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Abstract

In the realm of 3D curve reconstruction, Non-Uniform Rational B-Splines (NURBSs) offer a
versatile mathematical tool due to their ability to precisely represent complex geometries.
However, achieving high fitting accuracy in stereo-based applications remains challenging,
primarily due to the nonlinear nature of weight optimization. This study introduces an
enhanced iterative strategy that leverages the geometric significance of NURBS weights to
incrementally refine curve fitting. By formulating an inverse optimization problem guided
by model deformation principles, the proposed method progressively adjusts weights
to minimize reprojection error. Experimental evaluations confirm the method’s conver-
gence and demonstrate its superiority in fitting accuracy when compared to conventional
optimization techniques.

Keywords: two-view geometry; iterative optimization; curve fitting; geometric optimization;
reprojection error minimization; NURBS

MSC: 68T45

1. Introduction
Stereo reconstruction has gained significant importance across various practical do-

mains due to its ability to enable automatic and real-time analysis. Fields such as au-
tonomous navigation, augmented reality, surveillance, object tracking, and military appli-
cations rely heavily on robust reconstruction techniques due to their reliability, flexibility,
and adaptability. Most existing approaches to 3D reconstruction adopt a model-driven
framework, where the geometry of objects is approximated using basic primitives such as
cubes, spheres, cylinders, and other parametric forms. Although these techniques are easy
to use and simple, more basic shapes or scene decompositions are required when dealing
with complicated or free-form structures. In numerous fields, non-uniform rational B-spline
(NURBS) curves have been utilized extensively because of their exceptional mathematical
characteristics and modeling versatility.

Enhancing the fitting accuracy in NURBS-based engineering applications remains
a critical challenge. To address this, extensive research has been carried out on the opti-
mization of control points, the refinement of knot vectors, the adjustment of datapoint
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parameters, and the modification of weights. Although least-squares fitting is commonly
used to compute control points [1], it becomes inefficient for large datasets and lacks flexi-
bility for local refinements due to its inability to use intermediate updates. To overcome
these limitations, progressive iterative approximation algorithms and their advanced vari-
ants have been proposed [2,3], offering better local control and scalability, albeit with a
trade-off in computational efficiency compared to direct least-squares fitting. Optimization
of data parameters and weights has been relatively less explored. Ma introduced a projec-
tion technique for the base curve to refine the data parameters, although the underlying
optimization strategy was not fully elaborated [4]. For weight adjustment, symmetric
eigenvalue decomposition has been used to estimate weight values [5]; however, the lack
of a clear geometric interpretation restricts its practical applicability. Furthermore, Zhang
proposed using simulated annealing for weight optimization [6], a method that, while
flexible, is highly dependent on expert-defined search boundaries and suffers from slow
convergence. More recently, Meng suggested using the least-squares progressive iterative
approximation (LSPIA) method for weight adjustment [7], although it still faces challenges
in achieving high optimization efficiency.

The task of identifying the optimal number and distribution of knots for the approxi-
mation of the B-spline curve while adhering to a specified error threshold is known as knot
optimization. This remains a complex challenge for two main reasons. First, the unknown
quantity and locations of knots introduce substantial nonlinearity and computational diffi-
culty into the problem. Second, it is inherently challenging to derive analytical expressions
or general principles governing optimal knot placement, especially when dealing with
arbitrary or noisy datasets. Early approaches aimed at addressing this problem focused
on achieving a more uniform knot distribution in the parameter domain by averaging
geometric features of the data points, thereby stabilizing the system of equations used for
the fitting of the B-spline [1]. Subsequently, a binary search-based method was introduced
to determine the maximum allowable span between knots while satisfying an approxima-
tion error constraint, significantly improving computational performance but occasionally
resulting in discontinuities in the approximation [8]. Another significant development
framed the knot placement task as a convex optimization problem, where both the number
and location of knots are optimized simultaneously to minimize the overall approximation
error. This strategy provides high accuracy but incurs a greater computational cost due
to its iterative nature [9]. More recently, data-driven techniques such as machine learning
have been utilized for this purpose. For example, Laube et al. [10] employed support
vector machines to learn effective knot placement patterns from training data, offering an
adaptive and automated solution to knot distribution. The applicability of their method to
datasets other than the training dataset is limited by its heavy dependence on the training
dataset. There is also a corpus of research on knot vector optimization that makes use of
genetic algorithms [11,12]. Usually computationally costly, these approaches yield globally
suboptimal results. A different corpus of research suggests heuristic techniques [13–15]
that direct knot placement utilizing particular attributes of the incoming dataset. Specifi-
cally, curvature is a frequently employed criterion in heuristic approaches. These heuristic
approaches also employ derivatives for knot placement. In conventional reconstruction
methods, derivatives of input data are typically approximated by employing piecewise
low-degree polynomial functions. Breakpoints—or joining points between adjacent poly-
nomial segments—are then utilized as candidate knot locations to construct a more flexible
and accurate representation of B-spline data [1]. While this approach facilitates a localized
approximation and provides computational simplicity, it often struggles to ensure global
smoothness and optimal distribution of knots, particularly for complex or noisy datasets.
Hence, an effective strategy must balance computational efficiency with fitting precision.
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We aimed to improve the reconstruction accuracy of space curves obtained from two
views while also reducing reliance on manual correspondence across image planes. Our
main contributions can be summarized as follows: (1) We use a novel iterative optimiza-
tion strategy inspired by the principles of the active contour (snake) model specifically
adapted for the reconstruction of 3D NURBS curves. The method dynamically adjusts
control-point weights and refines datapoint parameterizations to improve curve accuracy.
(2) Additionally, we adopt a systematic method for automatic insertion of knots and con-
trol points. Unlike traditional methods where knot locations are predefined or manually
selected, this technique adaptively identifies regions requiring higher flexibility and dy-
namically introduces new knots and control points based on fitting error metrics. This
automated mechanism allows the model to better capture intricate geometrical features of
the underlying 3D structure without excessive human intervention.

Through these adaptations, the proposed framework ensures that the reconstructed
curve adheres closely to the stereo projections while maintaining smoothness, flexibility,
and robustness, even under imperfect data conditions. The remainder of this paper is
organized as follows: Section 2 details the parameter and weight-based reconstruction
methodology. Section 3 presents implementation steps and experimental results. Section 4
discusses statistical validation, and Section 5 concludes with a summary of key findings
and future directions.

2. Parameter- and Weight-Based Reconstruction
This section describes our optimization-driven method for reconstructing space curves

by systematically adjusting various parameters, including knot-vector insertion, parameter
re-estimation, and weight-vector refinement. The focus is placed entirely on the reconstruc-
tion stage under the assumption that the 2D image data points and the projection matrices
have already been extracted through existing techniques [16]. To reconstruct free-form
3D curves, the NURBS model is commonly employed due to its flexibility and precision
in handling complex geometries. Employing NURBSs enables the transformation of the
3D reconstruction problem into the recovery of appropriate control points and associated
weights, effectively modeling the curve’s geometric structure.

The NURBS framework provides a unified mathematical approach capable of ac-
curately representing both fundamental algebraic shapes and highly flexible free-form
curves. Due to its rational formulation, it offers precise control over curve behavior and
excellent flexibility in handling complex geometries. Furthermore, the NURBS structure
inherently guarantees smoothness and continuity across the curve, satisfying both geo-
metric and parametric constraints without manual tuning. Another important property is
that a NURBS curve maintains its essential characteristics under perspective, affine, and
rigid body transformations, making it highly robust for real-world applications. These
unique attributes underline the extensive adoption of NURBS within domains such as
Computer-Aided Geometric Design (CAGD) and related fields [17].

A NURBS curve of order k in a 3D space is mathematically described by

C(ζ) =
m

∑
i=0

PiRi,k(ζ). (1)

In the above notation, Pi represents the control point, and Ri,k denotes the rational
B-spline basis function, which is described as follows:

Ri,k(ζ) =
WiBi,k(ζ)

m
∑

i=0
WiBi,k(ζ)

, i = 0, · · · , m, (2)
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where Wi denotes the weight associated with the ith control point (Pi). Bi,k(ζ) represents
the B-spline basis function of order k evaluated for the ζ parameter, which is computed
using the de Boor recursion formula:

Bi,0(ζ) =

{
1 if ηi ≤ ζ < ηi+1,
0 otherwise,

(3)

Bi,k(ζ) =
ζ − ηi

ηi+k − ηi
Bi,k−1(ζ) +

ηi+k+1 − ζ

ηi+k+1 − ηi+1
Bi+1,k−1(ζ), (4)

where ηi represents the individual knots that collectively form the knot vector (U =

{η0, η1, · · · , ηm+k+1}). Typically, the knot vector is normalized within the interval [0, 1]. A
clamped knot vector is used, meaning that the first k and last k knots are repeated, ensuring
that the curve precisely interpolates the first and last control points. The internal knots are
determined using the normalized knot parameterization technique (NKPT) [18], and the
entire knot vector must be in non-decreasing order, which provides a stable system for the
computation of control points.

The construction of the knot vector closely follows the definition of datapoint param-
eters to avoid singularities in the resulting system of equations during the extraction of
the control point. Parameter values are initially set within the range of [0, 1], ensuring a
uniform distribution across the domain. Additional parameter values are calculated based
on the cumulative chord-length strategy, which distributes the parameters proportionally
to the spatial distances between successive data points, such as

ζ0 = 0, ζi = ζi−1 +

i−1
∑

j=1
||ηj+1 − ηj||

m−1
∑

j=1
||ηj+1 − ηj||

for i = 1, ..., m and ζm = 1, (5)

where ζi is the parameter corresponding to the ith data point.
In this study, we explore the process of reconstructing 3D space curves from stereo

images by leveraging the perspective-invariant properties of NURBS models. Assume that
the set of j chaotic data points in the stereo image planes generated by the 2D reconstruction
techniques is designated by Xj|j = 1, 2, · · · , n. The 3D NURBS curve (C(ζ)) must be created
so that the collection of data points (Xj) can be accurately approximated by its projection
(⌋(ζ)) in the image planes. To solve this non-linear optimization problem, we adopt an
energy minimization-based methodology as follows:

To begin, we introduce the energy function (F ) that characterizes the objective of our
optimization framework:

F = Fint +Fext (6)

In this formulation, the internal energy component (Fint) regulates the smoothness
of the curve. To estimate the differential characteristics of NURBS curves, associated
derivatives are employed and can be expressed as follows:

Fint =
∫ {

α

∣∣∣∣∂C(ζ)
∂ζ

∣∣∣∣2 + β

∣∣∣∣∂2C(ζ)
∂ζ2

∣∣∣∣2 + γ

∣∣∣∣∂3C(ζ)
∂ζ3

∣∣∣∣2
}

dζ, (7)

where α, β, and γ are non-negative constants that must be predefined prior to initiating the
optimization procedure [19].
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To formulate the external energy (Fext), a distance minimization strategy is applied to
quantify the proximity of the evolving projected curve to the corresponding 2D data points
(Xj), expressed as

Fext =
1
2

n

∑
j=1

|⌋(ζ j)− Xj|2, (8)

where ⌋(ζ j) represents the point on the projected NURBS curve corresponding to the ζi

parameter and Xj denotes the coordinates of the planar data point in the image plane.
A nonlinear optimization strategy is applied to fit a NURBS curve to data obtained by

projecting a free-form 3D curve onto two perspective image planes. This fitting technique,
known as the NURBS snake-based method, seeks to minimize the cost function defined
in Equation (6), as outlined by Saini et al. [20]. In this approach, both the positions of the
control points and their associated weights are optimized simultaneously, treating them
as variables within the solution space. To enhance convergence and maintain robustness
during the optimization process, the Levenberg–Marquardt algorithm is employed, pre-
ceded by a two-phase initialization procedure designed to stabilize the iterative fitting
process [16].

At the outset, although the optimization successfully reduces the error between
the sample points and their corresponding projections on the NURBS curve, several
parameters—such as the knot vector, parameter values assigned to the data points, and
initial weight estimates—are kept constant. Therefore, it is necessary to extend the opti-
mization to include these parameters. The following methodology adopts strategies to
incorporate these elements into the optimization process.

• Parameter Optimization: Traditional parameterization techniques often lack sufficient
precision, resulting in inaccurate estimation of the data point parameters on the
final fitted curve. To enhance the fitting accuracy, it becomes essential to update the
data point parameters. This requires identifying the nearest points on the NURBS
curve [21], which serve to refine the parameter values and improve the curve fitting.
The closest locations on the NURBS curve are determined using an iterative approach,
as described below:

ζ j+1 = ζ j −
⌋′(ζ j) · (⌋(ζ j)− Xnear

j )

⌋′′(ζ j) · (⌋(ζ j)− Xnear
j ) + |⌋′(ζ j)|2

, (9)

where Xnear
j represents the nearest point on the fitting curve. In this process, the initial

value for the iteration is chosen as the parameter obtained from the preceding two-step
fitting procedure [20]. This approach ensures accurate determination of the nearest
point while also enhancing computational efficiency.

• Weight Optimization: In a NURBS curve, the weights assigned to control points
influence the curve’s shape in a geometrically intuitive way: increasing a weight
draws the curve closer to that control point, while reducing the weight causes the
curve to move away from it. By leveraging this geometric property, the fitting curve
can be further refined to achieve higher accuracy. The objective function [21] used for
optimizing the weights is defined as follows:

Fw =
n

∑
j=1

(dj −
m

∑
i=1

(△wi)αi,j)
2, (10)
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where d represents the distance between the planar data point and the estimated point
on the fitting NURBS curve, △w shows the change in weight, and αi,j shows the extent
and direction of influence of weight given by

αi,j = |∂⌋(ζ)
∂wi

|ζ=ηj (11)

To minimize the function given by Equation (10), we obtain m equations in the follow-
ing form:

n

∑
j=1

m

∑
i=1

△wiαl,j · αi,j =
n

∑
j=1

αl,j · dj, · · · , i = 1, · · · , m (12)

The set of equations can be organized into a matrix form as follows.



n
∑

j=1
α1,j · α1,j

n
∑

j=1
α2,j · α1,j · · ·

n
∑

j=1
αm,j · α1,j

n
∑

j=1
α2,j · α1,j

n
∑

j=1
α2,j · α2,j · · ·

n
∑

j=1
α2,j · αm,j

...
... · · ·

...
n
∑

j=1
αm,j · α1,j

n
∑

j=1
αm,j · α2,j · · ·

n
∑

j=1
αm,j · αm,j




△w1

△w2
...

△wm

 =



n
∑

j=1
α1,j · dj

n
∑

j=1
α2,j · dj

...
n
∑

j=1
αm,j · dj


(13)

Singular Value Decomposition (SVD) [21,22] provides the solution to the aforementioned
system. The weight adjustments that reduce error comprise this group of solutions.
Weight optimization is accomplished by introducing incremental changes to the existing
curve’s weights. The fitting accuracy improves progressively through repeated updates
to the weights, combined with parameter refinement in each iteration.

The procedure for fitting a NURBS curve through simultaneous optimization of pa-
rameters and weights is organized as follows:

• Step 1: Specify a suitable initial configuration for the 3D NURBS curve.
• Step 2: Project the 3D curve onto both image planes using the calibrated projection

matrices.
• Step 3: Determine how many knots are needed and construct the knot vector based on

a normalized parameterization approach [18].
• Step 4: Generate the initial NURBS approximation through the two-stage fitting

protocol [20]. Compute the external energy (Equation (8)) across all planar data points,
followed by joint optimization of data parameters and control-point weights.

• Step 5: Evaluate whether the current fitting error satisfies predefined thresholds. If
acceptable, finalize the process. Otherwise, insert additional knots forparameters
exhibiting maximum residual error and refine datapoint assignments via nearest-point
iteration (Equation (9)).

• Step 6: Recompute control points using the updated knot sequence, optimized param-
eters, and adjusted weights as per the triangulation framework [20].

• Step 7: Reconstruct spatial control points and weights using multi-view geomet-
ric constraints [1]; then, regenerate the 3D curve. Calculate internal energy using
Equation (7).

• Step 8: Optimize the 3D control points iteratively to minimize the combined energy
functional (Equation (6)), ensuring tighter alignment of projections with 2D data.

• Step 9: Repeat Steps 2–8 until convergence to the target accuracy. The refined NURBS
curve constitutes the final reconstruction.
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The proposed optimization-driven NURBS reconstruction method effectively ad-
dresses several practical challenges encountered in real-world stereo reconstruction scenar-
ios. By jointly optimizing data parameters and control-point weights using external energy
minimization (Figure 1), the method dynamically adapts to local geometrical characteristics,
thereby improving resilience against noise and sampling irregularities. Furthermore, the
use of iterative parameter refinement (Equation (9)) ensures accurate alignment, even under
imperfect correspondences, while the adaptive knot insertion mechanism facilitates the re-
construction of intricate shapes without manual tuning. These capabilities, combined with
global optimization based on the Levenberg-Marquardt algorithm, enable the framework
to consistently achieve high accuracy and robustness in diverse application domains, such
as reverse engineering, medical imaging, and robotic vision.

Figure 1. Flowchart of the reconstruction process.

Figure 1 illustrates the overall workflow of the proposed optimization-driven 3D curve
reconstruction framework. The process begins with initialization and projection, followed
by iterative optimization of control-point weights and data parameters based on energy
minimization. Adaptive knot insertion and refinement steps ensure convergence toward
an accurate and smooth NURBS representation of the space curve. Algorithm 1 formalizes
this iterative reconstruction workflow.
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Algorithm 1 Iterative NURBS Curve Reconstruction

Input: Stereo image plane data points {Xj}n
j=1

Parameterize data points on both image planes via base curve projection [16]
Initialize a 3D NURBS curve using a two-step fitting protocol [20].
Configure knot vector U and B-spline basis order k using NKTP [1]
for each data point Xi do

Compute external energy Fext (Equation (8)) between projected curve and Xi
end for
while MaxErr > tolerance do

Insert knot at ζmax (parameter with maximum Fext)
for each data point Xi do

Update parameter ζi via nearest-point iteration (Equation (9))
end for
Optimize weights {Wi} using SVD-based linear system (Equation (13))
Rebuild the NURBS curve with updated ζi, U, and Wi [20]
Triangulate 3D control points {Pi} from projections [16]
Calculate internal energy Fint (Equation (7)) for smoothness
Minimize total energy F = Fint +Fext (Equation (6)) via Levenberg-Marquardt
for each data point Xi do

Re-evaluate Fext for updated projections
end for

end while
Output: Refined 3D NURBS curve

3. Implementation and Results
Let ⌋(ζ j) denote the projection of the NURBS curve (C(ζ j)) onto the image plane. To

evaluate and compare the performance between the original and reconstructed curves,
several error metrics were utilized, including the mean error (MeanErr), the maximum
error (MaxErr), and the root mean square error (RmsErr), as summarized in Table 1.

Table 1. Error metrics.

Error Formula

MeanErr
n
∑

j=1
∥⌋(ζ j)−Xj∥

n

RmsErr


n
∑

j=1
⌋(ζ j)−Xj∥2

n


1
2

MaxErr maxj∥ ⌋(ζ j)− Xj ∥

The quadratic NURBS curve must be utilized at the very least because of the first
derivatives’ continuity requirement. Due to optimization of the data parameters, the second
derivatives must also be continuous. At minimum, the NURBS curve must be cubic. As
the order of the NURBS curve increases, the effect decreases. One of the key benefits of
employing a NURBS representation lies in its ability to model complex curves accurately.
This characteristic enhances the applicability of our algorithm compared to conventional
curve reconstruction techniques. In challenging cases where optimizing the initial control
points alone fails to capture the target data points accurately, this difficulty is addressed by
automatically inserting additional control points based on adjustments to the weights and
other associated parameters.

Figures 2–4 illustrate the results obtained by reconstructing a closed-space curve using
our proposed technique. The input for this process consists of discrete points derived from a
noise-perturbed closed 3D curve, where the noise is Gaussian with zero mean and variable
standard deviation (σ). Initially, the user manually identifies and pairs corresponding noisy
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point sets across the stereo image planes. These correspondences serve as the basis for
initializing the NURBS control polygon using a dual-phase fitting strategy inspired by the
methodology proposed in [16].

Figure 2. Reconstruction outcomes for a closed curve are illustrated as follows: (a) the original 3D
curve; (b) the reconstructed 3D curve obtained using nine evolved control points; (c,d) 2D projections
of both the initial and reconstructed curves in the left and right image planes, respectively.

Figure 3. The reconstruction results for a closed curve are depicted as follows: (a) the original 3D
curve; (b) the reconstructed 3D curve using 13 refined control points; (c,d) the 2D projections of both
the initial and reconstructed curves in the left and right image planes, respectively.
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Figure 4. The reconstruction outcomes for a closed curve are illustrated as follows: (a) the original 3D
curve; (b) the reconstructed 3D curve obtained with 20 evolved control points; (c,d) the 2D projections
of the initial and reconstructed curves in the left and right image planes, respectively.

The fitting results in the two view planes are shown in Figure 2c,d. Although the
locations of the control points in the reconstructed 3D result at this stage (Figure 2b) are not
precise, we may observe a gradual decrease in approximation errors after further iterations,
and the final result fits the data points quite accurately (Figure 4c,d). Figure 2b shows the
reconstruction result with 9 control points, while Figure 3b shows the result with 13 control
points. Figure 4b shows the final result with 20 control points that appear the same as the
original curve. Figure 5 shows the reconstruction errors as a function of iterations.

Data points obtained from an open space curve (Figure 6a) can be successfully recon-
structed using our method. The same procedure is used for the reconstruction. The fitting
results are shown in the left view (Figure 6d,e) and the right view (Figure 6f,g). Figure 6b,c
show the reconstruction results that evolve with the 7 and 13 control points, respectively.
Here, we can observe that the iteration procedure reconstructs the curve very well with
13 control points. Reconstruction errors, as a function of iterations in this case, are shown
in Figure 7, which shows that the approximation errors are reduced and the curve becomes
stable very quickly.

Finally, the reconstruction yields the real world of pictures. We used the Tsukuba
pictures, which were made public several years ago, for this. Once more, we took the
two following frames (Figure 8a,b) of the Tsukuba image taken from slightly different
perspectives to perform the two-view reconstruction. Rebuilding the 3D curvature of the
Tsukuba statue’s bounds (Figure 8c,d) is the primary goal here.

Figure 9a–c show the fitting results in one plane obtained using the described iterative
fitting procedure, while Figure 9d–f show the fitting results in another plane. Figure 10a–c
show the reconstruction results produced in each scenario, demonstrating how well the
suggested technique performs on a real dataset. Figure 10a displays the result with nine
evolved control points, which is neither accurate nor representative of the actual set of
boundaries. Figure 10b, which shows the result with the 13 control points, resembles
the actual frame, but it is not as accurate as the results presented previously in [16,19].
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Continuing the iterative reconstruction process, the final result is presented in Figure 10b
with 20 control points that outperform the previous methods.

Figure 5. Variation of reconstruction errors with respect to the number of iterations for a closed curve.

Figure 6. Reconstruction results for an open curve are shown as follows: (a) the original 3D curve;
(b,c) reconstructed 3D curves using 7 and 13 evolved control points, respectively; (d,f) 2D projections
of the initial and reconstructed curves in the left and right views; (e,g) 2D projections of the initial
and reconstructed curves in the left and right views, respectively.



Mathematics 2025, 13, 2256 12 of 18

Figure 7. Reconstruction errors versus number of iterations for an open curve.

Figure 8. The reconstruction outcomes for real-world stereo imagery are illustrated as follows:
(a,b) the Tsukuba stereo image pair; (c,d) the segmented regions corresponding to the objects of
interest.



Mathematics 2025, 13, 2256 13 of 18

Figure 9. Reconstruction outcomes for stereo image data are depicted as follows: (a,d) curve fitting
in the left and right views using 9 control points; (b,e) corresponding fits with 13 control points;
(c,f) results obtained using 20 control points in both views.

Figure 10. Reconstruction performance on real stereo imagery is illustrated as follows: (a) result
obtained using 9 control points; (b) reconstruction using 13 control points; (c) output with 20 con-
trol points.

To assess the reliability of the proposed approach, its performance is evaluated against
that of other existing iterative techniques, including those proposed in [19,20]. The con-
vergence plot is plotted as a function of iteration vs. average errors and is shown in
Figure 11. In this graph, it is observed that errors decrease faster compared to the other
two methods [19,20].
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Figure 11. Comparison result of the convergence plots of different approaches [19,20].

To further validate the proposed framework, we compare its reconstruction per-
formance with several recent techniques beyond the traditional NURBS-Snake [20] and
point-based [17] models. Specifically, we benchmark our approach against the least-squares
progressive iterative approximation (LSPIA) method [7] and knot optimization using sparse
representation [9]. These newer models offer improvements in local control or efficiency
but struggle with noisy or complex datasets. In contrast, our method consistently exhibits
faster convergence, greater shape fidelity, and lower sensitivity to initial configurations, as
supported by error metrics (Table 1) and statistical tests (Tables 2–5). The combined opti-
mization of weights and parameters within a unified energy framework offers a significant
advantage in practical deployments.

Table 2. Mean errors under different noise levels.

Noise Level (σ) NURBS-Snake [20] Point-Based [17] Presented

0.1 0.0051 0.006500 0.0040

0.2 0.0062 0.008590 0.0048

0.3 0.0074 0.011092 0.0056

0.4 0.0076 0.012121 0.0053

0.5 0.0141 0.019850 0.0106

0.6 0.0169 0.023130 0.0120

0.7 0.0176 0.024110 0.0122

0.8 0.0253 0.031990 0.0189

0.9 0.0256 0.032460 0.0192

1.0 0.0294 0.038930 0.0219
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Table 3. Standard deviation of errors under the different noise levels.

Noise Level (σ) NURBS-Snake [20] Point-Based [17] Presented

0.1 0.0030 0.003833 0.0028

0.2 0.0040 0.005233 0.0032

0.3 0.0054 0.006404 0.0043

0.4 0.0068 0.007600 0.0054

0.5 0.0101 0.011086 0.0081

0.6 0.0132 0.014217 0.0109

0.7 0.0164 0.016805 0.0129

0.8 0.0184 0.018666 0.0148

0.9 0.0186 0.0190212 0.0167

1.0 0.0190 0.0198955 0.0171

Table 4. F-test statistical analysis under noisy conditions.

Noise Level (σ) F-Statistic
NURBS-Snake [20] F-Statistic Presented Degrees of Freedom

0.1 0.6125 1.1480 (60, 60)
0.2 0.6753 1.5625 (60, 60)
0.3 0.7109 1.5771 (60, 60)
0.4 0.7923 1.5857 (60, 60)
0.5 0.8300 1.5548 (60, 60)
0.6 0.8620 1.4665 (60, 60)
0.7 0.9523 1.6162 (60, 60)
0.8 0.9857 1.5457 (60, 60)
0.9 0.9562 1.2405 (60, 60)
1.0 0.9120 1.2346 (60, 60)

F-critical
= (0.5999,1.6667)

Table 5. t-test statistical analysis under noisy conditions.

Noise Level σ
t-Statistic

NURBS-Snake [20]
Degrees of
Freedom

t-Statistic
Presented

0.1 2.2740 120 2.0763
0.2 2.8083 120 2.1170
0.3 3.4540 120 2.0198
0.4 3.4670 120 1.9825
0.5 2.9958 120 2.0940
0.6 2.5114 120 2.2172
0.7 2.1658 120 2.0047
0.8 2.0079 120 2.0994
0.9 2.0152 120 1.9832
1.0 2.7129 120 2.2727

t-critical = 1.9799

The proposed iterative algorithm was implemented in MATLAB R2019 and tested
on a machine with a 2.53 GHz Intel i3 processor and 3.0 GB RAM. Despite its iterative
nature, the optimization converged in 10 to 25 iterations for most datasets, consuming
approximately 12 to 18 s for moderately sized curves (up to 50 control points). The memory
footprint remained under 150 MB, as the dominant operations involved matrix construction
and singular value decomposition (SVD), which are efficiently handled in MATLAB. This
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lightweight computational profile highlights the suitability of the proposed method for
real-time or embedded applications with limited resources. Empirically, the runtime grew
linearly with the number of iterations and control points due to matrix assembly and SVD
computation. The modular optimization structure ensures that the time complexity per
iteration remains manageable (O(m2n), where m is the number of control points and n is
the number of data samples). The method remains computationally feasible for real-world
datasets, demonstrating scalability and efficiency under moderate hardware settings.

4. Statistical Analysis
In this investigation, the accuracy of curve reconstruction was quantitatively evaluated

using statistical descriptors—namely, the mean and standard deviation of error metrics—
computed between the reconstructed and original curves. A benchmark parametric curve

defined by


x = cos(t)
y = sin(t), 0 ≤ t ≤ 2π

z = cos2(t)
was employed as the test function. The statistical

outcomes for this dataset, including mean and standard deviation values, are summarized
in Tables 2 and 3. The proposed reconstruction framework was comparatively assessed
against the stereo point-based method [17] and the NURBS-Snake method [20] under vary-
ing noise intensities. The results in both tables consistently indicate that our method yields
lower reconstruction errors. To validate the statistical significance of these improvements,
we conducted a comprehensive analysis using both F-tests and two-tailed t-tests.

4.1. F-Test

To determine whether the variability in reconstruction outcomes remained stable
across different noise levels, a two-tailed F-test for equality of variances was conducted at
the 5% significance level (α = 0.05). The test compared the variance values derived from
multiple datasets, each subjected to different noise intensities. The corresponding F-statistic
values, summarized in Table 4, were found to be within the critical interval defined by the
F-distribution bounds, i.e., (0.5999, 1.6667) at (60, 60) degrees of freedom.

As all the computed F-statistic values fell within this acceptance region, the null
hypothesis that the population variances are equal could not be rejected for any of the
datasets. This confirms that the variability in reconstruction accuracy introduced by noise
did not differ significantly across methods, validating the assumption of homoscedasticity.

Accepting the equal-variance assumption is crucial for the reliability of subsequent
t-tests comparing reconstruction accuracy, as it ensures that the statistical inferences are
based on valid premises. Moreover, the consistency of variance across noise levels also re-
flects the robustness of the proposed method under perturbations, supporting its suitability
for practical applications where noise is often unavoidable. This statistical stability comple-
ments the previously demonstrated accuracy benefits, reinforcing the overall effectiveness
of the method.

4.2. t-Test

Subsequently, two-tailed t−tests (equal variances, α = 0.05) compared the proposed
method with the point-based reconstruction approach [17]. The t-statistic values (Table 5)
exceeded the critical threshold (1.9799) for all noise levels, rejecting the null hypothesis.
This statistically significant difference (p < 0.05) demonstrates the superior precision of
our method over the NURBS-Snake technique [20]. The results indicate that the proposed
approach produces significantly better reconstruction accuracy, even at varying levels of
random noise contamination. By integrating control-point optimization, weight adjustment,
and iterative refinement through energy minimization, the method effectively addresses
limitations observed in earlier techniques, such as the NURBS-Snake model. The consistent
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statistical advantage across multiple test scenarios highlights not only the robustness but
also the adaptability of our framework to noisy real-world data.

These findings underscore the potential of the method for practical applications
where high-fidelity curve reconstruction is required, particularly in environments where
noise and sampling irregularities are common. The statistically validated performance
improvement further supports the use of this approach as a reliable alternative to existing
reconstruction methods.

5. Conclusions
This study introduces a method to accurately reconstruct space curves by optimizing

certain data parameters using a mathematical model called Nonuniform Rational B-Splines
(NURBSs). NURBSs are widely used in computer graphics and geometric modeling because
they can represent complex shapes smoothly and precisely. The key idea in this method is
to fine-tune the “weights” of the NURBSs, which play a big role in shaping the curve.

Instead of adjusting everything at once, the method makes gradual changes to these
weights over several steps. This step-by-step process helps to better match the curve to the
original data points, even when the data contain some noise or inaccuracies. To make these
adjustments efficient and reliable, a simplified mathematical approach is used that involves
linear approximation and nonlinear optimization. This makes it possible to find the best
possible weight values without requiring overly complex calculations.

This paper also provides a clear explanation of the entire iterative and fitting re-
construction process. To test how well it works, we conducted a series of numerical
experiments. These tests resulted in the finding that the proposed technique is not only
more accurate in reconstructing curves but also more resistant to noisy or imperfect data
compared to previous methods that use similar optimization strategies.

The proposed framework, built on the NURBS framework, already a core compo-
nent in CAD environments, can be seamlessly integrated into commercial software such
as AutoCAD, MicroStation, or Rhino. The optimized weight and parameter estimation
algorithm can enhance curve refinement modules in such platforms, particularly for tasks
involving reverse engineering or curve fitting from scanned or stereo-imaged data. Future
work includes the development of plug-in modules that interface with CAD APIs to enable
direct import of reconstructed 3D NURBS curves.
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