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Abstract

Double-censored data are frequently encountered in pharmacological and epidemiological
studies, where the failure time can only be observed within a certain range and is otherwise
either left- or right-censored. In this paper, we present a Bayesian approach for analyzing
double-censored survival data with crossed survival curves. We introduce a novel pseudo-
quantile I-splines prior to model monotone transformations under both random and fixed
censoring schemes. Additionally, we incorporate categorical heteroscedasticity using the
dependent Dirichlet process (DDP), enabling the estimation of crossed survival curves.
Comprehensive simulations further validate the robustness and accuracy of the method,
particularly under the fixed censoring scheme, where traditional approaches may NOT
be applicable. In the randomized AIDS clinical trial, by incorporating the categorical
heteroscedasticity, we obtain a new finding that the effect of baseline log RNA levels is
significant. The proposed framework provides a flexible and reliable tool for survival
analysis, offering an alternative to parametric and semiparametric models.

Keywords: bayesian analysis; double censoring; heteroscedasticity; transformation models

MSC: 62F15; 62N02; 62G08

1. Introduction
A large body of statistical research in biomedicine has focused on right-censored data

due to its prevalence, while less emphasis has been placed on other less common types of
censored data, such as left- or interval-censored data. Left censoring occurs when the event
time precedes the recruitment time, whereas (Case 2) interval censoring occurs when the
event time of interest is only known to fall within a certain interval. Left and right censoring
can be viewed as special cases of interval censoring. A more complicated censoring mecha-
nism may involve more than one type of censoring in the sample or a mixture of uncensored
and censored subjects. For instance, “partly interval-censored data” [1,2] arise when some
failure times are interval-censored while others are uncensored. This paper studies another
special type of survival data called “double-censored data” [3], in which the subjects are
uncensored within a specific time interval and the subjects are either left- or right-censored
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when their actual event times fall outside the time interval. Due to the complex data struc-
ture and limited information, contemporary statistical methods for double-censored data
are still underdeveloped and often inefficient, posing significant challenges to statistical
inference, including accurate estimation and prediction. Double-censored data commonly
arise in biomedical, pharmacological, and epidemiological studies [4,5]. A specific exam-
ple is the randomized AIDS clinical trial [6] which aimed to compare the responses of
HIV-infected children to three different treatments. The outcome variable of interest is
the plasma HIV-1 RNA level (instead of a conventional “time” variable) as a measure of
the viral load. The plasma HIV-1 RNA level, given by the NucliSens assay, is considered
double-censored because its measurement can be highly unreliable below 400/mL or above
75,000/mL of plasma. In other words, this variable is observable only within the range of
400/mL to 75,000/mL and is left- or right-censored otherwise. To avoid ambiguity, it is
remarked that “double censoring” has also been used in literature to describe another type
of censoring mechanism in survival analysis, where both the time origin and event time are
potentially interval-censored [7]. We adopt the first definition of “double censoring” above.

The term “double censoring” was first pinpointed by [3]. Following his research work
[8] proposed a self-consistent nonparametric maximum likelihood estimator (NPMLE)
of the survival function based on double-censored data. Refs. [9,10] later studied the
weak convergence and asymptotic properties of the NPMLE, respectively. Refs. [11,12]
developed algorithms tailored to the computation of the NPMLE. In the presence of
covariates, a natural way to incorporate them into the analysis is to assume the Cox
proportional hazards (PH) model [13]. For instance, Ref. [14] studied the nonparametric
maximum likelihood estimation for the Cox PH model and the asymptotic properties of
the estimator based on double-censored data. Ref. [15] later proposed to obtain the MLE
based on the EM algorithm and approximated likelihood, which was shown to be more
numerically stable and computationally efficient.

However, the proportional hazards model may be restrictive in practical applications.
Therefore, it is worth considering the semiparametric transformation model [16–19] as an
alternative because of its higher flexibility to cover Cox’s PH and PO models. With double-
censored data, Ref. [20] (further in text Li2018) studied the nonparametric maximum
likelihood estimation (NPMLE) of the semiparametric transformation model that allowed
for possibly time-dependent covariates, and they proposed to use an EM algorithm to
obtain the NPMLE. This route of semiparametric transformation models requires full model
identifiability by assuming the model error distribution to be known or parametric, similar
to the main stream of transformation model literature [19,21–24]. Despite its convenience,
this strategy may encounter model misspecification (refer to the numerical studies in [25]
for examples).

Compared with semiparametric transformation models, the nonparametric transforma-
tion models [26–30] are robust since they allow both the transformation and model error
distribution to be unspecified and nonparametric. Nonetheless, to address the identifiability
issue, most of the existing literature imposed complicated identification constraints on the
two nonparametric components, leading to infeasible computation. To balance the model
robustness and computational feasibility, ref. [25] studied the reliable Bayesian predictive
inference under nonparametric transformation models with both transformation and model
error unidentified. Nonetheless, they only focus on right-censored data. To the best of our
knowledge, there have not yet been studies on nonparametric transformation models with
double-censored data.

Furthermore, most of the existing literature studied the random censoring scheme
only, and excluded the fixed censoring scheme. The fixed censoring scheme, where the
observations are censored with two fixed points, usually does not provide much useful
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information because the dataset can have many duplicate values. This scheme is a com-
mon practice in clinical trials, for example, the randomized AIDS clinical trial studied in
this paper.

Besides the lack of research on the fixed censoring scheme, most of the existing
literature on transformation models [20,25,26,28,31,32] assumes that the model error is
independent of covariates, indicating that they can NOT model crossed survival curves.
Ref. [33] introduces a semiparametric random-effects linear transformation model to esti-
mate the crossed survival curves, while they still need to assume the density of model error
to be known.

Based on the above literature review, we are driven to extend the Bayesian method
by [25] to the double censoring scheme, especially the fixed censoring scheme, and intro-
duce a special model for categorical heteroscedasticity in the sense that the model error
distributions depend on the categorical covariates. Our method addresses two key chal-
lenges: (i) modeling the monotone transformation under the double censoring scheme,
especially with fixed censored data; (ii) incorporating the categorical heteroscedasticity
nonparametrically so as to estimate crossed survival curves.

To address the first challenge, we inherit and modify the quantile-knot I-splines [25,34]
prior. For the random censoring scheme, we straightforwardly interpolate the interior
knots of I-splines from the quantiles of left- and right-censoring endpoints. However, this
interpolation strategy is not applicable to the fixed censoring scheme since the quantiles of
censored endpoints do NOT exist anymore. We propose a novel pseudo-quantile I-splines
prior for the transformation under fixed censoring by synthesizing the exact survival
times and interpolating the knots of I-splines at the average of the pseudo quantiles of
the synthesized data. Numerical studies demonstrate that the proposed pseudo-quantile
modeling effectively captures the true distribution of the variable of interest and extracts
potentially hidden information that is lost due to fixed censoring. To address the second
challenge, we borrow the strength from the Dependent Dirichlet process (DDP) proposed
by [35]. Specifically, we employ the ANOVA DPP [36] to model the dependency of the
model error and the categorical covariates. Introducing the categorical heteroscedasticity
through DDP does not change the quantile-knot i-spline modeling, making the computation
by Markov Chain Monte Carlo (MCMC) still feasible and reliable. We have summarized all
the symbols used in this paper in Table 1.

Table 1. List of symbols.

Notation Definition

Ti True time-to-event data
Zi p-dimensional covariate vector
Xi q-dimensional Categorical covariate vector

Li, Ri Left/right censoring data
T̃i Observed time-to-event data

δi1, δi2, δi3 Indicators for left-censored/uncensored/right-censored
H(·) The nonnegative monotone transformation

β The vector of regression coefficients
ξ The multiplicative model error in transformation model

Bj(t) I-spline basis
N The number of knots in I-splines functions
τ Maximum observed time

Q̂X(p) Empirical quantile function for variable X
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The major contributions of this paper are summarized as follows.

• Contribute a novel method for survival prediction under nonparametric transforma-
tion models with double-censored data, especially for the fixed censoring scheme.

• Incorporate categorical heteroscedasticity in nonparametric transformation models so
as to model crossed survival curves.

• With categorical heteroscedasticity, evidence the significance of the effect of baseline
log (RNA) levels in the randomized AIDs clinical trial.

The remainder of this paper is organized as follows. We introduce our data structure
and model in Section 2. Our proposed innovative priors will be explained in detail in
Section 3. A special case where the model error distributions depend on the categorical
covariates is discussed in Section 4. Posterior inference and estimation will be explored in
Section 5. Simulation results will be presented in Section 6. We also apply our method to
real data in Section 7. A discussion will be given in Section 8.

2. Data, Model, and Assumptions
2.1. Data Structure

Here, we describe the typical data structure of doubly censored data in survival
analysis. Consider a study that involves n independent subjects. For subject i, let Ti

denote the time-to-event and Zi be the p-dimensional vector of time-invariant covariates.
The time-to-event Ti can only be observed between Li and Ri, and if not observed, it is either
left-censored at Li or right-censored at Ri. Define δi1 = I(Ti ≤ Li), δi2 = I(Li < Ti ≤ Ri),
δi3 = I(Ri < Ti), where I(·) is the indicator function. Then, it follows δi1 + δi2 + δi3 = 1.
The observed data are of the form {(T̃i, Li, Ri, Zi, δi1, δi2, δi3); i = 1, . . . , n}, where T̃i =

max{Li, min(Ri, Ti)} is the observed time-to-event for subject i. Here, we assume that
Li = 0 if δi3 = 1 and Ri = ∞ if δi1 = 1, since such information is generally not available,
for better data organization. Furthermore, Ti and (Li, Ri) are assumed to be conditionally
independent given Zi (noninformative censoring) as common practice.

2.2. Nonparametric Transformation Models

We consider a class of linear transformation models, which relate the time-to-event to
the relative risk in a multiplicative way as follows:

H(T) = ξ exp(βTZ), (1)

where H(·) is a strictly increasing transformation function that is positive on R+, β is the
p-dimensional vector of regression coefficients coupling Z, and ξ is the model error with
distribution function Fξ . The above transformation model is considered a nonparamet-
ric transformation model when the functional forms of both H(·) and Fξ are unknown.
As mentioned earlier, model nonidentifiability would mean that different sets of (H, Fξ , β)
can generate an identical likelihood function. For the rest of this paper, Model (1) will be
treated as a nonparametric transformation model, henceforth NTM.

The NTM is obtained by applying an exponential transformation to a class of linear
transformation models with additive relative risk.

h(T) = βTZ + ϵ, (2)

where h(·) = log(H(·)) and ϵ = log(ξ). This transformation is necessary since the transfor-
mation function h(·) in Model (2) is sign-varying on R+, which leads to insoluble problems
regarding prior elicitation and posterior sampling. After the transformation, H(·) is strictly
positive on R+, thus allowing the NTM to avoid the above problems.
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3. Likelihood and Priors
3.1. Likelihood Function

Given observed data {(T̃i, Li, Ri, Zi, δi1, δi2, δi3); i = 1, . . . , n}, we can construct the
likelihood function as

L
(

H, Fξ , β | T̃, Z, δ1, δ2, δ3
)

=
n

∏
i=1

[
Fξ

{
H
(
T̃i
)
e−βTZi

}]δi1

×
[

fξ

{
H
(
T̃i
)
e−βTZi

}
H′(T̃i

)
e−βTZi

]δi2

×
[
Sξ

{
H
(
T̃i
)
e−βTZi

}]δi3
, (3)

where fξ(·) = F′
ξ(·) is the density function of ξ and Sξ(·) = 1− Fξ(·) is the survival function

of ξ.

3.2. Dirichlet Process Mixture Model

To characterize model error in the NTM, we choose the common Dirichlet process
mixture (DPM) models [37] as the priors for fξ and Sξ . In this paper, we adopt the truncated
stick-breaking construction [38] of the DPM.

fξ(·) =
L

∑
l=1

pl fw(ψl , νl), Sξ(·) = 1 −
L

∑
l=1

pl Fw(ψl , νl), (4)

where fw(ψ, ν) and Fw(ψ, ν) are the density and distribution functions of a Weibull dis-
tribution, respectively. The Weibull distribution is selected as the DPM kernel for two
reasons: (i) it is flexible to various hazard shapes [39]; (ii) the Weibull kernel guarantees
the properness of the posterior under the unidentified transformation models (refer to [25]
for details).

In explicit form, the stick-breaking weights pl and the parameters (ψl , νl) are generated
as follows

pl = qk

L−1

∏
k=1

(1 − qk), qk ∼ Beta(1, c), ψl ∼ Gamma(1, 1), νl ∼ Gamma(1, 1). (5)

Throughout this paper, we specify c = 1 in the DPM prior, which is a commonly used
default choice [40]. The choice of L is relatively flexible. Since the theoretical total-variation
error between the truncated DP and the true DP is bounded by 4n exp{−(L − 1)/c} [41],
we suggest the readers adopt a suitable truncation level based on the data size.

3.3. Pseudo-Quantile I-Splines Prior

Regarding the transformation function of the NTM and its derivative, we rely on a
type of I-spline priors to capture the relevant information. To construct such priors, we first
take τ = maxi(T̃i) to be the largest observed time-to-event in the sample, then D = (0, τ] is
the interval that contains all observed time-to-events. Note that H(·) is differentiable on D,
thus we can model H(·) and H′(·) by

H(t) =
K

∑
j=1

αjBj(t), H′(t) =
K

∑
j=1

αjB′
j(t), (6)

where {αj}K
j=1 are positive coefficients, {Bj}K

j=1 are I-spline basis functions [34] on D,

and {B′
j}K

j=1 are the corresponding derivatives.
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The number of I-spline basis functions K = N + r, where N is the total number of
interior knots and r is the order of smoothness, with (r − 1)th order derivative existing.
We adopt the default value of r = 4 in R package splines2.

Then, it becomes our primary task to specify the exact number of interior knots and
pinpoint their locations. One logical way to approach this task is to base the selection of
interior knots on empirical quantiles of the collected data. In doing so, we can effectively
utilize useful knowledge inherent to the distribution of the observed time-to-events.

Let F̂X(t) = n−1 ∑n
i=1 I(Xi ≤ t) be the empirical distribution function of some variable

X and Q̂X(p) = inf{t : p ≤ F̂X(t)} be the corresponding empirical quantile function, where
X can be equivalently replaced by T, T̃, or other random variables. Note that since the
exact (actual) time-to-events T cannot always be observed, F̂T(·) and Q̂T(·) can only be
constructed based on the subset of the observed data with δi2 = 1 (i.e., where the exact
time-to-events are observed). We first consider knot selection via empirical functions under
the random censoring setting, which is very often the assumed setting in related literature.

3.3.1. Random Censoring Knot Selection

Define T̃L = {T̃i ∈ T̃ : δi3 = 0} and T̃R = {T̃i ∈ T̃ : δi1 = 0}. Let NI be the initial
number of knots. The interior knot selection procedure can be described as follows.

Step 1: Choose NI empirical quantiles of exact time-to-events as interior knots, where each
knot tj = Q̂T{j/(NI − 1)} and j = 0, . . . , NI − 1, such that 0 < t0 < · · · < tNI−1 ≤ τ.
Step 2: For j = 0, . . . , NI − 1, if | F̂T(tj) − F̂T̃L

(tj) |≥ 0.05, interpolate a new knot
t∗j = Q̂T̃L

{j/(NI − 1)}.

Step 3: For j = 0, . . . , NI − 1, if | F̂T(tj)− F̂T̃R
(tj) |≥ 0.05, then interpolate another new

knot t∗∗j = Q̂T̃R
{j/(NI − 1)}.

Step 4: Sort all the chosen and interpolated knots {t0, . . . , tj, t∗j , t∗∗j , . . . , tNI−1} in ascending
order resulting in the final selected interior knots.

It is worth noting that only exact time-to-events can provide information about H′,
therefore the initial interval knots are chosen by equally spaced empirical quantiles of
T, i.e., T̃i for δi2 = 1. To mitigate the lack of information when the percentage of left or
right-censored observations is high, extra interior knots are generated as needed.

The problem of interior knot selection becomes much more complex and difficult
under fixed censoring. In such circumstances, the empirical distributions of observed time-
to-events would heavily gravitate toward the fixed censoring points, making interpolation
of additional interior knots infeasible. Therefore, in cases of high censoring, attempts have
to be made to extract some information from the unobserved time-to-events. Thus, we
propose a novel method for effective interior knot selection that synthesizes pseudo data to
mimic the distribution of unobserved time-to-events. This innovative method then leads to
a new type of prior for the transformation function, which we name the “pseudo-quantile
I-splines prior” (PQI prior).

3.3.2. Fixed Censoring Knot Selection

Fixed censoring occurs when Li1 = L for i1 = 1, . . . , n1 and Ri2 = R for i2 = 1, . . . , n2,
where n1 and n2 are the numbers of left-censored and right-censored observations, respec-
tively, and L and R are some finite constants. Define n3 = n − n1 − n2. The specification
procedure can be described as follows.
For k = 1, . . . , K (Steps 1–3),

Step 1 (pseudo-left-censored data generation):
Generate pseudo observations (TLk1 , . . . , TLki1

, . . . , TLkn1
) from some distribution (e.g.,

Weibull, gamma) such that all TLki1
< L.
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Step 2 (pseudo-right-censored data generation):
Generate pseudo observations (TRk1 , . . . , TRki2

, . . . , TRkn2
) from the same distribution such

that all TRki2
> R.

Step 3 (pseudo-quantile computation):
Let Tk = (TLk1 , . . . , TLkn1

) ∪ (T1, . . . , Tn3) ∪ (TRk1 , . . . , TRkn2
). Compute F̂Tk (t) = n−1

∑n
i=1 I(Tki ≤ t) and Q̂Tk (p) = inf{t : p ≤ F̂Tk (t)}.

Step 4 (quantile averaging):
Compute Q̂T (p) = K−1 ∑K

k=1 Q̂Tk . Choose N averaged empirical quantiles of the combined
time-to-events as interior knots, where each knot tj = Q̂T {j/(N − 1)} and j = 0, . . . , N − 1.
Output this series {t0, . . . , tj, . . . , tN−1} as the finally selected interior knots.

In Step 4, one can show that with sufficiently large N, the inserted pseudo quantiles
become stable, and thus, the induced I-spline basis is also stable. These pseudo-quantile
knots are also combined with the exact time-to-events that are observed for completeness.
The averaged empirical quantiles should closely imitate the true quantiles of the exact
time-to-events (observed and unobserved), and thus, the selected interior knots should
provide reliable and sufficient information. Any pre-existing knowledge about the potential
distribution of the exact time-to-events could help facilitate the selection process and refine
the results.

4. Transformation Models with Crossed Survival Curves
In this section, we extend the model (1) to a special case where the model error distri-

butions depend on the categorical covariates. Assume one or q-dimensional categorical
covariates X with a total of G categories. For example, if there is only one covariate, K equals
the number of categories of that covariate; if there are multiple variables, one-hot encoding
can be used, and G equals the product of the categories of each covariate. The model error
distributions depend on the categorical covariates, indicating that the survival curves of
different categories will be crossed. And we introduce the following models

H(T|x = g) = ξg exp(βTZ), g = 1, ..., G, (7)

where ξg is the model error under group k with distribution function Fξg . That is, we assume
that within different categories, the distribution of the model error exhibits heterogeneity.
Similarly, we denote that h(·) = log(H(·)) and ϵk = log(ξg). And (7) can be written as
h(T|x = g) = βTZ + ϵg, g = 1, ..., G. Given observed data {(T̃i, Li, Ri, Zi, Xi, δi1, δi2, δi3);
i = 1, . . . , n}, we can construct the likelihood function as

L
(

H, Fξg , β | T̃, Z, X, δ1, δ2, δ3

)
=

G

∏
g=1

n

∏
i=1

[
Fξg

{
H
(
T̃i
)
e−βTZi

}]δi1

×
[

fξg

{
H
(
T̃i
)
e−βTZi

}
H′(T̃i

)
e−βTZi

]δi2

×
[
Sξg

{
H
(
T̃i
)
e−βTZi

}]δi3
, (8)

where fξg(·), Fξg(·), Sξg(·) are the density function, the cumulative distribution function,
and the survival function of ξg, respectively. Compared with the likelihood function (3),
(8) includes the product of the likelihood functions for each category.

ANOVA Dependent Dirichlet Process Prior

The DPM prior will no longer be applicable where the model error distributions
depend on the categorical covariates. Ref. [35] defined the dependent Dirichlet process
(DDP) to allow a regression on a covariate X. Since the K categories, We here specify
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appropriate nonparametric ANOVA DDP priors [36] for fξg(·), Fξg(·), and Sξg(·). Since
they can be easily derived from one to the other, we here only introduce the priors for Fξg(·).
Following [42], we write the stick-breaking form of Fξg = ∑∞

h=1 whδ
(

θgh

)
for gk = 1, .., G.

And We impose additional structure on the locations θgh :

θgh = mh + Agh,

where mh denotes the ANOVA effect shared by all the observations, and the terms of Agh are
the ANOVA effects of different categories. For example, the locations are θ1h = mh + A1h,
θ2h = mh + A2h if G = 2. For each category, they have a similar term mh shared by all the
observations, and different A1g and A2g depict the heterogeneity under different categories.

5. Posterior Inference
5.1. Posterior Prediction and Nonparametric Estimation

Given the prior settings, the nonparametric parts of (1), specifically, the functionals
H and Sξ can be represented by elements in (α, p, ψ, ν), where α = {αj}K

j=1, p = {pl}L
l=1,

ψ = {ψl}L
l=1, and ν = {νl}L

l=1. Let Θ = (β, α, p, ψ, ν) be the collection of all unknown
parameters. The estimators of (H, β, Sξ) can then be obtained through the posterior distri-
bution of Θ.

First, we set the priors for parameters in Θ as (recall (5))

αj ∼ exp(η), π(β) ∝ 1,

pl = qk

L−1

∏
k=1

(1 − qk), qk ∼ Beta(1, c), l = 1, · · · , L − 1; pL = 1 −
L−1

∑
l=1

pl ,

G0(ψl , νl) = Gamma(1, 1)× Gamma(1, 1),

(9)

where π(·) is a prior density and G0 is the base measure for the DPM prior. The posterior
density of Θ can then be represented as

π(Θ | T̃, Z, δ1, δ2, δ3) ∝ L(Θ | T̃, Z, δ1, δ2, δ3)π(β)π(α)π(p)
L

∏
l=1

G0(ψl , νl). (10)

In the above prior setting, the hyperparameter η can be dependent on other hyperparame-
ters or fixed to some constant based on existing knowledge. It is, however, recommended
that the mass parameter of the Beta distribution be fixed as c = 1 and the base measure G0

also be fixed as above.
It should be noted that the prior choice for β is the improper uniform prior. Such

a choice simplifies the posterior form and accelerates MCMC sampling. Under mild
conditions, the posterior in (10) is still guaranteed to be proper. The NUTS (No-U-Turn
Sampler) from Stan [43] is implemented to achieve posterior sampling. After sufficient
sampling procedures, the posterior predictive survival probability of any future time-to-
event T0 can be obtained given some vector of covariates Z0.

For such a prediction of a future time-to-event, denote the corresponding conditional
posterior predictive survival probability as ST0|Z0

(t). Mathematically, ST0|Z0
(t) can be

calculated through

ST0|Z0
(t) =

∫
ST0|Z0

(t | Θ)π(Θ | T̃, Z, δ1, δ2, δ3)dΘ

=
∫

Sξ{H(t) exp(−βTZ0)}π(Θ | T̃, Z, δ1, δ2, δ3)dΘ,
(11)
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where ST0|Z0
(t | Θ) is the conditional posterior predictive survival probability given Θ,

and ST0|Z0
(t | Θ) can uniquely determine ST0|Z0

(t) if the posterior distribution π(Θ |
T̃, Z, δ1, δ2, δ3) is proper.

Note that the integral in (11) can be approximated by averaging over the drawn
posterior samples. Denote the drawn samples of β, H, and Sξ by β(m), H(m), and S(m)

ξ ,
m = 1, . . . , M, respectively. Then, the estimations of the conditional survival probability
and conditional cumulative hazard can be given as

ŜT0|Z0
(t) = M−1

M

∑
m=1

S(m)
ξ {H(m)(t) exp(−β(m)T

Z0)},

Λ̂T0|Z0
(t) = − log(ŜT0|Z0

(t)).

(12)

5.2. Posterior Projection and Parametric Estimation

Recall that the joint posterior in (10) can be obtained from the prior settings in
(5) and (9), thus making the set of parameters (H, β, Sξ) jointly estimable. However, it is
still important to marginally estimate each parameter, especially the parametric component
β and the relative risk exp(−βTZ). As the marginal posterior of β lacks interpretability,
it is more meaningful to obtain the marginal posterior of an identified equivalence of β.
Through the process of normalization, we denote by β∗ the identified unit vector β/∥β∥2

with ∥β∗∥2 = 1, and we now focus on obtaining a Bayes estimator of β∗.
Note that the parameter space of β∗ is the same as the Stiefel manifold St(1, p) in Rp,

thus we utilize a posterior projection technique to estimate β∗. Hypothetically, consider
some set A, the metric projection operator mA : Rp → A of such set is

mA(x) = {x∗ ∈ A : ||x − x∗||2 = inf
v∈A

||x − v||2}.

Thus, the metric projection of the vector β ∈ Rp into St(1, p) is uniquely determined by
mSt(1,p)(β) = β/||β||2 [44], and the estimation of β∗ is given by the mean or median of the
projected posterior.

5.3. Assumptions

We will now state some general assumptions for doubly censored data and the NTM.
(A1) The transformation function H(·) is differentiable.
(A2) The model error ξ is continuous.
(A3) The continuous covariate Z is conditionally independent of model error ξ given

categorical covariate X.
(A4) The censoring variables L and R are independent of survival time T given the

covariates Z and X.
(A1) is required due to the presence of the first-order derivative of H(·), namely H′(·),

in the likelihood function. (A2) is mild. (A3) is general for transformation models [26,28].
Following [25], we have H(0) = 0 under (A3). (A4) is the commonly used noninformative
censoring scheme.

6. Simulations
In this section, we present the results of our simulation studies. These studies were

conducted to assess the performance of our proposed methods under both random and
fixed censoring schemes. We compare the proposed method with competitors (1) the R
package spBayesSurv [23], a Bayesian approach that can be applied to double-censored
data, and (2) the algorithm developed by [20], a frequentist method specifically works on
double-censored data.
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Survival times are generated according to Model (1). In each case within both censoring
schemes, we generate 100 Monte Carlo replicas, each with a number of subjects n = 200.
The vector of regression coefficients is set as β = (β1, β2, β3)

T = (
√

3/3,
√

3/3,
√

3/3)T

such that ||β|| = 1. For covariates Z = (z1, z2, z3), set z1 ∼ Bin(1, 0.5), z2 ∼ N(0, 1),
and z3 ∼ N(0, 1).

Under the random censoring scheme, the performance of our method is assessed
under one of the four different cases: the PH model, the PO model, the accelerated failure
time (AFT) model, and none of these three models. Let ϕ(·) be the density of N(0, 1).
The four cases are:

Case R-1: Non-PH/PO/AFT:

ϵ ∼ 0.5N(−0.5, 0.52) + 0.5N(1.5, 12),

h(t) = log
{
(0.8t + t1/2 + 0.825)(0.5ϕ1,0.3(t) + 0.5ϕ3,0.3(t)− c1)

}
,

c1 = 0.5ϕ1,0.3(0) + 0.5ϕ3,0.3(0),

Li ∼ U(0, 1), Ri ∼ U(8/3, 4),

with 4.0% left-censored, 64.2% observed, and 31.8% right-censored.

Case R-2: PH model:

ϵ ∼ EV(0, 1),

h(t) = log
{
(0.8t + t1/2 + 0.825)(0.5ϕ0.5,0.2(t) + 0.5ϕ2.5,0.3(t)− c2)

}
,

c2 = 0.5ϕ0.5,0.2(0) + 0.5ϕ2.5,0.3(0),

Li ∼ U(0, 1), Ri ∼ U(8/3, 4),

with 26.2% left-censored, 50.1% observed, and 23.7% right-censored.

Case R-3: PO model:

ϵ ∼ Logistic(0, 1),

h(t) = log
{
(0.8t + t1/2 + 0.825)(0.5ϕ0.5,0.2(t) + 0.5ϕ2.5,0.3(t)− c2)

}
,

Li ∼ U(0, 1), Ri ∼ U(4/3, 2).

with 31.8% left-censored, 37.5% observed, and 30.7% right-censored. Here, the constants cj

are set to make sure exp{h(0)} = 0, for j = 1, . . . , 4.

Case R-4: AFT model:

ϵ ∼ N(0, 1),

h(t) = log(t),

Li ∼ U(0, 1), Ri ∼ U(4/3, 2).

with 21.7% left-censored, 34.7% observed, and 43.6% right-censored.
Similarly, under the fixed censoring scheme, the performance of our method is assessed

under four different cases that shared the same distribution Fξ and h(t) with Case R-1 to
Case R-4, but with different Li and Ri. The differences between the two censoring schemes
are marked by the simulated left and right censoring times.

Case F-1: Non-PH/PO/AFT:

Li = 1, Ri = 4,
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with 23.2% left-censored, 50.4% observed, and 26.4% right-censored.

Case F-2: PH model:

Li = 0.5, Ri = 2,

with 34.5% left-censored, 38.5% observed, and 27.0% right-censored.

Case F-3: PO model:

Li = 0.5, Ri = 3,

with 29.0% left-censored, 46.3% observed, and 24.7% right-censored.

Case F-4: AFT model:

Li = 0.5, Ri = 2,

with 22.6% left-censored, 39.4% observed, and 38.0% right-censored.
In the case of crossed survival curves, we here only introduce the AFT model and

K = 2,

X ∼ Bin(1, 0.5),

zi ∼ N(0, 1), i = 1, 2, 3,

ϵ1 ∼ N(−0.5, 0.52), ϵ2 ∼ N(1.5, 12),

h(t) = log(t).

Li ∼ U(0, 1), Ri ∼ U(4/3, 2) with 22.3% left-censored, 31.2% observed, and 46.5% right-
censored in the random censoring scheme. Li = 0.5, Ri = 2 with 26.5% left-censored, 42.0%
observed, and 31.5% right-censored in the fixed censoring scheme.

The comparison results to spBayesSurv and Li2018 under the different censoring
schemes and cases are shown in Tables 2–4. To assess the estimation of β, we focus on
six metrics, namely, the mean, the bias, the average of posterior standard deviation (PSD),
the square root of the mean squared error (RMSE), the standard error of estimators (SDE),
and the coverage probability of the 95% credible interval (CP). Tables 2 and 3 both demon-
strate that our method is comparable to the competitors in bias, and the CP is close to
the nominal level. Furthermore, to evaluate the predictive capability, we report the root
of the integrated mean squared error (RIMSE) between the estimated distribution and
the true predictive distributions on three given covariates: Z1 = (0, 0, 0), Z2 = (0, 1, 1),
Z3 = (1, 1, 1). The RIMSE is an approximation of the L2 distance between the two distri-
butions on the observed time interval. The smaller the RIMSE, the better the prediction.
Table 4 reveals that our method outperforms in predictions in Cases R-1 and F-1, with the
other competitors encountering model misspecification.

Under the random censoring scheme, the r values in the Li2018 method are 3.5, 0, 1, 0
for Cases R-1 to R-4. It is shown that our method generally outperforms in case R-1 with the
lowest RIMSE. This can be expected since spBayesSurv is specifically designed to handle
estimation under Cases R-2 through R-4, yet our results in these cases are still comparable
to spBayesSurv, indicating that the proposed method can be applied in a broader spectrum
of situations while maintaining sufficient power. Under the fixed censoring scheme, the r
values for the Li2018 method are 1.5, 0, 1.5, 5 for Cases F-1 to F-4. The simulation results of
spBayesSurv and Li2018 under the fixed censoring scheme are not supposed to carry too
much weight, as these methods did not take such a censoring scheme into consideration,
but our results are quite promising regardless, which lends credence to the claim that our
method can be applied to analyze fixed double-censored time-to-events. It is also worth
noting that the proposed method is more flexible than the semiparametric approach of [20]
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that pre-specifies the form of the hazard function, making their results sensitive to the
selection of the r value.

Table 5 reports the situation where there is heterogeneity in the categorical covariates.
The results show that the proposed method achieves good estimation accuracy under both
random and fixed censoring mechanisms. And the CP is close to the nominal level. Figure 1
depicts the predicted survival curves. It demonstrates that the proposed method accurately
captures intersecting survival curves under both random and fixed censoring mechanisms.

Table 2. Simulation results of parametric estimation under random censoring scenarios.

Proposed Method spBayesSurv Li2018
β1 β2 β3 β1 β2 β3 β1 β2 β3

Case R-1

Mean 0.605 0.557 0.537 0.430 0.420 0.411 0.618 0.583 0.562
Bias 0.028 −0.020 −0.041 −0.147 −0.157 −0.166 −0.041 −0.006 0.015
PSD 0.086 0.065 0.065 0.180 0.094 0.094 0.187 0.092 0.092

RMSE 0.098 0.072 0.079 0.233 0.189 0.195 0.181 0.090 0.091
SDE 0.095 0.075 0.069 0.181 0.105 0.103 0.177 0.090 0.091
CP 0.88 0.94 0.89 0.84 0.56 0.55 0.95 0.97 0.94

Case R-2

Mean 0.588 0.569 0.552 0.685 0.695 0.668 0.573 0.596 0.577
Bias 0.011 −0.008 −0.026 0.108 0.118 0.091 0.005 −0.018 0.001
PSD 0.118 0.084 0.082 0.240 0.134 0.132 0.183 0.100 0.099

RMSE 0.101 0.081 0.099 0.268 0.197 0.164 0.155 0.112 0.104
SDE 0.101 0.081 0.099 0.246 0.159 0.138 0.155 0.111 0.105
CP 0.96 0.93 0.87 0.92 0.86 0.90 0.99 0.93 0.90

Case R-3

Mean 0.576 0.552 0.559 0.493 0.524 0.538 0.484 0.511 0.513
Bias −0.001 −0.025 −0.018 −0.084 −0.053 −0.039 0.093 0.066 0.064
PSD 0.182 0.123 0.122 0.304 0.161 0.159 0.234 0.117 0.115

RMSE 0.158 0.118 0.115 0.296 0.164 0.175 0.240 0.118 0.129
SDE 0.159 0.116 0.114 0.285 0.156 0.172 0.222 0.099 0.113
CP 0.97 0.96 0.95 0.98 0.95 0.92 0.95 0.95 0.89

Case R-4

Mean 0.621 0.545 0.543 0.402 0.394 0.394 0.650 0.655 0.654
Bias 0.044 −0.032 −0.035 −0.176 −0.183 −0.183 −0.072 −0.078 −0.077
PSD 0.105 0.080 0.079 0.156 0.087 0.086 0.211 0.114 0.113

RMSE 0.112 0.088 0.081 0.235 0.203 0.202 0.206 0.139 0.130
SDE 0.104 0.082 0.073 0.156 0.088 0.087 0.193 0.115 0.106
CP 0.92 0.93 0.94 0.77 0.47 0.51 0.94 0.90 0.90

Table 3. Simulation results of parametric estimation under fixed censoring scenarios.

Proposed Method spBayesSurv Li2018
β1 β2 β3 β1 β2 β3 β1 β2 β3

Case F-1

Mean 0.596 0.560 0.555 0.378 0.408 0.413 0.621 0.585 0.582
Bias 0.018 −0.017 −0.022 −0.199 −0.168 −0.164 −0.044 −0.007 −0.005
PSD 0.112 0.079 0.079 0.300 0.154 0.156 0.217 0.101 0.100

RMSE 0.109 0.079 0.080 0.417 0.233 0.230 0.213 0.103 0.087
SDE 0.108 0.078 0.077 0.369 0.162 0.162 0.209 0.103 0.087
CP 0.96 0.97 0.95 0.80 0.75 0.79 0.96 0.97 0.98
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Table 3. Cont.

Proposed Method spBayesSurv Li2018
β1 β2 β3 β1 β2 β3 β1 β2 β3

Case F-2

Mean 0.583 0.559 0.560 0.601 0.602 0.597 0.583 0.569 0.570
Bias 0.006 −0.018 −0.018 0.024 0.024 0.019 −0.005 0.008 0.007
PSD 0.127 0.091 0.089 0.234 0.133 0.132 0.176 0.098 0.095

RMSE 0.128 0.095 0.096 0.258 0.138 0.145 0.187 0.094 0.101
SDE 0.129 0.094 0.095 0.254 0.137 0.144 0.188 0.094 0.101
CP 0.90 0.93 0.94 0.92 0.92 0.93 0.95 0.95 0.94

Case F-3

Mean 0.589 0.525 0.544 0.414 0.438 0.442 0.533 0.527 0.534
Bias 0.012 −0.053 −0.033 −0.163 −0.139 −0.135 0.044 0.051 0.043
PSD 0.216 0.150 0.146 0.312 0.165 0.164 0.247 0.120 0.118

RMSE 0.185 0.148 0.159 0.335 0.226 0.212 0.221 0.128 0.135
SDE 0.186 0.148 0.159 0.294 0.179 0.164 0.217 0.118 0.128
CP 0.93 0.93 0.95 0.95 0.82 0.88 0.95 0.92 0.92

Case F-4

Mean 0.633 0.544 0.529 0.295 0.288 0.290 0.662 0.618 0.612
Bias 0.055 −0.034 −0.048 −0.282 −0.290 −0.287 −0.084 −0.041 −0.034
PSD 0.108 0.084 0.084 0.123 0.069 0.070 0.222 0.111 0.111

RMSE 0.118 0.085 0.096 0.305 0.297 0.296 0.219 0.110 0.112
SDE 0.105 0.079 0.083 0.117 0.064 0.071 0.203 0.103 0.107
CP 0.89 0.91 0.92 0.41 0.01 0.04 0.95 0.95 0.96

Table 4. The RIMSE between the true conditional survival functions and the predictive survival
functions given by different methods under different cases in simulations.

Case R-1 Case R-2

Z Proposed spBayesSurv Li2018 Proposed spBayesSurv Li2018
z1 0.085 0.601 0.440 0.227 0.214 0.246
z2 0.134 1.029 0.215 0.555 0.473 0.073
z3 0.112 0.899 0.278 0.582 0.472 0.055

Case R-3 Case R-4

Z Proposed spBayesSurv Li2018 Proposed spBayesSurv Li2018
z1 0.088 0.257 0.311 0.223 0.197 0.284
z2 0.130 0.178 0.173 0.295 0.158 0.116
z3 0.125 0.213 0.223 0.373 0.153 0.095

Case F-1 Case F-2

Z Proposed spBayesSurv Li2018 Proposed spBayesSurv Li2018
z1 0.231 0.529 0.375 0.302 0.244 0.255
z2 0.181 0.250 0.347 0.497 0.332 0.359
z3 0.142 0.336 0.332 0.555 0.333 0.267

Case F-3 Case F-4

Z Proposed spBayesSurv Li2018 Proposed spBayesSurv Li2018
z1 0.161 0.323 0.384 0.216 0.271 0.386
z2 0.271 0.247 0.324 0.235 0.261 0.486
z3 0.239 0.234 0.318 0.277 0.204 0.360
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Table 5. Simulation results of crossed survival curves.

Random Censoring Fixed Censoring
β1 β2 β3 β1 β2 β3

Mean 0.569 0.578 0.565 0.562 0.555 0.564
Bias −0.009 0.001 −0.013 −0.015 −0.023 −0.013
PSD 0.093 0.092 0.094 0.118 0.120 0.116

RMSE 0.066 0.059 0.065 0.0.066 0.069 0.070
SDE 0.095 0.091 0.096 0.119 0.122 0.114
CP 0.96 0.95 0.96 0.97 0.96 0.94
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Figure 1. Predicted survival functions for the transformation models with crossed survival curves
under random censoring (left) and fixed censoring (right).

7. Real Data Analysis
In this section, we apply our proposed method to the randomized AIDs clinical trial

conducted in 1997 (recall from the introduction section). As stated previously, one major
objective of this study was to examine treatment effects across different treatment groups
through the plasma HIV-1 RNA level as the outcome variable, which is subject to double
censoring. In the analysis, we create a variable trt which takes up the value 0 if a subject
receives either Zidovudine(ZDV)+lamivudine(3TC) or stavudine(d4T)+ritonavir(RTV),
and trt = 1 if a subject receives ZDV plus 3TC plus RTV. A remark should be made that
this dataset was actually conducted under a fixed censoring scenario due to limitations of
measuring techniques, resulting in the fact that all baseline log(RNA) levels could only be
exactly observed between −2.60/mL and 5.88/mL of plasma.

Below we present the analysis results of the proposed method along with the results
from spBayesSurv and Li2018 methods, mainly for demonstration purposes. A visual aid is
also provided for better distinction of treatment effects between the two treatment groups.

Based on the analysis of the AIDS clinical trial data, as shown in Table 6, the results
consistently show that the triple therapy treatment group (ZDV + 3TC + RTV, trt = 1) had a
significantly better outcome compared to the dual therapy groups (trt = 0), indicating lower
HIV-1 RNA levels or higher survival probability. This finding is supported by all the meth-
ods tested (Proposed, spBayes PH/PO, Li2018 PH/PO), as their 95% credible/confidence
intervals for the treatment effect (trt) were entirely positive and excluded zero. For example,
the proposed method estimated a treatment effect of 1.057 (95% credible interval: 0.504
to 1.770).

In contrast, without considering the heterogeneity of the categorical covariate, the ef-
fect of baseline RNA level (baseRNA) was not statistically significant in any analysis,
indicating no strong evidence that the starting RNA level influenced the outcome. How-
ever, when we took into account the heterogeneity of the categorical variables, we found
that the RNA level significantly influenced the outcome. Furthermore, the length of the
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credible interval provided by our two methods is much shorter than the others, indicating
that the effect estimated by our method is more precise. Figure 2 visually confirms the main
treatment effect that the lower survival probabilities for the dual therapy group compared
to the triple therapy group over time.

Table 6. Results of AIDS study analysis.

Proposed Method (Model (1)) Proposed Method (Model(7))

trt baseRNA trt baseRNA

Est 0.956 0.256 \ 0.565
SD 0.050 0.150 \ 0.159

95% CI (0.826, 1.000) (−0.009, 0.564) \ (0.317, 0.836)

spBayes PH spBayes PO

trt baseRNA trt baseRNA

Est 1.058 0.245 1.437 0.382
SD 0.258 0.194 0.330 0.264

95% CI (0.571, 1.583) (−0.138, 0.623) (0.803, 2.097) (−0.141, 0.893)

Li2018 PH r = 0 Li2018 PO r = 1

trt baseRNA trt baseRNA

Est 0.982 0.067 1.291 0.145
SD 0.272 0.180 0.308 0.261

95% CI (0.449, 1.516) (−0.285, 0.419) (0.688, 1.894) (−0.365, 0.656)
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Figure 2. Predicted survival functions for the two treatment groups under Model (7).

8. Discussion
In this paper, we have proposed an innovative approach to analyze double-censored

data and demonstrated its superior accuracy and flexibility over alternative methods.
Namely, we bring up a new type of weakly informative prior, the pseudo-quantile I-splines
priors, that allows for nonparametric estimation and prediction of double-censored time-to-
event data under both random and fixed censoring schemes. We illustrate the effectiveness
of this innovative prior by performing simulation results under several scenarios and
comparing the proposed methods with two leading alternative methods. Our methodology
can be treated as a robust survival analysis approach, as an alternative to the widely used
Cox PH model.
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For fixed censoring specifically, in addition to outperforming these methods consid-
erably in some cases and displaying comparable results otherwise, our results are quite
close to the assigned true values. This lends credibility to the statement that our method
is not just the first to target estimation and prediction of double-censored time-to-events
under fixed censoring, but also a valid method that deserves practical considerations.
Subsequently, more attention should be paid to fixed censoring as a whole, since pro-
fessionals who encounter such data can now be enabled with our proposed method or
any future modification of it. We understand the complexity of fixed censoring and the
intricacy around when only minimal information can be drawn from a substantial portion
of observations. Despite these challenges, we believe that our approach of pseudo-data
substitution has its merit, as the generated data may eventually mimic the true distribution
of observations with minimally available information.

Our method enjoys robustness in predictions but sacrifices interpretability compared
with semiparametric or parametric approaches. Here, we quote [33] (p. 559), “we should
not confine ourselves to a hazard interpretation, especially when the hazards are not
proportional and alternative formulations lead to more parsimonious models”. In this
sense, our method supplies an alternative to those interpretable models in predictive
inference. In our application example, on the one hand, when using the same homogeneous
model, the significance of the treatment effect given by our method is consistent with other
methods. On the other hand, when we incorporate the categorical heteroscedasticity, we
reveal that the baseRNA is also significant. This finding demonstrates the utility of our
method in the interpretation of the effect.

Our method employs MCMC under unidentified models, which demand heavier
computational burden compared with those computed under identified models. It will be
interesting to explore the approximate Bayesian computation (ABC) under the nonpara-
metric transformation models. We leave this as our future work. Another interesting future
work will be to relax the noninformative censoring assumption on the censoring scheme.
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