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Abstract

Quantum secret sharing (QSS) faces inherent limitations in scaling to multi-user networks
due to excess noise introduced by highly asymmetric beam splitters (HABSs) in chain-
structured topologies. To overcome this challenge, we propose an optical frequency comb-
based continuous-variable QSS (OFC CV-QSS) scheme that establishes parallel frequency
channels between users and the dealer via OFC-generated multi-wavelength carriers. By
replacing the chain-structured links with dedicated frequency channels and integrating the
Chinese remainder theorem (CRT) with a decentralized architecture, our design eliminates
excess noise from all users using HABS while providing mathematical- and physical-
layer security. Simulation results demonstrate that the scheme achieves a more than 50%
improvement in maximum transmission distance compared to chain-based QSS, with
significantly slower performance degradation as users scale to 20. Numerical simulations
confirm the feasibility of this theoretical framework for multi-user quantum networks,
offering dual-layer confidentiality without compromising key rates.

Keywords: optical frequency comb; quantum secret sharing; continuous-variable; quantum
communications

MSC: 81P94; 81P45

1. Introduction
Quantum secret sharing (QSS) [1–8], as a multi-party secure quantum communica-

tion protocol, achieves dual-layer (quantum and physical) confidentiality by partitioning
secrets among participants so that only authorized user groups can reconstruct the full
information. In such a system, a designated dealer receives quantum states from multiple
users through quantum channels and then distributes secrets and keys to ensure that no
subset below the threshold can access the complete key information. Since the initial QSS
proposal [1], numerous schemes have emerged [2–4]. In 2005, Christian Schmid et al. [5]
introduced a single-qubit QSS with chain-structured transmission. Subsequently, Warren P.
Grice and Bing Qi [6] developed continuous-variable QSS (CV-QSS) using similar architec-
tures, followed by user-side and structural refinements [7,8]. Nevertheless, these works
remain constrained by chain topologies, inevitably introducing excess noise through highly
asymmetric couplers in multi-user quantum channels.

Meanwhile, optical frequency combs (OFCs) have gained attention as efficient WDM
sources [9]. An OFC spectrum comprises equally spaced narrowband lines, fn = f0 + n · fr
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where f0 is the carrier-envelope offset frequency, fr is the repetition rate, and n is the
mode index. Their advantages in spectral efficiency [10], receiver design [11–14], and
signal processing [15–17] for WDM have motivated Lars Lundberg et al. [18] to implement
OFC-based WDM transmission. Yijun Wang et al. [19] further leveraged OFCs for parallel
transmission and coherent reception to boost CV-QKD key rates. While microresonator-
based OFCs enable chip-scale integration [20,21], their phase noise (>100 rad/Hz1/2 [22])
and line-spacing instability limit multi-user synchronization. We employ standard fiber-
based OFCs due to their superior phase coherence (<10 rad/Hz1/2 [19]) and precise
frequency control, which are critical for parallel quantum channels requiring sub-Hz stabil-
ity. Despite QSS’s greater need for parallel multi-user quantum channels, no theoretical
or experimental OFC-based QSS studies exist. While recent experimental advances have
demonstrated chip-based generation of photonic graph states for measurement-driven
quantum processing [23], hyperentanglement-enhanced high-capacity quantum secure
direct communication [24], and robust coherent-state QSS implementations tolerant of chan-
nel imperfections [25], these approaches fundamentally constrain scalability in multi-user
secret sharing. Chip-integrated architectures lack wavelength-agile parallelism for dynamic
user access; hyperentanglement systems incur prohibitive hardware complexity beyond a
few-user scenarios; and existing CV-QSS experiments remain bound to chain-structured
topologies that suffer from cumulative noise. Although microresonator soliton microcombs
offer chip-scale advantages [26], this work employs fiber-based OFCs due to compatibility
constraints with existing CV-QSS implementations and laboratory capabilities.

This work proposes an OFC-based CV-QSS scheme. Building on decentralized QSS
architectures, we establish dedicated frequency channels between the dealer and individual
users via OFCs, eliminating excess noise from chain couplers and removing idealistic
assumptions (e.g., equidistant users). Consequently, we resolve the severe degradation
of key rates and transmission distance that occurs with user scaling. Simultaneously, the
Chinese remainder theorem (CRT) and decentralized structures ensure mathematical and
architectural security, providing non-quantum layer protection.

This paper is organized as follows. In Section 2, we detail the mathematical foun-
dations of the OFC-based CV-QSS scheme and describe the process of generating multi-
frequency quantum states via OFCS for quantum transmission of our proposed OFC-based
CV-QSS scheme. Additionally, we present the protocol design and implementation work-
flow. In Section 3, we firstly establish the classical (non-quantum) security through mathe-
matical formalism and architectural analysis, then analyze the system security in terms of
quantum aspects. Through numerical simulations, we evaluate the system performance,
confirming the feasibility and superiority of the proposed scheme. The performance of the
scheme is analyzed and verified via numerical simulations in Section 4. And we present
our conclusions in Section 5.

2. Optical Frequency Comb-Based Continuous-Variable Quantum Secret
Sharing Scheme
2.1. Preliminaries of the Chinese Remainder Theorem

The Chinese remainder theorem states: Let m1, m2, · · · , mk be k pairwise relatively
prime positive integers. Then, for any integers c1, c2, · · · , ck, there exists an integer x
such that 

x ≡ c1 (mod m1)

x ≡ c2 (mod m2)

· · ·
x ≡ ck (mod mk)
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all of which hold. Moreover, in the sense of modulo m1m2 · · ·mk, the solution of the above
system of congruence equations is unique and can be expressed as

x ≡ x0 (mod m1m2 · · ·mk)

Here, x0 can be determined as follows: Let Mi =
1

mi
(∏k

j=1 mj), 1 ⩽ i ⩽ k, and assume

that M−1
i is the multiplicative inverse of Mi modulo mi. Then we can take

x0 =
k

∑
j=1

Mj M−1
j cj

The proof of this theorem is straightforward. The integer x that satisfies the system
of congruence equations can also be obtained in the following way: Let x1 = c1, then x1

satisfies the first equation. Consider the numbers x1 + m1, x1 + 2m1, · · · , x1 + m2m1. Since
(m1, m2) = 1, they form a complete residue system modulo m2. Therefore, there is an
x2 among them such that x2 ≡ c2 (mod m2), and this x2 satisfies the first two equations
simultaneously. Then consider x2 + m2m1, x2 + 2m2m1, · · · , x2 + m3m2m1 and so on. By
successive iteration, the integer xk that satisfies all the equations can be found.

If we do not know all the remainders of the congruence equations, taking the number
of users as three as an example, given moduli n1 = 3 and n2 = 5 (pairwise coprime)
with known remainders x ≡ 2 (mod 3) and x ≡ 3 (mod 5), the equations can be merged
into x ≡ 8 (mod 15). However, if the remainder constraint for the third modulus n3 = 7
is missing, the solution is not unique; substituting x = 15m + 8 and iterating m from 0
to 6 yields seven candidate solutions modulo 105 (i.e., x = 8, 23, 38, 53, 68, 83, 98). All
candidates satisfy the known equations, but the absence of the mod 7 constraint prevents
the unique determination of x.

2.2. Optical Frequency Comb-Based Continuous-Variable Quantum Secret Sharing Scheme

This work presents a CV-QSS architecture that integrates phase-randomized optical
frequency combs with displacement-driven quantum state modulation, enabling high-
dimensional secure communication. The system leverages a multi-wavelength quantum
source generated by the dealer, characterized by a central frequency f s

0 and repetition rate
f s
r . The quantum field optical comb is mathematically expressed as follows:

ŝ(t) =
nmax

∑
n=nmin

(
XA

n + iPA
n

)
exp{j[−φ(t) + 2π( f s

0 + n f s
r )t]}, (1)

where XA
n and PA

n denote quadrature components following zero-mean Gaussian distri-
butions with variance σ2 (in shot-noise units), and φ(t) represents phase noise from laser
fluctuations. Critically, each sub-comb branch is modulated with Rayleigh-distributed
amplitudes Vn ∼ Ra(σ) and uniformly randomized phases Φn ∈ [0, 2π], which collectively
act as displacement operators D(αn) to coherently modulate the two-mode squeezed vac-
uum (TMSV) states transmitted by Userj, where D(αk) = exp(αk â† − α∗k â) with αk = VkejΦk

encodes classical randomness into TMSV states.
The dealer demultiplexes the optical comb into N = nmax − nmin + 1 parallel sub-

channels. For central sub-channels (k = nmin + 1, . . . , nmax − 1), the displacement parameter
αk = VkejΦk is generated through Rayleigh-amplitude and random-phase modulation.
This displacement operation directly impresses classical randomness onto the quantum
noise of Userj’s TMSV states, achieving quadrature-dependent encoding while preserving
their inherent squeezing correlations. The exponential decay of the Rayleigh distribution
inherently suppresses large-amplitude modulation events, confining excess noise near the
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shot-noise limit. Edge sub-channels (r = nmin, nmax) encode fixed quadratures XA
r , PA

r to
facilitate phase drift compensation during detection.

At the receiver, Userj employs a local optical frequency comb ( f L
0 = f s

0 , f L
r = f s

r ) to
demultiplex the incoming signal into N frequency bins. Pilot tones are isolated for phase
noise estimation via a phase-locked loop (PLL), while data-carrying sub-channels undergo
adaptive homodyne detection. The pre-applied displacement modulation D(αk) reshapes
the quadrature noise of the TMSV states, enabling direct measurement of their variances
through X/P-basis homodyne detectors. Real-time phase modulation aligns measurement
bases with the dealer’s encoding parameters, ensuring that the bases match for sifting.

Post-processing involves four key steps, as follows: (1) Basis sifting, where Userj

announces measurement bases and the dealer retains data from matched sub-channels;
(2) parameter estimation, leveraging public disclosure of partial keys to evaluate channel
transmittance Tk and excess noise ϵk, with Rayleigh statistics enabling precise noise-floor
calibration; (3) multi-mode reconciliation using rate-adaptive LDPC codes optimized by dis-
placement correlation matrices; and (4) privacy amplification via universal hashing, where
security proofs exploit the phase-space symmetry induced by displacement operations.

By unifying classical phase randomization with quantum displacement operations
as in Figure 1, this architecture establishes a resource-efficient framework for large-scale
quantum-secured networks. Figures 1 and 2 depict the operational workflow of the pro-
posed OFC CV-QSS scheme: (a) The dealer first determines the number of optical frequency
comb (OFC) carrier pairs based on the user count. (b) Point-to-point quantum commu-
nication channels are established individually between the dealer and each user through
dedicated OFC carriers. This process follows CV-QSS fairness protocols. (c) After all
quantum links are established, the minimum key rate among the point-to-point connec-
tions defines the system key rate lower bound R = min{R1, R2, . . . , Rn}. The final shared
secret key is then derived through classical post-processing of quantum-measurement
outcomes. The dealer’s optical comb not only serves as a multi-wavelength carrier but also
physically enhances security through displacement-driven modulation of Userj’s TMSV
states, ensuring compatibility with existing fiber-optic infrastructure and enabling high-rate,
long-distance CV-QKD deployment.

Then, we present a secure CV-QSS scheme based on optical frequency combs, enabling
the dealer to distribute a classical secret S to n participants via the CRT. The protocol
consists of three phases [4].

2.2.1. Initialization

The dealer selects n primes mU1 = 2, mU2 = 3, ..., mUn (e.g., the first n primes),
which are inherently coprime (i.e., gcd(mUi , mUj) = 1 for all 1 ≤ i ̸= j ≤ n). The secret
S ∈ {0, 1, ..., M}L, a checksum sequence R ∈ {0, 1, ..., M}L1 , and a unique pointer P∗ ∈
{0, 1, ..., M}L2 are generated, where M = ∏n

k=1 mUk − 1. The dealer put P∗ behind S and
embeds them into R to form a sequence X as Figure 3, ensuring the uniqueness of P∗ (i.e.,
if a substring Tj = P∗, all other Tk ̸= P∗). Shadows XUi = X mod mUi are computed for
each participant Ui, and the parameters {mU1 , ..., mUn}, L, L1, L2, P∗, verification data V,
and hash function H() are published.
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Figure 1. Proposed optical frequency comb–based continuous–variable quantum secret sharing scheme.

Figure 2. The quantum communication between a random user and the dealer. The ai represent
squeezed vacuum states at different transmission stage.

Figure 3. How to determine Message X through the ciphertext S, checking sequence R, and determine
pointer P∗.
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2.2.2. Distribution

The dealer distributes XUi to each user Ui via optical frequency comb-based quantum
channels: 1. State Preparation: Each Ui prepares L + L1 + L2 two-mode squeezed vacuum
states, with quadratures derived from vacuum states x̂(0)1 , p̂(0)1 and x̂(0)2 , p̂(0)2 ∼ N(0, 1) with
squeezing parameter r, satisfying:

lim
r→+∞

x1 = x2, lim
r→+∞

p1 = −p2.

2. Eavesdropping Detection: Users send the squeezed state a2 and coherent states c
to the dealer for error rate analysis. If anomalies are detected (e.g., excess error rate),
communication is restarted. 3. Message Modulation: The dealer modulates received
states with αj ∼ N(XUi , σ2) and returns the modulated state a4 for decryption. 4. Joint
Measurement: Users perform two-mode Bell measurements (using balanced beam splitters
and homodyne detectors) on local state a1 and received state a6 to decrypt XUi .

2.2.3. Reconstruction

To securely recover S, all n users collaborate as shown in Figure 3: 1. Encryption
& Exchange: Each Ui generates a random sequence Ui ∈ {0, ..., M}L+L1+L2 , encrypts
their shadow as (XUi

j + Ui,j) mod (M + 1), and exchanges encrypted messages. 2. Iter-
ative Verification: Starting from j = 0, users increment j, broadcast the j-th round keys
U1,j, U2,j, ..., Un,j, and decrypt XUi

j = (MUi
ej − Ui,j) mod (M + 1). Using CRT, they recover

Xj, compute V′
j = H(Xj + j(L + M)), and abort if V′

j ̸= Vj. 3. Secret Extraction: When
j = L + L2, users check if the substring Tj = Xj−L2+1, ..., Xj matches P∗. If matched, the
secret S = Xj−L−L2+1, ..., Xj−L2 is extracted; otherwise, the loop continues.

3. Security Analysis
In this section, we first conduct a security analysis of the proposed OFCQSS scheme.

Additionally, since the quantum key distribution protocol serves as a security technique in
this paper, we evaluate the performance of the scheme based on the security analysis of
quantum key distribution. This evaluation primarily focuses on the performance metrics of
the scheme, such as the secure key rate and noise.

3.1. Mathematical and Structural Security Analysis
3.1.1. Mathematical Security Proof Based on the Chinese Remainder Theorem

In the application of the Chinese remainder theorem, the secret S is decomposed into
multiple remainders (shares), with each user holding only the remainder under a specific
modulus. For example, in a two-user scheme, the secret S is decomposed into XU1 ≡ X
mod mU1 and XU2 ≡ X mod mU2 , where the moduli mU1 and mU2 are coprime. Only by
possessing both XU1 and XU2 can the original message X be recovered through CRT, and
the secret S be extracted accordingly.

The security guarantee mechanism of CRT is as follows [4]:

(1) Mathematical irreversibility: Knowing a single remainder (e.g., XU1 or XU2) cannot
uniquely determine the original value X. For instance, if mU1 = 2 and XU1 = 0, X
could be 0, 2, 4, etc.; if mU2 = 3 and XU2 = 0, X could be 0, 3, 6, etc. Thus, the
information entropy of a single remainder is much lower than that of the complete secret,
making it impossible to effectively recover the secret through exhaustive enumeration
or reverse calculation.

(2) Information entropy separation: As analyzed in the paper, the information entropy of
each share (e.g., XU1 or XU2) is 1 bit and log2 3 bits, respectively, while the entropy of
the complete message X is log2 6 bits. The information contained in a single share is
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insufficient to cover the entropy of the complete secret, preventing participants from
inferring the global secret through local information

(3) Time complexity: If an attacker attempts to guess other participants’ shares through a
single remainder, they need to enumerate all possible combinations. Since the product
of the moduli grows exponentially with the number of participants, the complexity of
exhaustive search is too high to be feasible.

The CRT—through its mathematical irreversibility and information entropy separation
mechanism—ensures that the secret must be jointly recovered from multiple remainders. A
single remainder provides only partial information and cannot be used to reverse-engineer
the complete content. This characteristic completes the mathematical security proof of the
system and eliminates the possibility that an attacker could guess other users’ information
from partial shares.

3.1.2. Structural Security Proof Based on Decentralization

Fairness structure: The fairness mechanism of our proposed protocol, as illustrated
in Figure 3, ensures that all participants either successfully reconstruct the secret simul-
taneously or fail together by progressively verifying messages in each recovery round,
utilizing a hidden determination pointer to mark the end of the secret, and incorporating a
sufficiently long random check sequence. Specifically, if cheating occurs before the secret’s
position or after the pointer is fully revealed, it will either be detected immediately or render
both parties unable to confirm the secret; if cheating occurs after the secret’s position but
before the pointer is fully revealed, both parties still have a high probability of recovering
the secret; the only scenario where a cheater could exclusively obtain the secret (cheating at
the secret’s exact position) has an extremely low probability (inversely proportional to the
check sequence length), and when the check sequence is sufficiently long, this unfairness
becomes negligible [4].

Decentralized structure: Our system architecture employs a decentralized structure [7],
where the traditional QSS scheme’s receiving parties (dealer and user) are granted equal
status—each node can function either as a user for key distribution or as a dealer serv-
ing as the system receiver. This decentralized architecture eliminates the security risks
and vulnerabilities inherent in centralized systems, while providing more flexible path
selection options. The approach establishes a theoretical foundation for constructing and
implementing multi-user network configurations.

3.2. Quantum Security
3.2.1. Quantum Security Analysis

As for the no-attack situation in Figure 2, we consider a three-user CV-QSS protocol
where an honest dealer is selected among the participants, while users U1 and U2 prepare
squeezed vacuum states (a1, a2). Mode a2 is transmitted to the dealer through a noisy
quantum channel, resulting in mode a3 characterized by the following [4]:

x3 =
√

η1x2 +
√

1 − η1xN1,

p3 =
√

η1 p2 +
√

1 − η1 pN1,
(2)

where η1 denotes channel transmissivity, and xN1, pN1 ∼ N (0, Σ2
1) denotes model additive

Gaussian noise. The dealer then performs displacement modulation on a3 using the
message XA/B, generating mode a4:

x4 = x3 + XA
k ,

p4 = p3 + PA
k ,

(3)
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With XA
k , PA

k ∼ N (X(A/B), σ2) [19], the modulated state is sent back to U1, undergoing
channel noise to become a5:

x5 =
√

η2x4 +
√

1 − η2xN2,

p5 =
√

η2 p4 +
√

1 − η2 pN2,
(4)

where xN2, pN2 ∼ N (0, Σ2
2) and η2 is the reverse channel parameter. To compensate for

channel loss, a5 is amplified with gain g =
√

1/(η1η2):

x6 = gx5. (5)

A Bell measurement on a1 and a6 produces the following outcomes:

x7 = 1√
2
(x6 + x1), p7 = 1√

2
(p6 + p1),

x8 = 1√
2
(x6 − x1), p8 = 1√

2
(p6 − p1).

(6)

For a squeezing parameter r > 0, the x8 quadrature follows a Gaussian distribution:

x8 =
XA

k√
2η1

+

√
1 − η1 xN1√

2η1
+

√
1 − η2 xN2√

2η1η2
− e−r x̂0

2. (7)

The corresponding signal and noise variances are as follows:

Vs =
σ2

2η1
, (8)

Ns =
1 − η1

2η1
Σ2

1 +
1 − η2

2η1η2
Σ2

2 − e−2r, (9)

Yielding the signal-to-noise ratio γ = Vs/Ns, the mutual information is then:

I(S, R) =
1
2

log2(1 + γ). (10)

Therefore, we can ensure that communication is reliable under certain conditions [4].
Similarly, we can also ensure that communication is reliable under internal attacks because
the channel transmission efficiency η is large enough [4,6,7]. This relies on the fact that each
sub-channel between individual users and the dealer is generated through the frequency
entanglement properties of an optical frequency comb. These sub-channels remain spectrally
independent while maintaining phase locking via a common pump laser source. Consequently,
multiplexed QSS signals can be simultaneously transmitted through a single optical fiber,
thereby enhancing the system’s multi-user scalability.

3.2.2. Numerical Simulation

The parameters in our experiment are as follows: The attenuation coefficient of a
standard fiber link is δ = 0.2 dB/km; the detection efficiency and electronic noise of the im-
perfect heterodyne detector are µ = 0.6 and vel = 0.05; the reconciliation efficiency is β = 0.98;
and the system excess noise is ξ0 = 0.001. The nonlinear coefficient is γ = 1.3 W−1km−1;
the dispersion parameter is D = 16 × 10−6 s/(m · km) = 16 ps/(nm · km); the system
repetition rate is frep = 5 × 107 Hz, and the crosstalk coefficient is ξ = 10−Re/10, where the
extinction ratio is Re = 40 dB.

For the system’s maximum transmission distance and key rate [7], we first consider the
point-to-point QKD key rate Ri and transmission distance between each user Ui and the des-
ignated dealer. The system key rate is given by R = min{R1, R2, . . . , Rd−1, Rd+1, . . . , Rn},
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which reaches its minimum at the maximum transmission distance [6,7]. The asymptotic
secret key rate lower bound for the QSS scheme is given by [27,28]:

R = βIUD − χDE, (11)

where β is the reconciliation efficiency, IUD is the mutual information between the user and
dealer, and χDE is the Holevo bound between Eve and the dealer.

However, because our system multiplexes multi-channel QSS signals in a single fiber
via optical frequency comb technology, we must account for noise induced by frequency
differences rather than noise from users Uj coupled through highly asymmetric beam
splitters (HABSs). On the one hand, when multiplexing multiple quantum signals through
a single optical fiber, the generation of optical frequency combs (OFCs) in practical systems
is fundamentally constrained by a finite extinction ratio Re [19], while inter-channel guard
bands are intentionally incorporated during system design [18,29]. Consequently, we must
account for inter-channel crosstalk noise (εcro). On the other hand, since chromatic dispersion
causes unavoidable phase deviations [18,19], it is necessary to consider the nonlinear noise
(εnon) [30,31]. Therefore, the total excess noise can be expressed as follows:

εtotal = εcro + εnon + ε0 (12)

where
εcro = 2(N − 1) · ξ · Va,

εnon ∝ γ2P2
avg L2

eff e−αL Dλ2

c
∆ f 2

(13)

where

• N is the total number of channels;
• Leff is the effective length;
• ∆ f is the channel spacing.

Then, the channel-added noise can be expressed as follows:

χline =
1
T
− 1 + εtotal (14)

and the noise between the dealer and user is given by the following:

χhet =
2 − µ + 2νel

µ
, (15)

Then, the overall noise can be expressed as follows:

χtot = χline +
χhet

T
. (16)

The Shannon mutual information between the user and dealer is as follows:

IUD = log2

(
V + χtot

1 + χtot

)
, (17)

where V = 1 + VU , and VU is the modulation variance at the user.
Assuming the loss and noise in Bob’s detector are trusted (inaccessible to eavesdrop-

pers), the Holevo bound between Eve and the dealer is as follows:

χDE =
2

∑
j=1

G
(

λj − 1
2

)
−

5

∑
j=3

G
(

λj − 1
2

)
, (18)
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where G(x) = (x + 1) log2(x + 1)− x log2 x, and λj are the symplectic eigenvalues derived
from the covariance matrix:

λ2
1,2 =

1
2

[
A ±

√
A2 − 4B

]
, (19)

where
A = V2(1 − 2T) + 2T + T2(V + χline)

2 (20)

B = T2(Vχline + 1)2, (21)

and
λ2

3,4 =
1
2

[
C ±

√
C2 − 4D

]
, (22)

where
C =

1

T2(V + χtot)
2

{
A(χhet)

2 + B + 1

+2χhet

[
V
√

B + T(V + χline) + 2T(V2 − 1)
]}

,
(23)

D =

(
V +

√
Bχhet

T(V + χtot)

)2

, (24)

λ5 = 1 (25)

Subsequently, we use the maximum likelihood estimation (MLE) mentioned in
Appendix A to determine the channel parameters, thereby achieving a more precise esti-
mation of the upper bound for the asymptotic key rate.

4. Performance Analysis and Discussion
In Figure 4, we compare the key rate and distance relationships between the traditional

chain-structured DQSS scheme and the OFC-based CV-QSS scheme under different user
scenarios. As shown in the results, under identical parameter conditions, the OFC-based
CV-QSS scheme achieves a 50% improvement in maximum transmission distance compared
with the traditional chain-structured DQSS scheme. Moreover, this performance gap widens
as the number of users increases.

In other words, similar to other chain-structured CV-QSS schemes [6,7], the maximum
transmission distance of chain-structured DQSS schemes decreases significantly with
increasing user count. By contrast, the OFC-based QSS scheme exhibits a substantially
smaller reduction in maximum transmission distance as the number of users grows.

This outcome aligns with our theoretical expectations. In traditional chain-structured
QSS schemes, the channel-added noise is given by the following:

χline =
1
T
− 1 +

n

∑
j=1

ξ j, (26)

where each ξ j increases with transmission distance, resulting in n-fold amplification. Con-
versely, in our proposed OFC-based CV-QSS scheme, an increase in distance or in the
number of users causes only a single change in the variables εcro and εnon in

χline =
1
T
− 1 + εtotal = line =

1
T
− 1 + εcro + εnon + ε0 (27)

At the system level, an inverse correlation constraint exists among key rate, trans-
mission distance, and user capacity; enhancing any one of these parameters inevitably
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compromises the other two. This aligns with fundamental physical limits and constitutes
an intrinsic characteristic of QSS schemes.

(a)

(b)

Figure 4. (a) Secretkey rate versus transmission distance for the proposed OFC-based quantum
secret sharing scheme (solid line) and the decentralized quantum secret sharing scheme (dotted
line). (b) Secret key rate under finite-size composable security analysis versus transmission dis-
tance for the proposed OFC-based quantum secret sharing scheme (solid line) and the decentralized
quantum secret sharing scheme (dotted line). The blue, orange, yellow, and purple lines corre-
spond to user quantities of n = 3, 10, 15, and 20, respectively. The black dotted line denotes the
Piradola–Laurenza–Ottaviani–Banchi (PLOB) bound.

5. Conclusions
In this paper, we proposed an optical frequency comb-based continuous-variable

quantum secret sharing (OFC CV-QSS) scheme that overcomes multi-user scalability lim-
itations by replacing chain topologies with highly asymmetric beam splitters (HABSs)
with OFC-generated parallel quantum channels. This eliminates the need to aggregate
cumulative noise from sequential user couplings in system key rate calculations. Beyond
inherent quantum-layer security, our solution establishes dual protection—the Chinese
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remainder theorem (CRT) ensures mathematical security for classical shadows through
information-theoretic irreversibility, while decentralized architectures enforce structural
security via distributed control and collaborative reconstruction. Numerical simulations
confirm that the scheme achieves a substantially extended maximum transmission distance
compared with chain-QSS, with significantly slower performance degradation as users
scale, while maintaining full compatibility with existing fiber infrastructure. Future work
will focus on experimental validation and OFC spectral optimization.
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Abbreviations
The following abbreviations are used in this manuscript:

QSS Quantum secret sharing
CV-QSS Continuous-Variable Quantum Secret Sharing
OFC Optical Frequency Comb
CRT Chinese Remainder Theorem
WDM Wavelength Division Multiplexing
TMSV Two-Mode Squeezed Vacuum
PLL Phase-Locked Loop
CV-QKD Continuous-Variable Quantum Key Distribution
LDPC Low-Density Parity-Check
HABS Highly Asymmetric Beam Splitters
DQSS Decentralized Quantum Secret Sharing
MLE Maximum Likelihood Estimation
EC Error Correction
AEP Asymptotic Equipartition Property
SNR Signal-to-Noise Ratio

Appendix A
The maximum likelihood estimators are employed to characterize channel parameters,

thereby enabling tighter bounds on the achievable key rate. Based on finite-size regime
assumptions and composable security analysis [28,32,33], the secret key rate is proven to
satisfy the inequality:

RM,r ≥ (1 − r)p
[

RϵPE −
1√

(1 − r)M
∆AEP

(
pϵ2

s /3, N
)

+
log2

[
p
(
1 − ϵ2

s /3
)]

+ 2 log2

√
2ϵh

(1 − r)M

]
,

(A1)

• M: Total signal states transmitted by Alice.
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• m: Number of signal states (from a block M) for which Alice discloses the encoding k,
with r = m

M .
• p: Error correction (EC) success probability.
• RϵPE : Finite-size key rate.
• ϵtot = ϵcor + ϵs + ϵh + pϵPE: Total security error.
• ∆AEP: Asymptotic equipartition property term, defined as follows:

∆AEP(ϵs, |L|) := 4 log2

(
2
√
|L|+ 1

)√
log(2/ϵ2

s ), (A2)

where |L| denotes the cardinality of the dealer’s outcome, which equals N in
our scheme.
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