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Abstract: The variability and intermittency inherent in renewable energy sources poses significant
challenges to balancing power supply and demand, often leading to wind and solar energy curtail-
ment. To address these challenges, this paper focuses on enhancing Time of Use (TOU) electricity
pricing strategies. We propose a novel method based on equivalent load, which leverages typical
power grid load and incorporates a responsibility weight for renewable energy consumption. The
responsibility weight acts as an equivalent coefficient that accurately reflects renewable energy output,
which facilitates the division of time periods and the development of a demand response model.
Subsequently, we formulate an optimized TOU electricity pricing model to increase the utilization rate
of renewable energy and reduce the peak–valley load difference of the power grid. To solve the TOU
pricing optimization model, we employ the Social Network Search (SNS) algorithm, a metaheuristic
algorithm simulating users’ social network interactions to gain popularity. By incorporating the users’
mood when expressing opinions, this algorithm efficiently identifies optimal pricing solutions. Our
results demonstrate that the equivalent load-based method not only encourages renewable energy
consumption but also reduces power generation costs, stabilizes the power grid load, and benefits
power generators, suppliers, and consumers without increasing end users’ electricity charges.

Keywords: renewable energy consumption; equivalent load; time of use pricing; demand response

MSC: 90B50

1. Introduction

In the last decade, there has been a remarkable surge in the deployment of renewable
energy, a steady rise in its contribution to electricity generation, and a substantial decline in
the cost of electricity production. According to data released by China’s National Energy
Administration, the installed capacity of renewable energy reached 1.213 billion kilowatts,
accounting for 47.3% of the total installed capacity of national power generation by the end
of 2022. The capacity of non-fossil fuel power generation has surpassed that of thermal
power. In 2021, the guiding prices for newly built wind and photovoltaic power projects
in many provinces of China were lower than the benchmark prices for thermal power
generation, with the exception of Qinghai and Hainan province. Building a new type of
power system dominated by renewable energy has become an inevitable choice.

The increasing integration of renewable energy, particularly wind and photovoltaic
power, into the power system, has introduced significant operational challenges due
to the unpredictable nature of their output and intermittency [1,2]. This has led to the
emergence of wind and photovoltaic power curtailment, underscoring the imperative to
enhance power utilization efficiency. Leveraging market incentive mechanisms to mobilize
demand-side resources, boost renewable energy consumption, and alleviate operational
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pressures on the system is imperative [3]. Time of Use (TOU) pricing is a vital market
mechanism for demand-side management, playing a crucial role in encouraging users
to adjust their power loads, fostering user participation in maintaining power system
balance, and increasing renewable energy consumption [4]. Previous studies have explored
various aspects of demand response to promote renewable energy consumption [5]. The
authors of [6] studied the operating mode of demand response from aspects such as
trading and pricing mechanisms, financing, and technical services. The authors of [7]
proposed an economic dispatch strategy considering the uncertainty of renewable energy
and demand-side response. The authors of [8] established an optimization model for a
virtual power plant, considering both reliable response loads and stochastic response loads,
providing a means for user-side resources to participate in power dispatch. The authors
of [9] used a Time of Use pricing strategy to guide users to participate in demand response,
achieve linkage between photovoltaic power generation and thermal power generation,
and improve the consumption capacity of photovoltaic power generation.

The context for applying TOU pricing is undergoing new changes: firstly, the propor-
tion of renewable energy with uncertain output on the generation side is increasing, and the
power consumption structure on the demand side is changing rapidly, with bidirectional
fluctuations in power production and consumption; secondly, after a large amount of
renewable energy is connected, the marginal supply costs decrease significantly with the
changes in the output structure of the power. In addition, the diversification of power con-
sumption structure and the large-scale application of new energy storage devices in power
consumption have increased the demand response capability of users. Therefore, there is
an urgent need to enhance the Time of Use (TOU) pricing mechanism [10], taking into full
account the power structure on the generation side, accurately reflecting electricity costs,
and avoiding price distortions. By forming effective market-oriented TOU pricing signals,
this approach aims to motivate and encourage users to optimize their power usage, engage
in peak shaving, improve the power supply–demand balance, and foster the development
of green and low-carbon energy solutions.

From a demand response perspective, this paper designs a TOU pricing mechanism
based on equivalent load, taking into account renewable energy consumption and genera-
tion costs, to facilitate the transition of the new power system from “source following load
changes” to “source–load interaction”. Firstly, a method for computing equivalent load is
proposed based on the typical load of the power grid. By introducing the responsibility
weight of renewable energy power consumption as the equivalent coefficient, an equivalent
load curve reflecting the power source structure is generated. Secondly, a demand response
model is constructed to eliminate the influence of natural trends, avoiding overestimat-
ing the degree of user response to electricity prices. Finally, with the lowest cost on the
power source side as the optimization goal, and increasing the utilization rate of renewable
energy and reducing the peak–valley difference of the power grid load as constraints, a
Time of Use pricing optimization model is designed. The TOU pricing model is solved
using a metaheuristic algorithm known as the Social Network Search (SNS) algorithm. By
incorporating four innovative optimization operators (moods): Imitation, Conversation,
Disputation, and Innovation, the SNS algorithm efficiently identifies optimal pricing solu-
tions through expressed opinions. The method proposed in this paper not only encourages
the uptake of renewable energy but also achieves a reduction in generation costs without
increasing electricity expenses for users. Moreover, it contributes to the stabilization of
power grid loads, leading to a mutually beneficial outcome for all stakeholders within the
power system. Figure 1 serves as a comprehensive structural diagram that delineates the
organization of this paper.
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Figure 1. Structural diagram of Equivalent Load-based TOU Pricing optimization.

2. Time of Use Pricing Mechanism

Traditional Time of Use pricing is mainly designed based on the typical load curve
of the power supply side. According to the typical load, the day is divided into peak, flat,
and valley periods, with higher electricity prices during peak hours and lower electricity
prices during off-peak and valley hours. Some provinces also set sharp prices, seasonal
prices, or peak–load and off-peak–load prices. Through differentiated pricing, the pricing
signals are fully utilized to instruct users to reduce electricity consumption as much as
possible during peak hours and increase electricity usage during off-peak hours, achieving
the goals of peak shaving, filling valleys, alleviating the imbalance between power supply
and demand, and ensuring the security of the power system.

While electricity is homogeneous for users, there is a significant difference in the
marginal generation cost of different energy types on the generation side. Compared
to conventional thermal power, renewable energy has significantly reduced marginal
generation costs due to the expansion of installed capacity and technological progress.
Designing Time of Use pricing solely based on the typical load on the supply side poses
challenges in effectively conveying the power source structure and cost information to
the demand side. This could result in cost inversion, where users consume inexpensive
electricity but pay higher prices. Figure 2 illustrates the multi-source output curve of a
certain region’s power generation side, showing higher total output from 10 a.m. to 12 p.m.
During this period, if Time of Use pricing is designed based solely on the typical load,
increasing electricity prices may not be conducive to the consumption of photovoltaic
power, which peaks during these hours.
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Figure 2. Energy output curve at power generation side.

Therefore, it is necessary to optimize the traditional Time of Use pricing design
method based on the typical load of the power grid, taking into account factors such as
the consumption of renewable energy and generation-side costs. In fact, since the issuance
of the “Notice on Further Improving the Time of Use Pricing Mechanism” (Development
and Reform Price [2021] No. 1093), various regions have continuously optimized Time of
Use pricing policies based on specific circumstances and reasonably divided time periods.
Nationwide, the period from 23:00 to 7:00 is mostly set as the valley period at night;
however, in many provinces (regions), valley prices are implemented during midday when
renewable energy output is relatively high. Shandong province has even divided 2–3 h of
deep valley periods based on seasons. Time of Use pricing design should take into account
the energy structure on the generation side.

2.1. Equivalent Load Considering Renewable Energy Consumption

Due to the volatility and intermittency of renewable energy output, its uncertainty
over time, and its uneven distribution in space, significant challenges are posed to the
balance of electrical power and the safe and reliable operation of a new power system.
Optimizing the design of a Time of Use pricing mechanism to guide users to consume more
electricity during peak periods of renewable energy output, and transforming the power
balance mode from power generation tracking load to source-load interaction, are crucial
for enhancing renewable energy consumption, promoting structural reforms on the power
supply side, and driving the high-quality development of electric power.

Time of Use (TOU) pricing is primarily developed based on the power grid load
curve and focuses on optimizing various types of loads such as typical load, baseline
load, quasi-load, net load, and equivalent load. The typical load refers to the average
or expected electricity load on the grid under normal conditions. The baseline load is
the amount of electricity that would have been consumed without any interventions.
Quasi-load is defined by the ideal load shape that the system aims to achieve. Net load
represents the actual electricity load on the grid after subtracting the generation from
renewable sources like solar and wind. The equivalent load proposed in this paper is a
theoretical load, composed by considering the contribution and variability of renewable
energy sources. In reference [11], a TOU pricing optimization model uses a BP neural
network and grey prediction method to forecast the typical load curve, taking into account
factors like load development and user behavior. Reference [12] discusses demand response
by classifying it into two types: baseline and quasi-load. The baseline type assesses user
contributions by assuming a baseline value for times when they do not participate in
demand response, using methods such as averaging or regression of load data. Although
adjustment factors are introduced to enhance prediction accuracy, establishing a reliable
baseline remains a challenge, particularly in gaining user acceptance. The quasi-load type
evaluates user contributions based on the ideal load shape provided by the system, as
noted in references [13,14]. This load is determined by the demand response center based
on overall network operation parameters, aiming to minimize operating costs and enhance
renewable energy consumption. However, this model does not account for the impact of
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uncertainty factors and fails to capture the benefits of complementary user load. Despite
proposals for dynamic self-organizing aggregation solutions, their practical application
remains complex.

Many scholars base their Time of Use pricing designs on net load [15–17], which
directly corresponds to the high-cost non-renewable energy output. In reference [15], an
autoregressive moving average method is used for wind speed simulation, and a segmented
function relationship between wind power output and wind speed is determined using
historical data. The wind power output is then obtained, and the system’s net load, with the
goal of minimizing the peak–valley difference in the expected value of net load generated by
conventional units after complete wind power consumption, is used as the target function
for Time of Use pricing model optimization. However, this method assumes “complete
wind power consumption” as a prerequisite in the optimization objective, which does not
fully align with reality, and it does not indicate how the design of a Time of Use pricing
mechanism can promote consumption. Reference [16] refers to the net load curve obtained
by subtracting wind and photovoltaic power generation output from the grid load curve as
the equivalent load curve. Equivalent load is used as the optimization target for Time of Use
pricing, dividing the equivalent load curve into periods using fuzzy membership functions.
It suggests that implementing new Time of Use pricing will encourage consumers to change
their electricity usage habits and amounts, leading to a decrease in user comfort. The
paper introduces two main concepts, “load transfer rate” and “user comfort”, considering
consumer psychology. It transforms the optimization objectives of minimizing peak–valley
differences and maximizing user comfort into a single objective through linear weighting
conversion, and uses a genetic algorithm for optimization, but it does not provide principles
and methods for determining weighting factors, nor does it compare the improvement in
renewable energy consumption before and after optimization. Reference [17] models peak–
valley Time of Use pricing optimization based on the contributions of load and new energy
output to the “duck curve” membership degree during different periods. This method aims
to maximize renewable energy consumption under the constraint that the total electricity
cost change before and after optimization is between 0–1%, but it does not consider the
impact on the peak–valley load difference in the power grid and generation-side costs.

The limitation of the net load method is that the net load is only a part of the grid
supply load, making it unsuitable for period division based on the net load. Moreover, the
improvement in the peak–valley difference of the net load does not necessarily indicate a
better effect on promoting renewable energy consumption. Considering the advantages
and limitations of various load curves, this paper designs an equivalent load indicator,
provides its computation method, and conducts Time of Use pricing optimization based on
the equivalent load.

2.1.1. Definition and Computation of Equivalent Load

The term “equivalent” refers to a comprehensive indicator or value equivalent to a
specific numerical value, such as the “pollution equivalent” measuring different pollutants’
environmental impact, or the “equivalent electricity price” considering integrated capacity
costs and electricity costs. Drawing on the basic idea of “equivalence”, the load indicator
considering renewable energy consumption and transformed through computation is
defined as the “equivalent load”. Unlike the power grid’s typical load, the equivalent
load is computed by considering various factors that influence the demand and supply
dynamics of the power grid, particularly focusing on the contribution and variability of
renewable energy sources. By introducing the responsibility weight of renewable energy
consumption as the equivalent coefficient and basing it on the typical load, the equivalent
load is adjusted according to the proportion of renewable energy in the total energy mix,
effectively weighting the renewable energy output more heavily when it is available in
abundance and less during scarcity. The total electricity corresponding to the equivalent
load curve and the typical load curve is the same; hence, it is called “equivalent load”. The
equivalent load curve is significant because it provides a more accurate representation of
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the actual load on the grid that accounts for renewable energy fluctuations. By doing so, it
allows for a TOU pricing strategy that not only responds to traditional demand patterns but
also aligns closely with the availability of renewable energy, encouraging a more efficient
and sustainable energy usage pattern.

The computation method of equivalent load is as follows:
Step One: Standardize the typical load on the supply side using the Min–Max normal-

ization method, mapping the load data to a value between [0, 1], making it dimensionless
and comparable across different scales or units:

L(t)′ =
L(t)− min(L)

max(L)− min(L)
(1)

where L(t)′ is the standardized typical power grid load at time t; L is the typical power
grid load, L(t) is the power grid load at time t, and max(L) and min(L) are the maximum
and minimum values of the typical power grid load.

Step Two: Standardize the renewable energy output on the generation side using the
Max–Min method to [0, 1]:

Lr(t)
′ =

max(Lr)− Lr(t)
max(Lr)− min(Lr)

(2)

where Lr(t)
′ is the standardized renewable energy consumption at time t; Lr(t) is the

renewable energy consumption at time t, and max(Lr) and min(Lr) are the maximum and
minimum values of the renewable energy consumption.

The Max–Min method inversely scales the values, where higher original values are
translated into lower normalized values, and vice versa. This inverse scaling is particularly
advantageous in a demand-response context, as lower normalized values correspond to
periods of high renewable energy production. This alignment encourages increased energy
usage during these periods, promoting the consumption of renewable energy when it is
most abundant.

Step Three: Combine the two standardized values from steps One and Two using the
renewable energy consumption responsibility weight ω with an adjustable coefficient β to
obtain the standardized equivalent load:

Le(t)
′ = (1 − βω)L(t)′ + βωLr(t)

′ (3)

where Le(t)
′ is the standardized equivalent load at time t, Le(t)

′ ∈ [0, 1]; ω is the renewable
energy equivalent coefficient; β is the adjustment coefficient.

Step Four: Restore the standardized equivalent load Le(t)
′ using Formula (4) to obtain

the equivalent load Le(t) at time t:

Le(t) =
Le(t)

′ × (∑N
t δ(t)L(t)− Nδ(t)min(L))

∑N
t δ(t)Le(t)

′ + min(L) (4)

where Le(t) is the equivalent load at time t, δ(t) is the unit interval when sampling load
data, typically 1 h, so N =24.

The typical load L(t) can be provided by the local power company or computed
based on the actual load of the power grid. Computation methods include the maximum
daily load method, mean method, weighted average method, fuzzy C-means clustering
algorithm, etc. [18]. Some scholars have proposed methods that consider grid load data
and fit the typical load based on a normal distribution [19]. These methods are complex,
and since determining the typical load is not the focus of this research, this paper simplifies
the process by collecting the daily load data and calculating the typical load L(t) using the
mean method.



Mathematics 2024, 12, 1408 7 of 27

2.1.2. Influences of Parameters

As indicated by Equation (3), the value of the standardized equivalent load Le(t)
′ is

affected by parameters ω and β. The renewable energy equivalent coefficient ω is directly
taken as the renewable energy power consumption responsibility weight value published
annually by the national energy regulatory authority. The computation of ω is shown in
Equation (5):

ω =
∑m

i Qri

∑n
j Qj

(5)

where ∑m
i Qri is the total annual consumption of m kinds of renewable energy, and ∑n

j Qj is
the total consumption of various power sources.

As renewable energy output is standardized using the Max–Min method, according
to Equations (3) and (4), under the same βω, the larger Lr(t) is, the smaller the equivalent
load will be. Conversely, the effect is similar to the “duck curve” where more photovoltaic
power leads to lower “net load”. However, unlike the “duck curve”, the equivalent load
does not completely deduct renewable energy output. Instead, it uses a relative conversion
method determined by βω. Changing the values of β and ω, a larger product of βω leads
to a deeper deviation of the equivalent load curve from the power grid’s typical load curve.
Conversely, it becomes closer to the original typical load curve.

The equivalent coefficient ω represents the renewable energy power consumption
responsibility weight, which indicates the target proportion of renewable energy usage. A
higher proportion of renewable energy generation corresponds to a larger ω. Essentially, by
tailoring TOU pricing according to the renewable energy power consumption responsibility
weight ω, we can directly influence the demand side of electricity consumption based
on the energy structure. This adjustment in electricity demand encourages the use of
renewable energy, thereby creating a synergy between renewable energy consumption on
the generation side and load management on the demand side. This approach facilitates
the transition of the power system from a “source following load” model to a “source–load
interaction” paradigm, promoting a more dynamic and responsive energy system.

As ω is determined externally and published annually by the national energy regu-
latory authority, it is not a parameter that can be adjusted internally. When TOU pricing
does not match ω, adjustments to the degree to which the equivalent load is affected can be
made based on β.

The parameter β is a scaling factor that adjusts the influence of the renewable energy
equivalent coefficient ω on the equivalent load calculation. It directly affects how much
weight is given to the renewable energy output relative to the typical load in the final
equivalent load computation.

By adjusting β, the model can be fine-tuned to optimize both economic and environ-
mental outcomes in the power sector. If β = 0, Equation (3) simplifies to Le(t)

′ = L(t)′,
meaning the equivalent load is entirely based on the typical load, with no influence from re-
newable energy. If β = 1, Equation (3) becomes Le(t)

′ = (1 − ω)L(t)′ + ωLr(t)
′, indicating

a balanced influence based on the value of ω.
Typically, β is set to 1, but it can be modified based on the specific requirements and

objectives of TOU pricing management to better match local conditions and optimize the
effectiveness of the pricing strategy. This flexibility in adjusting β provides a mechanism to
adapt the model for varying regional energy dynamics and policy goals.

Figure 3 illustrates the equivalent load curves under three specific scenarios: when
β = 1 with ω values of 0.16 and 0.32, and when β = 0.5 with ω = 0.16. The dashed line
represents the equivalent load, the solid black line represents the grid’s typical load curve,
and the solid green line represents the actual output curve of renewable energy.
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Figure 3. Equivalent load curve and renewable energy consumption curve.

According to Figure 3, during periods of high renewable energy output (such as zone
➀ from 11 a.m. to 2 p.m.), the equivalent load decreases. Because the equivalent load
curve is below the typical load curve, according to demand response and compared to
Time of Use pricing based on the typical load curve, the average electricity price in zone
➀ should be reduced when optimizing Time of Use pricing based on the equivalent load
curve, thereby stimulating electricity consumption and increasing user electricity usage
during that time period.

Figure 4 provides a detailed depiction of the impacts on both the load on the supply
side and the output on the generation side before and after implementing Time of Use
(TOU) pricing optimization based on typical and equivalent load methods.

In Figure 4a, the comparison between the pre-optimized grid’s typical load and the
post-optimization scenarios reveals that TOU pricing optimization, whether based on
typical or equivalent load, effectively reduces the peak-to-valley difference in grid load.
Notably, the equivalent load optimization method enhances grid stability more significantly.
During the periods marked as zone ➀, there is a noticeable increase in grid load, which
strategically aligns with high renewable energy output periods, thereby promoting greater
consumption of renewable energy.

Figure 4b illustrates the impact on non-renewable energy output, showing a flatter
output curve post-optimization compared to the pre-optimization curve. This flattening
indicates a more consistent and efficient operation of conventional power generation units,
which contributes to the economic efficiency of these units by reducing the need for rapid
ramping up and down in response to demand fluctuations.

Lastly, Figure 4c compares the effects on renewable energy consumption before and
after optimization using both methods. It is evident that the equivalent load method
is particularly effective in boosting renewable energy consumption. This method not
only aligns demand with renewable energy availability more closely but also facilitates
a higher integration of renewable energy into the grid. This is quantitatively reflected in
the increased proportion of renewable energy in the total energy mix and a corresponding
decrease in reliance on non-renewable sources.

Similarly, during periods of low renewable energy output (such as zone ➁ from 4 a.m.
to 7 a.m.), the equivalent load curve is above the typical load curve. When designing Time
of Use pricing based on the equivalent load curve, the average electricity price in zone ➁
increases compared to the typical load method, which is consistent with the characteristics
of low renewable energy output in zone ➁.



Mathematics 2024, 12, 1408 9 of 27Mathematics 2024, 12, 1408 9 of 27 
 

 

 
(a) 

 
(b) 

  
(c) 

Figure 4. Loading comparison based on equivalent load and typical load. (a) power grid load; (b) 

non-renewable energy output; (c) renewable energy consumption. 

Overall, the quantitative analysis in Figure 4 underscores the effectiveness of TOU 

pricing optimization, especially when using the equivalent load method, in promoting a 

more stable and economically efficient grid operation while enhancing the consumption 

of renewable energy.  

2.2. Dispatch Strategies to Promote Renewable Energy Consumption 

“Source–load interaction” to promote the consumption of renewable energy also re-

quires corresponding implementation of dispatch strategies [17]. According to the re-

quirements of the National Renewable Energy Law and the Comprehensive Supervision 

Work Plan for Clean Energy Consumption (National Energy Comprehensive Regulation 

[2021] No. 28) issued by the National Energy Administration, grid enterprises should pri-

oritize the dispatch and full purchase of renewable energy generation. As weather fore-

casts become more accurate, wind farms and photovoltaic power stations gradually ex-

hibit characteristics of observable and predictable conventional power sources [20,21]. At 

 21,000.00

 22,000.00

 23,000.00

 24,000.00

 25,000.00

 26,000.00 Lo
ad

/M
W

Time

 based on equivalent load based on typical load  before optimization

 16,000.00

 17,000.00

 18,000.00

 19,000.00

 20,000.00

 21,000.00

 22,000.00

 23,000.00

 24,000.00 Lo
ad

/M
W

Time

based on equivalent load based on typical load  before optimization

2400.00

3400.00

4400.00

5400.00

Lo
ad

/M
W

Time

based on equivalent load based on typical load  before optimization

Figure 4. Loading comparison based on equivalent load and typical load. (a) power grid load;
(b) non-renewable energy output; (c) renewable energy consumption.

Overall, the quantitative analysis in Figure 4 underscores the effectiveness of TOU
pricing optimization, especially when using the equivalent load method, in promoting a
more stable and economically efficient grid operation while enhancing the consumption of
renewable energy.

2.2. Dispatch Strategies to Promote Renewable Energy Consumption

“Source–load interaction” to promote the consumption of renewable energy also
requires corresponding implementation of dispatch strategies [17]. According to the re-
quirements of the National Renewable Energy Law and the Comprehensive Supervision
Work Plan for Clean Energy Consumption (National Energy Comprehensive Regulation
[2021] No. 28) issued by the National Energy Administration, grid enterprises should
prioritize the dispatch and full purchase of renewable energy generation. As weather
forecasts become more accurate, wind farms and photovoltaic power stations gradually
exhibit characteristics of observable and predictable conventional power sources [20,21].



Mathematics 2024, 12, 1408 10 of 27

At the same time, through the optimization of dispatch technology on the supply side, the
space for renewable energy consumption can be further explored.

The dispatch strategies framework to promote renewable energy consumption is
shown in Figure 5. This framework guides the decision-making process in adjusting energy
outputs based on the changes in electricity load after demand response (∆L) and the
availability of renewable energy.
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Figure 5. Dispatch strategies for promoting renewable energy consumption.

The framework begins by calculating the change in electricity load after demand
response, denoted as ∆L. The decision-making process is as follows:

(1) If ∆L is non-negative, which implies an increase or no change in load:
Check if the renewable energy consumption is within the output limits. If yes, increase

∆L of the consumption of renewable energy. If no, ensure all available renewable energy
output is fully utilized, and increase the output of other units to meet the total demand.

(2) If ∆L is negative, indicating a decrease in load:
Check if the load has dropped to the lower limit for non-renewable units. If so, reduce

their output to the minimum dispatch limit, and adjust the renewable energy output to
match the reduced load to maintain balance. If the load has not dropped to the lower limit,
decrease ∆L of the output of other units accordingly.

The dispatch strategies framework provides a structured approach to adjusting power
outputs based on changes in load, specifically aiming to maximize the use of renewable
energy while maintaining system stability.

3. User Demand Response

Demand response is the market participation behavior of electricity users who respond
to market price signals or incentive mechanisms and change their inherent electricity
consumption patterns [22]. Demand response can be categorized into market price-based
demand response and policy incentive-based demand response [23]. Price-based responses
include peak–valley Time of Use pricing, real-time pricing, and others, while incentive-
based responses involve interruptible loads, direct load control, emergency electricity
demand response, etc. [24]. Time of Use pricing is an important mechanism designed
based on the time value of electricity [25]. By setting different price levels for different time
periods, Time of Use pricing is made to be closer to the supply cost of the power system.
This maximizes the role of price signals, guiding electricity users to use less power during
peak hours and more power during off-peak hours, to ensure the safe and stable operation
of the power system, enhance overall system efficiency, and reduce the overall societal
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electricity costs. In this paper, based on user demand response and load curves, different
time periods are defined, and different electricity prices are set.

3.1. Division of Periods

The division of peak–valley periods is the foundation for formulating and implement-
ing Time of Use pricing. Peak–valley period division should reflect the actual peak–valley
characteristics of the network supply load curve and also demonstrate the differences in
electricity costs during different periods. Electricity users pay higher electricity fees for
high-cost electricity during high-cost periods like sharp and peak periods and lower fees
for low-cost electricity during valley period. This clarifies market signals to guide users
to adjust their electricity consumption behavior. The “Notice on Further Improving the
Time of Use Pricing Mechanism” proposes a scientific approach to period division, stating
“Identify peak hours as periods of tight supply and high marginal supply cost, and off-peak
hours as periods of relaxed supply and low marginal supply cost” [10]. Methods for period
division typically include clustering based on load characteristics, cost-based methods
based on supply cost, and factor analysis methods [26]. Among them, clustering methods
evaluate the likelihood of each point on the load curve being in various periods based
on the numerical characteristics of the load, using membership or similarity functions to
determine sharp, peak, flat, and valley periods. Clustering methods include fuzzy cluster-
ing [27], C-means clustering, and SOM neural network clustering [28]. These clustering
methods are based on load values and ignore time sequence, making the division of periods
too separated and not conducive to users adjusting their electricity consumption behavior
based on Time of Use pricing. The cost-based method involves period division based on
the changing characteristics of actual supply costs over time [29]. This includes methods
such as the day–load curve cost sudden change division method, cost time membership
function method, and short-term marginal cost method, with a complex cost accounting
process. Hierarchical clustering can merge loads into layers, providing a certain flexibility.
This paper adopts the hierarchical clustering method to divide periods based on typical
load curves and equivalent load curves.

3.2. Price Elasticity

The prerequisite for optimizing Time of Use pricing is to establish a response relation-
ship model between user electricity consumption and electricity price. Typically, demand
response uses price elasticity coefficients to describe this relationship, as they quantify the
degree to which electricity consumption adjusts in response to price changes.

Price elasticity coefficients can be divided into self-elasticity coefficients and cross-
elasticity coefficients [30,31]. The self-elasticity coefficient measures the immediate respon-
siveness of electricity consumption within the same time period to changes in its price,
while the cross-elasticity coefficient captures the inter-period impact of price changes in
one period to the consumption in another period. Specifically, price elasticity coefficients
can be expressed as:

ε(t, t) =
∆Lt/L0,t

∆Pt/P0,t
(6)

ε(t, h) =
∆Lt/L0,t

∆Ph/P0,h
(7)

where L0,t is the electricity consumption in period t before responding; P0,t and P0,h are
the electricity prices in period t and h before responding; ∆Lt is the relative change in
electricity consumption in period t; ∆Pt and ∆Ph are the relative changes in electricity prices
in periods t and h, respectively; ε(t, t) is the self-elasticity coefficient. A higher self-elasticity
value indicates that consumers are more sensitive to price changes, potentially leading to
significant shifts in consumption patterns based on price variations. This sensitivity can
be leveraged to flatten peak demand or fill valley hours by adjusting prices accordingly;
ε(t, h) is the cross-elasticity coefficient, which represents how price changes in one period
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can influence consumption behaviors in other periods. During the dispatch cycle, the
self-elasticity coefficient and cross-elasticity coefficient are typically represented in matrix
form as a price elasticity matrix for Time of Use pricing design.

In order to calculate price elasticity coefficients to estimate demand response, regres-
sion models are typically employed by fitting historical consumption and price data. These
models analyze how changes in price influence consumer behavior over time, providing
insights into the sensitivity of demand relative to price changes.

3.3. Demand Response Model

The idealized demand response model based on the price elasticity assumes that
elasticity coefficients are the same in the same period. In reality, demand response by
electricity users is influenced not only by electricity prices but also by factors such as
the industry and individual characteristics of electricity users. With the steady growth of
electricity consumption due to economic development in China, the average electricity price
is gradually decreasing. Figure 6 shows the logarithm of the power grid load and the time
series of electricity prices for each month in a certain location over four consecutive years.
The gray line represents the grid load, the blue diagonal line represents the growth trend,
the orange line represents the stabilized grid load after removing the trend component, and
the yellow line represents the average electricity price. Figure 6 reveals an upward trend
in overall grid load alongside a downward trend in average electricity prices. However,
focusing solely on the correlation between electricity consumption and prices may overlook
the inherent growth in consumption driven by economic expansion. Conclusions drawn
from the rise in consumption attributed solely to price reductions can be biased, potentially
exaggerating the responsiveness of electricity users to price changes.
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Figure 6. Trend of electricity load and price.

To overcome the limitations mentioned above, this paper establishes a user demand
response model after removing the natural growth trend based on electricity prices and
electricity user consumption data.

Lt = α0t + α1 (8)

Lt
′ = Lt − ∆Lt × (t − 1) (9)

Lt
′ = β0P + β1 (10)

In these formulas, Lt is the average load at time t, assuming that the load linearly
increases over time and can be represented as a linear function of t. ∆Lt is the increment
of the load at time t relative to the load at (t − 1). Lt

′ is the stabilized load after removing
the natural growth trend, as shown in Formula (9). lnLt

′ is the logarithmic value of
the stabilized load Lt

′, assuming lnLt
′ is a linear function of the electricity price P. The

parameters α0, α1, β0, β1 in Formulas (8)–(10) can be obtained through regression analysis
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based on the historical data of grid load Lt
′ and electricity price P. Therefore, as long as an

electricity price P is set for a certain period, the grid load for that period can be obtained
using Formula (10).

Figure 7 illustrates the causal relationship between load and electricity price. By
analyzing user demand response through a model derived from monthly grid load data
(on a logarithmic scale) and electricity price data over a continuous four-year period in
a specific location, and after adjusting for natural growth trends, the relationship can be
expressed as: lnLt

′ = −0.259P + 16.624. The coefficient for P is −0.259, which signifies a
negative correlation between load and electricity price. This indicates that as electricity
prices rise, there is a corresponding decrease in the user-side load.
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Figure 7. Demand response of users’ load with respect to electricity price.

To assess the fitness of the demand response regression model, Table 1 presents a
model test summary containing crucial statistical metrics necessary for evaluating the
accuracy and reliability of the model.

Table 1. Demand response regression model summary.

R R Squared Adj. R Squared RMSE D–W AIC BIC F p

0.653 0.426 0.414 0.074 1.829 −109.470 −105.728 34.139 <0.001

The correlation coefficient (R) is 0.653, indicating a moderate correlation. The coef-
ficient of determination (R Squared) is 0.426, meaning that approximately 42.6% of the
variance in the load is explained by the electricity price. The adjusted R2, slightly lower at
0.414, still supports a moderate explanatory power. The Root Mean Square Error (RMSE) of
0.074 indicates that the model predictions deviate from the actual values by this amount on
average, suggesting a reasonable fit of the model to the data. Further statistical measures
enhance the understanding of the model’s performance and reliability. The Durbin–Watson
(D–W) statistic is 1.829, which is closer to 2, suggesting that there is less evidence of positive
autocorrelation among the residuals, and thus the residuals are more independent from
one another. The Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) values are −109.470 and −105.728, respectively, both suggesting that the model is a
good fit. The model’s significance is strongly supported by the F-statistic (34.139) and its
associated p-value (<0.001), indicating that the model is statistically significant.

4. Time of Use Pricing Optimization Model

Time of Use (TOU) pricing is a crucial measure to leverage price signals, achieve peak–
load shifting, alleviate power supply–demand conflicts, and promote the consumption of
renewable energy. The design of TOU pricing must consider the interests of the generation
side, supply side, and users, aiming to maximize total revenue or minimize costs, while
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ensuring that the interests of all participants are not harmed, to truly fulfill its role as a
price signal.

4.1. Objective Function and Decision Variables

TOU pricing optimization is a multi-objective planning problem [32,33]. Optimization
goals include maximizing the utilization of renewable energy, minimizing environmen-
tal governance costs, reducing the purchasing cost of electricity on the generation side,
and minimizing the peak–valley difference in grid load. Some objectives are mutually
consistent, while others conflict. For example, a high utilization rate of renewable energy
reduces carbon emissions and lowers environmental governance costs, but whether the
total purchasing cost of electricity on the generation side decreases depends on the power
structure and the actual generation cost of different sources. For multi-objective planning
problems, some objectives can be placed in the constraint conditions, and solutions can
then be carried out.

In this paper, the total generation-side cost CT is minimized as the optimization goal,
while the goals of increasing the utilization rate of renewable energy and reducing the peak–
valley difference in grid load are considered as constraints, along with constraints related
to electricity balance, user-side tariff stability, and maintaining a reasonable peak-to-valley
price ratio.

The total cost on the power supply side, in addition to the purchase costs of renewable
energy such as wind power and photovoltaic power generation, and non-renewable energy
such as coal, oil, and gas, also includes the environmental management costs brought by
thermal power generation [34]. The objective function is represented as follows:

minCT = PrQr + (Pc + Pe)Qc (11)

where CT is the total generation-side cost, Qr and Qc are the total electricity consumption
of renewable energy and thermal power generation after implementing peak–valley TOU
pricing, Pr is the guiding price for renewable energy, Pc is the benchmark price for thermal
power, and Pe is the environmental governance cost per unit of thermal power generation.
The purchasing cost of renewable energy is computed by multiplying the guiding price by
the amount of renewable energy consumption, while the purchasing and environmental
governance costs of non-renewable energy (typically thermal power) are computed by
adding the benchmark price to the product of the environmental governance cost and the
amount of thermal power generation.

Qr = ∑
s∈Ts

Qrs + ∑
p∈Tp

Qrp + ∑
f∈Tf

Qr f + ∑
v∈Tv

Qrv (12)

Qc = ∑
s∈Ts

Qcs + ∑
p∈Tp

Qcp + ∑
f∈Tf

Qc f + ∑
v∈Tv

Qcv (13)

Here, Ts, Tp, Tf, and Tv represent the different time periods for sharp, peak, flat, and
valley loads, respectively.

The electricity consumption Qi, during the i-th hour under the electricity price Pi, is
expressed as follows:

Qi = Li × Ti = eβ0Pi+β1 × Ti (14)

where the electricity price Pi is a function f (.) of the sharp, peak, flat, and valley electricity
prices Ps, Pp, Pf and Pv, respectively:

Pi = f
(
Ps, Pp, Pf, Pv, i

)
(15)

The renewable energy and thermal power grid electricity consumption during the i-th
hour, Qri and Qci, are determined by the dispatch strategy represented by the function g(·):

Qri = g(Li, r)× Ti (16)
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Qci = g(Li, c)× Ti (17)

Here, i represents the i-th hour of a 24 h day, Ti is the duration of the i-th hour
(with a value of 1), Li is the grid load during the i-th hour, Qi is the user-side electricity
consumption during the i-th hour under the electricity price Pi, β0 and β1 are obtained
through regression analysis based on historical electricity price and load data according to
the demand response model in Equation (10), and the time period during the i-th hour is
determined using the hierarchical clustering method described in Section 2.1. The electricity
price Pi is determined by the function f (·), and the dispatch strategy is represented by the
function g(·), which determines the output of renewable energy units and non-renewable
energy units based on the grid load Li. The values of Qri and Qci are then obtained using
Equations (16) and (17). The decision variables of the TOU pricing optimization model are
the sharp, peak, flat, and valley electricity prices, i.e., Ps, Pp, Pf and Pv.

4.2. Constraint Conditions

(1) Reduction in Peak–Valley Difference
To achieve peak–load shaving and stabilize the system load, the TOU pricing mecha-

nism mandates a reduction in the peak–valley difference of the grid load before and after
optimization. This is quantified in Equation (18):

(max LTOU − min LTOU) ≤ (max L0 − min L0) (18)

where LTOU refers to the grid load during various time periods after TOU pricing opti-
mization, and L0 refers to the grid load during various time periods before TOU pricing
optimization. The rationale behind this constraint is to ensure that the load distribution
becomes more uniform, reducing the strain on grid resources and infrastructure during
peak times.

(2) Increase in Renewable Energy Utilization
To promote the consumption of renewable energy, it is required that the utilization

rate of renewable energy is increased after TOU pricing optimization, i.e.,:

∑
i∈R

∑
j∈T

QTOU
ij ≥ ∑

i∈R
∑
j∈T

Q0
ij (19)

where Q0
ij and QTOU

ij are the consumption amounts of the i-th type of renewable energy
during the j-th time period before and after TOU pricing optimization, respectively. This
condition is set to ensure that the TOU pricing model actively promotes the use of renewable
energy sources, aligning with broader environmental goals and sustainability practices.

(3) Electricity Balance
Assuming TOU pricing optimization does not change the total daily electricity con-

sumption, the following equation holds:

∑
i∈T

Q0
i = ∑

j∈T
QTOU

j (20)

where Q0
i is the electricity consumption of various user types during time period i before

peak–valley TOU pricing optimization, and QTOU
j is the electricity consumption during

time period i after optimization. The introduction of the equivalent load curve may result
in slight variations in the divisions of time periods before and after optimization, but the
overall daily consumption remains constant to ensure energy balance and prevent any
unintended increase in total energy usage.

(4) No Increase in User-Side Electricity Costs
TOU pricing optimization is viable only if it does not lead to an increase in the total

electricity cost for users. Assuming the total electricity consumption remains unchanged



Mathematics 2024, 12, 1408 16 of 27

before and after optimization, the average electricity price on the user side should not rise,
as expressed in Equation (21):

∑
i∈U

∑
j∈T

PTOU
ij QTOU

ij ≤ ∑
i∈U

∑
j∈T

P0
ijQ

0
ij (21)

where PTOU
ij and QTOU

ij are the electricity price and consumption of the i-th user type
during the j-th time period after TOU pricing optimization. This constraint ensures that
the TOU pricing strategy is economically neutral for consumers, fostering acceptance and
compliance without imposing additional financial burdens.

(5) Maintaining a Reasonable Peak-to-Valley Price Ratio
To ensure that the peak-to-valley price difference in electricity rates does not lead to

excessive user reactions or insufficient response due to an unclear difference, it is crucial to
maintain this ratio within a reasonable range. This is articulated in Equation (22):

Ps > Pp > P f > Pv > 0

k1 ≤ Pp
Pv

≤ k2

k3 ≤ Ps
Pp

≤ k4

Pp−P f
P f

≥ k5

P f −Pv
P f

≥ k6

(22)

Here, parameters k1 and k2 restrict the peak-to-valley electricity price ratio, k3 and
k4 restrict the ratio of sharp to peak electricity prices, and k5 and k6 restrict the fluctua-
tion of peak and valley electricity prices based on flat-rate electricity prices. The notice
“[2021]1093” from the National Development and Reform Commission (NDRC) provides
specific requirements for the peak-to-valley electricity price difference and ratio: In regions
where the predicted peak-to-valley ratio of the grid load exceeds 40% in the previous or
current year, the price difference between peak and valley electricity rates should not be
less than 4:1 in principle; in other regions, it should generally not be less than 3:1. The
sharp electricity price should typically be increased by at least 20% above the peak-period
electricity prices. According to the national implementation of Time of Use (TOU) pricing,
the peak electricity prices are generally raised by 15% to 85% compared to flat-rate prices,
sharp electricity prices are further increased by 20% to 25% above the peak rates, and
valley electricity prices are reduced by 20% to 70% below flat-rate prices. Given the current
landscape, and to allow for flexibility in adjustments, the parameters can be set as follows:
k1 = 3, k2 = 10, k3 = 1.2, k4 = 2, k5 = 0.1 and k6 = 0.2.

This constraint ensures that TOU pricing remains effective and adaptable, promot-
ing energy conservation and efficient use without causing undue stress or confusion
among consumers.

4.3. The Social Network Search (SNS) Algorithm

The above Time of Use (TOU) pricing optimization model is calculated using a recent
metaheuristic algorithm known as the Social Network Search (SNS) algorithm. As detailed
in [35], the SNS algorithm was applied to solve various challenging optimization problems.
The results demonstrate that SNS is highly capable of managing diverse optimization sce-
narios, consistently outperforming other algorithms. The SNS algorithm incorporates four
innovative optimization operators: Imitation, Conversation, Disputation, and Innovation.
These operators, referred to as “moods”, are designed to mimic the real-world behaviors of
social network users when they express their opinions, thereby enhancing the algorithm’s
effectiveness in solving complex problems.
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4.3.1. Imitation

The Imitation mood is characterized by users’ tendency to emulate others’ expressions
and viewpoints. This mood captures the essence of social learning, where individuals
are influenced by the perspectives of their peers, often leading to a homogenization of
thoughts and ideas within the network. This mental state can be represented quantitatively
as follows:

Xinew = Xj + rand(−1, 1)× rand(0, 1)×
(
Xi − Xj

)
(23)

where Xj represents the vector of the j-th user’s view which is selected randomly and i ̸= j,
Xi is the vector of the i-th user’s view. Xinew is the user’s new location in the search space.
Also, rand(0, 1) and rand(−1, 1) indicate two random vectors in intervals [0, 1] and [−1, 1],
respectively.

4.3.2. Conversation

Conversely, the Conversation mood facilitates a more interactive exchange where users
engage in dialogues, sharing and refining their thoughts through direct communication.
This mood supports a collaborative environment where knowledge is co-created and shared
among participants. This mental state can be represented as follows:

Xinew = Xk + rand(0, 1)× sign
(

fi − f j
)
×
(
Xj − Xi

)
(24)

where Xk demonstrates the vector of the issue which is randomly chosen to speak about it,
Xj is the vector of a randomly selected user’s view for a chat and Xi is the vector of view of
the ith user, and it should be noted that i ̸= j ̸= k in which j and k are selected randomly. In
addition, sign is the sign function and sign

(
fi − f j

)
determines the moving direction of Xk.

4.3.3. Disputation

In the Disputation mood, users are inclined to engage in debates and discussions,
often challenging and defending various viewpoints. This mood is crucial for the critical
examination of ideas, fostering a platform where arguments can be tested and validated
through collective scrutiny. The new impacted view can be expressed as follows:

Xinew = Xi + rand(0, 1)×
(

∑Nr
t Xt

Nr
− (1 + round(rand))× Xi

)
(25)

where the symbol (round) rounds the real input to the adjacent integer number, whereas the
symbol (Nr) represents the group size or commenters.

4.3.4. Innovation

Lastly, the Innovation mood is observed when users initiate discussions based on
novel ideas or personal experiences. As a result, a new concept will be generated, and the
new impacted viewpoint may be expressed as follows:

xd
inew = t × xd

j + (1 − t)× nd
new

nd
new = lbd + rand1 × (ubd − lbd)

t = rand2

(26)

where d is the d-th variable that is selected randomly in the interval [1, D], and D is the
number of problem’s variables. rand1 and rand2 are two random numbers in the interval
[0, 1]. Also, ubd and lbd are the maximum and minimum values for the d-th variable.
nd

new represents the new idea about the d-th dimension of the problem. xd
j is the current

idea about the d-th variable presented by another user, (j-th represents the user selected
randomly and i ̸= j) and i-th shows the user wants to change it because of new idea
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(nd
new). Finally, the new view about the d-th dimension will be created as xd

inew. xd
inew is an

interpolation of the current idea (xd
j ) and the new idea (nd

new).

A change in one dimension (xd
inew) causes a general change in the main concept, and

can be considered as a new view to share. This process can be modeled as follows:

Xinew =
[

x1, x2, x3, . . . xd
inew . . . xD

]
(27)

where xd
inew is a new insight into the issue under consideration from the d-th viewpoint,

and is replaced with the current view (xd
i ).

4.3.5. Rules and Implementation of SNS Algorithm

As illustrated in [35], the method is produced by various moods, where each user’s
viewpoint is altered, and fresh views are utilized based on their merit. If the new idea is
superior to the existing one, it will be approved. As a result, the value of a new concept
may be determined by the objective function of Xinew, which can be calculated analytically
and compared to the value of an existing thought (Xi) as follows:

Xi =

{
Xi, f (Xi) < f (Xinew)

Xinew, f (Xinew) ≥ f (Xi)
(28)

The implementation of the Social Network Search (SNS) algorithm unfolds across
three phases: initialization, increasing popularity, and checking terminating conditions.

During the initialization phase, the algorithm sets up the initial conditions and pa-
rameters, establishing a baseline from which the search begins. The increasing popularity
phase involves the propagation of ideas or solutions. This phase is critical as it determines
the direction and momentum of the search process. Finally, the checking terminating con-
ditions phase evaluates whether the search has met the predefined criteria, which would
signal the completion of the algorithm’s execution. This structured approach ensures that
the algorithm systematically explores the solution space, efficiently optimizing towards the
best possible outcomes.

5. Case Analysis
5.1. Basic Data

This section validates the effectiveness of the TOU pricing optimization model using
typical daily load data from a specific period in the northern region of the State Grid.
The renewable energy output data is presented in Table 2. The average utilization rate of
renewable energy is 95.08%, with renewable energy generation accounting for 15.90%.

Table 2. Output and consumption of renewable energy in a power grid area of China.

Time
Renewable

Energy
Output/MW

Renewable Energy
Consuming
Load/MW

Renewable
Energy Usage

Rate

Renewable
Energy

Proportion

00:00 3492.29 3275.90 93.80% 14.66%
01:00 3283.07 3065.97 93.39% 13.93%
02:00 3230.80 3094.89 95.79% 14.15%
03:00 2952.94 2801.40 94.87% 13.03%
04:00 2792.09 2645.10 94.74% 12.06%
05:00 2882.21 2716.75 94.26% 11.91%
06:00 2782.50 2657.42 95.50% 11.34%
07:00 2894.47 2762.11 95.43% 11.37%
08:00 3172.81 2984.25 94.06% 12.23%
09:00 3953.16 3792.74 95.94% 15.74%
10:00 5332.17 5007.10 93.90% 20.94%
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Table 2. Cont.

Time
Renewable

Energy
Output/MW

Renewable Energy
Consuming
Load/MW

Renewable
Energy Usage

Rate

Renewable
Energy

Proportion

11:00 6060.23 5701.89 94.09% 24.84%
12:00 6088.68 5730.08 94.11% 24.82%
13:00 5897.45 5600.63 94.97% 23.94%
14:00 5535.37 5220.15 94.31% 22.75%
15:00 4410.08 4236.63 96.07% 17.83%
16:00 2809.71 2683.14 95.50% 10.53%
17:00 2818.42 2715.48 96.35% 10.53%
18:00 3129.57 3005.72 96.04% 12.09%
19:00 3344.11 3170.38 94.80% 12.59%
20:00 3653.51 3536.35 96.79% 14.30%
21:00 4009.13 3845.02 95.91% 15.86%
22:00 4634.98 4516.13 97.44% 19.23%
23:00 5308.70 5056.85 95.26% 22.52%

5.2. Results
5.2.1. Time Period Division Results Based on Equivalent Load

The equivalent load is computed based on Equation (4). The traditional division based
on typical loads includes 3 h in the sharp period from 16:00 to 18:00 and 19:00 to 20:00, 6 h in
the peak period, 7 h in the flat period, and 8 h in the valley period. Keeping the cumulative
duration of sharp, peak, flat, and valley periods unchanged, the division is recomputed
using the hierarchical clustering method based on the equivalent load. As shown in Table 3,
the results of the time period division between 05:00 and 06:00 changed from valley to flat,
while they changed from flat to valley between 11:00 and 12:00, as indicated in bold.

Table 3. Typical load and equivalent load and corresponding time period division.

Time Typical Load
/MW

Equivalent Load
/MW

Time Period
Based on

Typical Load

Time Period
Based on

Equivalent Load

00:00–01:00 22,345.87 22,687.40 valley valley
01:00–02:00 22,002.30 22,457.81 valley valley
02:00–03:00 21,874.76 22,350.26 valley valley
03:00–04:00 21,507.32 22,119.14 valley valley
04:00–05:00 21,934.15 22,491.49 valley valley
05:00–06:00 22,818.01 23,179.97 valley flat
06:00–07:00 23,438.28 23,686.03 flat flat
07:00–08:00 24,299.29 24,349.42 peak peak
08:00–09:00 24,410.55 24,391.57 peak peak
09:00–10:00 24,090.94 23,968.30 peak peak
10:00–11:00 23,916.54 23,575.81 flat flat
11:00–12:00 22,950.37 22,661.71 flat valley
12:00–13:00 23,088.40 22,765.67 flat flat
13:00–14:00 23,394.45 23,036.29 flat flat
14:00–15:00 22,942.89 22,756.39 valley valley
15:00–16:00 23,762.03 23,613.79 flat flat
16:00–17:00 25,479.33 25,305.09 sharp sharp
17:00–18:00 25,791.04 25,546.42 sharp sharp
18:00–19:00 24,863.28 24,747.40 peak peak
19:00–20:00 25,181.11 24,965.96 sharp sharp
20:00–21:00 24,721.92 24,524.04 peak peak
21:00–22:00 24,237.13 24,073.72 peak peak
22:00–23:00 23,489.37 23,338.40 flat flat
23:00–00:00 22,454.81 22,402.05 valley Valley

Rows with changed period division are indicated in bold.
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5.2.2. Comparative Analysis of Solution Algorithms

The Social Network Search (SNS) algorithm is implemented to solve the problem
described in Section 4. In order to evaluate the performance of the SNS algorithm, we
performed a comparative analysis against two other prominent optimization algorithms:
Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). This analysis spanned
100 iterations. Figure 8 illustrates the comparative results of these algorithms.
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The performance comparison based on the Figure 8 is outlined as follows:
(1) Initial Performance
SNS starts at the lowest value, indicating the most effective initial condition among

the three algorithms in minimizing the load difference. PSO and GA begin at a higher value
than SNS, suggesting a less effective initial performance.

(2) Rate of Convergence
SNS shows a rapid improvement in the initial iterations, quickly reducing the load

difference, which suggests a strong initial convergence towards an optimal solution. PSO
decreases steadily but at a slower rate compared to SNS, indicating a moderate rate of
convergence. GA also shows a decrease but remains higher than SNS throughout the
iterations, indicating a slower convergence compared to SNS.

(3) Stability and Final Performance
All three algorithms begin to stabilize after about 30 iterations, with gradual improve-

ments as iterations continue. SNS maintains the lowest values throughout the process,
indicating that it consistently finds solutions with the smallest load differences, suggesting
the best overall optimization performance.

(4) Final Convergence
Towards the final iterations (around 80 to 100), all algorithms show minimal changes,

indicating convergence. SNS and PSO appear to converge at a similar level, which is better
than GA.

In summary, SNS appears to be the most effective algorithm, offering the best opti-
mization performance with the most stable convergence.

5.2.3. TOU Pricing Optimization Results

Before the Time of Use (TOU) pricing optimization, the electricity prices for each period
in the region were as follows: 0.9699 CNY for sharp, 0.8082 CNY for peak, 0.5388 CNY for
flat, and 0.2694 CNY for valley. However, due to changes in the characteristics of the power
system load, it became necessary to adjust these TOU prices for optimization.
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The equivalent load method was utilized, beginning with the calculation of the op-
timized equivalent load curve as defined by Equation (4). Subsequently, considering the
consumption of renewable energy, the TOU pricing optimization model was solved using
the SNS algorithm. As previously discussed in Section 2.1, Time of Use (TOU) pricing
can be improved through optimization tailored to various grid load curves. To assess
the effectiveness of the TOU pricing optimization method based on equivalent load, we
performed a comparative analysis of TOU electricity pricing before and after optimization
using different load models: typical load, net load, and equivalent load. This analysis is pre-
sented in Table 4, which displays the electricity prices for four distinct time periods—sharp,
peak, flat, and valley—across four different scenarios.

Table 4. TOU pricing design based on typical load, net load and equivalent load.

Price/CNY Before
Optimization

Based on
Typical Load Based on Net Load Based on

Equivalent Load

Sharp price 0.9699 1.2279 1.2324 1.2313
Peak price 0.8082 0.8186 0.8216 0.8208
Flat price 0.5388 0.5388 0.5388 0.5388

Valley price 0.2694 0.1500 0.1500 0.1500
Sharp-valley price difference 0.7000 1.0779 1.0824 1.0813

Initially, the sharp price was 0.9699 CNY, which increased across all models after
optimization, with the highest being 1.2324 CNY for the net load and a slightly lower
optimized equivalent load price of 1.2313 CNY. The peak price saw a modest increase
from the original 0.8082 CNY to 0.8208 CNY in the equivalent load model. The flat price
remained constant at 0.5388 CNY across all scenarios. The valley price, however, saw a
significant reduction from 0.2694 CNY to 0.1500 CNY in all optimized scenarios, reflecting
a strategic decrease to encourage off-peak consumption.

The sharp–valley price difference before optimization was 0.7000 CNY, which in-
creased notably in all scenarios post-optimization, with the equivalent load model showing
a difference of 1.0813 CNY. The increased sharp–valley price difference post-optimization
is a strategic move to enhance demand response. By widening the cost gap between the
highest and lowest demand times, the TOU pricing encourages consumers to shift their
usage to off-peak times, thus aiding in grid stability and efficient energy use.

Table 5 provides a detailed analysis of the effects of TOU pricing optimization on vari-
ous key metrics, comparing the values before and after optimization using three different
load models.

Table 5. Impacts of TOU pricing optimization based on typical load, net load and equivalent load.

Items
Before

Optimization
Based on Typical Load Based on Net Load Based on Equivalent Load

Value Increased Value Increased Value Increased

Cost of power
generation/10,000 CNY 21,504.56 21,502.50 −2.06 21,502.19 −2.37 21,502.07 −2.49

Renewable energy
consumption/MWh 89,822.08 91,422.55 1600.47 91,658.80 1836.72 91,757.64 1935.56

Utilization rate of
renewable energy/% 95.08% 96.78% 1.69% 97.03% 1.94% 97.13% 2.05%

Initially, the cost of power generation was 21,504.56 × 10,000 CNY. After optimization,
the costs were slightly reduced across all models. The equivalent load model achieved
the lowest cost at 21,502.07 × 10,000 CNY, showing a decrease of 2.49 × 10,000 CNY.
These reductions indicate that the equivalent load model effectively lowers the cost of
power generation.
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Regarding renewable energy consumption, it was initially 89,822.08 MWh. Post-
optimization, the equivalent load model observed the highest increase to 91,757.64 MWh,
up by 1935.56 MWh. This metric shows that TOU pricing optimization not only reduces
costs but also significantly boosts renewable energy consumption, with the greatest increase
achieved with the equivalent load model.

The utilization rate of renewable energy was 95.08% before optimization. After opti-
mization, the equivalent load model reached the highest at 97.13%, an increase of 2.05%.
The equivalent load model again shows the most substantial improvement, aligning with
the increases in renewable energy consumption and reductions in generation costs.

5.3. Impacts Analysis
5.3.1. Impacts on Consumer Side

(1) Division Reflects the Output Level of Renewable Energy
Based on the division results presented in Table 3, a time period change graph is

plotted in Figure 9. The division, which is based on the equivalent load curve, generally
aligns with the division based on typical load. However, there are some variations during
periods of low renewable energy output (5:00–6:00) and high output (11:00–12:00).
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Figure 9. Time period division based on traditional method and equivalent load.

During the period of low renewable energy output (5:00–6:00), the equivalent load is
higher, causing this period to shift from the valley to the flat period. Conversely, during the
period of high renewable energy output (11:00–12:00), the equivalent load is lower, causing
this period to shift from the flat to the valley period. Although the typical load during the
period of high renewable energy output (11:00–12:00) is higher than during the period of
low output (5:00–6:00), the equivalent load during the period of high output is lower. This
results in users being charged valley prices during the period of high output, which helps
to release demand and promote the consumption of renewable energy.

(2) Further Widening of Sharp–Valley Price Difference
The initial sharp–valley price difference was 0.7 CNY, with a sharp–valley ratio of

2.6. Following the optimization process, which utilized the equivalent load, net load, and
typical load methods, prices during sharp and peak periods experienced a significant
increase, while prices during the valley period decreased substantially. Figure 10 illustrates
that the sharp–valley price difference achieved through the equivalent load method is
1.0813 CNY, with a sharp–valley ratio of 8.2. This represents a notable 3.6 times increase
compared to the pre-optimization state, thereby enhancing price adjustment flexibility and
strengthening the demand response from consumers.
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Figure 10. TOU pricing design based on typical load, net load and equivalent load.

5.3.2. Impacts on Supply Side

Figure 11 presents the load changes on the supply side following the optimization of
the Time of Use electricity price based on typical load, net load, and equivalent load. The
results demonstrate substantial peak-cutting and valley-filling effects on the load on the
supply side, as detailed below:
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Figure 11. Daily load curve before and after TOU pricing optimization.

(1) Reduction in Peak Load
In Figure 11, the black line represents the typical load curve before optimization, the

blue line represents the power grid load curve after optimization using the typical load
method, and the green line represents the power grid load curve after optimization based
on the net load. After optimizing the equivalent load curve, the new curve remains the
equivalent load, which needs to be restored to the power grid load curve, represented by
the orange curve in Figure 11. It is evident that all three optimization methods effectively
reduce the highest load of the power grid. The highest load of the power grid is reduced
from 25,791.04 MW to 24,916.03 MW, resulting in a peak reduction of 875.01 MW using the
typical load method. The net load optimization reduces the highest load to 24,905.49 MW,
achieving a peak reduction of 885.85 MW. After optimization based on the equivalent
load, the highest load is further reduced to 24,908.18 MW, achieving a peak reduction of
882.86 MW. The peak-cutting effects of the three methods are relatively similar.

(2) Decrease in Sharp–Valley Load Difference
Table 6 provide a comprehensive analysis of the effects of TOU pricing optimization

on sharp–valley load difference related to the power supply side.
The sharp–valley load difference was initially 4283.72 MW. After optimization, it

decreased to 2976.75 MW with the typical load model (a reduction of 1306.97 MW), to
2961.30 MW with the net load model (a reduction of 1322.42 MW), and to 2965.24 MW
with the equivalent load model (a reduction of 1318.48 MW). These significant reductions
indicate that TOU pricing optimization effectively smooths out the load curve, reducing
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the disparity between the highest and lowest loads, which can lead to more efficient grid
operation and less need for rapid ramping of power generation resources.

Table 6. Impacts at power supply side of TOU pricing optimization based on typical load, net load
and equivalent load.

Items
Before

Optimization
Based on Typical Load Based on Net Load Based on Equivalent Load

Value Increased Value Increased Value Increased

Maximum load of
grid/MW 25,791.04 24,916.03 −875.01 24,905.49 −885.55 24,908.18 −882.86

Minimum load of
grid/MW 21,507.32 21,939.28 431.96 21,944.19 436.87 21,942.94 435.62

Sharp-valley load
difference/MW 4283.72 2976.75 −1306.97 2961.30 −1322.42 2965.24 −1318.48

It is worth noting that during periods with more renewable energy output (area ➀ in
Figure 11), only the grid supply load after optimization by the equivalent load method is
higher and more stable, indicating that the output structure of the power source side has
effectively been transmitted to the supply side, which can promote the power system to
transition from “source follows load” to “source–load interaction”.

The sharp–valley load difference is further presented in Figure 12, which illustrates
that the TOU pricing optimization, particularly when based on the equivalent load model,
effectively manages the power supply side by reducing peak loads, increasing minimum
loads, and smoothing the load differences, thereby enhancing grid stability and opera-
tional efficiency.
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5.3.3. Impacts on Generation Side

Figure 13 visually illustrates the impact of Time of Use (TOU) pricing optimization
on renewable energy consumption before and after applying three different optimization
methods: typical load, net load, and equivalent load. This bar chart clearly shows the
incremental increases in renewable energy consumption resulting from each method,
providing a quantitative comparison of their effectiveness.

The baseline scenario is represented by a black bar, showing the renewable energy
consumption at 89,822.08 MWh before any optimization. The subsequent bars in cyan,
green and orange represent the renewable energy consumption after optimization using
the typical load, net load, and equivalent load methods, respectively.
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The cyan bar for the typical load method shows an increase in renewable energy
consumption to 91,422.55 MWh, which is an increase of 1600.47 MWh from the baseline.
The green bar for the net load method indicates a further increase to 91,658.80 MWh. The
most significant increase is shown by the orange bar for the equivalent load method, with
renewable energy consumption rising to 91,757.64 MWh. This is an increase of 1935.56 MWh
from the baseline, marking the highest improvement among the three methods.

In summary, the optimization of Time of Use (TOU) pricing through methods based
on typical load, net load, and equivalent load all yield benefits such as peak shaving, valley
filling, reduced peak–valley load difference, lower generation-side costs, and increased
consumption of renewable energy. Notably, the net load and equivalent load methods
outperform the traditional typical load method. The net load method slightly outperforms
in terms of peak shaving and valley filling. However, the equivalent load method effec-
tively aligns the output structure from the power generation side to the power supply
side, resulting in a significant reduction in generation side costs and a more pronounced
promotion of renewable energy consumption.

6. Conclusions

This paper introduces an innovative concept of equivalent load and proposes an opti-
mized Time of Use (TOU) pricing optimization model from a demand response perspective,
validated using power load data from a northern region of the national power grid of
China. The analysis comprehensively assesses the impacts across the electricity consumer
side, supply side, and generation side, revealing significant benefits.

The findings indicate that optimizing TOU pricing by widening the peak-to-valley
price difference on the consumer side enhances price adjustment flexibility. On the supply
side, the equivalent load method effectively reduces the maximum grid load and narrows
the peak-to-valley load difference, contributing to a more stable grid load. Additionally,
on the generation side, it lowers average generation costs and boosts the consumption of
renewable energy.

The proposed TOU pricing optimization method, based on equivalent load, stands out
from existing methods that rely on typical grid load and net load due to several distinctive
features:

(1) Demand-Side and Generation-Side Linkage: The TOU electricity price based on
equivalent load aligns demand-side user response with renewable energy consumption
on the generation side. This promotes a transition in the power system from “source
following load changes” to “source–load interaction,” enhancing the dynamic balance
between supply and demand.

(2) Enhanced Renewable Energy Utilization: By incorporating the power grid load,
renewable energy responsibility weight, and renewable energy consumption, the equivalent
load approach significantly enhances the utilization rate of renewable energy, especially in
regions with high renewable output.
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(3) Economic and Environmental Benefits: The equivalent load TOU pricing optimiza-
tion method reduces generation side costs without increasing consumer costs. It supports
peak shaving and valley filling, benefiting multiple stakeholders across the source and load
sides. This contributes positively to the clean and low-carbon transformation of the power
system, and supports the achievement of dual carbon goals.

Additionally, the implementation of the Social Network Search (SNS) algorithm in
solving the TOU pricing optimization model based on equivalent load further enhances
the method’s effectiveness. The SNS algorithm, known for its robustness and efficiency in
handling complex optimization problems, ensures that the pricing strategy is not only re-
sponsive to changes in demand and supply but also optimally aligned with the operational
dynamics of the power grid.

Overall, the use of the equivalent load model, coupled with the SNS algorithm, demon-
strates a sophisticated approach to integrating renewable energy metrics into pricing strate-
gies, aiming to optimize both economic and environmental outcomes in the power sector.
This method not only improves system efficiency and stability but also aligns with broader
environmental objectives, marking a significant step forward in the sustainable evolution
of power systems.
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