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Abstract: Quaternion tensor decompositions have recently been the center of focus due
to their wide potential applications in color data processing. In this paper, we establish a
simultaneous decomposition for a quaternion tensor quaternity under Einstein product.
The decomposition brings the quaternity of four quaternion tensors into a canonical form,
which only has 0 and 1 entries. The structure of the canonical form is discussed in detail.
Moreover, the proposed decomposition is applied to a new framework of color video
encryption and decryption based on discrete wavelet transform. This new approach can
realize simultaneous encryption and compression with high security.

Keywords: tensor decomposition; quaternion algebra; quaternion tensor

MSC: 15A69; 11R52; 15A09

1. Introduction
A tensor is a multi-dimensional array that can hold vast amounts of structured data.

Tensors and decompositions of tensors are useful in data mining [1], genomic signals [2],
signal processing [3], computer vision [4] and elsewhere. Numerous kinds of tensor
decompositions have been discussed in the literature, including Tucker decomposition,
higher-order singular value decomposition and so on (e.g., [5–9]). Kolda and Bader [10] in
2013 provided a review of existing tensor decompositions as well as their applications and
related algorithms.

Quaternion algebra was introduced by Hamilton in 1943. Quaternion algebra is an
associative and noncommutative division algebra over the real number field. The theory
of quaternion algebra is discussed in [11,12]. Recently, quaternion algebra has attracted
significant attention due to its wide applications in signal processing, control theory, com-
puter science, quantum mechanics and others [13–19]. Particularly in the realm of color
image processing, Pei and Cheng [20] proposed a quaternion model for color images.
In this model, the RGB components of every pixel fit well to the three imaginary parts of a
quaternion number. Therefore, the quaternion model for color images is widely used in
many studies.

A tensor with quaternion entries is a quaternion tensor. Quaternion tensors can
hold more information than real tensors and therefore have more potential applications.
For example, Miao et al. [21] defined quaternion-based higher-order singular value decom-
position and applied it in color image processing. Eigenvalues of quaternion tensors under
Einstein product and applications in color video compression are investigated in [22].
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However, to our knowledge, the theory of simultaneous decomposition for multiple
tensors over quaternion algebra is not so fruitful at present. Many results over real number
fields cannot be directly extended to quaternion algebra due to its noncommutativity.
In particular, He et al. [23,24] established simultaneous decompositions for two sets
of quaternion tensor triplets under Einstein product and provided applications in color
video processing.

Motivated by the wide applications of quaternion tensor decomposition and the works
mentioned above, in this paper, we establish a simultaneous decomposition for a quaternion
tensor quaternity under Einstein product. This decomposition brings the quaternity of four
quaternion tensors into a canonical form whose entries are only 0 and 1. The structure
of the canonical form is discussed in detail. These results extend the existing findings of
simultaneous decomposition for multiple quaternion tensors. Moreover, we combine the
proposed decomposition with discrete wavelet transform to construct a new framework
of color video encryption and decryption. This new method can realize simultaneous
encryption and compression with high security.

The remainder of this paper is organized as follows. In Section 2, we present some
notations and necessary results about quaternion algebra, tensor and Einstein product.
In Section 3, we establish a simultaneous decomposition for a quaternion tensor quaternity
and discuss its structure in detail. In Section 4, we apply the proposed decomposition to
color video processing.

2. Preliminaries
A tensor A = (ai1,...,iN )1≤ij≤Ij(j = 1, . . . , N) is a multi-dimensional array with

I1 I2 · · · IN entries. N is called the order of A. Let R and H stand, respectively, for the
real number field and the quaternion algebra:

H =
{

a0 + a1i + a2j + a3k
∣∣ i2 = j2 = k2 = ijk = −1, a0, a1, a2, a3 ∈ R

}
.

We denote HI1×···×IN as the set of all the N-order quaternion tensors of dimensions
I1 × · · · × IN . A tensor D = (di1,...,iN ,j1,...,jN ) ∈ HI1×···×IN×I1×···×IN is called a diagonal
tensor if all of its entries are zero except for di1,...,iN ,i1,...,iN . If all the di1,...,iN ,i1,...,iN = 1, then D
is called a unit tensor and denoted by I . A tensor is called a zero tensor if all of its entries
are zero. A zero tensor with an appropriate order size is denoted by 0.

In particular, a matrix is a second-order tensor. We use normal uppercase letters to
represent a matrix, for example, A. An identity matrix of appropriate size is denoted by I.
Let A ∈ Hm×n; the symbols r(A) and A−1 stand for the rank of A and the inverse of A if A
is invertible, respectively. For a more detailed review of the quaternion matrix, readers can
refer to [12].

Next, we give the definition of Einstein product.

Definition 1 (Einstein product, [25]). For two tensors with compatible sizes A = (ai1,...,iN ,j1,...,jN )

∈ HI1×···×IN×J1×···×JN and B = (bj1,...,jN ,k1,...,kM ) ∈ HJ1×···×JN×K1×···×KM , the Einstein product
of A and B is defined by the operation ∗N via

(A ∗N B)i1,...,iN ,k1,...,jM = ∑
j1,...,jN

ai1,...,iN ,j1,...,jN bj1,...,jN ,k1,...,kM .

Thus, (A ∗N B) ∈ HI1×···×IN×K1×···×KM .

Navasca et al. in [6] defined a transformation from tensor to matrix over a real number
field. We now give a similar and more precise definition of transformation from tensor to
matrix over quaternion algebra.
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Definition 2 (Transformation). Define the transformation

f I1,··· ,IN ,J1,··· ,JN : A ∈ HI1×···×IN×J1×···×JN → A ∈ HI1·I2···IN−1·IN×J1·J2···JN−1·JN

with f I1,··· ,IN ,J1,··· ,JN (A) = A defined entry-wise as

(A)i1,...,iN ,j1,...,jN

f I1,··· ,IN ,J1,··· ,JN−−−−−−−−→ (A)
[i1+∑N

k=2(ik−1)∏k−1
s=1 Is ],[j1+∑N

k=2(jk−1)∏k−1
s=1 Js ]

. (1)

Remark 1. Compared with the transformation f defined in [6], here, we add certain subscripts to
f . This would help distinguish different transformations that deal with tensors of different sizes.
In particular, we can drop the subscripts of f if they are clear from the context.

Navasca et al. in [6] discussed some properties of the map f over a real number field.
By a similar approach, these results can be generalized to quaternion algebra.

Lemma 1. Let f be the map defined in (1). Then, the following properties hold:

1. For any A ∈ HI1×···×IN×J1×···×JN , the map f I1,··· ,IN ,J1,··· ,JN is a bijection and its inverse map
f−1
I1,··· ,IN ,J1,··· ,JN

, or simply, f−1, if its subscripts are clear from the context, is given by

f−1 : A ∈ HI1·I2···IN−1·IN×J1·J2···JN−1·JN → A ∈ HI1×···×IN×J1×···×JN

with f−1(A) = A defined entry-wise as

(A)i,j
f−1

→ (A)i1,...,iN ,j1,...,jN (2)

where

it =



s
i−1

∏N−1
s=1 Is

{
+ 1 if t = N;

s
i−1−∑N

k=t+1(it−1)∏k−1
s=1 Is

∏t−1
s=1 Is

{
+ 1 if t = 2, · · · , N − 1;

i − ∑N
k=2(ik − 1)∏k−1

s=1 Is if t = 1,

(3)

jt =



s
j−1

∏N−1
s=1 Js

{
+ 1 if t = N;

s
j−1−∑N

k=t+1(jt−1)∏k−1
s=1 Js

∏t−1
s=1 Js

{
+ 1 if t = 2, · · · , N − 1;

j − ∑N
k=2(jk − 1)∏k−1

s=1 Js if t = 1,

(4)

and JxK is the greatest integer less than or equal to the real number x.
2. For any A ∈ HI1×···×IN×J1×···×JN and B ∈ HJ1×···×JN×K1×···×KN , the map f satisfies

f (A ∗N B) = f (A) · f (B), where “·” is the usual matrix multiplication.

Proof. We only prove that, under the foundation of f being a bijection, the expression of
f−1 is given as (2)–(4). Readers can refer to [6,26] for the other parts of the proof.

If N = 1, then f and f−1 are simply identity maps.
Now, we consider the case of N ≥ 2. Suppose

(A)i,j
f−1

→ (A)i1,...,iN ,j1,...,jN .
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Then, there must be

(A)i1,...,iN ,j1,...,jN
f→ (A)i,j

since f is a bijection. It follows from the definition of f in (1) that

i1 +
N

∑
k=2

(ik − 1)
k−1

∏
s=1

Is = i, (5)

and

j1 +
N

∑
k=2

(jk − 1)
k−1

∏
s=1

Js = j. (6)

We can first obtain from (5) that

(iN − 1)
N−1

∏
s=1

Is = i − i1 −
N−1

∑
k=2

(ik − 1)
k−1

∏
s=1

Is ≤ i − 1,

i.e.,

iN ≤ i − 1

∏N−1
s=1 Is

+ 1.

Since iN is a positive integer, we see that

iN ≤
t

i − 1

∏N−1
s=1 Is

|

+ 1.

Now, we want to prove iN =

s
i−1

∏N−1
s=1 Is

{
+ 1. Suppose iN <

s
i−1

∏N−1
s=1 Is

{
+ 1, that is,

iN ≤
s

i−1
∏N−1

s=1 Is

{
. Then, we have

i = i1 +
N

∑
k=2

(ik − 1)
k−1

∏
s=1

Is

≤ I1 + (I2 − 1)I1 + (I3 − 1)I1 I2 + · · ·+ (IN−1 − 1)
N−2

∏
s=1

Is +

(t
i − 1

∏N−1
s=1 Is

|

− 1

)
N−1

∏
s=1

Is

=

t
i − 1

∏N−1
s=1 Is

|
N−1

∏
s=1

Is ≤ i − 1,

which is a contradiction. Hence, we have iN =

s
i−1

∏N−1
s=1 Is

{
+ 1. Then, we can rewrite (5) as

i1 +
N−1

∑
k=2

(ik − 1)
k−1

∏
s=1

Is = i − (iN − 1)
N−1

∏
s=1

Is.

By the same approach, we can obtain the expressions of iN−1, iN−2, . . . , i1. Similarly, we can
give the expressions of jN , jN−1, . . . , j1.

According to Lemma 1, we can immediately obtain the following property of f−1.
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Lemma 2. For any two matrices A ∈ HI1·I2···IN−1·IN×J1·J2···JN−1·JN and
B ∈ HJ1·J2···JN−1·JN×K1·K2···KN−1·KN , the map f−1 satisfies f−1

I1,··· ,IN ,K1,··· ,KN
(A · B) =

f−1
I1,··· ,IN ,J1,··· ,JN

(A) ∗N f−1
J1,··· ,JN ,K1,··· ,KN

(A · B).

Proof.

f−1(A · B) = f−1( f ( f−1(A)) · f ( f−1(B)))

= f−1( f ( f−1(A) ∗N f−1(B))) = f−1(A) ∗N f−1(B)

We finally give the definition of the inverse of an even-order tensor.

Definition 3 (Inverse of an even-order tensor). A tensor A ∈ HI1×···×IN×I1×···×IN is invertible
if there exists X ∈ HI1×···×IN×I1×···×IN such that

A ∗N X = X ∗N A = I .

In this case, X is called the inverse of A and is denoted by A−1.

Since f (I) = I, where I is an identity matrix with appropriate size, together with the
multiplicative properties of f and f−1, we have the following.

Lemma 3. A tensor A ∈ HI1×···×IN×I1×···×IN is invertible if and only if matrix f (A) is invertible.
In this case, A−1 = f−1( f (A)−1).

Remark 2. The above several properties of f and f−1 admit a group structure onHI1×···×IN×I1×···×IN .
The transformation of f and f−1 between the quaternion tensor and quaternion matrix is the main
proof idea of the results in the next section.

3. A Simultaneous Decomposition for a Quaternion Tensor Quaternity
In this section, we give a simultaneous decomposition for a quaternion tensor quater-

nity via Einstein product. We first present the lemma of an equivalence canonical form of a
quaternion matrix quaternity.

Lemma 4 ([27,28]). Given four matrices of compatible sizes, A ∈ Hp1×q1 , B ∈ Hp2×q1 , C ∈
Hp2×q2 and D ∈ Hp2×q3 , there exist nonsingular matrices P1 ∈ Hp1×p1 , P2 ∈ Hp2×p2 , Q1 ∈
Hq1×q1 , Q2 ∈ Hq2×q2 and Q3 ∈ Hq3×q3 , such that

P1 AQ1 = SA, P2BQ1 = SB, P2CQ2 = SC, P2DQ3 = SD,

where

SA =


r1

r1 I 0

0 0

, SB =


r2 r1 − r2 r3

r3 0 0 I 0

r2 I 0 0 0

0 0 0 0

, SC =



r6 r4 r5

r5 0 0 I 0

r3 − r5 0 0 0 0

r4 0 I 0 0

r2 − r4 0 0 0 0

r6 I 0 0 0

0 0 0 0


,
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and

SD =



r15 r13 r10 r14 r12 r9 r11 r8 r7

r7 0 0 0 0 0 0 0 0 I 0

r5 − r7 0 0 0 0 0 0 0 0 0 0

r8 0 0 0 0 0 0 0 I 0 0

r9 0 0 0 0 0 I 0 0 0 0

r10 0 0 I 0 0 0 0 0 0 0

r3 − r5 − r8 − r9 − r10 0 0 0 0 0 0 0 0 0 0

r9 0 0 0 0 0 I 0 0 0 0

r11 0 0 0 0 0 0 I 0 0 0

r4 − r9 − r11 0 0 0 0 0 0 0 0 0 0

r12 0 0 0 0 I 0 0 0 0 0

r13 0 I 0 0 0 0 0 0 0 0

r2 − r4 − r12 − r13 0 0 0 0 0 0 0 0 0 0

r13 0 I 0 0 0 0 0 0 0 0

r10 0 0 I 0 0 0 0 0 0 0

r14 0 0 0 I 0 0 0 0 0 0

r6 − r13 − r10 − r14 0 0 0 0 0 0 0 0 0 0

r15 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



.

The expressions for the block dimensions r1–r15 are given by

r1 = r(A), r2 = r(A) + r(B)− r

(
A
B

)
, r3 = r

(
A
B

)
− r(A),

r4 = r

(
A 0
B C

)
− r

(
A
B

)
− r
(

B C
)
+ r(B),

r5 = r

(
A
B

)
+ r(C)− r

(
A 0
B C

)
, r6 = r

(
B C

)
− r(B),

r7 = r

(
A
B

)
+ r(C) + r(D)− r

A 0 0
B C 0
0 C D

, r8 = r

A 0 0
B C 0
0 C D

− r

(
A 0
B D

)
− r(C),

r9 = r

(
A 0
B C

)
+ r

(
A 0
B D

)
+ r

(
B C 0
0 C D

)
− r

A 0 0
B C 0
0 C D

− r

A 0 0 0
0 B C 0
B 0 C D

,

r10 = r
(

C D
)
+ r

A 0 0 0
0 B C 0
B 0 C D

− r

(
A 0 0
B C D

)
− r

(
B C 0
0 C D

)
,
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r11 = r(B) + r

A 0 0
B C 0
0 C D

− r

(
A
B

)
− r

(
B C 0
0 C D

)
,

r12 = r

A 0 0 0
0 B C 0
B 0 C D

− r
(

B D
)
− r

(
A 0
B C

)
,

r13 = r
(

B C
)
+ r
(

B D
)
− r
(

B C D
)
+ r

(
A 0 0
B C D

)
− r

A 0 0 0
0 B C 0
B 0 C D

,

r14 = r

(
B C 0
0 C D

)
− r(B)− r

(
C D

)
, r15 = r

(
B C D

)
− r
(

B C
)

.

Now, we give the main theorem of this paper.

Theorem 1. Given four tensors of compatible sizes, A ∈ HI1×···×IN×K1×···×KN , B ∈
HJ1×···×JN×K1×···×KN , C ∈ HJ1×···×JN×L1×···×LN and D ∈ HJ1×···×JN×R1×···×RN , there
exist invertible tensors P1 ∈ HI1×···×IN×I1×···×IN , P2 ∈ HJ1×···×JN×J1×···×JN , Q1 ∈
HK1×···×KN×K1×···×KN , Q2 ∈ HL1×···×LN×L1×···×LN and Q3 ∈ HR1×···×RN×R1×···×RN , such that

P1 ∗N A ∗N Q1 = SA, P2 ∗N B ∗N Q1 = SB ,

P2 ∗N C ∗N Q2 = SC , P2 ∗N D ∗N Q3 = SD ,
(7)

where

SA = f−1
I1,··· ,IN ,K1,··· ,KN

(SA), SB = f−1
J1,··· ,JN ,K1,··· ,KN

(SB),

SC = f−1
J1,··· ,JN ,L1,··· ,LN

(SC), SD = f−1
J1,··· ,JN ,R1,··· ,RN

(SD),

and

SA =


v1

v1 I 0

0 0

, SB =


v2 v1 − v2 v3

v3 0 0 I 0

v2 I 0 0 0

0 0 0 0

, SC =



v6 v4 v5

v5 0 0 I 0

v3 − v5 0 0 0 0

v4 0 I 0 0

v2 − v4 0 0 0 0

v6 I 0 0 0

0 0 0 0


, (8)
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SD =



v15 v13 v10 v14 v12 v9 v11 v8 v7

v7 0 0 0 0 0 0 0 0 I 0

v5 − v7 0 0 0 0 0 0 0 0 0 0

v8 0 0 0 0 0 0 0 I 0 0

v9 0 0 0 0 0 I 0 0 0 0

v10 0 0 I 0 0 0 0 0 0 0

v3 − v5 − v8 − v9 − v10 0 0 0 0 0 0 0 0 0 0

v9 0 0 0 0 0 I 0 0 0 0

v11 0 0 0 0 0 0 I 0 0 0

v4 − v9 − v11 0 0 0 0 0 0 0 0 0 0

v12 0 0 0 0 I 0 0 0 0 0

v13 0 I 0 0 0 0 0 0 0 0

v2 − v4 − v12 − v13 0 0 0 0 0 0 0 0 0 0

v13 0 I 0 0 0 0 0 0 0 0

v10 0 0 I 0 0 0 0 0 0 0

v14 0 0 0 I 0 0 0 0 0 0

v6 − v13 − v10 − v14 0 0 0 0 0 0 0 0 0 0

v15 I 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0



. (9)

The expressions for the block dimensions v1–v15 are given by

v1 = r
(

f (A)

)
, v2 = r

(
f (A)

)
+ r
(

f (B)
)
− r
(

f (A)
f (B)

)
, v3 = r

(
f (A)
f (B)

)
− r
(

f (A)

)
,

v4 = r
(

f (A) 0
f (B) f (C)

)
− r
(

f (A)
f (B)

)
− r
(

f (B) f (C)
)
+ r
(

f (B)
)

,

v5 = r
(

f (A)
f (B)

)
+ r
(

f (C)
)
− r
(

f (A) 0
f (B) f (C)

)
, v6 = r

(
f (B) f (C)

)
− r
(

f (B)
)

,

v7 = r
(

f (A)
f (B)

)
+ r
(

f (C)
)
+ r
(

f (D)

)
− r

(
f (A) 0 0
f (B) f (C) 0

0 f (C) f (D)

)
,

v8 = r

(
f (A) 0 0
f (B) f (C) 0

0 f (C) f (D)

)
− r
(

f (A) 0
f (B) f (D)

)
− r
(

f (C)
)

,

v9 = r
(

f (A) 0
f (B) f (C)

)
+ r
(

f (A) 0
f (B) f (D)

)
+ r
(

f (B) f (C) 0
0 f (C) f (D)

)
− r

(
f (A) 0 0
f (B) f (C) 0

0 f (C) f (D)

)
− r

(
f (A) 0 0 0

0 f (B) f (C) 0
f (B) 0 f (C) f (D)

)
,

v10 = r
(

f (C) f (D)

)
+ r

(
f (A) 0 0 0

0 f (B) f (C) 0
f (B) 0 f (C) f (D)

)
− r
(

f (A) 0 0
f (B) f (C) f (D)

)
− r
(

f (B) f (C) 0
0 f (C) f (D)

)
,

v11 = r
(

f (B))
)
+ r

(
f (A) 0 0
f (B) f (C) 0

0 f (C) f (D)

)
− r
(

f (A)
f (B)

)
− r
(

f (B) f (C) 0
0 f (C) f (D)

)
,



Mathematics 2025, 13, 1679 9 of 15

v12 = r

(
f (A) 0 0 0

0 f (B) f (C) 0
f (B) 0 f (C) f (D)

)
− r
(

f (B) f (D)

)
− r
(

f (A) 0
f (B) f (C)

)
,

v13 = r
(

f (B) f (C)
)
+ r
(

f (B) f (D)

)
− r
(

f (B) f (C) f (D)

)
+ r
(

f (A) 0 0
f (B) f (C) f (D)

)
− r

(
f (A) 0 0 0

0 f (B) f (C) 0
f (B) 0 f (C) f (D)

)
,

v14 = r
(

f (B) f (C) 0
0 f (C) f (D)

)
− r
(

f (B)
)
− r
(

f (C) f (D)

)
, v15 = r

(
f (B) f (C) f (D)

)
− r
(

f (B) f (C)
)

.

The exact structures of SA, SB , SC and SD are given in Theorem 2.

Proof. Note that the matrices f (A), f (B), f (C), and f (D) can be arranged in the following
matrix array:


∏N

i=1 Ki ∏N
i=1 Li ∏N

i=1 Ri

∏N
i=1 Ii f (A) 0 0

∏N
i=1 Ji f (B) f (C) f (D)

. (10)

Applying Lemma 4 to (10), we have nonsingular matrices P1, P2, Q1, Q2, and Q3 with
appropriate sizes such that

P1 f (A)Q1 = SA, P2 f (B)Q1 = SB, P2 f (C)Q2 = SC, P2 f (D)Q3 = SD

where SA, SB, SC, and SD are exactly in the forms of (8) and (9). Moreover, it follows from
the properties of f and f−1 in Lemmas 1 and 2 that

f−1(SA) = f−1(P1 f (A)Q1) = f−1(P1) ∗N f−1( f (A)) ∗N f−1(Q1) ⇒ P1 ∗N A ∗N Q1 = SA,

f−1(SB) = f−1(P2 f (B)Q1) = f−1(P2) ∗N f−1( f (B)) ∗N f−1(Q1) ⇒ P2 ∗N B ∗N Q1 = SB ,

f−1(SC) = f−1(P2 f (C)Q2) = f−1(P2) ∗N f−1( f (C)) ∗N f−1(Q2) ⇒ P2 ∗N C ∗N Q2 = SC ,

f−1(SD) = f−1(P2 f (D)Q3) = f−1(P2) ∗N f−1( f (D)) ∗N f−1(Q3) ⇒ P2 ∗N D ∗N Q3 = SD ,

where P1 := f−1(P1),P2 := f−1(P2),Q1 := f−1(Q1),Q2 := f−1(Q2), and Q3 := f−1(Q3)

are invertible tensors by Lemma 3; SA := f−1(SA),SB := f−1(SB),SC := f−1(SC), and
SD := f−1(SD) are real tensors whose nonzero entries are all 1.

To determine the position of 1 in SA, SB , SC and SD , we first give the follow-
ing definition.

Definition 4. We denote ⟨N⟩ = {1, 2, · · · , N} and define the map

hI1,··· ,IN ,J1,··· ,JN : ⟨I1 · I2 · · · IN−1 · IN⟩ × ⟨J1 · J2 · · · JN−1 · JN⟩ →
⟨I1⟩ × · · · × ⟨IN⟩ × ⟨J1⟩ × · · · × ⟨JN⟩
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as hI1,··· ,IN ,J1,··· ,JN (i, j) = (i1, . . . , iN , j1, . . . jN) with

it =



s
i−1

∏N−1
s=1 Is

{
+ 1 if t = N;

s
i−1−∑N

k=t+1(it−1)∏k−1
s=1 Is

∏t−1
s=1 Is

{
+ 1 if t = 2, · · · , N − 1;

i − ∑N
k=2(ik − 1)∏k−1

s=1 Is if t = 1,

jt =



s
j−1

∏N−1
s=1 Js

{
+ 1 if t = N;

s
j−1−∑N

k=t+1(jt−1)∏k−1
s=1 Js

∏t−1
s=1 Js

{
+ 1 if t = 2, · · · , N − 1;

j − ∑N
k=2(jk − 1)∏k−1

s=1 Js if t = 1.

We also define

hI1,··· ,IN ,J1,··· ,JN (G) := {hI1,··· ,IN ,J1,··· ,JN (i, j) |(i, j) ∈ G}

where G ⊆ ⟨I1 · I2 · · · IN−1 · IN⟩ × ⟨J1 · J2 · · · JN−1 · JN⟩.

Now, we can easily use the map h to translate the position of 1 in SA, SB, SC, and SD to
the position of 1 in SA, SB , SC and SD .

Theorem 2. The structures of SA,SB ,SC and SD in Theorem 1 are as follows:

(SA)i1,...,iN ,k1,...,kN =

{
1, if (i1, . . . , iN , k1, . . . , kN) ∈ hI1,··· ,IN ,K1,··· ,KN (HA),
0, otherwise,

(SB)j1,...,jN ,k1,...,kN =

{
1, if (j1, . . . , jN , k1, . . . , kN) ∈ hJ1,··· ,JN ,K1,··· ,KN (HB),
0, otherwise,

(SC)j1,...,jN ,l1,...,lN =

{
1, if (j1, . . . , jN , l1, . . . , lN) ∈ hJ1,··· ,JN ,L1,··· ,LN (HC),
0, otherwise,

(SD)j1,...,jN ,r1,...,rN =

{
1, if (j1, . . . , jN , r1, . . . , rN) ∈ hJ1,··· ,JN ,R1,··· ,RN (HD),
0, otherwise.

where

HA = {(a1, a1)|a1 ∈ ⟨v1⟩},

HB = {(v3 + b1, b1)|b1 ∈ ⟨v2⟩}
∪ {(b2, v1 + b2)|b2 ∈ ⟨v3⟩},

HC = {(v2 + v3 + c1, c1)|c1 ∈ ⟨v6⟩}
∪ {(v3 + c2, v6 + c2)|c2 ∈ ⟨v4⟩}
∪ {(c3, v6 + v4 + c3)|c3 ∈ ⟨v5⟩},
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HD = {(v2 + v3 + v6 + d1, d1)|d1 ∈ ⟨v15⟩}
∪ {(v2 + v3 + d2, v15 + d2)|d2 ∈ ⟨v13 + v10 + v14⟩}
∪ {(v3 + v4 + v12 + d3, v15 + d3)|d3 ∈ ⟨v13⟩}
∪ {(v3 + v4 + d4, v15 + v13 + v10 + v14 + d4)|d4 ∈ ⟨v12⟩}
∪ {(v3 + d5, v15 + v13 + v10 + v14 + v12 + d5)|d5 ∈ ⟨v9 + v11⟩}
∪ {(v5 + v8 + v9 + d6, v15 + v13 + d6)|d6 ∈ ⟨v10⟩}
∪ {(v5 + v8 + d7, v15 + v13 + v10 + v14 + v12 + d7)|d7 ∈ ⟨v9⟩}
∪ {(v5 + d8, v15 + v13 + v10 + v14 + v12 + v9 + v11 + d8)|d8 ∈ ⟨v8⟩}
∪ {(d9, v15 + v13 + v10 + v14 + v12 + v9 + v11 + v8 + d9)|d9 ∈ ⟨v7⟩}.

4. An Application of the Proposed Decomposition in Color
Video Processing

In this section, an new framework of color video encryption using the proposed
simultaneous decomposition (7) is presented. In the quaternion model for color images [20],
a color image can be represented by a quaternion matrix. Analogously, a color video can
be represented by a third-order quaternion tensor A ∈ Hm×n×p, where p is the number of
frames of the video, and m and n are the height and the width of each frame, respectively.
When the video has even frames, it can be further represented by a fourth-order quaternion
tensor A ∈ Hm×n× p

2 ×2. A(:, :, :, 1) and A(:, :, :, 2) represent the first half and the second half
of the video, respectively.

Now, we want to apply the simultaneous decomposition for four quaternion tensors to
encrypt a color video. In the process, we might perform the f transformation to transform
a color video A ∈ Hm×n× p

2 ×2 into a matrix A ∈ Hmn×p. However, in the cases where the
video is short, we have mn ≫ p, which would result in the matrix A being ill-conditioned
for further processing. Hence, in the following, we equivalently use A ∈ Hm× p

2 ×n×2 to
represent a color video, where the meanings of m, n and p are the same as above. We also
assume that m and n are even numbers.

The steps of the new method of color video encryption using the simultaneous decom-
position for four quaternion tensors are as follows:

Step 1. Perform the discrete wavelet transform [29] to each frame of the original video.
The LL, LH, HL and HH sub-bands form four sub-videos of the same sizes A,B, C,D ∈
Hm

2 ×
p
2 ×

n
2 ×2.

Step 2. Note that A,B, C and D satisfy the conditions of Theorem 1. We can conduct
the simultaneous decomposition for these four tensors:

P1 ∗N A ∗N Q1 = SA, P2 ∗N B ∗N Q1 = SB ,

P2 ∗N C ∗N Q2 = SC , P2 ∗N D ∗N Q3 = SD ,

where SA,SB ,SC ,SD ∈ Hm
2 ×

p
2 ×

n
2 ×2 only have entries 0 and 1.

Step 3. Put SA,SB ,SC , and SD together to form the encrypted video Ve ∈ Hm× p
2 ×n×2.

Save P1,P2,Q1,Q2 and Q3 as keys.
The encryption and the corresponding decryption processes are summarized in

Algorithm 1 and Algorithm 2, respectively.
In the experiment, we used the first 20 frames of the color video rhinos.avi from

MATLAB R2022a as the original video. Each frame is of size 240× 320. This color video can
be represented as V ∈ H240×10×320×2. We performed the Haar discrete wavelet transform
and obtained four sub-bands of the same sizes A,B, C,D ∈ H120×10×160×2. Then, we
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applied the simultaneous decomposition for four tensors to obtain the encrypted video and
keys. Finally, we used the keys to decrypt the encrypted video.

The results of the encryption and the decryption are shown in Figures 1 and 2. It can
be seen that each frame of the encrypted video is a binary image, which only has white and
black pixels. Therefore, the information of the original video is highly concealed through
the encryption process. Furthermore, the decrypted video is almost identical to the original
one, which shows that the decryption effect is also great.

It is worth noting that DWT is also useful in color video compression. Hence, our
framework can also realize simultaneously encryption and compression. Moreover, we can
perform DWT more times in the first step of encryption to shrink the size of the original
video and find a balance between speed and effect.

frame 1 frame 2 frame 3 frame 4 frame 5

frame 6 frame 7 frame 8 frame 9 frame 10

Figure 1. Encryption and decryption results of the video rhinos.avi from frame 1 to frame 10. The orig-
inal frames from the video are listed in the first row and the fourth row. The encryption frames are
listed in the second row and the fifth row. The decryption frames are listed in the third row and the
sixth row.
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Algorithm 1: Encryption process

Input : Original video V ∈ Hm× p
2 ×n×2.

Output : Encrypted video Ve ∈ Hm× p
2 ×n×2 and keys P1,P2,Q1,Q2, Q3.

1 For i = 1, 2, . . . , p
2 , j = 1, 2, perform DWT to each frame Vi,j ∈ Hm×n of the original

video. The obtained LL, LH, HL and HH sub-bands Ai,j,Bi,j, Ci,j,Di,j ∈ Hm
2 ×

n
2 of

each frame form four sub-videos A,B, C,D ∈ Hm
2 ×

p
2 ×

n
2 ×2.

2 By Theorem 1, compute the simultaneous decomposition

P1 ∗N A ∗N Q1 = SA, P2 ∗N B ∗N Q1 = SB ,

P2 ∗N C ∗N Q2 = SC , P2 ∗N D ∗N Q3 = SD .

3 Save P1,P2,Q1,Q2 and Q3 as keys and the encrypted video Ve ∈ Hm× p
2 ×n×2 is

the combination of the equivalence canonical form SA,SB ,SC ,SD ∈ Hm
2 ×

p
2 ×

n
2 ×2.

frame 11 frame 12 frame 13 frame 14 frame 15

frame 16 frame 17 frame 18 frame 19 frame 20

Figure 2. Encryption and decryption results of the video rhinos.avi from frame 11 to frame 20.
The original frames from the video are listed in the first row and the fourth row. The encryption
frames are listed in the second row and the fifth row. The decryption frames are listed in the third
row and the sixth row.
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Algorithm 2: Decryption process

Input : Encrypted video Ve ∈ Hm× p
2 ×n×2 and keys P1,P2,Q1,Q2, Q3.

Output : Decrypted video Vd ∈ Hm× p
2 ×n×2.

1 Seperate the encrypted video Ve into four quarters SA,SB ,SC ,SD ∈ Hm
2 ×

p
2 ×

n
2 ×2.

2 Use the keys to decrypt the four quarters:

A = P−1
1 ∗N SA ∗N Q−1

1 , B = P−1
2 ∗N SB ∗N Q−1

1 ,

C = P−1
2 ∗N SC ∗N Q−1

2 , D = P−1
2 ∗N SD ∗N Q−1

3 .

3 Apply inverse DWT on A,B, C and D to reconstruct the video Vd ∈ Hm× p
2 ×n×2.

5. Conclusions
We have reviewed results in relation to the Einstein product of tensors and provided a

more precise definition of transformation (1). We have derived a simultaneous decompo-
sition for a quaternion tensor quaternity in Theorem 1 that brings the given tensors into
a canonical form with only 0 and 1 entries. The structure of the canonical form has been
discussed in detail in Theorem 2 as well. Furthermore, we have applied the proposed
simultaneous decomposition combined with DWT to construct a new framework of color
video encryption and decryption. The framework can realize simultaneous encryption
and compression.
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