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Abstract: In order to obtain more reasonable failure modes and more precise surrounding
rock pressures of deep-buried underground rectangular chambers, the failure mode of a
“wedge-shaped collapse body + arc rotator + logarithmic spiral rotator” deep-buried cham-
ber is constructed based on the analysis of existing failure mode. The upper bound solution
of the surrounding rock pressure is derived based on limit analysis. The validity of the
proposed failure model and the reliability of the limit analysis approach are demonstrated
through numerical simulations, theoretical verification, and comparisons with engineering
practices. The influence of various parameters on surrounding rock pressure is analyzed.
The results show that each parameter has different influence on the surrounding rock
pressure. The surrounding rock pressure g and e increases linearly with the increase in
rock gravity o and chamber size, and decreases with the increase in cohesion c and internal
friction angle ¢. The surrounding rock pressure g decreases with the increase in lateral
pressure coefficient K, while surrounding rock pressure e increases with the increase in
lateral pressure coefficient K.

Keywords: deep-buried chamber; failure mode; surrounding rock pressure; numerical
simulation; upper bound solution

MSC: 30A05

1. Introduction

The stability of deep-buried rectangular chambers has always been a hot issue in the
geotechnical field. In recent years, the stability of deep chambers has been paid more and
more attention by scholars and engineers with the rapid development of underground
transportation and mineral exploitation. A series of achievements have been made in the
study of the stability of deep-buried chambers [1-4]. At present, the main methods to study
the stability of underground chamber are the limit equilibrium method, the numerical
simulation method, the model test method, and the limit analysis method. Different criteria
of instability will lead to different results, and the differences are large. In addition, the
complexity of geotechnical materials, the selection of boundary conditions, the division
of mesh shape, and the determination of initial conditions will affect the accuracy of
calculation results. In the model test, because of the acceleration of the centrifuge, the
start-up and braking will affect the experimental results. In the process of the simulation
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test, it is difficult to accurately simulate the real situation of the model, including model
boundary, constraints, construction process, support form of support components, and
support parameters. The stress of deep-buried chambers is complex, and the process
of elastic—plastic analysis of a chamber step by step is rather tedious. Unlike the limit
equilibrium method, the limit analysis theory does not need to consider the stress—strain
state and complex load conditions in the process of chamber deformation, and it can solve
the ultimate load of chamber failure from the point of view of energy. Thus, a more accurate
solution can be obtained than from these methods.

At present, in the stability analysis of underground chambers, the solution of surround-
ing rock pressure based on limit analysis is widely accepted and used by academia [5-7].
Yang et al. [8] established a two-layer model of collapse block shape of a rectangular tunnel.
The upper bound solution of the surrounding rock pressure was obtained and the continu-
ous failure mechanism of the deep cavity roof collapse was deduced by using the upper
bound solution. Huang et al. [9] used limit analysis theory to analyze the three-dimensional
stability of a circular tunnel working face in a heterogeneous anisotropic undrained clay.
The critical collapse support pressure and stability ratio of the tunnel were obtained. Zhao
et al. [10] used the upper bound theorem to analyze the stability of irregular underground
caverns. The influence of geological parameters of the irregular chamber on the mechanism
of chamber collapse was given. Guan et al. [11] deduced the analytical expression of
three-dimensional failure mode of an underground chamber by upper limit theorem.

The numerical solution of the collapse block shape of a circular tunnel was derived
by Huang et al. [12] based on the Hoek-Brown failure criterion and the upper bound
theorem. According to the upper bound theorem and variational method, Qin et al. [13]
constructed the progressive failure mechanism of the roof of a deep-buried tunnel. The
analytical solution of the roof collapse pattern and the collapse area was derived, and the
calculation results were verified. Fraldi and Guarracino [14] proposed and discussed the
comprehensive analytical solution of a tunnel collapse mechanism with an arbitrary excava-
tion section in a rock mass under the Hoek-Brown criterion. Perazzelli and Anagostou [15]
used the upper bound theorem of limit analysis to analyze the shape of the failure surface
of a gas storage tunnel when arch failure occurs. The influences of geometric parameters
and geotechnical parameters on arching pressure were studied. Huang et al. [16] used the
Hoek-Brown failure criterion and the upper bound theorem of limit analysis to study the
shape of a collapse block of a square tunnel under pore water pressure. The analytical
solution of the collapse block shedding curve was derived. Liu et al. [17] studied the
stability of a deep-buried tunnel working face using the upper bound analysis method.
By considering the seepage force on the tunnel face and soil particles, the upper bound
solution of supporting pressure required for the stability of a layered seepage soil surface
was obtained. A three-dimensional rotation—-translation mechanism that simultaneously
considers the longitudinal inclination of the tunnel and partial failure of the tunnel face
based on the upper bound limit analysis method was presented [18]. Zhang et al. [19]
proposed an improved failure mechanism for deep-buried caverns, and studied the sup-
porting pressure of deep-buried caverns. The calculated results of the improved failure
mechanism are in good agreement with the existing methods, numerical solutions, and
field monitoring results.

This study systematically establishes the failure mechanism of rectangular deep-buried
chambers and derives an upper bound analytical solution for the surrounding rock pressure
based on limit analysis theory. Through in-depth exploration, the influence of various
parameters, including geometric characteristics, material properties, and stress conditions,
on the surrounding rock pressure and the chamber’s failure mode are thoroughly analyzed.
The results not only enhance the theoretical understanding of the mechanical behavior of
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deep-buried structures but also provide a robust framework for optimizing their design
and stability evaluation. These findings are expected to serve as a foundational reference
for engineering applications, promoting safer and more efficient construction practices in
underground spaces.

2. Upper Bound Theorem of Limit Analysis

The principle of limit analysis includes two parts: the upper bound theorem and the
lower bound theorem. This theory is a relatively effective method for solving stability
problems in geotechnical engineering. Since its inception in the 1920s, this theory has been
developing slowly and has mostly focused on the study of one-dimensional structural
problems. Until the 1950s, the upper and lower limit theorems of limit analysis theory
were confirmed, and the associated flow rule was proposed by Drucker. The application of
limit analysis developed rapidly and was promoted in solving plane and space problems.
After decades of development, this theory has been rapidly developed and widely applied
in the analysis of foundation bearing capacity, slope, retaining wall, and tunnel stability
in geotechnical engineering. Compared with traditional stability calculation theories in
geotechnical engineering, such as the limit equilibrium method, the slip line method, and
the finite element method, the limit analysis method has its unique features, because
no matter how complex the geometric shape and load situation of the structure are, the
limit analysis method can always obtain a practical failure load value and provide a clear
physical graph of the failure mechanism.

According to the principle of virtual power, the upper limit theorem of limit analysis
needs to satisfy the velocity boundary condition and the compatibility condition between
strain and velocity. In the velocity field of motion permission, the load obtained based on
the condition of equal internal and external power is greater than or equal to the actual
ultimate failure load. In the upper limit theorem of limit analysis, it is not necessary to
study whether the object satisfies the stress equilibrium condition, but only to calculate
the external force power and calculate the internal energy dissipation rate according to the
flow law, and the resulting load is one upper limit solution under this condition.

For arbitrary maneuvering admissible velocity field, the upper bound solution of
failure load can be obtained according to the internal energy loss rate not less than the
external force power. The expression is as follows [20]:

/aijéijdV Z/Tivid5+/ Fo,dV, (1)
1% s 14

In the above formula, T; is the surface force acting on the surface area s of the damaged
body. F; is the physical force acting on the volume V of the damaged body. ¢7; is the stress
field associated with F; and T;. v; is the velocity field allowed by maneuver. él-]- is the strain
rate field compatible with v;.

3. Construction of Failure Mode

Based on the kinematical approach of limit analysis, an improved failure mechanism
is proposed, and the supporting pressure is investigated for a deep-buried cavity. Refer-
ence [19] proposed a cavity failure mode of “a wedge block + a rotational arc block + n
translational triangular blocks”. However, the destructive mode is too complex and not
conducive to specific applications. In this paper, the failure mode constructed in refer-
ence [19] is improved. The failure mode of “downward sliding wedge-shaped collapse
body + rotating arc body with apex angle as the center + logarithmic helix body with
apex angle as the center” is constructed, as shown in Figure 1. The wedge-shaped block
ABGG1 B of the roof slides vertically downward at velocity vg. The rotational block BGC
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and B;G1C; with G and G; points as the center of the circle, respectively, have rotational
failure. The logarithmic spiral region GCD and G1C;D; have rotational failure with G and
G as vertices, respectively. The surrounding rock pressures produced by the top and side
walls of the chamber are g and ¢, respectively, and g = Ke. K is the lateral pressure coefficient.

A
H v
Vo
ST T T T 1]
e Ty A |
? L€ ‘ _
D% D,
I A

Figure 1. Schematic diagram of secondary stress distribution around the hole.

According to the geometric relationship and permissible velocity field for maneuver-

ing, it can be seen that
GB = GC, 2)

According to the analysis of the velocity field in the arc radiation shear zone, it can be

concluded that:
v1 = Dy, 3)

vy = v explag tan(2¢)], 4)

According to the analysis of the velocity field of the logarithmic spiral radiation shear
zone, it can be concluded that

v3 = vy exp(ap tan @), (5)

According to the recursive relationship of the length of the line breaks between differ-
ent speeds, it can be concluded that

GD h
cC= exp(aptang)  exp(aptang)’ ©)
GB I h I
b= tan ¢ + 2sing  tan @ exp(aytan @) t 2ein @’ @)
AO = ABcos ¢ + GBsin ¢, (8)

In the subsequent analysis, Equations (2)-(8) are very important foundations. Many
formulas are derived from this equation.

4. Calculation Process

The analysis here operates under these assumptions: (1) No additional tunnels are near
the research subject. (2) The surrounding rock mass is homogeneous. (3) The roadway’s
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cross-sectional shape is rectangle. Because the failure mode is symmetrical along AO, the
solution of surrounding rock pressure can be obtained by calculating only the power of the
left half of the failure mode:

4.1. Calculation of External Power

External power includes rock weight power and supporting reaction power.

The total gravity power of the rock body is the sum of three parts: quadrilateral ABGO,
sector GBC, and logarithmic spiral GCD. The gravity power of each region can be obtained
by multiplying the density, area, and velocity. The external power expression is as follows:

W:')"S'U, (9)

The formula for calculating the area of each rigid block is as follows:

SaBGco = %BG -AB+ %AO - GO, (10)
Scac = / LB, (11)
Scep —/ (GC - exp(8 tan @))do’, (12)

After calculating the area of each region, the gravity power can be calculated separately
according to Equation (9).
The gravity power of the quadrilateral ABGO can be calculated by the following formula:

Wapco = 7 Sapco -1 =70y -h*- f1, (13)

For the sake of simplicity of the equation, f; is used to represent complex formulas.
The expression of f; is as follows:

_ h I 1
f1 - [tan<pexp(zx2tan<p) + Zsin(p} ’ 2hexp(u¢2tan<p)+ (14)

1. 1 1 . sin @ 4
4h { [tanq)exp(zxz tan @) + sin(p] cos ¢ + exp(ap tan @) }

In sector region GBC, according to Figure 2, the expression of gravity power of rock
mass can be obtained as follows:

Wese = 7 - Scac - v2 = Y00k’ fa, (15)
For the sake of simplicity of the equation, f; is used to represent complex formulas.
The expression of f; is as follows:

expla; tan(2¢)][tan(2¢) cos aj + sinag] — tan2¢
2exp(2a; tan @) - (1 + tan?2¢)

fo= , (16)

In the logarithmic helix region GCD, according to Figure 3, the expression of gravity
power of rock mass can be obtained as follows:

Weep =7 - Saep - 03 = Yook f3, (17)
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where the expression of f3 is as follows:

f3 = exp[a; tan(2¢) — 2a; tan ¢]-
exp(3ay tan @) [3 tan ¢ cos(a +ay — @) +sin(a;+a—¢)]
2(149tan? ) ’ (18)
__ —3tan@cos(a; —¢)—sin(a; —¢)
2(1+9tan? )

G

Figure 3. The power calculation schematic of logarithmic spiral zone GCD.

Support reaction power can be calculated by the following formula:

l l
WT:—q-E-Uo—e-h-vg,:—q-E-Uo—Kq~h-sz~exp(oc2tanq)):—qvohf4, (19)

The expression of f; is as follows:
l
fo= T K- exp|aj tan(2¢) + a; tan ¢], (20)

The total external power of the left half failure mode is the algebraic sum of the rock
weight power and the support reaction power.

Wext = Waois + Wr = Y200 (fi + fo + f3) — ghvo fa, (21)
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4.2. Internal Energy Dissipation

Internal energy dissipation occurs on the velocity discontinuity line, the velocity
discontinuity section, the circular arc shear zone, and the logarithmic spiral shear zone.
The expression of energy dissipation along the AB discontinuity line is as follows:

DABZC'AB'U()COS([)

— h 1
= (tan(pexp(txztan(p) + ZSin(p) "0pCos @, (22)
= cvohf5

where the expression of f5 is as follows:

1
fs= (tan ¢ exp(ay tan @) T nsin (p) oS (23)
The energy dissipation of the arc shear plane BC and the arc shear zone GBC are
Dpr — c-GB-v; cos ¢
BC = —manzg - {eXp[ar tan(2¢)] — 1}
-
= tan(zfp)‘:f;(cfﬁanq)) -{exp[ay tan(2¢)] — 1} , (24)
= chvy f4
D _ ¢GB-vjcos @ ) 1
GBC = —sn(zg)  * {&XP[a1 tan(2¢)] — 1}
e
- sin(pr)'eZ?pc&z(fan 9) ’ {exp [“1 tan(ch)] - 1} ’ (25)
= chvy f7
The expressions of f; and f7 are
-~ cos @ ' B
fs = ang) - explmtang)  (©Pltan(29)] ~1}, (26)
_ cos @ . B
fr= sin(2¢) - exp(az tan @) {expla tan(2¢)] 1}, 27)

The expression of energy dissipation along the discontinuity line CD is the same as
that in the whole logarithmic helical shear zone GCD.

Dcp = Dgep = %C -GC-vy-cote- [exp(szz tan gD) — 1]

__ ch-vpexpla tan(2¢)]-cotg
- 2 exp(ay tan @)

= choofs

[exp(2a; tan ¢) — 1] , (28)

The total internal energy dissipation in the left half of the failure mode is as follows:

Dint = Dap + Dpc + Dgpc + Dep + Deep = choy(fs + fo + f7 + 2f3), (29)

4.3. Solution of Surrounding Rock Pressure

According to the virtual power principle, there are
Wext = Dint, (30)
The expression of surrounding rock pressure can be obtained as follows:

g = Yh(fL + fa+ f3) —;4(/% t+ fot fr +2fs) (31)
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4.4. Confirmation of Constraints

In order to obtain the maximum pressure of the surrounding rock, it is necessary
to optimize it under certain constraints. The physical parameters in the formula should
conform to the characteristics of rock and rock materials, and the geometric parameters
should have practical geometric significance. In summary, the following constraints can

be determined:
0<a;<Z+¢g

st 0<ar, <Z+¢ ,
0(1+1X2:%+§0

Combined with the upper bound theorem, the sequential quadratic programming
algorithm is used to solve the optimal solution of g by programming with Matlab 2020a.

(32)

5. Contrast Validation
The Protodyakonov falling arch theory is a formula for calculating the loosening pres-

sure of loose strata and fractured rock mass, proposed by Russian scholar ITporoabsikorHos
in 1907. The Protodyakonov falling arch model is shown in Figure 4. The formula for
calculating the surrounding rock pressure is as follows:

q= r)/h()/ (33)

hozﬂ:a+htan(45 —q)/Z)I (34)
f f
In the formula, hy is the height of collapse arch, v is the weight of rock mass, a is half of the

width of tunnel, and f is the Protodyakonov coefficient.

Vertical load ¢

rr rrr o r v

Failure mode [

s

rtrrryyyryye

45%9/2 h 45°-9/2

Horizonta loag

tunnel

RN

a a

Figure 4. The schematic diagram of the Protodyakonov’s theory.

Based on a large number of tunnel test results, Atkinson et al. [21] gave the failure
mode of a tunnel as shown in Figure 5. In this failure mode, the wedge ABC slides
downward at velocity vy. According to the limit analysis theory, the expression of the

surrounding rock pressure g under the failure mode is as follows:

_ Ry2+tan@(2¢ — )] —4ccos ¢ (35)
N 4sin ¢ ’

In the formula, R is the radius of the circular tunnel, -y is the weight of the rock mass, c

is cohesion, and ¢ is the internal friction angle.
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Figure 5. The failure mechanism of Atkinson et al. [21].

5.1. Numerical Simulation

In order to verify the scientificity of the failure mode of the deep chamber in this
paper, the numerical simulation software FLAC3D 5.0 is used to verify the calculation. The
calculated parameters are as follows: chamber height 1 = 4 m, width [ = 6 m, ¢ = 10 kPa,
@ = 30°, and lateral pressure coefficient K = 1.0. The model has a width of 100 m in the
horizontal direction and a thickness of 350 m in the vertical direction. The thickness in the
axial direction of the vertical chamber is 10 m. The chamber is located at the center of the
horizontal direction. The top is 300 m away from the upper boundary. The model is used to
simulate the deformation of a 300 m deep chamber. Displacement constraints are applied
to the front, back, left, right, and bottom of the model. The upper part is a free surface
without constraints. Only the effect of gravity is considered in the calculation process. The
parameters in the numerical simulation are shown in Table 1.

Table 1. Numerical model parameters.

Densit Elastic Shear Tensile Cohesion Friction Poisson’s Bulk
(k /m?%’ Modulus Modulus Strength KPa Angle Ratio Modulus
5 GPa GPa MPa ©) GPa

2560 2.37 1.21 1.89 10 30 0.3 5.33

Five sides of the model, the bottom and the front and back boundaries, are fixed. The
meshes are divided into radial and rectangular hexahedral meshes around the cylinder.
The shear strain increment maps obtained by numerical simulation are placed on the same
map as the failure modes in this paper, which is shown in Figure 6.

FLAC3D 5.01
up, Inc.

Figure 6. Comparisons between numerical simulation and failure mechanism in this paper.
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From Figure 6, it can be concluded that the failure mode constructed in this paper is in
good agreement with the failure area obtained by numerical simulation, which shows that
the failure mode constructed in this paper is scientific and reasonable.

5.2. Comparative Verification

Combining the above three failure mechanisms, the following will theoretically verify
the rationality of the calculation method in this paper. The parameters are as follows:
¥=22 kN/m?3, chamber height 1 = 10 m, width [ = 12 m, ¢ = 25 kPa, and ¢ = 20~25°. The
surrounding rock pressure under each failure mechanism is calculated, which is compared
with the calculated results and numerical simulation results in this paper. The comparison
results are shown in Figure 7.

150

—&— This paper
—&— Atkinson failure mode
—&— Protodyakonov theory
—w¥— Numerical simulation

20 21 2 23 24 25
o°)

Figure 7. Comparison between this paper and other methods.

According to the six conditions under different internal friction angles (¢ = 20~25°) in
Figure 7, it can be concluded that the surrounding rock pressure calculated in this paper is
less than that calculated by other methods. According to the upper bound theorem of limit
analysis, it is shown that the surrounding rock pressure calculated in this paper is closer to
the true solution of surrounding rock pressure and has higher accuracy than other theories.
That is to say, the failure mode constructed in this paper is better.

5.3. Engineering Contrast

Taking Jiangyuanling Tunnel in Yueyang, Hunan Province, as the background, the
rationality of this method is verified. Jiangyuanling Tunnel is a rock tunnel, and the rock
is mainly strong weathered sericite sandy slate. According to the actual geological data,
the relevant geological parameters are as follows: the rock mass weight ¢ = 20 kN/m?3,
¢ = 35 kPa, Poisson ratio y = 0.4, internal friction angle ¢ = 21°, lateral pressure coefficient
K = 1.0, tunnel width is 12 m, and height is 10 m. The result of the surrounding rock
pressure calculated by this method is 54 kPa. In order to monitor the surrounding rock
pressure during the tunnel construction, the pressure box is installed between the roof
and the concrete support in the initial shotcrete support of the tunnel, and two pressure
boxes are installed every 30 m to obtain the maximum monitoring results. The results of
the surrounding rock pressure are shown in Table 2.

Table 2 shows that the error between the calculated results and the engineering mon-
itoring results is less than 25%. The calculation results meet the engineering design re-
quirements. At the same time, the rationality of the failure mode and the accuracy of the
calculation results are verified.
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Table 2. Comparison between this paper and engineering.

Surrounding Rock

The Results in

H o,
Number Pressure (kPa) This Paper (kPa) Relative Error (%)
Monitoring point 1 47.6 544 12.5
Monitoring point 2 434 54.4 20.2
Monitoring point 3 44.5 54.4 18.2
Monitoring point 4 49.7 54.4 8.6
Monitoring point 5 46.6 544 14.3

6. Result Analysis

Through the effects of rock gravity -, the lateral pressure coefficient K, tunnel size,
cohesion ¢, and internal friction angle ¢ on the surrounding rock pressure g and ¢ are
analyzed. The parameters are ¢ = 16~26 kN/m?, K = 0.4~1.4, tunnel height & = 8~13 m,
width [ = 10~15m, ¢ = 18~28 kPa, and ¢ = 20~30°.

Through calculation, the influence of each parameter on the surrounding rock pressure
is shown in Figures 8-11. From Figures 8 and 9, it can be concluded that the surrounding
rock pressure g and e increase linearly with the increase in rock gravity . With the increase
in lateral pressure coefficient K, the surrounding rock pressure g decreases nonlinearly and
the surrounding rock pressure e increases nonlinearly. This shows that the buried depth of
the tunnel has some influence on the surrounding rock pressure. From Figure 10, it can be
seen that the surrounding rock pressure g and e increase linearly with the increase in the
height and width of the tunnel, and the increasing trend is obvious. This shows that the
tunnel size has a great influence on the surrounding rock pressure. From Figure 11, it can
be seen that the surrounding rock pressure g and e decrease linearly with the increase in
cohesion c. The surrounding rock pressure g and e decrease nonlinearly with the increase
in internal friction angle ¢, and the reduction effect is obvious. This shows that the quality
of the surrounding rock directly affects the magnitude of the surrounding rock pressure.

—m— K=0.4
300

q(kPa)

h=12m,/=10m
¢=20kPa,p=20°

20 22 24 26
AKN/m’)

(a) The variation law of 4 when y changes

gq(kPa)

—m— =16kN/m’
—o— y=18kN/m’
—A— y=20kN/m’
—v— =22kN/m’
—— ;=24kN/m’
—<— y=26kN/m’

h=12m,/=10m
¢=20kPa,p=20°

0.6 0.8 1.0

(b) The variation law of 4 when K changes

Figure 8. The influence of v and K on surrounding rock pressure 4.
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200

—m— 5= 16kN/m’ h=12m,/=10m

160 —8— =18kN/m’ =20kPa, =20°

—®—K=04  p=12m,/=10m A fzokN/mf
o i:g.g =20kPa,p=20° v y:ZZkN/mz

140 - —A— K=0. —— ;=24kN/m
—v—K=1.0 —4— =26kN/m’
—&—K=1.2 r

—<4—K=14

£ E
3 <
100
80 g
60
Il Il Il L 50 1 1 1 1
16 18 20 22 24 26 0.4 0.6 0.8 1.0 1.2 1.4
AkN/m”) K
(a) The variation law of e when y changes (b) The variation law of e when K changes
Figure 9. The influence of y and K on surrounding rock pressure e and 4.
200 200
. —®—/[=10m ;=22kN/m’ K=1
:Z,Sm 7=22kN/m’ K=1 —®—/=1lm =0kPa,p=20°
—A—/=10m ¢=20kPa,g=20° A—[=12m

—v—/=11m
——h=12m
—<4—/=13m

—v—[=13m
—&—I=14m

q(e) (kPa)
q(kPa)

80 Il Il Il Il 80 Il Il Il Il
I(m) h(m)

(a) The variation law of g and e when I changes (b) The variation law of g and e when & changes

Figure 10. The influence of / and / on surrounding rock pressure g and e.

200 200
_ - ——=20° v p=26°
h=10m,/=15m —
: —— =22° —¢— o o —m—c=18kPa —¥— c=24kPa
22N K=L qu (F;B)“ RE10mEISm o y0kpa —#—c=26kPa
150 N.F\.L PR2ANIKSL _a cookpa —4— c=28kPa
N S—
> —e—
< 100 | e
g T 4
= *\A\‘\‘\‘\‘
o \\\:
50 - v . 50 |- == S
O DEES ==
e & SS
0 1 1 1 1 0 1 1 1 1
18 20 22 24 26 28 20 22 24 26 28 30
c(kPa) o)
(a) The variation law of g and e when c changes (b) The variation law of 4 and e when ¢ changes

Figure 11. The influence of ¢ and ¢ on surrounding rock pressure g and e.

7. Conclusions

(1) It is reliable to calculate the surrounding rock pressure by using the failure mode
of the deep-buried chamber in this paper. The surrounding rock pressure value calculated
in this paper is a strict upper bound solution of the deep-buried chamber, which can be
used as the theoretical basis for the excavation and support design and construction of the
deep-buried chamber.
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(2) The surrounding rock pressure calculated by the failure model in this paper is less
than that calculated by the Protodyakonov theory, Atkinson’s failure model, and numerical
simulation. It shows that the surrounding rock pressure calculated in this paper is closer to
the real solution and has higher accuracy.

(3) Each parameter has a different influence on the surrounding rock pressure. The
surrounding rock pressure g and e increase linearly with the increase in rock gravity 7 and
chamber size, and decrease with the increase in cohesion ¢ and internal friction angle ¢.
The surrounding rock pressure g decreases with the increase in lateral pressure coefficient
K, while the surrounding rock pressure e increases with the increase in lateral pressure
coefficient K.
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