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Abstract: In this paper, we introduce a fast iterative scheme and establish its convergence
under a contractive condition. This new scheme can be viewed as an extension and
generalization of existing iterative schemes such as Picard-Noor and UO iterative schemes
for solving nonlinear equations. We demonstrate theoretically and numerically that the
new scheme converges faster than several existing iterative schemes with the fastest known
convergence rates for contractive mappings. We also analyze the stability of the new
scheme and provide numerical computations to validate the analytic results. Finally, we
implement the new scheme in MATLAB R2023b to simulate the dynamics of the Ebola
virus disease.

Keywords: fixed point iterative scheme; rate of convergence; fixed point approximation;
stability; data dependence; Ebola epidemic model
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1. Introduction
1.1. Background and Motivation

One of the most efficient ways of solving nonlinear problems of the form
Hy =0, (1)
is to reduce them to their equivalent fixed point problems of the form

Ty=y, 2)

where 7 is a suitable mapping. The solution of (2), often obtained as the limit of an iterative
sequence, unlocks the corresponding solution of (1). Classical schemes such as Picard [1],
Mann [2], and Ishikawa [3] have long been used in finding such limits.

While these classical methods are easy to implement, they often suffer from slow con-
vergence, which limits their practical efficiency for solving real-world nonlinear problems.
To overcome the limitations of classical schemes, several modified and hybrid iterations
have been proposed.
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1.2. Some Modified Iterative Schemes

Modified iterative schemes are developed to solve nonlinear equations, integral equa-
tions, and optimization problems more efficiently. These modifications often introduce con-
trol parameters (e.g., step sizes) or combine multiple iterates to improve convergence rates.

For instance, Noor [4] proposed a three-step iterative scheme generalizing Mann
and Ishikawa iterative schemes. The normal S-iterative scheme, introduced in [5,6], is
the hybrid of Picard and Mann iterative schemes and has been applied to a mixed-type
Volterra—Fredholm functional nonlinear integral equation [7].

However, many existing schemes show different convergence behaviors depending
on the problem class and contractive condition [8]. For instance, Berinde [9] showed that
the Picard iteration converges faster than the Mann iteration in the class of Zamfirescu
operators. In [6], the S-iterative scheme introduced by Agarwal et al. [10] was shown
to converge faster than the Picard iterative scheme for contraction mappings. Khan [5]
showed that the normal S-iterative scheme converges faster than all of the Picard, Mann and
Ishikawa iterative schemes for contraction mappings. The modified SP iterative scheme
developed in [11] converges faster than the normal S-iterative scheme. More recently,
the Picard-Noor (3) and UO (4) iterative schemes have been developed to further accelerate
convergence [12,13].

x0 €C
Xnp1 = Toy
Un = (1 - “n)xn + o Ty 3)

Up = (1 - ﬁn)xn + BuTty
th = (1 —vn)xn +ynTxn,n €N

Ug € C

= Toy

A e @
n=1/5n

Uy = (1= Bu)tn + BnTtn

Ops1 = (1= yn)tty +ynTuy,n €N

1.3. Research Gap and Objective

Despite recent progress, the search for iterative schemes with convergent rates sur-
passing those of existing leading schemes continues. This motivates the central research
question of this paper:

Is there an iterative scheme with a better convergence rate than the Picard—Noor and UO
iterative schemes under contractive mappings?

This paper aims to address this question by introducing a new scheme designed to
improve the convergence rate under contractive conditions.

1.4. Proposed Iterative Scheme

Let C be a nonempty convex subset of a Banach space B, 7 : C — C be a contrac-
tion mapping, and F(7) the set of all fixed points of 7. Let fy € C be an initial guess.
The control sequences &y, B, vn C (0,1) are assumed to be constant unless otherwise
stated. The new scheme defined below generates a sequence { f, } that converges to a fixed
point of 7. Each step uses the previous approximation to produce a better one.

The rest of the paper is structured as follows: we prove the convergence, stability,
and data dependence results of the proposed iterative scheme; compare its rate of con-
vergence with existing schemes; provide numerical validation; and apply the method to
simulate the dynamics of an Ebola epidemic model.
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2. Convergence Theorem

To analyze the convergence behavior of our new scheme, we recall an important
defiinition concerning contractive mappings, which will be instrumental in establishing
our result.

Definition 1. A contraction mapping T satisfies the following equation,
[Tm=Tn| < d|m—n], ®)
forallm,n € C,and § € [0,1).
We prove the convergence of the new scheme under a contraction mapping.

Theorem 1. Assume that C is a nonempty closed convex subset of a Banach space Band T : C — C
be a contraction maping satisfying Definition 1 such that F(T) # @. Let {f};,_, be an iterative
sequence generated by the new scheme (1) with real sequences {a},{B},{v} € (0,1) satisfying
Yoty = 0o

Then, { fn},._, converges to a unique fixed point of T, say t* € F(T).

Proof. From the Banach contraction principle [14], the existence and uniqueness of T* ¢
F(T) is guaranteed. It remains to show that lim, || fn — T*|| = 0.
Using Definition 1, and the new scheme in Algorithm 1, we have that

lan =T =T fu =T
<Ol fn =7 6)

1brn — 77| = [[(1 — an)an + anTan — 7"
=1 —an)(an —°) + anTan — anT"||
< (1 —an)llan — 77| + danan — 77|
—[1— (1 - aalllan — ']

<=1 =8)an]d]l fu — 7 )
llew =% = 1Tbn — 77|
< 6o — 7|

< &1~ (1= O)anlllfn — 77| (®)

ldn — ¥ = [[(1 = Bu)en + BnTen — T
=[[(T=Bn)(en —T°) + BuTen — BuT"||
< (L= Bu)llen — T + 0Bullcn — 7]
=[1=(1—6)Bulllcn — 7
<= (1= 8)an][1 = (1= 8)Bull fu — 7"l ©)

llen =T = [|Tdn — 7|
< dlldn =7

<= (1= 8)an)[l — (1= 0)Bulllfu — " (10)
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[ fotr =T = (L= yu)en + vuTen — 77|
=[|(1—vn)(en —T°) +vnTen — 1Tl
< (X =yn)llen = T + Syullen — T
=[1= 1 =8)yulllen — 77
< ‘53[1 — (1 =0)an)[1 = (1 =08)Bul[l = (1 =) vl fn — T°
<SP — (1= 8)an]|fu =77 (11)
sinced € [0,1), [1— (1 —0)Bxn] <1,and [1 — (1 —0)7,] < 1.
Through induction, and from (11), we see that
o =7l < 81— (1= 8)ayr]ll fa—1 — T
[foms = < L= (1= Dol fz — 7°|
Ifi =) < &1 = (1= O)ao]ll fo — 7| (12)
So that (11)
fr = || < 830V H 8)am]|l fo— 7|
(13)

S0V fo — | H [1—(1—0)an]
m=0

From elementary analysis, 1 — p < e~ for p € [0,1), and 8>"*1) < 1since § € [0,1):

n
furs — T < | fo— || [ e 9en
m=0

= ||f0 - T*Hei(li(s) Y=o &m

Taking the limit as n — oo of both sides, nh_r)1010||fn -7t =0 O

(14)

Remark 1. Theorem 1 shows that the new scheme converges to the unique fixed point of contractive

mappings.

In the following section, we establish the data dependence and stability results for the

new scheme in Algorithm 1.

Algorithm 1 Fast fixed point iterative scheme

Require: {a,}, {Bn}, {70} € (0,1),and fp € C
Set a tolerance ¢ > 0

forn=1,2,3,...do

ay =T fn
by = (1 —ay)an + anTay
cn:="Tby
dn (1—Bn)en+ BuTecn

— T4,
fn+1 = ( 'Yn)en + v Ten
if || fu11 — full < ethen

break
end if
end for
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3. Data Dependence and Stability Results

The following definition and lemmas, adapted from the existing literature, are neces-
sary to establish the data dependency and stability results.

Definition 2 ([15,16]). Let fo € Cand f, 1 = §(T, fo) define the iterative scheme which produces
a sequence { fu }5_ in C. Suppose that {f,}5"_, converges strongly to v € F(T) # @, where
F(T) denotes the set of all fixed points of T. Assume that {y,1}; is an arbitrary bounded
sequence in C and set

€n = ynt1 = 8(T )l (15)
The iterative scheme {fy}>_, is said to be T stable if and only if nlgn €, = 0 implies that

lim = T*,
n—oo ]/n

Lemma 1 ([17]). If p is a real number such that 0 < p < 1, and {€}$’_, is a sequence of positive
numbers such that ILI’H €y = 0, then for any sequence of positive numbers {v, }_ satisfying
n—oo

Upt1 < €p +pvy,n=0,1,2, ... (16)
we have that
lim v, =0 (17)
n—oo

Lemma 2 ([16]). Assume there exists my € N for the non-negative real sequences {s}5,_ such
that for all m > my,

Sm+1 < (1 — Pm)sm + PmpPm (18)
where py, € (0,1), Ypr—o Pm = 00, and ¢, > 0, for all m € N, then

0< n%grgo sup sy < rigréo sup Pm (19)
Theorem 2. Let T be an approximate operator of a contraction mapping T, and { f, ng bean
approximate of the iterative sequence { f,, }5°_, generated by the new scheme in Algorithm 1. Define

{fn}2, as follows:

]?0 eC

n = ”ffn

b, = (1—way)d, + a, T iy

&n = T by (20)
dNn = (1 - ,Bn)CNn + ﬁn;fCNn

&y = Tdy

forr = —=yn)en + ’Yn’i-énr

where the real sequences {an}, {Bn}, {vn} € (0,1) satisfy the condition: } < ay¥n € N.
IfTT* = ¥ and Tt* = T* such that 1i_1>n || fu — T*|| = O, then we have that ||* — T*|| < {1&
n—oo

where € > 0 is a constant.

Proof.

lan = @nll = 1T fu — T full
=\ Tfa=Thu+Tfu— 7~df~n||
<N Tfu = Thall + 1T Fu = T
<6\ fu—full +e (21)



Mathematics 2025, 13, 1764

60f19
by — bl = |(1 — &)y + anTan — (1 — ) — T |
=11 — &) (an — ) + an(Tay — Tiin)|
< (1—an)||an — dn| + anl| Tan — Tan||
= (1= an)llan — dull + on| Tan — T + Tan — T
< (1—an)||an — @nl + anl| Tan — Tan|| + an| Tan — T an||
< (1 —ay)||lan — dn|| + and||an — an|| + ane
<O = (1 =8)an]llfu = full +[1 = (1 = 8)an]e + ane (22)
len = Enll = [ Tbn — Thull
=||Tby — Tby+ Tby — Tby||
<\ Tbw = Thull + [T by — Thall
< 6|y — byl +€
<81 — (1= 8)an]|lfu — full +0[1 — (1 —8)an]e + ande + € (23)
ldn —dull = (1 = Bu)en + BuTen — (L — Bu)én — ﬁn%5n||
= [|(1 = Bu)(cn — &) + Bu(Ten — Tl
< (X =Bu)llen = Eull + Bull Ten — 7~‘C~n||
= (1= Bu)llcn =&l + Bul Ten — Ten+ Ten — Teul|
< (L= Bu)llen = Enll + BullTen — Tenll + Bull TEn — '%En”
< (1= Bu)llen — ull + Budlicn — Cull + Bne
<[1—=(1—=9)Bulllen — Cull + Bne
<O = (1=06)Bal[1 = (1= 8)an] | fu — fu
+0[1 = (1=0)Bu][1 — (1 = 6)anle +6[1 — (1 —0)Bulane
+ e[l = (1=0)Bn] + pne (24)
len —&ull = | Tdn — 7~‘d~n”
=||Tdy — Tdn + Tdy — Tdy|
<|[Tdw — Tdu|l + | Tdw — T
< ||dy —dnl +e
<N —(1=8)Bul[1 = (1= 8)aulll fu — ful
+ 021 — (1= 0)Bu][1 — (1 — 8)an]e + 6*[1 — (1 — 8)Bn]ane
+0e[1 — (1 —0)Bn| + 0Bne +¢€ (25)
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| frt1 —fn+1|| = [[(X=vn)en +vnTen — (1 — yn)én — ’Yn7-5n||
= [[(1 = yn)(en —€n) + yu(Ten — 7~i€~n>“
< (1= 7a)llen = &ull + vull Ten — T
= (1= yu)llen — &nll + vl Ten — Ten+ Ten — Teul|
< (1= n)llen — nll + vl Tew — Teull + vull Ten — Teénll
< (1= vn)llen — enll + vndllen — &nll + yne
<1 —(1—0)ynlllen —&nll + yne
<M= (1=0)rl[1 = (1 =08)Bulll = (1 = Oan]|l fu — ful
+ 81— (1= 6)yul[1 — (1= 6)Bu][1l — (1 — b)anle
+8%[1 = (1= 6)yul[1 — (1 - 6)Bulane
+O[L—=(1=06)vn][1 = (1 = 06)Bule +[1 — (1 = 0)yulBne
+[1— (1 —6)rn]e + yne (26)
Since {4}, {Ba}, {1} € 0,1, (29)
far1 = fapall S 0= (1= O)an]ll fu = full + € +ane +e+etete
= [1— (1= 0)an]ll fu — full + ane + 5e
< [1—= (1= 0)an]llfu — full +1ane
<[ (= Omallfy = ful + a1 = 0) @)

Letsy, = ||fu — full, pn = (1 =)y € (0,1) and ¢, = L‘f) From Lemma 2, we have

that 0 < nlgn sup || fu — full < hm n sup (116) Again, from Theorem 1, we can confirm that
: | _ e — — T < 1le
nlglc}o Il fn — T*|| = 0. Thus, given nlglgo | f« — %*|| = 0, we have that ||* | <15 O

Finally, we show that the new scheme in Algorithm 1 is 7 -stable.

Theorem 3. Let C, B and T : C — C be as defined in Theorem 1 such that 6 € [0,1) and
T € F(T) # @ is the unique fixed point of T. Let { f}3>_, be a sequence generated by the new
scheme, as detailed in Algorithm 1, which converges to T*. Then, the new scheme is T -stable.

Proof. Let {x},” , be an arbitrary sequence in C and let the sequence f,, 11 = g(7, fu)
generated by the new scheme in Algorithm 1 converge to . Let €, = ||x,+1 — (T, fu)||-
We want to show that hm €, = 0if and only if 11m lx, — || = 0.

— 00

Seta, = Tx,. Suppose hm e, = 0and usmg (11),

[xns1 = T = llxnir = (T, fu) + 8(T, fu) = T
< g = 8(T, f)ll + 1(T fu) — 77|
<en+I8(T, fu) — Tl
<en+ (1= vn)en+ynTen — T
Sent[1-(-d)mllen—|

<en+ 81— (1—=08)ay)[l—(1=8)Bul[l — (1 =)valllfu — T (28)

So that from Lemma 1, lim ||x, — 7*|| = 0.
n—o0
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Conversely, suppose that lim |xy — T¥|| = O, then using the result from (11)
n—oo

en = || xns1 — (T, xn)|l
=[xy — T+ T = g(T, x) |
< lxpr = T+ |75 = (T, xn) |
= [lxp1 = TN + [1(T, xn) — 77

< xpr = T+ (T = vn)en +1nTen — ¥

g = T+ 1= (1= 8)an)[1 = (1= 8)Bal[1 = A=) vl lfs — T (29)

We have that lgn €, = 0. Combining the two cases, Definition 2 is satisfied. Thus, the new
n—,oo

scheme is T -stable. [J

Remark 2. Since a T -stable iterative scheme is also almost T -stable, but not vice versa [15], we
conclude that the new scheme is also almost T -stable.

We prove that the new scheme in Algorithm 1 converges faster than the UO iterative
scheme (4) and the Picard—Noor iterative scheme (3).

4. Rate of Convergence

The Picard—Noor (3) and UQ iterative schemes (4) have some of the fastest known
convergence rates for contractive mappings. Therefore, they provide a strong benchmark
for evaluating the efficiency of our new scheme. Our goal is to demonstrate that the
new scheme is not only convergent but also superior in terms of convergence rate when
compared with leading schemes.

Definition 3 ([9]). Let the two real sequences {uy, }5>_, and {v, }5_, converge to y and v, respec-
tively, and assume there exists

= lim 1= (30)

n—oo |Un — 1/|

If1 = 0, then it can be said that {u, }%;_, converges faster to p than {v,}5>  tov.

Theorem 4. Let C be a nonempty closed convex subset of a Banach space Band T : C — C bea
contraction maping satisfying the contractive condition in Definition 1 and having a fixed point
™ € F(T) # @. Let {an}, {Bn}, {vn} € (0,1) be real sequences for n € N. Consider the
iterative sequences {x, } oo, {Un }oro, and { fu}5r- defined by the Picard—Noor, the UO, and our
new scheme, respectively. Then, {f,};>, converges faster to the fixed point than {x,};>, and
{on}iio

Proof. From Theorem 1,

farr =T < SV fo— 1= (1 = 8)a]" ! (31)
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Also, from the Picard—Noor iterative scheme (3) we have that

[tn = T = (1 = yu)xn + yaToxw — T°
< (T =n)llxn — T 4+ vl Txn — 7|
< (1 =) |lxn = T + vullxn — 7|
= [1=7a(1=0)][[xn — 7|
[ty — T = [[(1 = Bu)xn + Bu Tty — ||
<@ =Bu)llxn =T+ Bull Ttn — 77
< (1= Bu)llxn — T 4 6Bulltn — T°
<[1—Bu(1 =061 —vu(1 =)D llxn — 7|
< [1=Ba(1=)flxn — 77|
[on — [ = [|(1 = an)xn + an Tty — T°
< (T —an)llxn — | +an || Tun — T
< (T —an)llxn — T + dan|lun — T
<[1—an(1=0[1 = Bu(1=8)D]llxn — 77|
[xp1 = TN = [|Ton — 77|
< dfvon — 7
<Ol —an(1=0[1 = Bu(1 = )]xn — 77

Since By, vn € [0,1] and § € [0,1), then
%01 = T < 61— (1 = 8)][xn — 7|

Through induction,

n
lxnrn = T < 8" lxo — T [T — atm (1~ 6))
m=0
=" lxo — |1 — a(1 - 5))" "
Finally, from the UQO iterative scheme (4), we have that

[rn — % = | Ton — 77
< Ofon — 77

l[sn —T*[ = [[(1 — an)rn + anTra — T°
< (L= an)llra = T + danlra — 7|
=[1— 1 —=)an]llrn — 7"
<=1 =0)an)dflon — 7

[tn = T = | T'sn — 7
< Ollsn — 7|
<81 — (1= 8)ay]|lon — T*|

[n =T = (1 = Bu)tn + BuTtn — T"||
< (1= Bu)lltn — T + 6Bnl[tn — 7
=[1=Q1=0)Bullts — 7|
<= (1= 8)au][1 = (1= 6)Bulllon — T°

(32)

(33)

(34)

(35)

(36)

(37)

(38)

(39)

(40)

(41)
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[0nr1 — T = (T = yn)tn + v Tun — T
< (=) [lun — T + dvynllun — T°||
=[1—= (1 =) yulllun —
< 81— (1= 8)an][1 = (1= 6)Bul[1 — (1 = ) valllon — T°| (42)
sinced € 0,1),[1—(1—-0)Bn] <1,and [1 — (1 —0)y.] <1,
o1 = T*) < &1 = (1= 8)an]|lon — T°| (43)
Inductively,
n
Jonss =7 < 20D TT 1 = (1= Oamllloo — 7|
m=0
— 5200 g — 7 1 = (1 = 5)a] ™+ (44)

From (31), (37), and (44), let
gn ="V fo—I[1 = (1 = 8)a)" !
hy = 6" Y xg — T|[1 — a(1 = 8)]" (45)
K = 80D oy — T [1 = (1 — )a] 1

Set
3(n+1) (1 n+1
T e (e (46)
and
g _ O lfo -1 = (0 =0t o 47)
kn 020 o — 7|1~ (1~ 8)a] 1
asn — oo,

From Definition 3, it follows that the new scheme converges faster than the UO
iterative scheme (4) and the Picard—Noor iterative scheme (3). [

Theorem 4 establishes that the new scheme converges faster to the fixed point of
contraction mappings than the Picard—Noor and the UQO iterative schemes. Thus, the new
scheme is an improvement in terms of convergence speed compared to the existing scheme.
We now support our analytic results using some numerical examples.

5. Numerical Computations
Example 1. Let C C R, and consider the following affine transformation, T : C — C defined by

Tx = %" +1, (48)

ora c C. 1S easy to see tna 1S a4 contracrion map wiir contracrioe constan = 3, Slnce
forall f € C. It is easy to see that T i tracti p with contracti tant K = 3, si
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3
17Tyl = 36—

3
= 2l =yl (49)

4
forallx,y € C. Let oy = By = yn = %for each n € N with the initial value xo = 4.5. The set of
fixed points of T is F = {4}.

Table 1 compares the number of iterations required by the new scheme and the two benchmark
schemes—UO and Picard—Noor—to converge to the fixed point, xo = 4. It is evident from the table
that the new scheme requires the fewest number of steps to attain the fixed point up to a specified
tolerance, indicating its computational advantage.

Table 1. A comparison of our scheme with Picard-Noor and UO schemes.

Iteration Number New Scheme uo Picard-Noor
0 4.3000000000 4.3000000000 4.3000000000
1 4.0678852081 4.0905136108 4.1457336426
2 4.0153613383 4.0273090458 4.0707943153
3 4.0034760255 4.0082394678 4.0343903781
4 4.0007865690 4.0024859466 4.0167061169
5 4.0001779880 4.0007500400 4.0081154776
6 4.0000402758 4.0002262961 4.0039423270
7 4.0000091138 4.0000682763 4.0019150989
8 4.0000020623 4.0000205998 4.0009303145
9 4.0000004667 4.0000062152 4.0004519271

10 4.0000001056 4.0000018752 4.0002195366
11 4.0000000239 4.0000005658 4.0001066462
12 4.0000000054 4.0000001707 4.0000518065
13 4.0000000012 4.0000000515 4.0000251665
14 4.0000000003 4.0000000155 4.0000122253
15 4.0000000001 4.0000000047 4.0000059388
16 4.0000000000 4.0000000014 4.0000028850
17 4.0000000000 4.0000000004 4.0000014014
18 4.0000000000 4.0000000001 4.0000006808
19 4.0000000000 4.0000000000 4.0000003307
20 4.0000000000 4.0000000000 4.0000001607

Figure 1 provides a visual comparison of the convergence behavior of the three schemes.
The plot shows the rapid decay of the iterates produced by the new scheme, validating its superior
convergence rate.

Figure 2 displays the residual norms ||'T x, — x, || at each step for all schemes. The residual
represents the deviation between the image of the current iterate under the mapping T and the
iterate itself. The residual norm for the new scheme decreases more rapidly than for the other two
schemes. This implies that for each iteration, the new method yields a better approximation of the
fixed point. Such behavior is valuable in practical problems where reducing the number of iterations
translates to saving computational resources. Furthermore, we consider Example 1 under slight
perturbations of the initial Quess. Specifically, we introduce perturbations of magnitude +0.1, —0.1,
+0.2, and —0.2 to the initial point fo = 4.3 and observe the behavior of the resulting sequences.
Figure 3 shows that despite the initial deviations, all perturbed sequences converge rapidly to the
same fixed point as the unperturbed sequence. This indicates that the effect of the perturbations
diminishes progressively with each iteration, confirming the stability of the proposed scheme.
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Example 2. Consider the nonlinear mapping
Tx = cos(x), (50)

forall x € [0,1].

We show that T x on the interval [0, 1] is a contraction mapping with a Lipschitz constant,
sin(1). From the mean-value theorem, for any differentiable function h(x), h(x) — h(y) =
K (k)(x — v), for some k between x and y:

|17’ (x)| = |sin(x)| < sin(1) (51)
since sin(x) is increasing on [0, 1], so that
ITx =Tyl <sin(1)[[x -yl (52)

Therefore, Tx = cos(x) is a contraction mapping on [0,1]. The Banach contraction principle
guarantees that there exists a unique fixed point, x € [0,1]. Let ay, = By = yn = % foreachn € N
and the initial point xy = 0.9. We now compare the convergence rates of the new scheme, the UO,
and the Picard—Noor.

Table 2 provides numerical evidence supporting the superior convergence behavior of the
new scheme when applied to a nonlinear fixed point problem. We consider the contraction
mapping Tx = cos(x) defined on the interval [0,1], which possesses a unique fixed point at
x* = 0.7390851332. The table clearly demonstrates that the new scheme achieves convergence
in fewer iteration steps compared to both the Picard—Noor and UO schemes in the context of
nonlinear mappings.

Table 2. A comparison of our scheme with Picard-Noor and UO schemes.

Iteration Number New Scheme Uuo Picard-Noor
0 0.9000000000 0.9000000000 0.9000000000
1 0.7320424192 0.7496727403 0.6718789497
2 0.7393908672 0.7397687771 0.7655849102
3 0.7390718545 0.7391292157 0.7283701427
4 0.7390857099 0.7390879755 0.7433757699
5 0.7390851082 0.7390853165 0.7373602050
6 0.7390851343 0.7390851450 0.7397774964
7 0.7390851332 0.7390851340 0.7388070510
8 0.7390851332 0.7390851333 0.7391967942
9 0.7390851332 0.7390851332 0.7390402923

10 0.7390851332 0.7390851332 0.7391031397
11 0.7390851332 0.7390851332 0.7390779023

These examples demonstrate that the new scheme not only improves upon the conver-
gence properties of existing schemes but also exhibits enhanced stability characteristics.
Thus, the new scheme is well suited for applications involving uncertainty or imprecise
initial data.

Having established the analytic results for the new scheme shown in Algorithm 1, we
now apply the new scheme to simulate the dynamics of Ebola disease.

6. Application to Ebola Virus Disease
6.1. Fixed Point Theory in Epidemiology

Fixed point theory is a fundamental mathematical concept with wide-ranging ap-
plications [16]. In epidemiology, it is used to establish the existence and uniqueness of
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solutions, analyze stability, and numerically solve models [18]. ranging from proving
the existence and uniqueness of solutions [19,20], to conducting stability analyses [21],
and solving models numerically to simulate disease dynamics over time. For instance,
in [20], fixed point theory was used to establish the existence and uniqueness of novel
fractal-fractional models for Q fever transmission under the Atangana—Baleanu (Mittag—
Leffler kernel) fractal-fractional operator. Similarly, in [21], the solution and stability
criteria for a fractional-order (FO) HIV /AIDS model involving the Liouville-Caputo and
Atangana-Baleanu—Caputo derivatives were derived using fixed point theory. In [22],
fixed point theory was used to determine the optimal final time needed to reduce the
number of infected people in an epidemic model with four compartments, namely classes
of susceptible, controlled, infected and removed people.

6.2. Model Structure

Ebola virus disease is a severe viral illness transmitted to humans from wild animals
such as fruit bats and infected individuals who are still alive or from dead to the living
during funerals. It also spreads among humans primarily through direct contact with
the blood, secretions, organs, or other body fluids of infected individuals as well as with
surfaces and materials (such as clothing or bedding) contaminated with these fluids [23,24].
It takes about 2 to 21 days from infection to the appearance of symptoms.

We consider a delayed epidemic model with four compartments: susceptible (S(t)),
exposed (E(t)), infected (I(t)), and recovered (R(t)) adopted from [25,26]. The SEIR model
of the Ebola virus consists of coupled nonlinear delay differential equations that track how
individuals move between compartments:

di—tt) =A—uS(t) — (kg + kg +k)S(t —r)E(t —r)e #" — (ks + ky)S(t — r)I(t —r)e M
d%ﬂ = (ky +ky+ke)S(t —r)E(t —r)e #" —koE(t —r)I(t — r)e ™ — (u1 + u2)E(t) (53)
A — jyT(t = r)E(t—r)e ™ + (ks + k7)S(t — r)I(E—r)e " — (ks + pz + pa) ()
d
i = kal(t) = psR(1)
with the initial conditions S(0) > 0, E(0) > 0,1(0) > 0, and R(0) > 0, where the parameters
are defined in Table 3.
Table 3. Parameter values used in the iterative algorithm and epidemic model adapted from [25,26].
Parameter Symbol Description Value
Relaxation rate o Weight for update step 0.5
Tolerance € Stopping criterion 10~
Max iterations Nmax Limit on iterations 1000
Natural mortality rate (susceptible) U Death rate of susceptible humans 0.9704
Natural mortality rate (exposed) M1 Death rate of exposed humans 0.0432
Disease-induced mortality (exposed) Uz Mortality from disease in exposed 0.2006
Natural mortality rate (infected) Us Death rate of infected humans 0.0656
Disease-induced mortality (infected) Ha Mortality from disease in infected 0.9764
Natural mortality rate (recovered) Us Death rate of recovered humans 0.6704
Infection rate: susceptible — exposed k1 Human-to-human transmission 0.2877
Infection rate: exposed — infected ko Progression of infection 0.7613
Infection rate: infected — recovered ks Recovery rate 0.4389
Infection rate by wild animals (S — E) ky Zoonotic exposure (wild animals) 0.1234
Infection rate by wild animals (S — I) ks Wild-animal to human infection 0.2431
Infection rate by domestic animals (S — E) ke Zoonotic exposure (domestic) 0.4
Infection rate by domestic animals (S — I) k7 Domestic-animal to human infection 0.3

Recruitment rate (susceptible humans) A Natural human population growth 0.06321
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ds

dt

The model includes a constant delay 7 representing the incubation period of the disease:

e Time delay effects: states at time ¢ depend on values at f —r;
e Integral terms: history-dependent accumulation of infection and recovery;
e Nonlinear interaction terms involving S(t —r), E(t —r), and I(t — r).

Our goal is to use the new scheme to solve numerically and simulate the dynamics of the
Ebola virus model.

6.3. Fixed Point Reformulation

To be able to apply a fixed point scheme, the disease model is first reformulated
as a fixed point problem. For each compartment, S(t), E(t), I(t), R(t), the system of
Equation (53) is reformulated into integral equations and solved iteratively using the new
scheme:

A —uS(t) — (ki + kg +ke)S(t— r)E(t — e — (ks + ky)S(t — r)I(t — r)e 1
= F(t,5(t),S(t — 1)) (54)

Integrating from tj, we have

S(t) — S(to) = /t F(z,5(),5(z — 1))dz

to

SEF (1) = S(to) + /t F(z,50(z),80 (z - r))dz (55)

which can be where S(t() is constant. E(t), I(t), and R(t) are reformulated in a similar way.
We apply the new scheme in Algorithm 1:

as = T((S®(tu)),
bs = (1—a)as +aT ((as),

cs = T((bs),
ds = (1 —PB)es + BT ((cs), (56)
es = T((ds),

SEFU (1) = max(0, (1 — 7)es + 7T ((es)),

where «, B, andy € [0,1] are relaxation parameters. The simulation domain [0, T] is dis-
cretized uniformly with time step At. Let t, = nAt forn =0,1,..., N such that T = NAt.

A direct closed-form integral is not available because S(t), E(t), I(t), and R(t) are
unknown and inside a nonlinear integral with delay. We approximate the integral part
using the five-point Gauss-Legendre quadrature:

b b—a b— b
/a]‘(t)dt% zazz%w,‘f(zaxi—l—a;), (57)

where x; are Gauss nodes and w; are corresponding weights for [—1, 1]. Since delay r may
not align with discrete grid points, we estimate S(t, —r), E(t, —r), and I(t, — r) using
linear interpolation:

X(tn — 7’) ~ X;+ Q(Xi+1 — Xl'), 0= (58)

where t; < t, —r < tj1q.
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To ensure biological realism, all compartments are projected onto the non-negative
space at each step:

X(ty) = max(0,X(t,)), forX € {S,E,I,R} (59)

and the iterative scheme stops when the infinity norm of the change across iterations
satisfies the following:

max (| sS4 — 50 o, | E® — EO) o, 165D — 10, |RED — RV < tol. (60)
The purpose of each step is presented in Table 4.

Table 4. Summary of steps.

Step Numerical Method Purpose
Time discretization ~ Uniform time grid with Discretize the time domain [0, T]
step size At into equidistant points
Delay handling Integer index mapping Convert constant delay r into dis-
d=r/At crete index for referencing past
values

Integral evaluation =~ 5-point Gauss-Legendre Accurately approximate nonlinear

quadrature integral terms in each compart-
ment
Update of S() Our new scheme using pa- Stabilize and accelerate conver-
rameters («, 8,7) gence of nonlinear update in S(t)
Update of Direct Gauss-Legendre in- Update other compartments using
E(t),I(t),R(t) tegral with max projection  integrated equations and ensure
non-negativity
Projection max(0, -) operation Enforce non-negativity of com-
partment populations
Stopping criterion co-norm threshold on iter- Terminate global iterations when
ates convergence tolerance is satisfied

6.4. Dynamics of the Ebola Virus Model

We apply the new scheme in Algorithm 1 to solve numerically the dynamics of Ebola
spread. The steps summarized in Algorithm 2 are implemented into MATLAB R2023b.

6.5. Analysis and Discussion of the Model Dynamics

The simulation results presented in Figure 4 show the time evolution of the four
compartments in the SEIR model for Ebola: susceptible S(t), exposed E(t), infected I(t),
and recovered R(t) populations over a 40-day period.

Susceptible Population Dynamics

Initially, the susceptible population remains constant at the initial value, indicating
no immediate infection or death. After a short delay, the susceptible population S(t)
experiences a sharp decline as susceptible individuals are exposed to the virus and move
into the exposed class. This rapid drop reflects a high transmission rate in parameters such
as the death rate of the susceptible population. Unlike in classical closed SEIR models
where the total population remains constant, here, S(t) continues to decline even after
the majority of susceptibles are depleted. This is because the model includes a very high
death rate y, which causes susceptible individuals to die over time, and the rate at which
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susceptible class is recruited is negligible A = 0.06321. This means the population is open
and shrinking over time.

Exposed Population Dynamics

The exposed compartment E(t) starts from a low initial value and increases as suscep-
tible individuals become infected but are not yet infectious. The rise of E(t) corresponds to
the latent period of the disease, where individuals are incubating the virus. The exposed
population reaches a peak, after which it declines as exposed individuals progress to the
infected stage.

Infected Population Dynamics

The infected population I(t) shows the typical epidemic curve with a rise following
the increase in the exposed class and a peak indicating the maximum number of infectious
individuals at the epidemic’s height. The peak is followed by a decline, corresponding to
individuals recovering or dying.

Recovered Population Dynamics

The recovered population R(t) initially grows as infected individuals recover. How-
ever, unlike closed SEIR models where recovered individuals accumulate indefinitely, here
R(t) peaks and then declines over time.

Algorithm 2 Steps employed in solving the Ebola virus model

1: Input: Model parameters A, u, 7, k1, ..., k7, 11, ..., s, scheme parameters «, f, v, time
step At, time interval [0, T], tolerance tol, maximum iterations max_iter
: Input: Initial values Sy, E, Iy, Ro

: Initialize S(1) = So, E(1) = Eo, I(1) = Ip, R(1
: Compute delay index d = round(r/At)

: Obtain Gauss-Legendre nodes § and weights w (5-point)
: foriter = 1 tomax_iter do

Store previous iteration: Sprev = S, Eprev = E, etc.

10: fori=d+1tondo

O N Ul A W N

11: Settg =1ti_1,t1 = 1;

12: Define integrand fs(z) using delayed S(z —r),E(z —r),I(z — 1)
13: Compute integral Is = GaussQuad(fs, to, t1, &, w)

14: Compute S(i) using

as = S(i—1) + Is
bs =(1—a)as+a(S(i—1)+1Is)
cs = S(i— 1)+ Is
ds = (1= p)es +B(S(i—1) + Is)
g =S(i—1) + I
5(i) = max(0, (1 —y)es + v(S(i = 1) + Is))
E

15: Define fr(z) and compute E(i) = max(0, E(i — 1) + GaussQuad(fg, to, 1, ¢, w))
16: Define f;(z) and compute I(i) = max(0, I(i — 1) + GaussQuad(fy, to, t1, ¢, w))
17: Define fr(z) and compute R(i) = max(0, R(i — 1) + GaussQuad(fg, to, t1,&, w))

18: end for

19: if convergence: max(|S — Sprev|, |E — Eprev|, |I = Iprev|, |R — Rprev|) < tol then
20: Break

21: end if

22: end for
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Figure 4. Dynamics of the Ebola disease model.

Possible Improvements

The model currently assumes constant parameters (adopted from [25,26]) such as
transmission and progression rates, which may not accurately reflect variations observed in
outbreaks due to changes in public health interventions, viral mutations, and population be-
havior. Additionally, the absence of demographic processes such as birth and natural death
rates limits the model’s long-term predictive capacity. Future improvements could include
age-structured compartments, spatial heterogeneity, and the incorporation of vaccination
and treatment effects. Such enhancements would provide a more realistic and adaptable
framework to better inform public health strategies and outbreak response planning.

7. Conclusions

The development of a novel fixed point iterative scheme with a faster convergence
rate contributes significantly to fixed point theory by offering a more efficient method
for approximating solutions to nonlinear problems. In this paper, we introduced a fast
iterative scheme which generalizes existing schemes. We presented the analysis regarding
the convergence behavior, stability, and sensitivity to data. Numerical examples, illustrated
through graphs and tables, further demonstrated the effectiveness and stability of the new
scheme. Finally, we implemented the new scheme in MATLAB R2023b to simulate Ebola
virus disease dynamics.
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