chebyshev matrices, respectively, defined in Lemma 1(iii)
and f = [ f (x1, y1), f (x2, y2), f (x3, y3), . . . , f (xMN , yMN)]

⊤ with elements ordered according to
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a global numbering system for the grid points (xk, yk) belong to the set of Cartesian product X×Y.
Other parameters are as defined in Section 2.2.

(a) Boundary points of q1

(b) Boundary points of q2

Figure 8. The selected computational nodes for the 2D problem. The blue asterisks (*) represent the
interior nodes within the domain Ω. The colored dots represent the nodes on the boundary ∂Ω where
boundary conditions are applied: orange for the bottom, green for the left, red for the top, and cyan
for the right. (a) The specific set of boundary points used to enforce conditions for the discharge q1.
(b) The complementary set of boundary points used for the discharge q2.

Proof of Theorem 2. We consider a function f (x, y) expressed as a Chebyshev polynomial
expansion (5). By holding one variable constant while varying the other, the proof is
structured into two scenarios:

• Scenario I: When y is held constant and x is the free variable, we have

f (x, y) =
M−1

∑
n=0

c f ,nRn(x) := ρ⊤x c f = ρ⊤x R−1
M f(·, y), (39)
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where ρx = [R0(x), R1(x), R2(x), . . . , RM−1(x)]⊤, RM is an M × M Chebyshev ma-
trix as defined in Lemma 1(iii) and f(·, y) = [ f (x1, y), f (x2, y), f (x3, y), . . . , f (xM, y)]⊤.
Substituting the zeros of the Chebyshev polynomial RN(y), i.e., y ∈ {y1, y2, y3, . . . , yN},
into (39) yields

f (x, y1)

f (x, y2)

...

f (x, yN)

 =


ρ⊤x R−1

M 0 · · · 0

0 ρ⊤x R−1
M

. . .
...

...
. . . . . . 0

0 · · · 0 ρ⊤x R−1
M


︸ ︷︷ ︸

N blocks


f(·, y1)

f(·, y2)

...

f(·, yN)

.

This simplifies to f(x, ·) =
(
IN ⊗ ρ⊤x R−1

M
)
f, where IN is an N × N identity matrix.

• Scenario II: When x is held constant and y is the free variable, we have

f (x, y) =
N−1

∑
n=0

c f ,nRn(y) := ρ⊤y c f = ρ⊤y R−1
N f(x, ·), (40)

where ρy = [R0(y), R1(y), R2(y), . . . , RN−1(y)]⊤, RM is an N × N Chebyshev ma-
trix as defined in Lemma 1(iii) and f(x, ·) = [ f (x, y1), f (x, y2), f (x, y3), . . . , f (x, yN)]

⊤.
Substituting the zeros of the Chebyshev polynomial RM(x), i.e., x ∈ {x1, x2, x3, . . . , xM},
into (40) yields

f (x1, y)

f (x2, y)
...

f (xM, y)

 =


ρ⊤y R−1

N 0 · · · 0

0 ρ⊤y R−1
N

. . .
...

...
. . . . . . 0

0 · · · 0 ρ⊤y R−1
N


︸ ︷︷ ︸

M blocks


f(x1, ·)
f(x2, ·)

...

f(xM, ·)

.

This simplifies to f(·, y) =
(
IM ⊗ ρ⊤y R−1

N
)
f̃ =

(
IM ⊗ ρ⊤y R−1

N
)
P−1f, where IM is an

M×M identity matrix and P is a permutation matrix defined by (10).

Hence, the proof is complete.

Utilizing Theorem 2 and the boundary conditions (28) at time tm+1, we directly derive
four boundary conditions (41)–(44) in matrix form by substituting q⟨m+1⟩

i for f in Theorem 2
and evaluating at the respective boundary points, as follows:

• The left and lower boundary conditions for q1 = ψ1(x, y) at time tm+1 are obtained by
replacing x = a and y = c into (37) and (38), respectively:

q⟨m+1⟩
1 (a, ·) =

(
IN ⊗ ρ⊤a R−1

M
)
q⟨m+1⟩

1 := Ψ1a and (41)

q⟨m+1⟩
1 (·, c) =

(
IM ⊗ ρ⊤c R−1

N
)
P−1q⟨m+1⟩

1 := Ψ1c, (42)

where ρa = [1,−1, 1,−1, . . . , (−1)M−1]⊤, Ψ1a = [ψ1(a, y1), ψ1(a, y2), . . . , ψ1(a, yN)]
⊤,

ρc = [1,−1, 1,−1, . . . , (−1)N−1]⊤ and Ψ1c = [ψ1(x1, c), ψ1(x2, c), . . . , ψ1(xM, c)]⊤.
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• The right and upper boundary conditions for q2 = ψ2(x, y) at time tm+1 are obtained
by replacing x = b and y = d into (37) and (38), respectively:

q⟨m+1⟩
2 (b, ·) =

(
IN ⊗ ρ⊤b R−1

M
)
q⟨m+1⟩

2 := Ψ2b and (43)

q⟨m+1⟩
2 (·, d) =

(
IM ⊗ ρ⊤d R−1

N
)
P−1q⟨m+1⟩

2 := Ψ2d, (44)

where ρb = [1, 1, 1, . . . , 1]⊤ with M entries, Ψ2b = [ψ2(b, y1), ψ2(b, y2), . . . , ψ2(b, yN)]
⊤,

ρd = [1, 1, 1, . . . , 1]⊤ with N entries and Ψ2d = [ψ2(x1, d), ψ2(x2, d), . . . , ψ2(xM, d)]⊤.

Next, we address the boundary conditions for the remaining sides involving q1 and
q2. To handle boundary conditions that depend on the parity of index positions (odd or
even), we introduce an extraction matrix. An extraction matrix multiplies a column vector
to yield a new column vector composed of selected entries from the original. In this work,
we define two types of extraction matrices—odd and even—in Definition 3, which select
entries from corresponding positions in a column vector.

Definition 3. The odd extraction matrix, denoted by Todd = [aij]m×n, is defined as

aij =

1 ; j = 2i− 1 and i ∈ {1, 2, 3, . . . , m},
0 ; otherwise.

(45)

Moreover, the even extraction matrix, denoted by Teven = [bij]m×n, is defined as

bij =

1 ; j = 2i and i ∈ {1, 2, 3, . . . , m},
0 ; otherwise.

(46)

Building upon Definition 3, Theorem 2 and the boundary conditions (28) at time tm+1,
the remaining boundary conditions for q1 and q2 are formulated as follows:

• The right and upper boundary conditions for q1 = ψ1(x, y) at time tm+1 over the odd
position corresponding to ⌈M

2 ⌉ and ⌈N
2 ⌉ zeros in X and Y, respectively, are obtained

by substituting x = b and y = d into (37) and (38), respectively, and left-multiplying
by Todd from (45):

Tx
oddq⟨m+1⟩

1 (b, ·) = Tx
odd
(
IN ⊗ ρ⊤b R−1

M
)
q⟨m+1⟩

1 := Tx
oddΨ1b and (47)

Ty
oddq⟨m+1⟩

1 (·, d) = Ty
odd

(
IM ⊗ ρ⊤d R−1

N
)
P−1q⟨m+1⟩

1 := Ty
oddΨ1d, (48)

where Tx
odd is an ⌈M

2 ⌉ ×M odd extraction, Ψ1b = [ψ1(b, y1), ψ1(b, y2), . . . , ψ1(b, yN)]
⊤,

Ty
odd is an ⌈N

2 ⌉ × N odd extraction, and Ψ1d = [ψ1(x1, d), ψ1(x2, d), . . . , ψ1(xM, d)]⊤.

• The left and lower boundary conditions for q2 = ψ2(x, y) at time tm+1 over the even
positions corresponding to ⌊M

2 ⌋ and ⌊N
2 ⌋ zeros in X and Y, respectively, are obtained

by replacing x = a and y = c into (37) and (38), respectively, and left-multiplying by
Teven from (46):

Tx
evenq⟨m+1⟩

2 (a, ·) = Tx
even

(
IN ⊗ ρ⊤a R−1

M
)
q⟨m+1⟩

2 := Tx
evenΨ2a and (49)

Ty
evenq⟨m+1⟩

2 (·, c) = Ty
even

(
IM ⊗ ρ⊤c R−1

N
)
P−1q⟨m+1⟩

2 := Ty
evenΨ2c, (50)
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where Tx
even is an ⌊M

2 ⌋×M even extraction, Ψ2a = [ψ2(a, y1), ψ2(a, y2), . . . , ψ2(a, yN)]
⊤,

Ty
even is an ⌊N

2 ⌋ × N even extraction, and Ψ2c = [ψ2(x1, c), ψ2(x2, c), . . . , ψ2(xM, c)]⊤.

Finally, the systems (34)–(36) and boundary conditions (41)–(44) and (47)–(50) are
combined to form a system of linear equations. It comprises a total of 3H + 3M + 3N
unknowns, namely h⟨m+1⟩, q⟨m+1⟩

1 , q⟨m+1⟩
2 , r0, s0, r1, s1, r2, and s2. The resulting system is



AxAy τAy τAx [Φx , Φy] 0H×L 0H×L

τgAy(
1
2 H⟨m⟩ + AxZx) Ay(Ax + τU⟨m⟩) τAxU⟨m⟩ 0H×L [Φx , Φy] 0H×L

τgAx(
1
2 H⟨m⟩ + AyZy) τAyV⟨m⟩ Ax(Ay + τV⟨m⟩) 0H×L 0H×L [Φx , Φy]

0N×H Wx(a) 0N×H

0M×H Wy(c) 0M×H

0N×H 0N×H Wx(b)

0M×H 0M×H Wy(d)

0⌈ N
2 ⌉×H Tx

oddWx(b) 0⌈ N
2 ⌉×H 03L×3L

0⌈ M
2 ⌉×H Ty

oddWy(d) 0⌈ M
2 ⌉×H

0⌊ N
2 ⌋×H 0⌊ N

2 ⌋×H Tx
evenWx(a)

0⌊ M
2 ⌋×H 0⌊ M

2 ⌋×H Ty
evenWx(c)





h⟨m+1⟩

q⟨m+1⟩
1

q⟨m+1⟩
2

r0

s0

r1

s1

r2

s2



=



Ah⟨m⟩

Aq⟨m⟩1

Aq⟨m⟩2

Ψ1a

Ψ1c

Ψ2b

Ψ2d

Tx
oddΨ1b

Ty
oddΨ1d

Tx
evenΨ2a

Ty
evenΨ2c



, (51)

where L = M + N, Wx(λ) = IN ⊗ ρ⊤λ R−1
M and Wy(λ) = (IM ⊗ ρ⊤λ R−1

N )P−1 for λ ∈
{a, b, c, d}. This system (51) is subsequently solved to obtain the approximate solutions
h⟨m+1⟩, q⟨m+1⟩

1 and q⟨m+1⟩
2 . The solution process commences with the initial conditions (27)

expressed in vector form:

h⟨0⟩ = [ϕ0(x1, y1), ϕ0(x2, y2), ϕ0(x3, y3), . . . , ϕ0(xH , , yH)]
⊤,

q⟨0⟩1 = [ϕ1(x1, y1), ϕ1(x2, y2), ϕ1(x3, y3), . . . , ϕ1(xH , , yH)]
⊤,

q⟨0⟩2 = [ϕ2(x1, y1), ϕ2(x2, y2), ϕ2(x3, y3), . . . , ϕ2(xH , , yH)]
⊤,

u⟨0⟩ = q⟨0⟩1 ⊘ h⟨0⟩ and v⟨0⟩ = q⟨0⟩2 ⊘ h⟨0⟩.

Therefore, the solutions for velocity components u⟨m+1⟩ and v⟨m+1⟩ are directly ob-
tained by u⟨m+1⟩ = q⟨m+1⟩

1 ⊘ h⟨m+1⟩ and v⟨m+1⟩ = q⟨m+1⟩
2 ⊘ h⟨m+1⟩, respectively, where

⊘ is the Hadamard division. Furthermore, the stability of this scheme, similarly to that
discussed in Section 3, is crucial. For the approximations obtained through this scheme to
converge to their analytical solution on a refined grid, the Courant–Friedrichs–Lewy (CFL)
condition, as presented in [10],

τ =
CFL ·mini,j

(
∆xi, ∆yj

)
maxk

(∣∣u⟨m⟩(xk, yk)
∣∣+√gh⟨m⟩(xk, yk),

∣∣v⟨m⟩(xk, yk)
∣∣+√gh⟨m⟩(xk, yk)

) , (52)

must be satisfied. Here, CFL denotes the Courant number. For stability, the CFL number
must be less than unity, consistent with the one-dimensional case detailed in Section 3. For
computational clarity, the algorithm’s workflow is summarized in Algorithm 2.
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Algorithm 2 Numerical algorithm for solving the two-dimensional SWEs via FIM-CPE

Input: a, b, c, d, M, N, T, z(x, y), ϕ0(x, y), ϕ1(x, y), ϕ2(x, y), ψ1(x, y), ψ2(x, y) and CFL.

Output: The numerical solutions h⟨m⟩, u⟨m⟩ and v⟨m⟩ at time T.

1: Define the nodal set X = {xk}M
k=1, where xk ← 1

2
(
(b− a) cos

( 2k−1
2M π

)
+ a + b

)
.

2: Define the nodal set X = {yk}N
k=1, where yk ← 1

2
(
(d− c) cos

( 2k−1
2N π

)
+ c + d

)
.

3: for j← 1 to N do

4: for i← 1 to M do

5: Assemble the 2D grid points (xi, yj)← X×Y using a global numbering system.

6: end for

7: end for

8: Calculate the total number of grid points H = M× N.

9: Define and compute constant matrices: P, Ax, Ay, Zx, Zy, Φx, Φy, IM, IN , R−1
M and R−1

N .

10: Define extraction matrices: Tx
odd, Ty

odd, Tx
even and Tx

even.

11: for each boundary λ ∈ {a, b, c, d} do

12: Set boundary vectors ρλ, Ψ1λ and Ψ2λ.

13: Compute Wx(λ)← IN ⊗ ρ⊤λ R−1
M .

14: Compute Wy(λ)← (IM ⊗ ρ⊤λ R−1
N )P−1.

15: end for

16: Initialize water height h⟨0⟩ and discharges q⟨0⟩1 and q⟨0⟩2 .

17: Initialize initial horizontal velocity u⟨0⟩ ← q⟨0⟩1 ⊘ h⟨0⟩.

18: Initialize initial vertical velocity v⟨0⟩ ← q⟨0⟩2 ⊘ h⟨0⟩.

19: Set current simulation time t← 0.

20: Set iteration index m← 0.

21: while t ≤ T do

22: Determine time step τ =
CFL ·mini,j(∆xi ,∆yj)

maxk

(
|u⟨m⟩(xk ,yk)|+

√
gh⟨m⟩(xk ,yk),|v⟨m⟩(xk ,yk)|+

√
gh⟨m⟩(xk ,yk)

) .

23: if t + τ > T then

24: Adjust τ ← T − t to reach T exactly at the final step.

25: end if

26: Compute diagonal matrices H⟨m⟩ and U⟨m⟩, V⟨m⟩ (from h⟨m⟩, u⟨m⟩ and v⟨m⟩).

27: Solve the linear system (51) to find solutions for h⟨m+1⟩, q⟨m+1⟩
1 and q⟨m+1⟩

2 .

28: Compute updated horizontal velocity u⟨m+1⟩ ← q⟨m+1⟩
1 ⊘ h⟨m+1⟩.

29: Compute updated vertical velocity v⟨m+1⟩ ← q⟨m+1⟩
2 ⊘ h⟨m+1⟩.

30: Advance current simulation time t← t + τ.

31: Increment iteration index m← m + 1.

32: end while

33: return The final solutions h⟨m⟩, u⟨m⟩ and v⟨m⟩ at time T.

4.2. Discussion on Theoretical Foundations for Two-Dimensional SWEs

The theoretical principles supporting the one-dimensional algorithm also apply to the
two-dimensional case, though the analysis becomes significantly more complex.

• Stability: Stability in the two-dimensional scheme is also maintained by enforcing
the CFL condition, which is adapted to account for velocities and grid spacing in
both spatial dimensions, as defined in Algorithm 2. A formal stability proof would
require analyzing the spectral properties of the much larger amplification matrix,
which involves the Kronecker products of the integration matrices Ax and Ay.
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• Accuracy and Convergence: The high accuracy of the two-dimensional scheme is
derived from the use of two-dimensional Chebyshev polynomial expansions. The
finite integration approach continues to minimize round-off errors. As with the
one-dimensional case, the combination of a stable and consistent scheme supports
convergence. A rigorous mathematical proof for the two-dimensional nonlinear
system is a complex topic and reserved for future theoretical investigation.

4.3. Numerical Simulations for Two-Dimensional SWEs

In this section, we assess the efficacy and accuracy of the proposed numerical algo-
rithm using two distinct examples of two-dimensional SWEs, conducted under wet-bed
conditions and varying bottom topographies. Specifically, these examples include the ’lake
at rest’ problem with a non-flat bottom and the ’Gaussian-shaped peak’ problem with a flat
bottom. All simulations and data analysis were conducted using MATLAB software on a
system equipped with an AMD Ryzen 7 4800HS CPU and 16.0 GB of RAM.

Example 5 (Lake at rest [7]). The lake at rest problem serves as a standard benchmark for validating
numerical schemes for two-dimensional shallow water equations, see Figure 9 for the analytical
solution. The computational domain is [0, 1]× [0, 1]. The bottom topography is defined by

z(x, y) = 0.8 exp
{
−50

(
(x− 0.5)2 + (y− 0.5)2

)}
and the initial water height is h(x, y, 0) = 1− z(x, y) with an initial zero velocity.

The simulation was conducted on 30× 30 grid points with an end time of T = 5 s as
the end time. The simulation results exhibited temporal stability. At the final time, the mean
absolute errors (MAEs) for h, u and v were 2.4977× 10−6, 7.7669× 10−4 and 7.7669× 10−4,
respectively. To evaluate mass conservation, the total volume was computed using

1
4

[
(y2 − c)

(
(x2 − a)h⟨m⟩1 +

M−2

∑
i=1

(xi+2 − xi)h
⟨m⟩
i+1

)

+ (d− yN−1)

(
(b− xM−1)h

⟨m⟩
MN +

M−2

∑
i=1

(xi+2 − xi)h
⟨m⟩
MN−M+i+1

)

+ (b− xM−1)

(
(y2 − c)h⟨m⟩M +

N−2

∑
j=1

(yj+2 − yj)h
⟨m⟩
jM+M

)

+ (x2 − a)
(
(d− yN−1)h

⟨m⟩
MN−M+1 +

N−2

∑
j=1

(yj+2 − yj)h
⟨m⟩
jM+1

)

+
N−2

∑
j=1

M−2

∑
i=1

(xi+2 − xi)(yj+2 − yj)h
⟨m⟩
jM+i+1

]
,

where x1, x2, x3, . . . , xM and y1, y2, y3, . . . , yN are nodal points and M, N are the number
of nodal points along the x-axis and y-axis, respectively. h⟨m⟩1 , h⟨m⟩2 , h⟨m⟩3 , . . . , h⟨m⟩MN are the
water heights at each time step tm from the simulation. The experimental results indicate
that the total water volume exhibited minimal variation, remaining within 10−5 throughout
the simulation period. Similar results regarding mass conservation were observed for
Example 6.



Mathematics 2025, 13, 2492 27 of 30

Example 6 (Gaussian pulse 2D [12]). A two-dimensional Gaussian-shaped peak was applied
as the initial condition for the water depth, with zero initial velocity and flat topography,i.e.,
z(x, y) = 0. It is defined by

h(x, y) = 1 + 0.1 exp
{
−100

(
(x− 0.5)2 + (y− 0.5)2

)}
.

Figure 9. Analytical solutions for Example 6.

The computational domain was [0, 1]× [0, 1]. Simulations for the time interval [0, 0.25]
are presented in Figure 10. The wave propagated outward from the center and all bound-
aries induced reflections, followed by further reflections at the corners. Consequently, the
top-view morphology evolved from an initial circular shape to a symmetrical configuration
exhibiting four corners. Furthermore, a gradual decrease in average water height was
observed over time. The temporal evolution of the water depth, h(x, y, t), demonstrated
consistency with observations from existing numerical schemes [13].

Figure 10. Water height h(x, y, T) at various times T for Example 6.
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To provide a consolidated overview of the algorithm’s performance across all test
cases, the key findings are summarized in Table 3.

Table 3. Summary of key findings from numerical simulations.

Example Problem Description Dim. Nodes MAE (Height) MAE (Velocity)

1 Lake at Rest 1D 100 6.45× 10−12 8.49× 10−13

2 Gaussian Pulse 1D 60 Reaches steady state *

3 Dam Break (Flat) 1D 200 2.88× 10−3 1.07× 10−2

4 Dam Break (Bump) 1D 100 Qualitative match †

5 Lake at Rest 2D 30× 30 2.50× 10−6 7.77× 10−4

6 Gaussian Pulse 2D 40× 40 Qualitative match ‡

* Reached steady state within a tolerance of 10−5. MAE is not applicable. † Gives the same behavior as methods
in [8]. MAE is not applicable. ‡ Behaves consistently with schemes in [13]. MAE is not applicable.

5. Conclusions
This study presents a robust numerical algorithm for solving one- and two-dimensional

SWEs by applying the FIM-CPE. The method transforms the governing PDEs into inte-
gral equations, approximates spatial variables using Chebyshev polynomials, and utilizes
forward differences for temporal discretization, with stability ensured by the Courant–
Friedrichs–Lewy condition. The algorithm’s efficacy was rigorously validated through
several benchmark cases.

For one-dimensional SWEs, the scheme demonstrated high precision in the lake at rest
problem, with MAEs for water height and velocity below 10−12. In the dam-break scenario
over a flat bottom, the FIM-CPE produced more accurate results compared to the traditional
FDM and effectively captured shock propagation. Furthermore, the algorithm accurately
simulated wave interactions over non-flat topographies and handled smooth solutions, as
shown in the dam break over a bump and Gaussian pulse examples, respectively.

The method was extended to two-dimensional SWEs, where it successfully resolved
wave interactions over complex topographies and accurately simulated phenomena such
as a Gaussian-shaped peak. A key strength of the proposed scheme is its excellent mass
conservation, with total volume deviations remaining under 10−5 across all simulations.
While the proposed FIM-CPE scheme has proven to be a highly accurate and reliable simu-
lation tool, we acknowledge its current limitations. The algorithm is presently formulated
for wet-bed conditions and has been validated on small-scale problems, without consid-
ering frictional effects. Future work will focus on extending the algorithm’s capabilities.
Key directions for development include incorporating wet–dry front tracking algorithms,
including bed friction and Coriolis terms, and scaling the method for application to larger,
real-world hydraulic and coastal engineering problems.
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