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Abstract: This paper proposes a sensorless field-oriented control (FOC) strategy for per-
manent magnet synchronous motors (PMSMs), focusing on rotor flux position estimation
based on back-electromotive force (back-EMF) signals. The limitations of conventional
phase-locked loop (PLL) techniques for rotor flux position estimation along the motor shaft
are analyzed, and an enhanced PLL structure is developed to address these deficiencies.
In electric vehicle traction applications, precise flux position estimation alone is insuffi-
cient; accurate generation of d–q-axis current commands is equally critical. To address
this need, a zero-pole-free PI regulator is designed within the PLL module, enabling more
accurate flux estimation. Additionally, a gradient-based self-tuning algorithm is employed
to identify system parameters, particularly the stator inductance, enabling the controller to
optimize current command generation.Comprehensive system-level simulations have been
conducted to validate the effectiveness of the proposed sensorless control scheme. Compar-
ative studies demonstrate that the proposed method significantly improves feasibility and
robustness for practical PMSM drive applications.

Keywords: back-EMF estimator; parameter self-tuning; phase-locked loop; sensorlesscontrol;
field weakening; electric vehicles

MSC: 93D21; 94B47; 93B30; 93C40

1. Introduction
Recent advancements in microcontroller technologies have significantly enhanced

computational performance while simultaneously reducing system costs, primarily driven
by the widespread adoption of high-speed digital signal processing (DSP). These im-
provements have enabled the implementation of software-based motor control algorithms,
reducing the reliance on dedicated hardware components. As a result, the transition from
brushed DC motors to AC drives, such as induction motors and permanent magnet syn-
chronous motors (PMSMs), has been accelerated in numerous industrial and consumer
applications.

One of the most active research areas in AC motor drives is sensorless field-oriented
control (FOC), which eliminates the need for physical sensors to measure rotor speed and
position. Instead, rotor position is estimated in real time based solely on voltage and current
measurements obtained at the motor terminals.
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Rotor position can be estimated at any time by measuring only the stator voltages and
currents of the motor. The fundamental structure of sensorless FOC for permanent magnet
synchronous motors (PMSMs) was introduced by S. Bolognani et al. in [1].

A comprehensive classification of most estimation schemes for PMSM field-oriented
control (FOC) was presented by Lee et al. in [2].

Y. Park et al. [3] classified θr f −
⌢
θ r f estimator algorithms into two categories, each

specifically designed for operation in either high-speed or low-speed regions.
Conventional estimation techniques become ineffective in the low-speed region, where

the back-electromotive force (back-EMF) of the motor is inherently weak and unreliable. To
address this issue, high-frequency signals are injected along the d-axis of the rotating refer-
ence frame aligned with the rotor flux. The resulting q-axis response contains information
that can be utilized to estimate the rotor flux axis angle error, denoted as ε̂. This approach,
commonly referred to as high-frequency signal injection, has been extensively investigated
in the literature [4–6].

On the other hand, when the rotor speed is sufficiently high such that the back-
electromotive force (back-EMF) can be reliably observed, it can be utilized to estimate

θr f −
⌢
θ r f [7–12]. Christian [13] provided a rigorous mathematical analysis of the closed-

loop system formed by the combination of a PMSM extended state observer and a PI
controller.

Based on empirical rules, the threshold for distinguishing low-speed operation is typi-
cally set at approximately 5% of the motor’s rated speed. As noted by Bolognani et al. [1],

although the algorithms for θr f −
⌢
θ r f estimation differ between low-speed and high-speed

regions, the underlying operational sequence of speed and position estimators follows the
same structure as a phase-locked loop (PLL).

In addition, Guozhonget al. [14] identified that the structure proposed by Bolognani et al. [1]
encounters issues during reverse operation. To address this problem, they modified the
PLL structure by squaring the sine and cosine signals and processing them at twice the
fundamental frequency. This modification effectively resolves the reverse operation issue.
Furthermore, the authors introduced an I/F startup control strategy to overcome the
limitations of back-EMF-based algorithms in the low-speed region.

Oleg V. Nos [15] proposed a method for estimating back-electromotive force (back-
EMF) using a sliding mode observer, which relies on the error between the actual and
estimated stator currents. The estimated back-EMF is then processed through a complex
coordinate filter (CCF) and a phase angle controller (PAC), with adjustments made based
on the difference between the estimated and actual angular velocities. This framework
forms the basis of the novel PLL structure proposed by the author. However, it should be
noted that the PAC remains based on the conventional PI regulator.

Wu et al. [16] pointed out that conventional phase-locked loop (PLL) structures fail
under reverse rotational conditions, leading to positive feedback and eventual loss of
control. To address this issue, a generalized PLL (GPLL) architecture was proposed, which
combines two PLL structures operating in both the α-β and d-q reference frames. By
mutually calibrating the estimated outputs from each frame, the GPLL effectively resolves
issues related to reverse rotation and low-speed operation. However, it still relies on the
conventional proportional–integral (PI) regulator.

Zdenek [17] pointed out that a fixed bandwidth in phase-locked loop (PLL) structures
is insufficient to accommodate the wide speed range requirements of motor applications.
To address this limitation, a self-tuning mechanism based on the gradient method was
incorporated into the PI regulator within the PLL, allowing the proportional and integral
gains to be optimized in real time based on the estimated states and errors.
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Because there are many limitations in a phase-locked loop, the above structure may
not be realizable. The performance of a PLL may not be satisfactory even if it can be used.
The problems induced by a general PLL will be presented, and the modified strategy will
be provided in this paper. In addition, a simulation is performed to verify the feasibility of
the proposed strategy.

In the operation of field-oriented control (FOC), it is essential not only to accurately
lock onto the rotor flux position but also to optimally determine the placement of the stator
current vector. This requirement becomes particularly critical in electric vehicle applications,
where both the battery voltage and motor output power are limited. The accelerator pedal
reflects the driver’s torque demand, and the controller must subsequently determine
the appropriate magnitude of the current commands. Before doing so, it is necessary
to consider constraints such as the battery voltage and vehicle speed. Interestingly, in
high-speed regions, the required torque tends to be inversely proportional to the vehicle
speed. As a result, field weakening control becomes an effective means to optimize the
power-to-size ratio of the drive unit.

Bimal [18] proposed a formulation for surface-mounted permanent magnet syn-
chronous motors (SPMSMs), as illustrated in Figure 1, satisfying the following:

(id − C)2 + i2q =
L2

s

ω2V2
DC

, i2d + i2q = |Ix|2 (1)

where C = −λr f /Ls and |Ix| represent the radii of current command circles, VDC is the
DC bus voltage, ω is the electrical angular velocity, Ls is the stator inductance, and
λr f is the rotor flux linkage. Based on this relationship, it can be derived that once ω

rises to ω1 = VDC√
L2

s I2
x+λ2

r f

, the system must enter the field-weakening region where id_Re f

and iq_Re f vary with speed, while still satisfying the current circle conditions defined by

id_Re f =
1

2Lsλr f

(
V2

DC
ω2 − λ2

r f − L2
s I2

x

)
and iq_Re f =

√
I2
x − i2d_Re f . The red curve shown in

Figure 1 depicts the trajectory of the current command as a function of rotor speed. Fur-
thermore, in scenarios involving vehicle coasting, regenerative braking, and battery range
extension, the planning of the current command trajectory becomes critically dependent on
the accurate identification of system parameters. Therefore, the objective of this work is to
dynamically adapt system parameters in response to varying operating conditions, while
simultaneously maintaining precise rotor flux position estimation.

 

Figure 1. Current reference trajectory planning for SPMSM in electric vehicle applications. The
dashed lines represent different throttle levels, while the center line corresponds to a fixed rotor speed.
The red solid line indicates the reference trajectory under a fixed current magnitude |I1|, varying
with rotor speed.
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The remainder of this paper is organized as follows. Section 2 derives the importance
and theoretical foundation of back-electromotive force (back-EMF) estimation for sensorless
operation based on motor equations. Section 3 reviews the fundamental theory of phase-
locked loops (PLLs) from the perspective of communication systems, where PLLs were first
utilized, and proposes modifications to enhance stability. Section 4 establishes a compre-
hensive simulation framework, incorporating both the conventional back-EMF estimation
method (integrated with PLL) and the improved structure proposed by Shuo [19], under a
predefined power-down restart scenario. Section 5 presents a gradient search method for
dynamically tracking the actual stator inductance. Section 6 applies the proposed concepts
under identical conditions for further comparative simulations. Finally, Section 7 discusses
and evaluates the advantages and limitations of the three investigated architectures.

2. Mathematical Model of PMSM Used for Estimating the Back-EMF
There are two conventional coordinate systems used in the FOC of a motor: the

rotating d − q coordinate system, where the d-axis aligns with the N pole, and the stationary
α − β coordinate system, where the α axis aligns with the a phase winding coil of the stator.
The relationship between them is shown in Figure 2. Furthermore, there is still another

coordinate system,
⌢
d −⌢

q , due to the inaccurate estimation.

 
Figure 2. The conventional reference frames used in the FOC.

In PMSMs, the mathematical model of the interior permanentmagnet synchronousmo-
tor (IPMSM) is the most complex. Lee et al. [2] derived its governing equation in the α − β

reference frame as follows:

[
vα

vβ

]
=


R +

(
L0+

L1 cos 2θr f

)
D

(
L1 sin 2θr f

)
D

(
L1 sin 2θr f

)
D R +

(
L0−
L1 cos 2θr f

)
D

 ·
[

iα
iβ

]
+ ωr f λPM

[
− sin θr f

cos θr f

]
(2)

where:

vα, vβ: stator voltages in the α − β frame.

iα, iβ: stator currents in the α − β frame.
R: stator resistance.
D: differential operator.
λPM: permanent magnet flux linkage.
θr f : rotor angular position.
ωr f : rotor angular velocity.

L0 =
Ld+Lq

2 , L1 =
Ld−Lq

2 , Ld, and Lq are the d− and q−axis inductances.
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As for the surface-mountedpermanentmagnet synchronousmotor (SPMSM), (2) can be
simplified because Ld = Lq = Ls in this type, as follows:[

vα

vβ

]
=

[
R + LsD 0

0 R + LsD

][
iα

iβ

]
+

[
eα

eβ

]
(3)

where

[
eα

eβ

]
= ωr f λPM

[
− sin θr f

cos θr f

]
, which are indeed the back-EMF.

The mathematical model of an IPMSM in the d − q reference frame can be described
as follows: [

vd

vq

]
=

[
R + LdD −ωr f Lq

ωr f Ld R + LqD

][
id

iq

]
+

[
0

ωr f λPM

]
(4)

Equation (4) can be reduced to (5) if SPMSM is presented in the above reference frame:[
vd

vq

]
=

[
R + LsD −ωr f Ls

ωr f Ls R + LsD

][
id

iq

]
+

[
0

ωr f λPM

]
(5)

Equation (5) can be split into two scalar equations:

(R + LsD) id = v′d + ωr f Lsiq, (R + LsD) iq = v′q − ωr f Lsid − ωr f λPM (6)

Hence, we constrain the scope of this paper in SPMSM and build the basic FOC
according to the proposition by Lee et al. [2]. The decoupling compensation scheme
presented in this paper is shown in Figure 3.

Figure 3. The Decoupling compensation scheme. The logic output of the comparator determines the
switching state. When A < B, the switch operates in State_0; otherwise, it transitions to State_1.

In this scheme, if the v′q and v′d in (6) are replaced by v∗q = v′q +
⌢
ωr f Lsid +

⌢
ωr f λPM and

v∗d = v′d −
⌢
ωr f Lsiq, thefollowing is implied:

(R + LsD)id = v′d, (R + LsD)iq = v′q (7)

These two equations are linear and independent of each other. This is the aim of
this scheme. In Figure 3, 5% of the rating speed is used as the level of switching between
two modes. A high-frequency signal (e.g., a = 5 and ωh f = 100k) will be added to the
command voltage on the d-axis when the rotor speed is lower than this level. Otherwise,
the back-EMF method will be used and developed when the speed exceeds the level.

By rewriting (3), one can obtain the following:

v∗α − eα = (R + LsD) iα, eα = −ωr f λPM sin θr f

v∗β − eβ = (R + LsD) iβ, eβ = ωr f λPM cos θr f
. (8)

Equation (8) is schematically represented in Figure 4.
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Figure 4. The θr f −
⌢
θ r f estimator.

It is important to emphasize that although the back-electromotive force (back-EMF)
components eα and eβ represent actual physical quantities, they can be easily measured
only when the machine operates in generator mode, with mechanical energy input at
the shaft. In practical motor operation, the terminal back-EMF is overwhelmed by the
pulse-width modulated (PWM) square-wave voltage applied to the stator, rendering direct
measurement infeasible. Consequently, observer-based methods must be employed to
estimate the back-EMF in real time.

Because
→
v
∗
=

[
v∗α
v∗β

]
,
→
i =

[
iα

iβ

]
, and

⌢
θ r f denote the command voltage, the feedback

current and the estimated angle, respectively, and are known. Although (3) is the governing
equation, we can rebuild the behavior of the system by numeric algorithms if the system

parameters
⌢
Rs and

⌢
L s are also known. Therefore,

⌢
Xα and

⌢
Xβ will approach the back-EMF

eα and eβ of the system when the current errors ∆iα and ∆iβ converge to the minimum
values, that is, if the correct value for estimating back-EMF can be obtained, we can obtain
the following: ⌢

Xα
⌢
Xβ

 = A•
[
− sin θr f

cos θr f

]
, (9)

where A is a positive value. According to Kim et al. [20], although
⌢
θ r f can be derived from

⌢
θ r f = − tan−1

⌢
Xα
⌢
Xβ

, (10)

the tan−1(•) is not a well-defined function because the positions satisfied with
⌢
θ r f =

2n+1
2 π

are all singular points. So, this approach cannot solve this problem completely. Moreover,
the calculation of tan−1(•) is difficult to execute on a fixed point and low-cost processor. In
summary, we will propose an approach that evaluates the estimated error of the angular

position to produce a valid
⌢
θ r f .
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3. The Modified Phase-Locked Loop

In the last process, as shownin Figure 4, the estimated back-EMF (
⌢
Xα and

⌢
Xβ) in (8) is

modulated with cos
⌢
θ r f and sin

⌢
θ r f into the following:

−
⌢
Xα cos

⌢
θ r f −

⌢
Xβ sin

⌢
θ r f = A sin θr f · cos

⌢
θ r f−A cos θr f · sin

⌢
θ r f = A sin

(
θr f − θ̂r f

)
≡ ⌢

ε . (11)

Lee introduced a common communication field technique (i.e.,phase-lockedloop) in
this process [4]. The conventional definition of a PLL in this field is shown in Figure 5. Jun
Cai [21] summarized the evolution of phase-locked loop (PLL) structures, highlighting the
challenges encountered at each stage and the corresponding improvement strategies de-
veloped over time. The progression began with conventional PLLs, evolved into modified
versions, incorporated built-in filters, and ultimately led to the development of modern
PLL architectures. At each stage, enhancements were achieved but often at the cost of
certain performance trade-offs.

Figure 5. The conventional definition of PLL in the communication field.

The signals presented in Figure 5 are described as follows:

Xr(t) = Ac cos[ωct + θ(t)], e0(t) = Av sin
[

ωct +
⌢
θ (t)

]
,

⇒ m(t) = Ac Av cos[ωct + θ(t)] sin
[

ωct +
⌢
θ (t)

]
= 1

2 Ac Av

{
sin
[

2ωct + θ(t) +
⌢
θ (t)

]
− sin

[
θ(t)−

⌢
θ (t)

]}
⇒ ed(t) =

Ac AvKd
2 sin

[
θ(t)−

⌢
θ (t)

]
, d

⌢
θ (t)
dt = Kvev(t)

(12)

As shown in Figure 5, the signal definitions correspond to (12). Figure 5 can be
equivalently represented by Figure 6. After simplification, it is observed that Xr(t) must
exhibit stable oscillatory behavior, while the phase component θ(t) should vary slowly.

Moreover, near-linear system behavior, as illustrated by θ(t) ≈
⌢
θ (t), occurs only when the

phase is nearly locked. Otherwise, the analysis must consider the nonlinear characteristics
depicted in the upper portion of Figure 6. To illustrate the invalidity of sin[ϕ(t)] ≈ ϕ(t),
the case where the loop filter exhibits a unity gain (i.e., a special case of Gloop(s) = 1) is first

considered. Based on Figure 6,
⌢
θ (t) = Kt

∫ t
0 sin

[
θ(t)−

⌢
θ (t)

]
dt can be derived, resulting in

the following:

Kt =
1
2

Ac AvKdKv ⇒ d
⌢
θ (t)
dt

= Kt sin
[

θ(t)−
⌢
θ (t)

]
(13)
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Figure 6. The simplification of a PLL in approximation.

If dθ
dt = ∆ω denotes the frequency drift of the original input signal,

⇒ dϕ(t)
dt

= −Kt sin ϕ(t) + ∆ω (14)

holds. According to (14), the corresponding phase trajectory is depicted in Figure 7.

Figure 7. Convergence behavior of the PLL. The red dashed arrows indicate the direction of state
convergence.

From Figure 7, the error between the actual angle θ(t) and the tracking angle
⌢
θ (t) will

converge to ϕss from the right to the left if the initial value (i.e., ϕ0 = θ0 −
⌢
θ 0) falls to the

region between points D and ϕss, where ϕss = sin−1 ∆ω
Kt

. On the contrary, this error will
converge to ϕss from the left to the right if the initial value falls to the region between points

C and ϕss. Therefore, it will converge to ϕss + 2π (
⌢
θ behind θ one circle) if ϕ0 falls to the

right side of point D and φss − 2π (
⌢
θ ahead θ one circle) if ϕ0 falls to the left side of point

C. The ϕss decreases when Kt increases. In summary, ϕss is the steady-state error when the
phase portrayed intersects with the horizontal axis ϕ(t), i.e., Kt ≥ |∆ω|.

The lower half side of Figure 6 is valid if θ(t) ≈ θ̂(t) ⇒ sin[ϕ(t)] ≈ ϕ(t) and
Gloop(s) = 1. From (13), we get

⇒ d
⌢
θ (t)
dt

+ Kt
⌢
θ (t) = Ktθ(t) ⇒ H(s) =

⌢
θ (s)
θ(s)

=
Kt

s + Kt
(15)
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Therefore, itis called a“first order” PLL.Therefore, if we choose Gloop(s) = 1 + a
s , we

obtain the following:

H(s) =

⌢
θ (s)
θ(s)

=
KtGloop(s)

s + KtGloop(s)
=

Kt(s + a)
s2 + Kts + Kta

; (16)

This equation is called a “second order” PLL and

T(s) =
ϕ(s)
θ(s)

=
ϕ(s)
⌢
θ (s)

⌢
θ (s)
θ(s)

=
s

KtGloop(s)
KtGloop(s)

s + KtGloop(s)
=

s
s + KtGloop(s)

=
s2

s2 + Kts + Kta
≡ s2

s2 + 2ςωns + ω2
n

(17)

where ς = 1
2

√
Kt
a is the damping ratio and ωn =

√
Kta is the natural frequency. If the input

frequency has a step variation, it results in the following:

dθ(t)
dt

= ∆ω · u(t) (18)

where u(t) is a unit step function and (18)⇒ sθ(s) = ∆ω
s ⇒ θ(s) = ∆ω

s2 . It is substituted
into (17), resulting in the following:

⇒ ϕ(s) = T(s)θ(s) = ∆ω
s2+2ςωns+ω2

n
⇒ ϕ(t) = θ(t)−

⌢
θ (t)

= ∆ω

ωn
√

1−ς2
e−ςωnt sin

(
ωn
√

1 − ς2t
) (19)

Hence, ϕ(t) = θ(t)− θ̂(t) → 0 for ς < 1 when t → ∞ , i.e., ϕss = 0. Bolognani et al. [1]
proposed the estimator of the speed and the position used the structure as shown in Figure 8.
Because Kt = A in (16), the result is the following:

⇒ H(s) =

⌢
θ (s)
θ(s)

=
A(s + a)

s2 + As + Aa
. (20)

Figure 8. The existing estimator of speed and position.

However, there is a zero located on s = −a. The transfer function H(s) has one
zero, which may cause the transient behavior to oscillate. We will verify this phenomenon
later by simulation. As shown in Figure 4, Shuo et al. [19] interpreted this structure as
a back-EMF observer utilizing feedback current as an indicator, thereby motivating the
widespread application of sliding mode observer (SMO) theory. However, the introduction
of a sign function leads to chattering phenomena, which naturally necessitates the addi-
tion of a low-pass filter (LPF), consequently introducing phase delay. Although adaptive
LPFs can partially mitigate this issue, their effectiveness remains limited. Subsequently,
super-twisting algorithms (STOs) were proposed to achieve stable SMO gains. Never-
theless, due to the fixed nature of the gain, STO-based approaches are unsuitable at low
speeds. To address this limitation, Shuo proposed an adaptive STO combined with an
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improved PLL, thereby enhancing bidirectional applicability and mitigating convergence
to incorrect angles.

Bai [22] proposed replacing the conventional LPF with an improved proportional reso-
nant (PR) controller to significantly reduce the phase delay within the back-EMF observer.
This approach was further combined with an adaptive position estimator. However, due to
the cross-coupling effects introduced by digital implementation, the estimated back-EMF
may become inaccurate. To address this issue, a decoupling operation was incorporated
into the extended back-EMF model. In addition, the gains of the PI regulator within the
PLL were adaptively adjusted based on the estimated back-EMF and rotor position.

This phenomenon will destroy the system built above. Because the back-EMF signal is
reliable only under middle or high motor speed, it cannot be used from the motor’s starting
time. We must start the motor by an open-loop approach and use the high-frequency
injection at a steady low speed. Finally, the control system must be switched to the back-
EMF-based method when the motor reaches a steady high speed. Due to having to switch
many times, the transient behavior of the system will be induced. This means that the
system is in a transient state when switching to the back-EMF-based method. But since the
phase-locked loop is only working in a steadystate, the zero of the transfer function in (20)
cannot keep the system stable and induces oscillation. This is why the above approach is
not realizable.

A modified PLL is proposed to replace the PI regular in Figure 8 where Gloop(s) =
K1

s+K2
,

as shown in Figure 9. From (16), we can obtain the following:

⇒ H(s) =

⌢
θ (s)
θ(s)

=
KtGloop(s)

s + KtGloop(s)
=

AK1

s2 + K2s + AK1
(21)

 

Figure 9. The modified PLL.

From (21), the zero of the transfer function disappears, and the oscillation phenomenon

does not arise. In addition, the estimated angle
⌢
θ r f after the integrator is fed into a low-pass

filter to take advantage of the filtering capacity of an integrator. In the end, the estimated
speed

⌢
ωr f is obtained from the output of a differentiator. This proposed method can

substantially reduce the transient effect on PLL and tune the dynamic of the estimator
through the gains K1 and K2. The function of the modified PLL can have the whole
sensorless system working well.

4. Stage I of the Simulation
Figure 1 illustrates the proposed controller architecture, which is evaluated under

a critical condition relevant to electric vehicle applications: power interruption during
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operation followed by system reboot, resulting in controller disconnection. Upon restarting,
although the motor speed is at 300 rpm, sensorless operation necessitates an initial open-
loop control at 360 rpm. After 1 s, the estimated output is injected into the system.

The estimation methods sequentially employed include the conventional sensorless
scheme, the adaptive structure proposed by Shuo et al. [19], and the novel approach
recommended in this paper. In this section (Stage I), only the first two methods are
simulated to observe their behavior under such conditions. Stage II, detailed in Section 6,
implements the proposed method to evaluate its potential contribution in addressing this
application scenario.

It is important to note that, in the motor parameter settings listed in Table 1, the
instantaneous actual value of the stator inductance is denoted as Ls = 0.22 mH, whereas
the controller algorithm utilizes a perturbed value of 0.23 mH. Furthermore, the simulation
system is equipped with speed, position, and torque sensors to facilitate performance
comparison.

Table 1. The list of the motor’s parameters used in the simulation.

Stator resistance, Rs 0.022 Ω

Stator inductance on
d- and q-axis,
Ld = Lq = Ls

0.22 mH

Number of poles, P 8

Peak line-to-line back
EMF constant, v

13.573 volts
krpm ; Flux linkage,

λPM = 60·v√
3π·1000P

Moment of inertia, J 1.79 × 10−3 kg · m2

Rating speed 10 Krpm

During the simulation, the nomenclature is defined as follows: the actual motor speed
and rotor position are represented by wm and CTr, respectively, while the corresponding
estimated values from the control algorithm are denoted as wm1 and CTr1. The shaft
torque is referred to as Torque.

To validate the proposed structure under practical conditions, PowerSIM 2023, a
widely recognized simulation tool in the power electronics community, was employed.
This platform enables system verification through piecewise mathematical modeling and
facilitates the simulation of a complete sensorless control system within a unified environ-
ment.

As shown in Figure 10, the overall architecture shared by the three methods is pre-
sented. The differences lie in the shaded blocks, which are replaced according to the specific
method being tested, while all other blocks utilize the built-in components of the simulation
software.

The conventional back-EMF estimation combined with a PLL structure, as well as the
adaptive super-twisting observer with an improved PLL proposed by Shuo et al. [19], were
reconstructed for simulation purposes. The objective was to observe the behaviors of these
two schemes under electric vehicle power interruption and reboot scenarios.

It is important to note that the reconstruction strictly adhered to the structural designs
and parameter selections reported in [19].

Figure 11 presents the simulation results of the conventional method. Subfigure (a)
shows the actual rotor flux angle provided by the sensor, while (b) illustrates the estimated
rotor flux angle obtained from the conventional algorithm. Subfigure (c) displays the
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shaft torque measured by the sensor, and (d) compares the actual rotor speed wm and the
estimated rotor speed wm1.

 

Figure 10. The common structure used to simulate this topic.

Figure 11. Dynamic response of the conventional sensorless method under simulation: (a) actual
rotor flux angle; (b) estimated rotor flux angle; (c) shaft torque; (d) actual and estimated rotor speed.

As observed in Figure 11a, the rotor initially rotates at a constant speed. However,
Figure 11b reveals that the estimated angle CTr1 not only fails to synchronize with the
actual angle CTr but also exhibits an incorrect rotational direction. Injecting the estimated
output into the system at 1 s does not improve the estimation accuracy. Simultaneously,
persistent oscillations in the shaft torque are observed, as shown in Figure 11c. Although
Figure 11d indicates that wm maintains a stable rotation at 31.4 rad/s, wm1 initially exhibits
significant oscillations and ultimately converges to an incorrect rotational direction.
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Figure 12 presents the simulation results based on the adaptive structure proposed by
Shuo et al. [19]. Under the same testing scenario, the performance is significantly improved
compared to the conventional method. From the beginning of the process, the estimated
rotor flux angle CTr1 gradually converges toward the actual angle CTr. After injecting the
estimated output into the system at 1 s, noticeable tracking behavior is observed, although
the convergence progresses slowly.

Figure 12. Dynamic response of the sensorless method proposed by Shuo: (a) actual rotor flux angle;
(b) estimated rotor flux angle; (c) shaft torque; (d) actual and estimated rotor speeds.

During the tracking phase, the shaft torque continues to exhibit oscillations until the
estimated angle and speed synchronize with their actual counterparts. Torque stabilization
is achieved approximately 5 s after the estimated values are injected. As shown in Figure 12c,
the peak torque initially reaches nearly 20 N·m, but the final steady-state torque falls below
10 N·m, indicating a significant underestimation.

5. The Parameter Self-Tuning Algorithm
The results obtained thus far still indicate considerable room for improvement, par-

ticularly for electric vehicle applications. Therefore, beyond the first-stage enhancement
involving modifications to the PI regulator within the PLL, a second-stage improvement is
proposed in this work, namely a gradient-based self-tuning algorithm.

In sensorless control, by definition, no feedback other than voltage and current mea-
surements is available; thus, no information regarding shaft dynamics can be directly
obtained. Inspired by the analysis shown in Figure 4, it is observed that ∆iα and ∆iβ are

known quantities, both influenced by the estimated inductance parameter
⌢
L s.

Based on this observation, Figure 13 illustrates a constructed structure wherein the
magnitude of the vector sum of ∆iα and ∆iβ is indicated as follows:

e =
√

∆i2α + ∆i2β (22)

serving as an indicator of the consistency between the actual and estimated inductance
values. This relation subsequently triggers the activation of the gradient-based adjustment
mechanism.
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The detailed operation of the gradient adjustment mechanism is described as follows.
Upon the rising edge of the trigger signal (Trig), the gradient adjustment process is initiated.
The Trig period is set to approximately 1/1000 of the system control period to avoid
frequent parameter updates, which could otherwise destabilize the system and increase
computational burden. The detailed implementation can be referred to in the code example
shown in Figure 13b.

 

Figure 13. Auto-tuning functional block used in the following figure: (a) signal flow diagram; (b) the
corresponding code of the gradient method.

Specifically, this adjustment follows:

⌢
L s(n + 1) =

⌢
L s(n)− η

e(n)− e(n − 1)
⌢
L s(n)−

⌢
L s(n − 1)

, (23)

where η denotes the step size, also referred to as the learning rate. This parameter plays a
critical role in determining the convergence behavior of the algorithm. If η is set too small,
convergence becomes excessively slow, prolonging the adaptation time. Conversely, if
η is too large, the iteration may become unstable and even diverge due to overshooting.
Therefore, careful selection of the step size is essential and should be based on the specific
characteristics of the application.

In addition, attention must be given to the conditions associated with |De| and |DL|.
If |De| becomes sufficiently small, indicating convergence, the self-adjustment process can
be suspended. Conversely, if |DL| falls below a certain minimum threshold, indicating
potential divergence, a safeguard mechanism must be activated to prevent instability.

6. Stage II of the Simulation
The proposed improvement scheme has been integrated into the original control

framework, as illustrated in Figure 14. Specifically, the gradient computation block utilizes
the intermediate signals ∆iα and ∆iβ from the back-EMF estimator. Upon the triggering

of the Trig signal, the block generates the updated estimate
⌢
L s, which is immediately

iteratively fed back into the system.
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Furthermore, the update interval for adjusting
⌢
L s using the gradient method must

be sufficiently long. This requirement arises because the system response inherently lags

behind the instantaneous variation in
⌢
L s. If the parameter updates are performed too

frequently, the estimation process may respond to transient effects rather than the actual
steady-state behavior, resulting in erroneous adjustments based on e(n). Therefore, an
appropriate update period must be selected to allow the system sufficient time to reflect
the impact of each parameter modification before subsequent updates are applied.

 
Figure 14. The whole system simulation, which has the parameter self-tuning added.

The pseudocode presented below illustrates the sensorless control algorithm for the
permanent magnet synchronous motor (PMSM) proposed in this paper, incorporating
back-EMF estimation, parameter self-tuning, and an enhanced phase-locked loop (PLL):

• Inputs: initial parameters, including the estimated stator inductance (
⌢
L s0) and stator

resistance (Rs).

• Outputs: estimated rotor speed (
⌢
ωr f ), rotor position (

⌢
θ r f ), and updated parameters (

⌢
L s).

• Initialization:

◦ Set the initial motor parameters: Rs (stator inductance estimate) and
⌢
L s0 (initial

inductance estimation).
◦ Define the PLL parameters, including the loop gain (K1, K2).
◦ Define the adaptive parameters, including the learning rate (η) and the update

interval (Ts).
◦ Start the motor using open-loop control.

• Main Loop (executed at each control cycle; Ts):

◦ Measure the stator voltages vα, vβ and currents iα, iβ.
◦ Estimate the back-EMF signals based on the measured quantities.
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⌢
Xα(n) = vα(n)− Rsiα(n)−

⌢
L s(n)[iα(n)− iα(n − 1)]1/Ts

,
⌢
Xβ(n) = vβ(n)− Rsiβ(n)−

⌢
L s(n)

[
iβ(n)− iβ(n − 1)

]1/Ts

◦ Rotor Flux Angle Estimation Error Calculation:

⌢
ε (n) =

⌢
Xα(n) sin

[
⌢
θ r f (n)

]
−

⌢
Xβ(n) cos

[
⌢
θ r f (n)

]
◦ Rotor Position

⌢
θ r f and Speed

⌢
ωr f Update Using Enhanced PLL:

y(n) = K1
⌢
ε (n)− K2x(n − 1), x(n) = x(n − 1) + [y(n) + y(n − 1)]Ts/2,

⌢
θ r f (n) =

⌢
θ r f (n − 1) + [x(n) + x(n − 1)]Ts/2.

The signal 1
Ts

[
⌢
θ r f (n)−

⌢
θ r f (n − 1)

]
is processed through a low-pass filter to obtain

the filtered output → ⌢
ωr f (n) .

• Parameter
⌢
L s Self-Tuning Loop (triggered every 1000 × Ts cycles):

◦ Current Estimation Error Variation Calculation: De = e(n)− e(n − 1).
◦ If |De| > 1, update inductance; otherwise, exit the adaptation process.
◦ If |DL| < 10−5, |DL| = 10−5 × sgn(DL).
◦ If |De| > 1010, |De| = 1010 × sgn(De).
◦ Update the inductance parameter using the gradient descent method based

on (23).
◦ State update for next iteration.

Based on the same simulation procedure, Figure 15a illustrates that the originally

distorted system parameter (stator inductance
⌢
L s) can be adaptively tuned from 0.23 mH

to 0.22 mH. The current estimation error (De) plays a critical role in this adaptation process.
After the estimation is applied, De remains consistently at a low level throughout the
operation, as shown in Figure 15b.

Figure 15. Adaptive process using the gradient method: (a) adaptation of the estimated inductance;
(b) variation in the current error.
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Figure 16 demonstrates the superior performance of the proposed method. After
feeding back the estimated outputs into the control computation, the speed tracking rapidly
converges, and the shaft torque stabilizes immediately. Within approximately 0.5 s, the
rotor flux angle tracking is completed. Moreover, as shown in Figure 16c, the stabilized
shaft torque almost recovers to its peak value, indicating effective disturbance rejection and
dynamic performance restoration.

Figure 16. Dynamic response of the proposed sensorless method: (a) actual rotor flux angle;
(b) estimated rotor flux angle; (c) shaft torque; (d) actual and estimated rotor speeds.

7. Conclusions
This paper proposes replacing the traditional PI controller within the PLL structure

with a zero-free PI regulator, coupled with a gradient-based parameter self-tuning module.
After conducting simulations under three different computational frameworks, it was
observed that non-steady-state starting conditions, such as power-off restart scenarios, can
cause the conventional sensorless operation (Figure 11) to fail. Furthermore, although the
improved method proposed by Shuo [19] provided noticeable enhancements under the
same conditions (Figure 12), the performance was still not fully satisfactory for demanding
applications.

To address this issue, this paper proposes replacing the traditional PI controller within
the PLL structure with a zero-free PI regulator, coupled with a gradient-based parameter
self-tuning module. Simulation results demonstrate that the proposed method signifi-
cantly improves robustness, effectively suppresses signal oscillations, and maintains stable
operation even under challenging dynamic conditions.

It is worth emphasizing that the proposed gradient-based self-tuning module ef-
fectively utilizes intermediate variables from the back-EMF observer to tightly track the

variations in the actual stator inductance (
⌢
L s). Importantly, this approach maintains the sen-

sorless constraint, requiring only the terminal voltages and currents of the motor without
the need for any shaft-based motion feedback.

The simulation results validate the effectiveness of combining the proposed PLL
structure with the recommended parameter self-tuning scheme. This approach not only
enhances the stability of the sensorless control system but also improves estimation accuracy
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and dynamic performance, demonstrating its suitability for practical permanent magnet
synchronous motor (PMSM) drive applications.

Furthermore, the combined computational framework has been verified on actual
electric vehicles, where enhanced robustness, stability, and accuracy were consistently
observed under various operating conditions, confirming the practical viability of the
proposed method.
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