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Abstract: With the development of artificial intelligence (AI), deep learning is widely used in various
industries. At CRYPTO 2019, researchers used deep learning to analyze the block cipher for the
first time and constructed a differential neural network distinguisher to meet a certain accuracy. In
this paper, a mixture differential neural network distinguisher using ResNet is proposed to further
improve the accuracy by exploring the mixture differential properties. Experiments are conducted
on SIMON32/64, and the accuracy of the 8-round mixture differential neural network distinguisher
is improved from 74.7% to 92.3%, compared with that of the previous differential neural network
distinguisher. The prediction accuracy of the differential neural network distinguisher is susceptible
to the choice of the specified input differentials, whereas the mixture differential neural network
distinguisher is less affected by the input difference and has greater robustness. Furthermore, by
combining the probabilistic expansion of rounds and the neutral bit, the obtained mixture differential
neural network distinguisher is extended to 11 rounds, which can realize the 12-round actual key
recovery attack on SIMON32/64. With an appropriate increase in the time complexity and data
complexity, the key recovery accuracy of the mixture differential neural network distinguisher can
be improved to 55% as compared to 52% of the differential neural network distinguisher. The
mixture differential neural network distinguisher proposed in this paper can also be applied to other
lightweight block ciphers.

Keywords: SIMON; ResNet; mixture differential; cryptanalysis

MSC: 94A60

1. Introduction

The development of machine learning has impacted people’s lives in every aspect,
while deep learning has performed well in various tasks in most of the existing domains.
This includes computer vision [1], smart driving [2], machine translation [3] and the latest
interactive chat assistants [4]. Regarding cryptography, machine learning has been used
for side-channel attacks [5,6] and cryptanalysis [7], demonstrating its superiority over
traditional techniques [8].

Block ciphers [9] are widely used to ensure confidentiality in all kinds of information
systems. Lightweight block ciphers [10], as one of the fast-growing ciphers, are gaining
more and more attention and are widely used in IoT devices. IoT security is critical
because these devices handle and transmit large amounts of sensitive data. The openness
of IoT makes the information stored and transmitted in the network face great security
threats [11]. So the security of lightweight block ciphers used in IoT devices is crucial. The
SIMON lightweight block ciphers are proposed by the National Security Agency (NSA)
of the US, aiming to be the sort of generalist block ciphers that will be required for future
applications in the IoT era [12]. SIMON is well implemented on a variety of constrained
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platforms, including ASICs, FPGAs, and microcontrollers. The family uses only basic
bitwise arithmetic operations of XOR, And, and rotation. It is crucial to evaluate the security
of such lightweight block ciphers by subjecting them to rigorous cryptanalysis with all
known cryptanalytic techniques.

1.1. Related Work on Differential Cryptanalysis Using Machine Learning

In Eurocrypt 2017, L. Grassi et al. [13] discovered a “multiple of-8” property for
5-round AES. In FSE/ToSC 2019, this property is further refined as mixture differential
cryptanalysis [14] and developed to a probabilistic version [15]. The main idea is given
that the 4-round ciphertexts from a chosen plaintext pair lie in a particular subspace, the
probability of a specially constructed pair has the same property with a probability of 1,
while this is not the case for a random permutation. In [16], the exchange attack [17] and the
mixture differential attack is unified as a variant of a differential attack where quadruples
of plaintexts are constructed and the distinguisher can be produced by a Mixed Integer
Linear Programming (MILP) [18] tool.

Discovering a distinguisher is the very first step in breaking a block cipher. Traditional
techniques of the ultimate key-recovery attack equipped with a distinguisher are to use
statistics to distinguish if a guess is right or wrong about the subkey used in appended
rounds. The situation changed in 2019 when Gohr [7] presented a deep learning method to
launch key recovery attacks using SPECK [12] as the target block cipher. Ghor designed a
differential neural distinguisher for the SPECK and performed key recovery experiments
with reduced data complexity. Inspired by Ghor’s work, in 2021, Fu et al. [19] combined the
idea of a polytopic differential [20], especially the 2-differential, developed 3-polytopic neu-
ral distinguishers, and applied it to recover keys for 13-round SIMECK32/64, a lightweight
block cipher that resembles SIMON very much. Bao et al. [21] perform 12- and 16-round
key recovery attacks against SPECK32/64 and SIMON32/64 using differential neural dis-
tinguisher, respectively, and also provide a more detailed analysis of the process of key
recovery attacks using machine learning. Some rules of thumb are provided for tuning
the key parameters and making better trade offs. Baksi et al. explore more on choosing
an efficient machine learning model and observe that only a three-layer neural network
can be used [22]. Bao et al. find that the power of differential-neural cryptanalysis in the
related-key setting can exceed that in the single-key setting by successfully conducting a
14-round key recovery attack on SPECK32/64 [23]. Benamira et al. [24] provide a more
in-depth interpretation of Ghor’s neural differentiator. They found that the differential
neural network distinguisher learns not only the difference distribution of the output pairs
but also the difference distribution of the penultimate and pre-penultimate rounds.

1.2. Problem Statement and Our Contribution

Existing work studies the inner workings of machine learning-based distinguishers
based on differential analysis or try to train higher rounds of the differential neural network
distinguisher. The combination of machine learning-based key recovery techniques with
other classes of differential analysis is lacking except for the polytopic differential, and the
effect of combining mixture differential ideas with machine learning-based key recovery
techniques is still unknown. In order to extend the applicability of machine learning-based
key recovery techniques in differential-like cryptanalysis, and also to analyze the security
of lightweight block ciphers against key recovery attacks by a mixture differential neural
network distinguisher, we proposed a mixture differential neural network distinguisher.

Our contribution: In this paper, we for the first time incorporate the mixture differ-
ential idea with machine learning techniques to carry out key recovery attacks. Firstly,
we construct 7- and 8-round mixture differential neural network (MDNN) distinguishers.
Compared with the classical differential neural network distinguisher, MDNN has higher
prediction accuracy; the accuracy of 7-round and 8-round MDNN reaches 99.4% and 92.3%.
The accuracy comparison of the specific distinguisher is shown in Table 1. In Table 1,
the mixture differential neural network distinguisher has similar accuracy for different
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choices of input difference, whereas the fluctuations in the differential neural network
distinguisher are larger, and thus the MDNN is more robust to the choice of the specified
input difference. Secondly, we utilize the obtained MDNN to carry out a 12-round key
recovery attack on SIMON32/64, and the accuracy of the last round key recovery reaches
55% with data complexity 218 and time complexity 231.19. Compared with the differential
neural network distinguisher in [7], it has a key recovery success rate of about 52.1%, while
the data complexity is 214.5 and time complexity is 238. MDNN has higher key recovery
accuracy than the differential neural network distinguisher.

Table 1. Accuracy comparison between classical differential neural network distinguisher and
mixture differential neural network distinguisher.

Distinguishers Difference N7 Acu. N8 Acu. Ref.

Differential

0×00000001 94.3% 74.7% this
0×00000004 94.1% 73.3% this
0×00000008 94.1% 73.1% this
0×00400000 74.5% 63.6% this
0×00400000 61.6% 51.4% [7]

Mixture differential 0×00000001, 0×00000004, 0×00000008 99.4% 92.3% this
0×00000001, 0×00000004, 0×00400000 99.6% 91.4% this

N7: 7-round neural network distinguisher, N8: 8-round neural network distinguisher.

This paper is organized as follows. In Section 2, after a brief description of SIMON,
we have intruduced differential and mixture differential cryptanalysis, and we have also
given a brief overview of the ResNet used in our model. In Section 3, we have briefly
introdeced our neural network model and given seven rounds and eight rounds of the
classical/mixture differential neural network distinguisher. In Section 4, we have presented
methods related to key recovery using the neural network distinguisher and performed
12 rounds of key recovery attacks against SIMON32/64. The paper has been summarized
in Section 5.

2. Preliminaries
2.1. A Brief Description of SIMON

The SIMON [12] lightweight block ciphers are in Feistel structure with branch sizes
n = 16, 24, 32, 48 and 64 bits. The block sizes are 2n. The key is composed of m n-bit words
for m = 2, 3, 4 (i.e., the key size mn varies between 64 and 256 bits) depending on the word
size n. The block cipher instances corresponding to a fixed word size n (block size 2n) and
key size mn are denoted by SIMON2n/mn. The number of rounds, block size and key size
of the SIMON block ciphers are summarized in Table 2.

The SIMON round function is an AND-RX construction, i.e., constructions that only
make use of the bitwise operations And, XOR and rotation, denoted by &, ⊕ and Si (left
rotation by i bits), respectively. The round function under a round key k defined on inputs
x and y is

Rk(x, y) = (y ⊕ f (x)⊕ k, x),

where f (x) = (S1(x)&S8(x)) ⊕ S2(x), and Si(x) = (x ≪ i). The round function of
SIMON is shown in Figure 1. For SIMON32/64, the subkeys of 16-bit for each round are
generated from a master key of 64-bit by the linear key schedule using simple rotations
and XOR components.
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Figure 1. SIMON round function [12].

Table 2. Parameters for SIMON.

Block Size Key Size Rounds

32 64 32

48 72
96

36
36

64 96
128

42
44

96 96
144

52
54

128
128
192
256

68
69
72

2.2. Differential and Mixture Differential Cryptanalysis

Differential cryptanalysis [25] studies the propagation of plaintext difference to ci-
phertext difference through the iterations of round functions. Let a function f : Fn

2 → Fn
2

denote a certain number of rounds, and x, x′ two different inputs of f with a difference
∆in = x ⊕ x′. Let y = f (x) and y′ = f (x′) and a difference ∆out = y ⊕ y′. Then, a transition

from ∆in to ∆out (∆in
f−→ ∆out) with probability p > 2−n is a differential distinguisher:

Pr(∆in
f−→ ∆out) =

{x ∈ Fn
2 | f (x)⊕ f (x ⊕ ∆in) = ∆out}

2n > 2−n.

The mixture differential cryptanalysis is a variant of the classical differential crypt-
analysis. Unlike the classical differential, the mixture differential focuses on the difference
propagation among four plaintexts. For bit-wise block ciphers, the bit-wise mixture dif-
ferential pattern reflects the bit-wise equality relation among a quadruple of bits in the
same position in a plaintext quadruple, denoted by P = (∆1, ∆2, ∆3). A bit-wise mixture
differential distinguisher is a pair of bit-wise mixture patterns (Pin,Pout) such that given
plaintext quadruples (P1, P2, P3, P4) conforming to Pin, and the ciphertext quadruples
(C1, C2, C3, C4) conforming to Pout with probability p > 2−3n.

Pr(Pin
f−→ Pout) =Pr((∆1

in, ∆2
in, ∆3

in)
f−→ (∆1

out, ∆2
out, ∆3

out))

={x ∈ Fn
2 |( f (x)⊕ f (x ⊕ ∆1

in) = ∆1
out) ∧ ( f (x)⊕ f (x ⊕ ∆2

in) = ∆2
out)∧

( f (x)⊕ f (x ⊕ ∆3
in) = ∆3

out)}/2n

>2−3n.
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When utilizing a differential distinguisher ∆in → ∆out that covers r rounds to carry
out a key recovery attack, the attacker appends additional rounds to the distinguisher.
Then, the attacker enumerates the subkeys used in the appended rounds, relevant to
only part of the master key. It is crucial to determine whether an enumeration is good
or bad. By generating plaintexts that satisfy the specified input difference ∆in or input
mixture differential pattern Pin and collecting the ciphertexts, the enumerated subkey is
used to decrypt the ciphertexts to the end of the distinguisher. In traditional methods, if
the partially decrypted ciphertext pair or quadruple satisfies the output difference ∆out,
the enumerated subkey gets a vote. The one with the most votes is regarded as the right
subkey, while in the machine learning-based methods [7], there may be more features in
the pairs with the specified input difference that can be learned other than the specific
output difference, so a neural network is trained on output pairs of the distinguisher to tell
if such a pair is encrypted from a plaintext pair with the input difference or from a random
pair. Then, each candidate subkey is assigned a score that combines the neural network
prediction scores over all ciphertext pairs. The score is

V(k) =
n

∑
i=1

log2(Zk
i /(1 − Zk

i )) (1)

where Zk
i ∈ (0, 1) is the prediction score with subkey candidate k decrypting the i-th

ciphertext pair [7,19].

2.3. ResNet

ResNet, short for Residual Network, stands as a pioneering architectural innova-
tion in deep learning, particularly in the realm of convolutional neural networks (CNNs).
Introduced by K. He et al. [26] in 2015, ResNet addresses the degradation problem encoun-
tered in very deep neural networks. It is used by Gohr [7] as the network in differential
distinguisher training.

The core insight behind ResNet is the introduction of residual connections, which
enable the training of extremely deep networks (up to hundreds of layers) without suffering
from degradation. In ResNet, each layer is equipped with a “shortcut” connection, known
as a skip connection or identity mapping, which bypasses one or more layers. These
shortcuts facilitate the flow of gradients during training, alleviating the vanishing gradient
problem and enabling effective training of very deep networks.

ResNet is featured for the residual block. Suppose x is the input of the residual
block, F (x) is the residual function parameterized by some weights Wi, usually a combi-
nation of a series of convolution, batch normalization, and activation functions, etc. Then
F (x) + x is the output of the residual block. The formulation of F (x) + x can be realized
by feedforward neural networks with “shortcut connections” (Figure 2).

Figure 2. A residual block [26].

3. The 8-Round Mixture Differential Neural Network Distinguisher (MDNN)

In this section, the construction of the mixture differential neural network distinguisher
is described in detail, including the generation of data, the specific introduction of the
model architecture, and the training of the model.
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3.1. Basic Idea of MDNN

The core idea of the differential neural network distinguisher [7] is to learn the char-
acteristics of the output difference distribution of a given cryptographic algorithm with
a specified input difference. The trained network is then utilized to predict the unknown
ciphertext pairs and determine whether it is generated by encryption of the plaintext pair
that satisfies the specified input difference. These output difference distribution features
are invisible to conventional pure differential distinguishers. Meanwhile, when we use
the differential neural network distinguisher for key recovery attacks, we can effectively
reduce the data complexity as well as the time complexity. Combining the idea of mixture
differential, we can obtain the MDNN.

For MDNN, given the input difference of P = (∆1, ∆2, ∆3), ciphertext quadruples
(C0, C1, C2, C3) are used for training. When a ciphertext quadruple is generated by en-
crypting a plaintext quadruple that satisfies the specified input difference, i.e., (P0, P0 ⊕
∆1, P0 ⊕ ∆2, P0 ⊕ ∆3), the label is 1. On the other hand, when the ciphertext is generated
by encrypting four random plaintexts (P0, P1, P2, P3), the label is 0. The trained model is
then used to make predictions on a set of unknown ciphertext quadruples and outputs
a prediction score Z ∈ (0, 1) for each quadruple, which represents to what extent the
ciphertext quadruple is deduced from the plaintext quadruple conforming to the input
mixture pattern. In general, only if Z > 0.5, it is concluded that the ciphertext is generated
by the plaintext encryption that satisfies the difference (∆1, ∆2, ∆3). The closer Z is to 1, the
higher the probability that the ciphertexts satisfy the output differential features.

When the neural network distinguisher is trained, it is essentially learning the distribu-
tion characteristics of the ciphertext differences obtained after the plaintext differences have
been encrypted and propagated. Furthermore, compared with the classical differential
neural network distinguisher, the MDNN acquires more information about the plain-
text differences and can acquire more dependencies of the plaintext set when encrypted.
Therefore, the accuracy of the MDNN can reach a higher degree.

3.2. Data Generation

In order to train the neural network differential distinguisher, we need to generate a
batch of data for training, which contains the plaintext, ciphertext, masterkey and label.
For SIMON32/64, the length of the plaintext is 32, and the length of the masterkey is 64.
We first generate the masterkey matrix.

masterkey = [[k1[0], k2[0], k3[0], k4[0]], . . . , [k1[n − 1], k2[n − 1], k3[n − 1], k4[n − 1]]]

kj[i] represents a 16-bit random number, where i ∈ [0, n − 1], j ∈ {1, 2, 3, 4}. n denotes the
number of samples generated for training. j indicates that the masterkey consists of four
16-bit random numbers. Similarly, we can generate the plaintexts for training:

P0
l = [P0

l [0], P0
l [1], . . . , P0

l [n − 1]], P0
r = [P0

r [0], P0
r [1], . . . , P0

r [n − 1]]

P0
l [i] denotes the left input of the i-th randomly generated first pair of plaintexts. P0

r [i]
denotes the right input of the i-th randomly generated first pair of plaintexts. By differenti-
ating the P0

l and P0
r from the input difference, we can obtain a set of quadrple plaintexts:

∆ = (∆1, ∆2, ∆3), ∆i = (∆i
l , ∆i

r)

P1
l = P0

l ⊕ ∆1
l , P1

r = P0
r ⊕ ∆1

r , . . . , P4
r = P0

r ⊕ ∆3
r

∆i denotes one of the mixture difference, it consists of the difference of the left and right
inputs, i ∈ {1, 2, 3}. This gives us n quadruple plaintexts that satisfy the input difference.
Through key expansion algorithms as well as encryption, we can then obtain the round-key
for each of the n samples and the corresponding n ciphertexts. The label Y is randomly
generated and contains 0 and 1, and the length of Y is n. When Y is 0, the plaintext



Mathematics 2024, 12, 1401 7 of 18

is replaced with randomly generated plaintext, when Y is 1, the plaintext is the set of
plaintexts that satisfy the specified input difference.

Y = [0, 1, 0, 0, 1, . . . , 1]

The ratio of 0 and 1 in Y is about 1:1. In this way, we can obtain the dataset with balanced
positive and negative samples. Since we are targeting the training of SIMON32/64 mixture
differential neural network distinguishers, the data as a whole consist of two parts: features
as well as labels. The features consist of four ciphertexts obtained by encrypting plaintexts
that satisfy the specified input differences (the number of encryption rounds is determined
by the number of rounds of the neural network distinguisher that we want to train). So the
overall number of dimensions of features is 32 × 4 = 128. Labels are 0/1 of one dimension,
so the overall dimension of training/validation data is 129 dimensions. While training the
model, we set the training set size and validation set size. Thus, the overall number of rows
and columns in the dataset is (107 + 106) and 129, respectively.

3.3. Neural Network Distinguisher Model Architecture

Using MDNN as an example, the model architecture for SIMON32/64 and the relevant
parameters are given. The distinguisher model as a whole consists of three blocks.

• Block 1: the input layer and the initial convolutional layer, the initial convolutional
layer contains a 1D-CNN with kernel size 1 (convolution uses 32 filters), batch nor-
malization and ReLU activation function.

• Block 2: the residual layer, which contains i residual blocks and i is the depth of
the residual layer (in this model, we let i be 10). Each residual block consists of two
1D-CNN with a kernel size of 3 (convolution uses 32 filters), each followed by batch
normalization and a ReLU activation function.

• Block 3: the final classification layer, the classification layer contains three perceptron
layers separated by two batch normalization and ReLU functions, and finished with a
sigmoid function.

The overall architecture of the model is shown in Figure 3.
When we denote by X the data transferred to the model input layer, X consists of n

sets of encrypted data:
X = [X0, X1, X2, . . . , Xn−1]

Xi = [C0
l , C0

r , C1
l , C1

r , C2
l , C2

r , C3
l , C3

r ]

For mixture difference, there are four cipher pairs in total, and when considering left and
right inputs, there are eight ciphertexts in total, and in SIMON32/64, the inputs are 16 bits
per side. So each sample in the training set is 128 bits of data. These data are represented
in binary during training. Thus, in the final output classification layer, the first two layers
have 128 neurons each.
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Block1

CONV1D

BN

Relu

CONV1D

BN

Relu

FC,d1

BN

Relu

FC,d2

BN

Relu

FC,1

Sigmod

Block3

Input

Preditction

CONV1D

BN

Relu

CONV1D

BN

Relu

CONV1D

BN

Relu

iBlock2

Block1

Block3

Residual Block

Block2

Figure 3. Model architecture.

3.4. Model Training

We mainly trained 7-round as well as 8-round neural network difference distinguishers
for SIMON32/64 for the differential as well as the mixture differential. The training data
are the previously mentioned features X and labels Y. For the specified input difference
that are satisfied by the plaintext, we have chosen ∆1 = (0×0000001), ∆2 = (0×00000004)
and ∆3 = (0×00000008). We trained 7 and 8 rounds of classical differential neural net-
work distinguishers for ∆1, ∆2 and ∆3, respectively. We also trained 7 and 8 rounds of
mixture differential neural network distinguishers for the input difference (∆1, ∆2, ∆3).
Furthermore, for comparison with the distinguishers in [7], we selected the same difference
(∆ = 0×40000000) and trained the distinguisher with the same number of rounds. The
accuracy of the distinguishers is specified in Table 1.

For training, we chose the size of the train set as 107 and the size of the validation
set as 106. We ran 50 epochs for each training, and the batch size was 10,000. For the loss
function, we chose the Mean Square Error loss (MSE) and used the Adam optimization
algorithm that comes with tensorflow-keras to optimize the loss function as well as the L2
regularization (regularization parameter = 10−4). The learning rate scheduler selects cyclic
learning rate scheduling (CyclicalLR). We utilize Rtx3090 for model training. It takes about
2 min per epoch during training. The programming language used for data generation,
model construction and model training is python, and the specifications of the machine
used for model training are that the number of CPU cores is 64, the CPU frequency is
3699 MHZ, and the size of the RAM is 94 GB. The machine learning framework used is
tensorlfow-keras, and the libraries such as numpy and pandas are used. The operating
system is Ubuntu 22.04.4.

Figure 4 as well as Figure 5 illustrate the comparison of the success rate of 7-round
as well as 8-round classical differential neural network distinguishers with the mixture
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differential neural network distinguisher. Taking Figure 5 as an example, the horizontal
axis represents the epoch, and the vertical axis represents model accuracy. There are four
lines in the figure, which represent the training accuracy and prediction accuracy of the
classical differential and mixture differential distinguishers, respectively. From the figure,
it can be seen that the accuracy rate tends to stabilize with the improvement in the epoch
and compared with the classical differential neural network distinguisher, and the mixture
differential neural network distinguisher has a higher accuracy rate.

Figure 4. N7 distinguisher accuracy comparison.

Figure 5. N8 distinguisher accuracy comparison.

An increase in the number of encryption rounds leads to a more thorough obfuscation
of the differential features, making it difficult to learn from the output differential features
of the ciphertext in relation to the input differential features of the plaintext. Therefore, the
prediction accuracy of the model decreases as the number of rounds increases.
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4. Key Recovery Attack on 12-Round SIMON32/64

In this section, we detail the basic idea of key recovery attacks using mixture differ-
ential neural network distingsuihers. We performed a key recovery attack on 12-round
SIMON32/64 using trained 7-round as well as 8-round mixture differential neural network
distinguishers. The overall key recovery attack process is shown in Figure 6.

1k
f

2k
f

0

0
P

0

1
P

1 2 3

0 0 0
( , , )P P P

1 2 3

1 1 1
( , , )P P P

1-round free
2-round classical mixture
differential distinguisher

7-round neural network 

8-round mixture neural 
network distinguisher

1- round guess

1- round guess

12-round key-recovery attack

3k
f

4k
f

1 1k
f

12k
f

0

3
P

0
C

1 2 3
, ,C C C

1 2 3
( , , )  

1 2 3
( , , )  

1 2 3

3 3 3
( , , )P P P

Figure 6. The 12-round key recovery attack using MDNN for SIMON32/64.

4.1. Basic Attack Ideas for MDNN

In Figure 6, we can find that the key recovery attack process consists of three main
parts, the classical mixture differential distinguisher, the mixture differential neural network
distinguisher and finally the key guessing, where fki

denotes the round function of each
round, i ∈ {1, 2, 3, . . . 12}. (P0

i , P1
i , P2

i , P3
i ) denotes the intermediate state of the quarduples

after i rounds of encryption. In the process of data generation, we have generated n
pairs of quadruple plaintexts, where the plaintext labeled 1 satisfies the input difference
∆ = (∆1, ∆2, ∆3). We encrypted these plaintexts for 7 and 8 rounds, using them to train the
MDNN. In order to extend the number of rounds for the key recovery attack, we added
a classical mixture differential distinguisher in front of the neural network distinguisher.
The output difference of the classical mixture differential distinguisher is the same as
the input difference of the neural network distinguisher. We denote the input difference
of the classical mixture differential distinguisher by δ = (δ1, δ2, δ3). After an additional
round of decryption, the plaintext is obtained. When performing key guessing, we assume
that n ciphertext quadruples (C0, C1, C2, C3) are collected, k is the guessed subkey in the
appended rounds, and k is used to decrypt n ciphertexts. Zk

i denotes the predicted value
of the i-th ciphertext, Zk

i ∈ (0, 1). When we determine the goodness of a guessed key,
we can combine the prediction scores of n ciphertexts using Equation (1). When V(k) is
greater than a set threshold, we can consider the guessing key to be a good key. The data
complexity is related to the number of samples n we selected.

Here, by prepending two rounds of mixture differential transition, we extend the
8 rounds of mixture differential neural network distinguisher to 10 rounds. The specific
differential transfer trail is

(0×0001/2004, 0 × 8000/1002, 0 × 4000/0801) →
(0 × 0000/0001, 0 × 0000/0004, 0 × 0000/0008)

where (0 × 0001/2004, 0 × 8000/1002, 0 × 4000/0801) is the mixture difference of the input,
and the output mixture difference is (0 × 0000/0001, 0 × 0000/0004, 0 × 0000/0008) with
probability 2−5 × 2−5 = 2−10. Furthermore, the output difference is the specified input
difference that we use to train the mixture differential neural network distinguisher. We
can call this intermediate state data as the available difference structure. The difference
in the available difference structure should be consistent with the input difference used
to train the neural network. Furthermore, one round of decryption of the inputs of the
two-round distinguisher gives the chosen plaintext. We use it as an input for 12 rounds of
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SIMON32/64 encryption. In this way, we can guarantee that the mixture difference after
three rounds of encryption for (0 × 0000/0001, 0 × 0000/0004, 0 × 0000/0008) is 2−10.

Since the plaintext that satisfies the specified input difference can only obtain the
output difference we want with a probability of 2−10, in order to increase the probability
as well as reduce the corresponding data complexity. Neutral bits [27] can be utilized to
construct the plaintext. When the neutral bits of the plaintext change, its output difference
does not change. Therefore, we select a group of plaintexts and change six neutral bits
in them to obtain a group of 64 plaintexts with the same output mixture difference. The
neutral bits used for the 12 rounds of attack are [2, 3, 4, 6, 8, 9].

We encrypt the corresponding plaintext with a 12-round SIMON32/64 and guess
the subkey for the last round. The candidate key is mainly obtained by using the candi-
date subkey search algorithm (Algorithm 1). The ciphertext is decrypted in one round
using the guessed key, and the result is fed into the 8-round mixture differential neural
network distinguisher for prediction. Using the prediction output of the distinguisher and
Equation (1), a value V(k) for determining a good or bad guessed key is obtained. This
value is compared with the boundary value Cuto f f1 and if V(k) > Cuto f f1, the resulting
intermediate state is continued to be decrypted for the penultimate round of key guessing.
Again the 7-round mixture differential neural network distinguisher prediction output
is combined with Equation (1) to calculate V(k) and compared with the boundary value
Cuto f f2. If V(k) > Cu f o f f2, then the two rounds of guessed key are the subkeys we want.

To summarize the basic process of the key recovery attack by the mixture differential
neural network distinguisher, we use the guessed subkey to decrypt the ciphertext and
observe the output of the distinguisher. After determining the final-round subkeys and
then guessing the penultimate round of subkeys, if both rounds of subkeys are greater than
the given bounding value, then we obtain the subkeys that we want. Both rounds of key
guessing utilize the distributional characteristics of the output mixture difference, and the
penultimate round of subkey guessing can play an auxiliary role to the last round of subkey
guessing to verify the correctness of the last round of guessing.

4.2. Model Response to Wrong Keys

In order to perform the search for candidate subkeys, we need to obtain the mean as
well as the standard deviation of the distinguisher’s response to the distribution of wrong
keys. We calculated the wrong key response profile for our 7-round as well as 8-round
differential and mixture differential neural network distinguishers for SIMON32/64. Here,
we take an example of the response of the 8-round mixture difference neural network
distinguisher to the wrong key. The experimental key difference is ∆ ∈ F16

2 .
For each difference ∆, we generate 1000 sets of plaintexts (P0, P1, P2, P3) that satisfy

the specified input difference used for training and 1000 random keys k. For an eight-round
distinguisher, we would encrypt the plaintext for nine rounds with the corresponding keys
k, and the encrypted ciphertext would be (C0, C1, C2, C3). The wrong key is k′ = k ⊕ ∆,
and we use the wrong key k′ to decrypt the existing ciphertext for one round to obtain
(E−1

k′ (C0), E−1
k′ (C1), E−1

k′ (C2), E−1
k′ (C3)). Then, the eight rounds of the mixture differential

neural network distinguisher are used to make predictions about these ciphertexts. Based
on these predictions, N8(E−1

k′ (C0), E−1
k′ (C1), E−1

k′ (C2), E−1
k′ (C3)), we can obtain the mean

and standard deviation of the difference ∆ between the wrong key and the correct key on
1000 trials. The mean µ∆ and standard deviation σ∆ depend on random variable ∆. The
mean of the wrong key response for seven-round and eight-round differential and mixture
differential neural network distinguishers are shown in Figure 7, Figure 8, Figure 9 and
Figure 10, respectively.
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Figure 7. The 7-round differential neural distinguisher wrong key response.

Figure 8. The 7-round MDNN wrong key response.
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Figure 9. The 8-round differential neural distinguisher wrong key response.

Figure 10. The 8-round MDNN wrong key response.

Taking the 8-round wrong key response profile as an example, we can see a lot of
obvious non-random structures in Figures 9 and 10. Figure 9 shows the mean value of the
wrong key response for the eight-round differential neural network distinguisher, where
the input difference of the plaintext used is (0 × 000/0001). The input difference of the
plaintext used in Figure 10 is (0 × 0000/0001, 0 × 0000/0004, 0 × 0000/0008). The x-axis
represents the difference between the real key and the wrong key, and the y-axis represents
the mean value of the distinguisher prediction on 1000 trials. From the figure, it can be seen
that the response of the differential neural differentiator has the same trend as the response
of the MDNN, as the larger the difference in bits between the wrong key and the real key
exists, the prediction of the distinguisher is lower. The reason is that when the number of
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bits in which there is a difference between the wrong key and the real key goes up, the
correct ciphertext output differential features obtained from the decrypted ciphertext are
less, which affects the prediction accuracy of the distinguisher. By comparison, we can
see that there is a more significant feature structure in Figures 7 and 8, indicating that
the information in the output differential features is weakening as the number of rounds
increases. It can also be noticed that the structure of the wrong key response is more
significant for the mixture differential, suggesting that the mixture differential can capture
more output difference features than the differential in neural network training. The wrong
key response profile can be used to perform Bayesian inference to obtain candidate keys.

4.3. Candidate Subkey Search

While performing the search for candidate subkeys, we have used the Bayesian opti-
mization method [28]. Bayesian optimization methods can be used to find the maximum
value of the function and the corresponding parameters based on the values of the sam-
pling points that have been obtained without knowing the specific function equation,
which means that this method is mainly used for black box functions. The fine-tuning of
hyperparameters in machine learning is a very common example of its use. Bayesian opti-
mization consists of two main core processes, a prior function, which is used to construct
a probabilistic model of a function that can be easily optimized in place of the black box
function. The other one is the sampling function, which is used to decide how to select
new sampling points and contains the commonly used standard exploration–exploitation
technique, namely Upper Confidence Bounds (UCBs) [29].

In the scenario of a key recovery attack using the mixture differential neural network
distinguisher, we can treat the MDNN model as a black box function. Based on the
wrong key response, we know that the output of the MDNN model is correlated with
the difference between the real key and the wrong key, so the process of finding the
maximum value of the model is actually the process of searching for candidate subkeys.
Given a subkey and trial decryption, the Bayesian optimization derives a series of new
key assumptions based on the pre-computed wrong key response profile. The output
prediction of the model is closely associated with the difference of the key, mainly the mean
µ∆ and the standard deviation σ∆(∆ = k ⊕ k′, k: realkey, k′: guesskey). The specific key
search strategy is described in Algorithm 1:

Algorithm 1 Candidate Key Search Implemented by Bayesian Optimization

Input: Ciphertext C = {C1, , . . . , Cm}, m: number of ciphertext, MDNN, n: number of
candidate keys, it: number of iterations, wrong key response profile: µ∆, σ∆.

Output: S = {k1, . . . , kn}, L
1: S = {k1, . . . , kn}(random generated), L = {}
2: for iteration ∈ [1, it] do
3: Pi,kj

= dec_one_round(Ci, k j), i ∈ {1, . . . , m}, k j ∈ S
4: vi,kj

= MDNN(Pi,kj
), i ∈ {1, . . . , m}, k j ∈ S

5: wkj
= ∑m

i=1 log2(vi,kj
/(1 − vi,kj

)), k j ∈ S
6: L = L ∪ (k j, wkj

), k j ∈ S
7: meankj

= ∑m
i=1 vi,kj

/m, k j ∈ S
8: for k ∈ {0, 1, . . . , 216 − 1} do
9: λk = ∑n

j=1(meanskj
− µkj⊕k)

2/(σ2
kj⊕k), k j ∈ S

10: end for
11: keys = sort_by_λk(k)(from smallest to largest)
12: S = keys
13: end for
14: return S, L
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For Algorithm 1, we provide a brief explanation. Firstly, the algorithm exists as a
randomly generated set of candidate keys S and an empty set L. The subkey search process
in the algorithm loops it times, and in each loop, we decrypt each ciphertext quadruple
in the ciphertext set C by using the candidate keys k j in S for one round and obtain the
intermediate state quadruple after one round of decryption, which here we denote as Pi,kj

.
Pi,kj

is put into the trained MDNN for prediction, and an 8-round MDNN is used for a
12-round key recovery attack. For each key k j in S, we have the prediction scores vi,kj

under MDNN of the intermediate states Pi,kj
obtained by decrypting one round using

these keys, and using Equation (1), we synthesize the prediction scores vi,kj
under MDNN

of the m ciphertext quadruples decrypted under each key k j, and we obtain a measure of
how good or bad each key k j is, wkj

. We put all of the candidate keys k j in the set S with
their corresponding wkj

into the set L. In the Model Response to Wrong Keys section, we
derive the relationship between the mean and standard deviation of the model response
and the key difference. Here, we compute the mean of the predicted scores vi,kj

of the m
ciphertext quadruples under each key k j in the set S by MDNN, denoted by meankj

. Let k
be the possible correct key, traverse it from 0 to 216 − 1 and use the mean µ∆ and standard
deviation σ∆ of the model response to wrong keys obtained previously, combined with the
mean meankj

of the predicted scores of the m ciphertexts decrypted by key k j to compute
the additive-full Euclidean distance λk of the guessing key k j from the possible true key k:

λk =
n

∑
j=1

(meanskj
− µkj⊕k)

2/(σ2
kj⊕k)

After finishing the traversal, the n k with the smallest λk are put into the candidate subkey
set S for the next round of the outer loop. After all the loops are finished, the set L of
candidate subkey sets S with all the keys k stored with their wkj

during the loop can
be obtained.

In the algorithm, L is used to store the keys and their corresponding wk. The number
of keys to be stored is related to the number of iterations it as well as the size of the set of
candidate keys S, which is it× n. If there exists a key whose wk is greater than the boundary
cuto f f1, it will be extended to the penultimate round, and the process will be repeated. If a
candidate key in the penultimate round has an wk greater than the boundary cuto f f2, the
key search will be terminated.

4.4. Results

In a 12-round key recovery attack experiment against SIMON32/64, we used 1024 ci-
phertext structures of 64 chosen plaintext pair encryptions each. The bounding value of the
judgment Cuto f f1 = 25, Cuto f f2 = 100. The number of calls to the Bayesian key search
algorithm is 512. Furthermore, the number of loop iterations within the Bayesian algorithm
it is five. The size n of the candidate key set S is 32. So the number of keys kept in L is
32 × 5 = 160. During the overall experiment, we attempted to recover 100 keys, in a total
of 21,090 s. The average time taken to recover a key was around 210.9 s. The probability
that the last round of subkeys is completely correct and the error of the penultimate round
of recovered subkeys is controlled to be between 2 bits during key recovery is 55%.

As for the complexity of the key recovery attack using MDNN, the data complexity
is 210 × 4 × 64 = 218. This is because we use 210 ciphertext structures, each of which is
composed of 64 corresponding quadruple ciphertext groups. Time complexity is calculated
in terms of SIMON32/64 encryption; our device can execute approximately 225.06 1-round
encryption per second, so the final time complexity is 4 × 210.9

12 × 225.06 = 231.19. The
complexity of the differential neural network distinguisher is calculated similarly.

In Table 3, we show the results of 12-round SIMON32/64 key recovery attacks using
the differential neural network distinguisher and mixture differential neural network
distinguisher, respectively. From the table, we can find that the key recovery attack using
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the mixture differential neural network distinguisher with higher accuracy has higher data
and time complexity but higher key recovery accuracy than the differential neural network
distinguisher with lower accuracy.

Table 3. Key recovery accuracy.

Distinguishers Data Complexity Time Complexity Recovery Acu.

Differential 214 229.45 52%

Mixture differential 218 231.19 55%

5. Conclusions

How to combine machine learning with cryptanalysis has been an important and
much needed research topic. In this paper, we combine mixture differential analysis with
machine learning to train eight-round MDNN. Compared with the differential neural
network distinguisher, MDNN can acquire more output differential features and therefore
has higher prediction accuracy. We also find that the prediction accuracy of the differential
neural network distinguisher is easily affected by the specified input difference chosen,
while the mixture differential neural network distinguisher is less affected by the input
difference and has stronger robustness. The basic principle of the attack using MDNN and
the specific effect are also illustrated by a 12-round key recovery attack on SIMON32/64.
In the key recovery attack, the computation method of the wrong key response and the
Bayesian optimization candidate subkey search strategy based on it are given. Comparing
the attacks using the differential neural network distinguisher and MDNN, we find that
MDNN can achieve a higher key recovery accuracy; although, the data and time complexity
are increased. When using the mixture differential neural network distinguisher for key
recovery attacks, the data and time complexity is still a bit high, and the number of rounds
covered is not long enough at the same time. Whether the architecture of the model can be
optimized in order to increase the number of rounds covered by the distinguisher for more
complex key recovery attacks will be the goal of the subsequent work.
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