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Abstract

Temporal action localization (TAL) is a research hotspot in video understanding, which
aims to locate and classify actions in videos. However, existing methods have difficulties
in capturing long-term actions due to focusing on local temporal information, which
leads to poor performance in localizing long-term temporal sequences. In addition, most
methods ignore the boundary importance for action instances, resulting in inaccurate
localized boundaries. To address these issues, this paper proposes a state space model
for temporal action localization, called Separated Bidirectional Mamba (SBM), which
innovatively understands frame changes from the perspective of state transformation. It
adapts to different sequence lengths and incorporates state information from the forward
and backward for each frame through forward Mamba and backward Mamba to obtain
more comprehensive action representations, enhancing modeling capabilities for long-
term temporal sequences. Moreover, this paper designs a Boundary Correction Strategy
(BCS). It calculates the contribution of each frame to action instances based on the pre-
localized results, then adjusts weights of frames in boundary regression to ensure the
boundaries are shifted towards the frames with higher contributions, leading to more
accurate boundaries. To demonstrate the effectiveness of the proposed method, this paper
reports mean Average Precision (mAP) under temporal Intersection over Union (tIoU)
thresholds on four challenging benchmarks: THUMOS13, ActivityNet-1.3, HACS, and
FineAction, where the proposed method achieves mAPs of 73.7%, 42.0%, 45.2%, and 29.1%,
respectively, surpassing the state-of-the-art approaches.

Keywords: video understanding; temporal action localization; separated bidirectional
mamba; boundary correction strategy

MSC: 68T45

1. Introduction
Temporal action localization (TAL) is a challenging but crucial task in understanding

videos, and it has gained significant interest over the past few years. TAL requires the
localization and classification of all action instances within an untrimmed video. Local-
ization aims to accurately determine the temporal boundaries of action instances, while
classification identifies the corresponding action categories. Compared with other video-
understanding tasks, TAL accurately determines the duration and category of the action
in the untrimmed video. Therefore, TAL is widely adopted in action retrieval, intelligent
surveillance, and human movement analysis [1–4].
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As deep learning continues to develop, many TAL methods based on deep learning
have emerged [5]. These methods first employ pre-extracted features as inputs of the
deep neural network, including I3D [6], SlowFast [7], and VideoMAEv2 [8]. Then, the
encoder, called backbone, performs contextual modeling of the features. Finally, the decoder
classifies the actions and estimates the corresponding boundaries.

Recently, Transformer [9] has become popular due to its successful application
in understanding videos [10]. To extract intrinsic information from actions, many
methods [11–17] introduce Transformer and its improved methods into TAL, which capture
long-term temporal dependencies between frames, facilitating the localization and classifi-
cation of long-term actions. Subsequently, several methods [8,18,19] realize a problem in the
self-attention of Transformer, which is that obtained features are highly similar but difficult
to distinguish. Thus, they follow the basic architecture of Transformer-based methods and
replace self-attention with other forms of convolutional neural networks (CNNs), bringing
further performance improvements.

In fact, these solutions [8,18,19] still have drawbacks. For example, the local percep-
tion of CNNs hinders the model from effectively utilizing the global information, which
brings a challenge for temporal localization of long-term actions. In addition, many TAL
methods [8,11,18] ignore the boundary importance for action instances, resulting in inac-
curate localized boundaries. Specifically, if the model gives higher regression weights to
frames that are farther away from the ground-truth, the predictions tend to have larger
errors. It is detrimental for models to accurately capture action instances.

Therefore, a state space model (SSM) for TAL, called Separated Bidirectional Mamba
(SBM), is proposed. Based on the continuity of frames, SBM understands the changes
between neighboring frames as state transformation. Specifically, it involves a set of unidi-
rectional Mamba, which fuses filtered forward and backward state information, generating
temporal features that cover global context information. This effectively improves the
model’s ability to model long-term temporal sequences. Inspired by these methods [2,20],
the Boundary Correction Strategy (BCS) is innovatively designed, which evaluates the con-
tribution of each frame to action instances based on its action sensitivity. Guided by these
contributions, the model corrects the pre-localized boundaries to make them more accurate.

The primary contributions of this paper are summed up as follows:

• This paper proposes SBM, which consists of a set of unidirectional Mamba that brings
forward and backward information to frames from the perspective of state transforma-
tion. It fully utilizes the global forward and backward temporal information, which
improves the model’s capacity for modeling long-term temporal sequences.

• In this paper, BCS is designed to obtain the contribution of each frame to action
instances by utilizing its action sensitivity and directs these contributions toward
refining boundaries. It distinguishes frames near the ground-truth boundaries from
other frames in a video, resulting in more accurately predicted boundaries.

• Experimental results indicate that the proposed method has a better performance
than the state-of-the-art (SOTA) methods, thus demonstrating its superiority and
effectiveness. In addition, this paper promotes the application of SSMs in TAL.

The remainder of this paper is structured as follows: Section 2 reviews related works.
Section 3 describes the overall framework and implementation details of the proposed
method, including SBM and BCS. Section 4 shows and analyzes the experimental results.
Section 5 concludes this paper and presents future work.
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2. Related Work
2.1. Temporal Action Localization (TAL)

TAL is a hot research topic in video understanding, which focuses on the localization
and classification of actions in uncropped videos. Currently, the mainstream TAL methods
directly perform frame-level classification and boundary regression. Due to its automation
and low complexity, it has gained significant interest over the past few years. Lin et al. [21]
propose the first purely anchorless TAL method that finds accurate boundaries even given
an arbitrary proposal. Similarly, Yang et al. [22] present an anchorless action localization
module that assists action localization through time points. Lin et al. [23] introduce a
1D temporal convolutional layer-based approach for TAL, which directly detects action
instances in untrimmed videos without relying on proposal generation.

In recent years, Transformer [9] has been widely used in video understanding. Inspired
by this, Zhang et al. [11] construct a Transformer-based TAL framework that integrates
multi-scale feature representation with local self-attention and applies a lightweight de-
coder to determine action instances. Tang et al. [18] follow the basic architecture of the
method in reference [11] but use simple max-pooling instead of the Transformer encoder
to minimize redundancy and accelerate training. Shi et al. [8] replace self-attention with a
scalable granularity perception layer and design a Trident-head for modeling boundaries
by estimating relative probability distributions around boundaries. Li et al. [13] propose
an innovative Transformer for TAL that adaptively integrates feature representations from
different attention heads. Furthermore, Yang et al. [19] propose an effective fusion strat-
egy, which dynamically adjusts the receptive field at different timesteps to aggregate the
temporal features within the action intervals.

2.2. State Space Models (SSMs)

SSM-based methods have emerged in recent years, since SSMs bring together the
strengths of multiple sequence model design paradigms. Gu et al. [24] introduce a new
SSM, which parameterizes the state matrix by a diagonal plus low-rank structure for high-
performance computation. At the same time, this model provides a new way to model
long-term temporal sequences. Smith et al. [25] further propose a simplified SSM for
sequence modeling, which utilizes a multiple-input and multiple-output SSM to achieve
efficient parallel scanning. Gupta et al. [26] design diagonal SSMs that contain only diagonal
state matrices and achieves comparable performance to the method in reference [24].
Fu et al. [27] design a new SSM layer that achieves a performance matching Transformer
in terms of languages synthesis. However, the constant sequence transformation of SSMs
limits their context-based inference capability, which hinders their further development in
long-term temporal sequence modeling.

Recently, Gu et al. [28] propose Mamba, which lets the model choose to transmit or
discard information along the sequence for the current token and designs a hardware-aware
parallel algorithm that brings fast inference with linear complexity. With the increasing
integration of Natural Language Processing techniques into video understanding, the
application of Mamba is becoming more prevalent. Liu et al. [29] design a set of visual state
space blocks with the 2D selective scanning module that allows the model to better adapt to
the non-sequential structure of 2D visual data. Similarly, Yang et al. [30] propose a basic non-
hierarchical SSM, which enhances its ability to learn visual features through a sequential 2D
scanning process and enables the model to discriminate the spatial relationships of tokens
through direction-aware updating. Zhu et al. [31] design a network with bidirectional
Mamba blocks. This network uses position embedding to mark the image sequence and
compresses feature representations using a bidirectional SSM. Li et al. [32] design a generic
module for extending the Mamba architecture to arbitrary multidimensional data.
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3. Method
Given a set of uncropped videos, the TAL model first extracts the temporal fea-

tures xϵRD×T of each video using a visual backbone network, where D and T are the
number of channels and frames. Then, it predicts a series of possible action instances
Ψ = {ψm = (ts

m, te
m, cm)}M

m=1, where M presents the number of predicted results for this
video, and ts

m, te
m and cm denote the boundary and action category of the m-th predicted

result, respectively. It is summarized as

Ψ = TLoc(x) (1)

3.1. Framework Overview

The overall framework is shown in Figure 1, which includes four components: visual
backbone network, SBM feature pyramid, detection head, and BCS.

Figure 1. Overall framework: the black and orange arrows indicate the pre-localized and the
boundary refinement stage, respectively.

First, the model extracts temporal features using a visual backbone network, and
the SBM feature pyramid encodes them into multi-scale temporal features containing
global context information. Next, the detection head performs frame-level localization and
classification to generate pre-localized results.

Next, BCS determines the action sensitivity of frames based on the pre-localized results
and then generates the contribution of each frame to the action instance. The contribution
is adopted for the weighted aggregation of temporal features, to boost the response values
of frames near boundaries and suppress others, which makes the predicted boundaries
more accurate.

Lastly, the updated features are fed sequentially into the SBM feature pyramid to
obtain the re-localized results.

The SBM feature pyramid and BCS are described in Sections 3.2 and 3.3, and Section 3.4
exhibits a time complexity analysis of the proposed method.

3.2. The SBM Feature Pyramid

Current TAL methods replace the Transformer encoder with CNNs to tackle the
problems of feature redundancy and rank loss caused by self-attention. However, these
methods still have shortcomings. For example, it has difficulty in dealing with long-term
temporal sequences, due to the limitation in capturing global time information.
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Recently, SSMs have been introduced into deep learning for sequence modeling. Their
main idea is applying hidden states to connect input and output sequences, essentially a
sequence transformation. Unlike the local modeling of CNNs, SSMs provide a more com-
prehensive data description through explicit hidden states and transformation equations.

Therefore, this paper designs an SBM feature pyramid. It applies hidden states to
provide forward and backward information for frames, which helps the model understand
the changes between frames. Specifically, the SBM feature pyramid consists of multiple
sequentially connected SBM layers, which pass the temporal features obtained from one
layer to the next for encoding, thus obtaining multi-scale temporal features.

Figure 2 depicts the SBM layer, which is separated into main and branch paths. The
main path contains a normalization module and an SBM module for aggregating global
context information and a down-sampling layer for constructing the feature pyramid. The
branch path is a residual connection, which connects the input directly to the main output
to minimize original information loss. The normalization process is represented by

x(l)Norm = Norm(x(l)) (2)

where Norm(•) denotes the layer normalization operation, x(l)Norm is the input temporal
feature of the l-th SBM layer, and x(0) is the initial temporal feature x.

Figure 2. The detailed architecture of the Separated Bidirectional Mamba (SBM) layer. The core of
SBM layer is the SBM module, which is composed of two parallel branches: a forward Mamba and a
backward Mamba.

Formally, the SBM contains two components: the forward and backward Mamba,
which are applied to incorporate forward and backward contextual information for
temporal features.
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Forward Mamba: The gate-modeling branch produces the temporal feature
→
y
(l)

that
incorporates the forward information. The above process is summarized as

→
p
(l)

= σ(Ln
(

x(l)Norm

)
) (3)

→
x
(l)

= Conv1dFD(Ln
(

x(l)Norm

)
) (4)

→
y
(l)
= SSMFD(

→
x
(l)
) (5)

where σ(•) presents the gate function, and the SiLU function is adopted in this paper.
Ln(•) is the linear layer. Conv1dFD refers to the forward 1D convolution. SSMFD is the
forward SSM.

SSMFD is presented to convert the input {→x
(l)
t }T

t=1 to the output {
→
y
(l)
t })T

t=1. Specifi-

cally, it converts the last hidden state
→
h
(l)
t−1 and the present input

→
x
(l)
t into the present hidden

state
→
h
(l)
t , then transfers

→
h
(l)
t to the present output

→
y
(l)
t . This conversion is formulated as

→
h
(l)
t = Ā

→
h
(l)
t−1 + B̄

→
x
(l)
t (6)

→
y
(l)
t = C

→
h
(l)
t (7)

where matrices Ā ∈ RB×T×D×N , B̄ ∈ RB×T×D×N , and C ∈ RB×T×N are trainable parame-
ters of SSMFD. B represents batch size, N is the state size, and T and D are the number of
frames and channels. Both Ā and B̄ are discretized. Ā and B̄ define the evolution of hidden

states, and C projects hidden states to outputs. The initial hidden state
→
h
(l)
0 is defined as a

zero vector.

Finally,
→
p
(l)

and
→
y
(l)

are multiplied to obtain the forward Mamba result f (l)FD to em-
phasize the key information and reduce the influence of secondary information, which is
formulated as

f (l)FD =
→
p
(l)
⊗
→
y
(l)

(8)

Backward Mamba: To fuse the bidirectional features, this method further defines the
backward Mamba. It incorporates backward information in temporal features, thus com-
plementing details and patterns that tend to be missed by forward information. Similarly
to forward Mamba, the computational process for backward Mamba is represented by

←
p
(l)

= σ(Ln(x(l)Norm)) (9)
←
x
(l)

= Conv1dBD(Ln(x(l)Norm)) (10)
←
y
(l)
= SSMBD(

←
x
(l)
) (11)

where Conv1dBD denotes the backward 1D convolution, sharing weights with Conv1dFD,
and SSMBD is the backward SSM, sharing weights with SSMFD.

Finally,
←
p
(l)

and
←
y
(l)

are multiplied to obtain the backward Mamba output f (l)BD as
shown in

f (l)BD =
←
p
(l)
⊗
←
y
(l)

(12)
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SBM concatenates f (l)FD with f (l)BD and then obtains the final result through the linear
layer. This operation is defined as

f (l)SBM = Ln(Concat( f (l)FD, f (l)BD)) (13)

Through the above steps, the SBM layer realizes the encoding of temporal features
at each scale and obtains the temporal feature y(l) that incorporates the global context
information. The overall process is summarized in

y(l) = f (l)SBM + x(l) (14)

Finally, y(l) enters the down-sampling layer to obtain the input of the next SBM layer,
as shown in

x(l+1) = DS(y(l)) (15)

where DS(•) denotes the maximum pooling layer.

3.3. Boundary Correction Strategy (BCS)

In TAL, not every frame contributes equally. In terms of the boundary regression
task, frames distant from the ground-truth boundaries often lead to boundary offset errors,
making predicted boundaries large biases, which reduces the localization accuracy.

Therefore, BCS calculates the frame contribution based on the pre-localized result,
and then uses it for feature updating, which corrects boundaries for refined-local results.
Formally, it divides the TAL into the pre-localized and the boundary refinement stage.

Pre-localized Stage: In the pre-localized stage, this paper follows the Trident-head [7]
for boundary regression. Trident-head includes start header, end header and center offset
header, which determine boundaries, and action centers, respectively.

For an arbitrary scale temporal feature Xϵ{x(l)}L
l=0, it is first encoded into three

features: IsϵRT , IeϵRT , and IoϵRT×2×(B+1), where Is and Ie denote each frame response
value as a start and end boundary, respectively, and Io denotes its relative center offsets.
The coding process is expressed as

Is, Ie, Io = F (X) (16)

where F (•) denotes the process of encoding.
Then, this paper estimates the distance probability distribution from the start boundary

to the action center, with the start response value and the relative center offsets. For example,
when frame i is the action center, the distance probability distribution P

(
ds

i = b
)

of the
distance ds

i between the start boundary and the action center is shown in Equation (17).
Moreover, b = 0, 1, . . . , B, B denotes the predefined maximum distance between the start
boundary and the action center.

P(ds
i = b) = φ(Is

i−b + Io
i,0,b) (17)

where Is
i−b represents the response value (the b-th frame to the left of frame i is the start

boundary), and Io
i,0,b denotes its relative center offsets.

Based on the above probability distribution, this paper approximates the start bound-
ary ts

i by calculating the expectation E
[
ds

i
]
, as shown in

E[ds
i ] =

B

∑
b=0

bP(ds
i = b) (18)

ts
i = (i− E[ds

i ])× δl−1 (19)
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where δ is the down-sampling rate.
Similarly, when the i-th frame is the action center, the end boundary ts

i is received by

P(de
i = b) = φ(Ie

i+b + Io
i,1,b) (20)

E[de
i ] =

B

∑
b=0

bP(de
i = b) (21)

te
i = (i + E[de

i ])× δl−1 (22)

where de
i denotes the distance from the end boundary to the action center. Ie

i+b represents
the response value (the b-th frame to the action center right is the end boundary), and Io

i,1,b
is its relative center offsets.

Then, the action instance ψi = (ts
i , te

i , ci) is given after merging the action boundary
with the action category. The action category is obtained from

ci = Cls(Xi) (23)

where Cls(•) is the classification head.
Finally, a non-maximal suppression operation is applied to filter the redundant action

instances to obtain pre-localized result Ψ = {ψm = (ts
m, te

m, cm)}M
m=1, which is expressed by

Ψ← {NMS(ψi)|Con f ψi
> λ} (24)

where NMS(•) is a non-maximal suppression operation. Con f ψi
denotes the confidence of

the action instance ψi. λ is the confidence threshold.
Boundary Refinement Stage: The boundary refinement stage uses the Feature Con-

tribution Evaluation Module (FCEM) to quantify the action sensitivity of each frame and
then gives it a contribution score. The FCEM is shown in Figure 3.

Figure 3. The detailed architecture of the Feature Contribution Evaluation Module (FCEM): FCME
quantifies each frame’s contribution based on pre-localized action instances.

First, FCEM calculates the action sensitivity for each frame based on the action instance
Ψ. Specifically, FCEM stacks each action instance with the timeline chronologically, assign-
ing nonzero action sensitivity to the overlapping portion of frames. The frame sensitivity
Gm is calculated using

Gm = (scoret)
T
t=1

scoret =

γ, t ∈ [ts
m, te

m]

0, else

(25)

where γ is a nonzero number.
Frame sensitivity reflects the degree sensitive of the frame to each action instance. In

fact, a frame often exists in multiple pre-localized action instances, and the more a frame is
located near the action boundary, the higher possibility of it appearing in an action instance.
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Therefore, to fully utilize the information of all action instances for frames, FCEM gets the
frame contribution Q by fusing frame sensitivities Gm as each frame importance in TAL.
The process is summarized in

Q = Norm(
M

∑
m=1

αmGm) (26)

where αm presents the weight of Gm in the fusion process, and Norm(•) is the
normalization process.

In addition, to improve the smoothness of the contribution matrix, FCEM also performs
Moving Average (MA) on Q, which fuses the information of neighboring frames to reduce
the sharp variations in data caused by noise. The frame contribution Q̃ is obtained using

Q̃ = MA(Q) (27)

Based on the frame contribution Q̃, BCS generates the updated temporal feature x′,
and the calculation process is shown in

x′ = x⊗ Q̃ ∗ ε (28)

where ε is the balance factor.
Finally, x′ performs action localization based on Equations (2)–(24), to obtain the

corrected action instances Ψ′ = {ψ′m = (ts
m
′, te

m
′, c′m)}M

m=1.

3.4. Time Complexity Analysis

First, the detailed processing of the SBM feature pyramid is represented by Algorithm 1.

Algorithm 1. The process of the SBM feature pyramid

Input: Temporal feature x.
Output: Encoded features {x(l)}L

l=0.
1: x(0) ← x
2: /* Construct SBM feature pyramid */
3: for l in {0,1,. . . ,L-1} do
4: x(l)Norm ← Norm(x(l))
5: /* SBM */
6: f (l)FD ← Foward Mamba(A, B, C, x(l)Norm)

7: f (l)BD ← Backward Mamba(A, B, C, x(l)Norm)

8: f (l)SBM ← Ln(Concat( f (l)FD, f (l)BD))

9: y(l) ← f (l)SBM + x(l)

10: x(l+1) ← DS(y(l))
11: end for
12: return {x(l)}L

l=0

Here, the time complexity is calculated as follows:
Since each SBM block incurs a time cost that is linear in its input sequence length [28],

the pyramid halves that length at every layer. The 0-th layer processes the original T frames
in O(T) time, the 1-st layer processes T

2 frames in O( T
2 ) time, and this pattern continues

until the (L − 1)-th layer takes O( T
2L−1 ) time. Summing the costs of all L layers yields

Ttotal(T) = ∑L−1
l=0 O( T

2l ) = O
(
(2− 1

2L−1 )T
)

. Because the bracketed factor is a bounded
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constant, the overall complexity remains O(T), which is markedly better than the O(T2)

complexity of Transformer.
Then, the detailed processing of BCS is represented by Algorithm 2.

Algorithm 2. BCS process

Input: Temporal feature x.
Output: Corrected action instances Ψ′.

1: /* Pre-localized stage */
2: {x(l)}L

l=0 ← SBM(x)
3: Ψ← detection head({x(l)}L

l=0)

4: /* Boundary refinement stage */
5: /* FCEM */
6: for m in {1,2,. . . ,M} do
7: for t in {1,2,. . . ,T} do
8: if t ≥ ts

m and t ≤ te
m then

9: scoret ← γ

10: else
11: scoret ← 0
12: end if
13: end for
14: Gm ← {(scoret)}T

t=1
15: end for
16: Q← Norm(∑M

m=1 αmGm)

17: Q̃← MA(Q)

18: x′ ← x⊗ Q̃ ∗ ε

19: Ψ′ ← detection head({x(l) ′}L
l=0)

20: return Ψ′

The time consumption of BCS comes mainly from FCEM, which has to traverse each
instance and each timestamp sequentially. Thus, its time complexity is O(MT). Since M is
generally less than T, it could be considered as linear time complexity.

Overall, with the time complexity of the detection head O((2− 1
2L )T), the total time

complexity of the proposed method is approximately O((4− 3
2L + M)T), which could

be considered as linear time complexity O(T). Therefore, compared to the Transformer-
based method, the proposed method downgrades the time complexity from quadratic
time complexity to linear complexity, achieving a similar time complexity as the CNNs-
based method.

4. Experiments
To evaluate the performance of the proposed method in TAL, this paper conducts

experiments on THUMOS14 [33], ActivityNet-1.3 [34], HACS [35], and FineAction [36].
Section 4.1 provides an introduction for public datasets and the evaluation metric, and
Section 4.2 describes the implementation details. Sections 4.3 and 4.4 show and analyze
the quantitative results and qualitative experiments, respectively. Section 4.5 exhibits the
results of ablation experiments, while Section 4.6 presents the results of error analysis.
Section 4.7 discusses the limitations of the proposed method.
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4.1. Datasets and Evaluation Metrics

The proposed method is evaluated on four challenging temporal action localization
benchmarks: THUMOS14, ActivityNet-1.3, HACS, and FineAction, each with distinct
characteristics and challenges.

THUMOS14 contains 20 action categories, with 3007 training and 3358 testing in-
stances. The actions are dense and often overlapping, making precise boundary localization
particularly difficult. Moreover, many actions are short and occur in quick succession,
increasing the risk of confusion between instances.

ActivityNet-1.3 includes about 20,000 videos and 200 action classes. It has 10,024 train-
ing, 4926 validation, and 5044 test videos. A key challenge lies in the large variation in
action duration (ranging from a few seconds to several minutes), which requires the model
to be robust across diverse temporal scales.

HACS consists of 50K videos containing 140K full clips. These videos contain 200 ac-
tion categories, the same categorization as the ActivityNet-1.3. Its training, validation,
and test sets have 37,613, 5981, and 5987 videos, respectively. The dataset emphasizes
long-term actions in complex scenes, often with substantial background motion or multiple
human–object interactions.

FineAction contains 106 fine-grained action categories, consisting of 17k unclipped
videos with fine-grained annotations of boundaries. Among them, there are 8440 videos in
the training set, 4174 videos in the validation set, and 4118 videos in the testing set. The
primary challenge is high inter-class similarity, which requires the model to distinguish
between subtle motion patterns.

To illustrate the unique challenges of each dataset, this paper presents representative
example images in Figure 4, highlighting issues such as action density, duration variance,
complexity, and fine-grained similarity.

Figure 4. Some representative example images in the dataset.

Evaluation Metric: To validate the effectiveness of the proposed method, this paper
uses the mean accuracy precision (mAP) across different temporal intersection over union
(tIoU) thresholds to assess the performance of different datasets. For THUMOS14, this
paper shows its results at tIoU thresholds [0.3:0.7:0.1]. For ActivityNet-1.3, HACS, and
FineAction, this paper experiments under the tIoU thresholds [0.5,0.75,0.95].

tIoU is the temporal intersection over union of the predicted action boundary
(ts

pred, te
pred) to the ground-truth (ts

gt, te
gt), which is given by

tIoU =
[ts

pred, te
pred] ∩ [ts

gt, te
gt]

[ts
pred, te

pred] ∪ [ts
gt, te

gt]
(29)

AP is the average precision of each category, which is obtained by calculating the area
under the P-R curve. The formulas for P(Precision) and R(Recall) are given by

P =
TP

TP + FP
(30)

R =
TP

TP + FN
(31)
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where TP denotes the number of true examples, FP means the number of false positive
examples, and FN is the number of false negative examples.

The mAP is the average of all categories’ AP. It is formulated as

mAP =
1
C

C

∑
j=1

APj (32)

where APj presents the AP of the j-th category, and C denotes the total number of categories.

4.2. Implementation Details

This paper extracts temporal features for datasets by pre-trained visual backbone
networks I3D [6], SlowFast [7], TSP [37], VideoMAEv2 [38], and InternVideo2-6B [39], and
trains the model with AdamW [40] optimizer. The down-sampling rate δ of the SBM feature
pyramid is 2. The initial learning rate is 10−4 for THUMOS14, and 10−3 for ActivityNet-1.3,
HACS and FineAction. To stabilize the training of the detection head, this paper separates
the gradient before the precoding layer and initializes the parameters using the Gaussian
distributionN (0, 0.1). Moreover, the cosine annealing algorithm [41] is employed to update
the learning rate. For THUMOS14, ActivityNet-1.3, HACS and FineAction, batch sizes are
2, 16, 16, and 20, with weight decay of 0.025, 0.04, 0.03, and 0.05. The model performs 40,
15, 25 and 25 epochs of training, respectively.

The size of B of the Trident-head of THUMOS14, ActivityNet-1.3, HACS, and Fine-
Action is 16, 15, 14, and 16, respectively. To filter out low-confidence action instances, the
confidence threshold λ is 10−3, and 2000 action instances are reserved for each dataset. In
FCEM, γ is 1, and ε is 3. All experiments are conducted using a single NVIDIA A800 GPU.

4.3. Quantitative Experiments

To validate the proposed method in TAL, this paper conducted a comparative anal-
ysis with SOTA methods on THUMOS14, ActivityNet-1.3, HACS, and FineAction. It is
mentioned that methods with * in the table are documented in InternVideo2-6B [39].

For THUMOS14, the proposed method conducts experiments based on three features:
the I3D, VideoMAEv2, and InternVideo2-6B features. Table 1 presents the results. The
average mAP on the InternVideo2-6B features is 73.7%, which is an improvement of 1.7%
from the previous best, and shows better results at all thresholds. Moreover, it is known that
mAPs are improved on VideoMAEv2 features at tIoU0.3 and tIoU0.5. This occurs because
SBM globally models temporal sequences, extracting features with more comprehensive
action information. Therefore, the model captures more complete action instances, thereby
increasing the overlap ratio between the predicted results and the ground-truth.

On ActivityNet-1.3, TSP or InternVideo2-6B is utilized as the video backbone network.
Table 2 shows the results. With the help of global contextual modeling by SBM, the
proposed method exhibits a SOTA performance with the same features when the tIoU
is 0.5 or 0.75. It is observed that although method [19] achieves a better average mAP
compared to Transformer-based methods, its performance at high tIoU thresholds is still
lower than method [13] due to the modeling limitation of CNNs. The proposed method
not only achieves the best performance on the average mAP but also outperforms the
Transformer-based and CNNs-based methods at high tIoU thresholds, which demonstrates
that the SBM has great potential for long-term temporal feature coding.
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Table 1. Comparison with SOTA methods on THUMOS14 (mAP).

Method Venue Backbone 0.3 0.4 0.5 0.6 0.7 Avg.

G-TAD [42] CVPR’2020 TSN 54.5 47.6 40.3 30.8 23.4 39.3
A2Net [22] TIP’2020 I3D 58.6 54.1 45.5 32.5 17.2 41.6

TCANet [43] CVPR’2021 TSN 60.6 53.2 44.6 36.8 26.7 44.3
RTD-Net [44] ICCV’2021 I3D 68.3 62.3 51.9 38.8 23.7 49.0

VSGN [45] ICCV’2021 TSN 66.7 60.4 52.4 41.0 30.4 50.2
ContextLoc [46] ICCV’2021 I3D 68.3 63.8 54.3 41.8 26.2 50.9

AFSD [21] CVPR’2021 I3D 67.3 62.4 55.5 43.7 31.1 52.0
ReAct [47] ECCV’2022 TSN 69.2 65.0 57.1 47.8 35.6 55.0
TadTR [12] TIP’2022 I3D 74.8 69.1 60.1 46.6 32.8 56.7

TALLFormer [48] ECCV’2022 Swin 79.0 - 63.2 - 34.5 59.2

ActionFormer [11] ECCV’2022 I3D 82.1 77.8 71.0 59.4 43.9 66.8
VideoMAEv2 84.0 79.6 73.0 63.5 47.7 69.6

TriDet [8] CVPR’2023 I3D 83.6 80.1 72.9 62.4 47.4 69.3
VideoMAEv2 84.8 80.0 73.3 63.8 48.8 70.1

ActionFormer * [39] ECCV’2024 InternVideo2-6B - - - - - 72.0
DualDERT [49] CVPR’2024 I3D 82.9 78.0 70.4 58.5 44.4 66.8

LFAF [50] TIP’2024 I3D 83.0 79.5 73.8 62.5 48.2 69.4
VideoMAEv2 84.6 80.8 73.5 61.7 48.6 69.8

DyFADet [19] ECCV’2024 VideoMAEv2 85.4 - - - 50.2 70.5

ADSFormer_AFNO [13] TMM’2024 I3D 84.4 80.0 73.1 62.9 46.9 69.5
VideoMAEv2 85.3 80.8 73.9 64.0 49.8 70.8

Ours
I3D 82.8 79.3 73.1 62.4 47.2 69.0

VideoMAEv2 85.6 80.9 74.5 63.9 48.9 70.8
InternVideo2-6B 87.4 83.8 77.4 67.8 52.1 73.7

Table 2. Comparison with SOTA methods on ActivityNet-1.3 (mAP).

Method Venue Backbone 0.5 0.75 0.95 Avg.

G-TAD [42] CVPR’2020 TSN 50.4 34.6 9.0 34.1
TCANet [43] CVPR’2021 TSN 52.3 36.7 6.9 35.5
VSGN [45] ICCV’2021 I3D 52.3 35.2 8.3 34.7
AFSD [21] CVPR’2021 I3D 52.4 35.2 6.5 34.3

TadTR [12] TIP’2022 TSN 51.3 35.0 9.5 34.6
TSP 53.6 37.5 10.5 36.8

ActionFormer [11] ECCV’2022 TSP 54.7 37.8 8.4 36.6
TALLFormer [48] ECCV’2022 Swin 54.1 36.2 7.9 35.6

TriDet [8] CVPR’2023 TSP 54.7 38.0 8.4 36.8
ActionFormer * [39] ECCV’2024 InternVideo2-6B - - - 41.2

DyFADet [19] ECCV’2024 TSP 54.7 38.0 8.4 38.5
ADSFormer_SA [13] TMM’2024 TSP 55.3 38.4 8.3 37.0

ADSFormer_AFNO [13] TSP 55.3 38.4 8.4 37.1

Ours TSP 57.8 40.0 8.4 38.6
InternVideo2-6B 62.3 43.7 9.8 42.0

On HACS, the proposed method applies its SlowFast and InternVideo2-6B features.
Table 3 shows the results. It achieves average mAP values of 45.2% and 37.5% on the
InternVideo2-6B and I3D features, respectively, both of which gain SOTA results. On the
SlowFast features, the proposed method also achieves competitive results. This is due to the
fact that the annotated segments in HACS are mainly long-term, facilitating the advantage
of the SBM in capturing long-term action instances, and BCS fully utilizes the pre-localized
results of the high tIoU limitation to correct for the action boundaries, resulting in a 0.2%
improvement in mAP at tIoU0.95.
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Table 3. Comparison with SOTA methods on HACS (mAP).

Method Venue Backbone 0.5 0.75 0.95 Avg.

G-TAD [42] CVPR’2020 I3D 41.1 27.6 8.3 27.5
TCANet [43] CVPR’2021 SlowFast 54.1 37.2 11.3 36.8

LoFi [51] NeurIPS’2021 TSM 37.8 24.4 7.3 24.6
ActionFormer [11] ECCV’2022 SlowFast 54.9 36.9 9.5 36.4

TadTR [12] TIP’2022 I3D 47.1 32.1 10.9 32.1

TriDet [8] CVPR’2023 I3D 54.5 36.8 11.5 36.8
SlowFast 56.7 39.3 11.7 38.6

ETAD [52] CVPR’2023 SlowFast 55.7 39.1 13.8 38.8
ActionFormer * [39] ECCV’2024 InternVideo2-6B - - - 43.3

DyFADet [19] ECCV’2024 SlowFast 57.8 39.8 11.8 39.2

Ours
I3D 55.6 37.6 11.9 37.5

SlowFast 57.9 39.7 12.0 39.1
InternVideo2-6B 62.2 46.5 14.4 45.2

On FineAction, the proposed method utilizes VideoMAEv2 and InternVideo2-6B for
feature extraction. Table 4 exhibits the results. On both features, it achieves more than a
1.0% improvement in the average mAP compared to SOTA methods, and reaches 29.1%
and 6.4% mAP at tIoU0.75 and tIoU0.95, which reveals the excellent performance of the
proposed method on fine-grained datasets. Specifically, the sequential frame modeling of
SBM enhances the ability to capture subtle action changes, and the feature pyramid enables
the model to accommodate action instances with different levels of granularity. Building
on this, BCS further refines the fine-grained boundaries, thereby increasing the precision of
boundary localization.

Table 4. Comparison with SOTA methods on FineAction (mAP).

Method Venue Backbone 0.5 0.75 0.95 Avg.

G-TAD [42] CVPR’2020 I3D 13.7 8.8 3.1 9.1
ActionFormer [11] ECCV’2022 VideoMAEv2 29.1 17.7 5.1 18.2

ActionFormer * [39] ECCV’2024 InternVideo2-6B - - - 27.7
LFAF [50] TIP’2024 X-CLIP 36.9 21.3 4.5 22.2

DyFADet [19] ECCV’2024 VideoMAEv2 37.1 23.7 5.9 23.8

Ours VideoMAEv2 40.0 24.5 4.8 24.8
InternVideo2-6B 45.4 29.1 6.5 29.1

4.4. Qualitative Experiments

To demonstrate the effectiveness of the proposed method in TAL, this paper visualizes
the qualitative comparison results on THUMOS14, in which the selected action instances
are all challenging scenarios.

In Figure 5, Tridet only constructs action instances near the ground-truth bound-
aries, whereas the proposed method locates more complete boundaries. This is due to the
high complexity of long-term actions, where distant frames tend to have large differences,
making it difficult to construct temporal features with a complete representation for such
actions, but it is certain that within the same action instance, the dynamic change between
neighboring frames is relatively small and regular. The proposed SBM uses the bidirec-
tional SSM to model each frame sequentially, incorporating global contextual information
for temporal features, which effectively mitigates the limitations in modeling long-term
temporal sequences, and aids the model in capturing more complete instances of the action.
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Moreover, the boundary obtained by solely introducing SBM remains imprecise. This
is because SBM still only considers all frames with the same contribution in the TAL. In
fact, frames near the boundaries play a different role than other frames in localizing action
instances. Frames near the boundaries contain richer information about actions than other
frames, which can assist the model in finding action instances that contain complete action
frames more naturally.

The proposed method exhibits a sharp decline in performance under high temporal
IoU thresholds. To better understand the reasons for the performance drop under high
temporal IoU thresholds like 0.95, this paper conducted further visualization analysis.

In Figure 6, this paper presents two representative examples where the model predic-
tions are semantically correct and visually aligned with the ground truth but fail to meet
the 0.95 threshold due to small boundary shifts. This highlights the inherent difficulty of
temporal localization at very high precision levels.

Figure 5. Visualization results of the proposed method on THUMOS14.

Figure 6. Visual analysis of the reasons for the performance drop under high temporal IoU threshold.

This performance drop primarily comes from two factors. First, a threshold of 0.95
requires nearly perfect alignment between the predicted segment and the ground truth.
Even a minor misalignment of 1–2 frames can cause an otherwise correct detection to be
classified as a false positive. Second, action boundaries are often ambiguous in practice,
particularly for complex or fine-grained actions. In many cases, it is difficult even for
human annotators to precisely define when an action begins or ends.

4.5. Ablation Study

To validate the excellence of the proposed method in TAL, a corresponding ablation
study is conducted on THUMOS14 to evaluate the effectiveness of the key components,
including SBM and BCS.
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Table 5 presents the ablation study of the proposed method on the THUMOS14. With
the addition of SBM, the model shows an improvement of more than 1.0% at each tIoU
threshold, which indicates that SBM effectively models all sequences to acutely sense and
understand the dynamic changes between frames, resulting in richer and more accurate TAL
results. With the further introduction of BCS, the model achieves significant improvement
at high tIoU thresholds. This is because results at high tIoU thresholds provide more
accurate boundaries, and BCS is based on self-learning, which means the more accurate pre-
localized boundaries will bring more valuable correction information to the corresponding
boundaries in the boundary refinement stage, leading them to become more accurate after
the secondary localization. However, if the SBM is removed, the model performance is
drastically reduced, which fully demonstrates that the provision of temporal features fusing
global temporal information is essential for TAL, and the BCS will be better facilitated to
work if more accurate action boundaries are obtained in the pre-localized stage.

Table 5. Performance analysis between SBM and BCS on THUMOS14.

Method SBM BCS 0.3 0.4 0.5 0.6 0.7 Avg.

1 86.0 82.6 76.2 66.0 50.5 72.3
2 ! 87.4 83.8 77.4 67.7 51.9 73.6
3 ! 85.8 82.7 76.2 66.5 51.3 72.5
4 ! ! 87.4 83.8 77.4 67.8 52.1 73.7

To explore the design space of bidirectional temporal modeling, this paper compares
several Mamba variants in Table 6. The experimental results indicate that using a bidi-
rectional Mamba consistently outperforms the unidirectional Mamba. This highlights the
benefit of modeling both past and future contexts in action localization.

Table 6. Comparison of Mamba variants on THUMOS14.

Method Weight Sharing Avg.

Unidirectional Mamba (Forward only) 71.5
Bidirectional Mamba (Addition) ! 72.8
Bidirectional Mamba (Concatenation) 73.5
Bidirectional Mamba (Concatenation) ! 73.7

Among the bidirectional variants, concatenation-based fusion performs better than
simple addition, indicating that preserving directional information before fusion is im-
portant. Furthermore, the best result is achieved when combining concatenation with
shared weights for forward and backward branches. This indicates that sharing parameters
between forward and back branches can serve as a regularizer and help prevent overfitting
in certain situations.

Table 7 compares the computational complexity of different variants on THUMOS14 in
terms of parameters, GMACs, and latency. The proposed method achieves a good balance
between efficiency and performance, with only 13.46 M parameters, 63.7 GMACs, and
215 ms inference time per video clip.
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Table 7. Analysis of the computational complexity on THUMOS14.

Method Params GMACs Latency

ActionFormer 27.90 M 45.3 224 ms
Baseline 15.99 M 43.7 167 ms
Baseline + SBM 13.46 M 32.3 100 ms
Baseline + BCS 15.99 M 86.4 342 ms
Ours 13.46 M 63.7 215 ms

Compared to the baseline, incorporating the SBM module significantly reduces the
latency to 100 ms while maintaining low GMACs, demonstrating the efficiency of our tem-
poral modeling design. In contrast, adding only the BCS module increases computational
cost due to the boundary refinement operations. The proposed method integrates both
SBM and BCS in a balanced way, offering better accuracy while keeping the latency close to
that of ActionFormer.

4.6. Error Analysis

This section follows the tool in [53] to analyze the localization results on THUMOS14,
which analyze the results in two parts: false positive analysis and sensitivity analysis.

False Positive Analysis: Figure 7 shows the distribution of action instances across
different K−G values, where G represents the quantity of ground-truth instances. From the
1G column on left, it is observed that the true positive instances constitute approximately
80% at tIoU = 0.5. This indicates the proposed method’s capability to estimate appropriate
scores for action instances. On the right, the analysis displays the impact of different
error types: localization errors and background errors are still the part that deserves
the most attention.

Figure 7. (Left): The false positive profile of the proposed method. (Right): The impact of error
types on the average-mAPN, where mAPN is the normalized mAP with the average number of
ground-truth instances per class.

Sensitivity Analysis: Figure 8 illustrates how sensitive the proposed method is to the
characteristics of various actions. There are three metrics: Coverage (ratio of action duration
to video length), Length (absolute action duration in seconds), and # Instances (per-video
count of homogeneous actions). These metrics are further categorized into XS (extremely
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short), S (short), M (medium), L (long,) and XL (extremely long). The results show that
the proposed method performs robustly across most action lengths, demonstrating that its
pyramid structure enables the effective localization of instances with varying durations but
still faces challenges in localizing XS and XL action instances.

Figure 8. On the left is the false positive profile of the proposed method, and on the right is the
impact of error types on the average mAPN.

4.7. Limitations

Despite the promising performance achieved by the proposed method, we observe
several limitations that warrant further improvement.

First, the proposed method can struggle with ambiguous action boundaries, partic-
ularly in scenarios where the transition between background and action is subtle. Even
small temporal misalignments can lead to performance drops under higher tIoU thresholds
like 0.95. Second, the proposed method faces difficulties in fine-grained action recognition.
In datasets like FineAction, where multiple action classes share highly similar visual and
temporal patterns, the proposed method sometimes confuses semantically close actions.
Third, in videos containing densely packed or overlapping actions, the proposed method
may miss shorter instances or produce redundant detections, especially when multiple
actions occur in rapid succession.

This paper illustrates some representative failure cases in Figure 9, including inaccurate
boundary localization and missed detections of shorter instances.

Figure 9. Some representative failure cases include inaccurate boundary localization and missed
detections of shorter instances.

5. Conclusions
This paper proposes a TAL method based on SBM and BCS. SBM understands the dy-

namic change of frames from the perspective of state transformation, constructing forward
and backward features based on the transformation equation. Then, it extracts temporal
features containing global contexts through feature filtering and feature combining, which
effectively improves the modeling ability for long-term temporal sequences. Moreover, BCS
estimates the frame contribution based on the sensitivity of frames to pre-localized results
and uses the frame contribution to aggregate temporal features. It effectively boosts the
response values of frames near boundaries in the boundary refinement stage and weakens
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the response values of other frames, resulting in more accurate corrected boundaries. The
experimental results on public datasets consistently prove the validity and feasibility of the
proposed method and promote the further application of SSMs in TAL.

In future work, we aim to address the observed performance gap on XS and XL action
instances. For XS cases, adaptive segment sampling may help retain fine-grained temporal
cues. For XL actions, multi-scale variants of the BCS module can be developed to better
capture hierarchical boundary information across long-term temporal sequences.
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