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Abstract: This paper explores the application of Random Matrix Theory (RMT) as a methodological
enhancement for portfolio selection within financial markets. Traditional approaches to portfolio
optimization often rely on historical estimates of correlation matrices, which are particularly suscepti-
ble to instabilities. To address this challenge, we combine a data preprocessing technique based on
the Hilbert transformation of returns with RMT to refine the accuracy and robustness of correlation
matrix estimation. By comparing empirical correlations with those generated through RMT, we
reveal non-random properties and uncover underlying relationships within financial data. We then
utilize this methodology to construct the correlation network dependence structure used in portfolio
optimization. The empirical analysis presented in this paper validates the effectiveness of RMT in
enhancing portfolio diversification and risk management strategies. This research contributes by
offering investors and portfolio managers with methodological insights to construct portfolios that
are more stable, robust, and diversified. At the same time, it advances our comprehension of the
intricate statistical principles underlying multivariate financial data.

Keywords: portfolio selection; networks; dependence structure; random matrix theory; Hilbert
transformation
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1. Introduction

Markowitz’s seminal paper [1] remains a cornerstone in practical portfolio manage-
ment, despite facing challenges in out-of-sample analyses due to estimation errors in
expected returns and the covariance matrix, as noted in [2–6]. To address these limitations,
researchers have investigated the use of robust estimators aimed at providing more accurate
and reliable measures of moments and co-moments. Robust estimators, designed to handle
outliers and errors, enhance the robustness of portfolio optimization, leading to improved
stability and performance, see [7–9].

In recent years, there has been a notable shift towards a novel approach known as the
market graph for understanding the relationship between asset returns, departing from
traditional covariance-based methods. This methodology represents assets as nodes and
their relationships as edges in a graph, capturing the broader structure of the financial
market. Pioneering work by Mantegna [10] led to the construction of asset graphs using
stock price correlations, revealing hierarchical organization within stock markets. Sub-
sequent research conducted by [11] investigates stock network topology by examining
return relationships, with the objective of revealing significant patterns inherent in the
correlation matrix. Additionally, ref. [12] introduced constraints based on asset connections
in the correlation graph to encourage the inclusion of less correlated assets for diversifi-
cation, employing assortativity from complex network analysis to guide the optimization
process. Recent research explores innovative portfolio optimization techniques using clus-
tering information from asset networks [13–15]. These approaches replace the classical
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Markowitz model’s correlation matrix with a correlation-based clustering matrix. In [15],
a network-based approach is utilized to model the structure of the financial market and
the interdependencies among asset returns. This is achieved through the construction of a
market graph, which captures asset connections using various edge weights. An objective
function is introduced, considering both individual security volatility and network connec-
tions, to enhance the understanding of market dynamics. In [13], the authors proposed a
unified mixed-integer linear programming (MILP) framework integrating clustering and
portfolio optimization. Empirical results demonstrate the promising performance of the
network-based portfolio selection approach, outperforming classical approaches relying
solely on pairwise correlation between assets’ returns. Building upon the research outlined
in [14,15], we introduce a novel framework that integrates Random Matrix Theory (RMT)
into portfolio allocation procedures. Random Matrix Theory (RMT) is a mathematical
approach introduced in [16] which is used to analyze correlations in the finance area and
especially to improve portfolio management [17–20]. Specifically, we employ a combi-
nation of the Hilbert transformation and RMT to estimate the correlation matrix. This
methodological approach draws inspiration from a dimensionality reduction technique
introduced in [21] for data analysis, which was subsequently extended to economic time se-
ries and quantitative finance [22–24]. By employing this technique, we effectively separate
noise from significant correlations, thereby enhancing the accuracy and robustness of the
portfolio allocation process. On the one hand, the Hilbert transformation technique is a
data preprocessing method which we use to add complexity the time series of returns, thus
improving the effectiveness in detecting lead/lag correlations in time-series data, as shown
in [23,25,26]. On the other hand, RMT offers a robust denoising technique on the basis of
the Marčenko–Pastur theorem, which describes the eigenvalue distribution of the covari-
ance matrices [27–29]. As a result, we obtain a denoised version of the covariance matrix
that captures the true underlying correlation structure more accurately and facilitates the
computation of clustering coefficients to assess the interconnectedness of assets.

The proposed method is then tested on four equity portfolios, employing a buy and
hold rolling window strategy with various lengths for the in-sample and the out-of-sample
periods. The out-of-sample performances are then compared across different methods of
estimating the dependence structure between assets, including sample estimates, shrinkage
estimates, clustering coefficients, and RMT. Notably, employing the RMT method consis-
tently results in a superior out-of-sample performance compared to traditional methods
across all portfolios and rolling window strategies. Furthermore, the analysis of transaction
costs, measured by turnover, reveals that the RMT approach consistently led to a lower
portfolio turnover compared to other methods. This reduction in turnover translates to
lower transaction costs and underscores the practical applicability of the RMT approach in
portfolio management.

The paper is organized as follows: Section 2 introduces the basic notions of the Hilbert
transformation and RMT-based techniques. Section 3 offers a brief overview of existing
portfolio selection models. Section 4 details the in-sample and out-of-sample protocols and
analyzes the empirical outcomes. Finally, Section 5 discusses this paper’s key findings.

2. Random Matrix Theory

In the context of financial mathematics, it has been established that extensive empirical
correlation matrices exhibit significant noise to the point where, with the exception of
their principal eigenvalues and associated eigenvectors, they can be essentially treated as
stochastic or random entities. Therefore, it is customary to denoise an empirical correlation
matrix before its utilization. In this section, we will elucidate a denoising technique rooted
in the principles of RMT where the fundamental result is the Marčenko–Pastur theorem,
which describes the eigenvalue distribution of large random covariance matrices.

In the following, we denote by M(Cn×T) the space of complex-valued matrices with
dimensions n × T. Let X ∈ M(Cn×T) be an observation matrix, where the columns are
the single observations for different n time series. Let Σ ∈ M(Cn×n) be the empirical
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covariance matrix associated with X, i.e., Σ = 1
T XX∗ (X∗ is the adjoint matrix of X). If

Σ is Hermitian (that is, if the eigenvalues are real), we can define the empirical spectral
distribution function as F = n−1 ∑n

j=1 1λj≤λ, where λj, for j = 1, . . . , n, are the eigenvalues
of Σ. The distribution of the eigenvalues of a large random covariance matrix is actually
universal, meaning that it follows a distribution independent of the underlying observation
matrix as stated in the following Marčenko–Pastur theorem [27–29].

Theorem 1 (Marčenko–Pastur, 1967 [27]). Suppose Xi, i = 1, . . . , n are independent and identically
distributed random variables with mean 0 and variance σ2. Suppose that T

n → q ∈ (0,+∞) as
n → +∞, T → +∞. Then, as n → +∞, the empirical spectral distribution F̂ of the sample
covariance Σ̂ converges almost surely in distribution to a nonrandom distribution, known as the
Marčenko–Pastur law and denoted by Fq, whose probability distribution is:

ρq(λ) dλ = max
(

1 − 1
q

, 0
)

δ0 +

√
(λ+ − λ)(λ − λ−)

2πqλσ2 1λ−≤λ≤λ+ dλ (1)

where the first term represents a point mass with weight 1 − 1
q at the origin if q > 1 and

λ± = σ2(1 ±√
q)2 coincide with the lower and the upper edges of the eigenvalue spectrum.

Let us note that, under proper assumptions, the Marčenko–Pastur theorem remains valid
for observations drawn from more general distributions, like fat-tailed distributions [18,30].

Utilizing the boundaries of the Marčenko–Pastur distribution within the eigenvalue
spectrum facilitates distinguishing between information and noise, enabling the filtration
of the sample correlation matrix. Consequently, it is expected that this filtered corre-
lation matrix will provide more stable correlations compared to the standard sample
correlation matrix.

2.1. Filtering Covariance by RMT

One can compare the theoretical density of the eigenvalues generated the by the
Marčenko–Pastur theorem (in the following indicated as benchmark or null model) with the
corresponding empirical one. Thus, we can identify the number of empirical eigenvalues,
possessing some known and easily interpretable characteristics, that significantly deviate
from the null model. There are many methods for filtering the correlation matrix based
on RMT as proposed previously. Essentially, the approaches primarily involve suitable
modification of the eigenvalues within the spectrum of the sample correlation matrix while
simultaneously preserving its trace, as explained below.

The upper boundary λ+ of the Marčenko–Pastur density serves as a threshold for dis-
tinguishing the noisy component of Σ. Eigenvalues of Σ within the interval [λ−, λ+] adhere
to the random correlation matrix hypothesis and represent noise-associated eigenvalues, as
well as those below λ−. The rationale behind excluding the smallest deviating eigenvalues
from these filters lies in the fact that, unlike large eigenvalues—which are separated from
the Marčenko–Pastur (MP) upper bound—the same rationale does not always hold true for
the smallest deviating eigenvalues. Typically, small eigenvalues can be situated beyond the
lower edge of the spectrum, a pattern consistent with the finite dimension of the observed
matrix (n × T). Furthermore, as emphasized in [17,31] there exists clear evidence of the
non-randomness and temporal stability of the eigenvectors corresponding to eigenvalues
larger than λ+. Such characteristics have not been consistently confirmed for the eigen-
vectors associated with eigenvalues smaller than λ−. Therefore, eigenvalues higher than
λ+ can be regarded as “meaningful”. This leads to the following denoising method for
the estimated covariance matrix Σ̂: all the eigenvalues of Σ̂ lower than or equal to λ+ are
replaced by a constant value either equal to the average value of the “noisy” eigenvalues
(as in [17]) or equal to zero (as in [19]) (both methods have the advantage of preserving the
trace of Σ̂ while eliminating the non-meaningful eigenvalues). All the eigenvalues of Σ̂
strictly greater than λ+ are left unchanged.
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In this paper, the eigenvalues of Σ̂ that fall in the range predicted by the Marčenko–
Pastur distribution are set to zero. Then, to build the filtered covariance matrix ΣF, the
following steps are undertaken: suppose there exist k relevant eigenvalues (i.e., higher
than λ+). Let us denote them by {λj}j=n−k,...,n, and also consider the diagonal matrix of
filtered eigenvalues ΛF = diag(0, . . . , 0, λn−k, . . . , λn). At this point, we use ΛF back in the
eigendecomposition with the original eigenvectors, here denoted by V, thus obtaining:

ΣF = VΛFV−1. (2)

Finally, in order to preserve the trace of the original matrix and prevent system distortion,
we adjust the main diagonal elements of the filtered matrix ΣF by replacing them with the
sample variances of the portfolio components σ̂2

ii, i = 1, . . . , n.

Remark 1. When applying this method to portfolio selection, we will work with the correlation ma-
trix. However, the Marčenko–Pastur law remains unchanged with the only difference that σ2 = 1.

2.2. Data Preprocessing: Hilbert Transformation

Data preprocessing is a crucial step in the data analysis process, involving tech-
niques designed to transform raw data into a clean dataset suitable for further analysis.
One powerful method used particularly in signal processing is the Hilbert transform. This
mathematical transformation is mainly applied in climatology, signal processing, finance,
and economics [23,25,26] and it helps to derive the analytic signal from a real-valued signal,
which is crucial for applications like amplitude modulation and phase shifting. This tech-
nique is especially well suited for detecting correlations with lead/lags, making it highly
effective for time series exhibiting shifts in their co-movements.

Let us consider the panel of asset returns (i.e., portfolio) over time as x(t) and let us
indicate with x̃(t) the complex series derived by Hilbert transforming the original time
series as x̃(t) = x(t) + iH[x(t)] so that the real part of each component Re(x̃(t)) = x(t)
coincides with the original time series. The Hilbert transformation is a linear transformation
defined in [32] as the following integral:

H[x(t)] =
1
π

P

∞∫
−∞

x(τ)
τ − t

dτ,

where P indicates the Cauchy principal value. The sequence x̃(t) with added complexity
can then be written as:

x̃(t) =
i
π

∮ x(τ)
τ − t

dτ. (3)

As an example of the effect of the Hilbert transformation on the correlation matrix, let
us consider two periodic signals defined as:

x = sin(πt
4 ) (4)

y = cos(πt
4 ). (5)

The correlation matrix between the two time series is:

C =

(
1 −5.86 · 10−4

−5.86 · 10−4 1

)
(6)

from which it is clear how negligible the correlation between the two time series is. Mean-
while, after Hilbert transformations of the time series, the two sequences with added
complexity have the following complex correlation matrix:

C̃ =

(
1 + i0 −5.86 · 10−4 + i0.99

−5.86 · 10−4 + i0.99 1 − i0

)
=

(
1 0.99ei1.57π

0.99e−i1.57π 1

)
. (7)
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We note from (7) that the magnitude of the correlation is pretty high, as expected if one con-
siders the lags to be just a lack of synchronicity and not a lack of co-movements. The
behavior of the two correlation matrices is also evident if one plots the two time series in a
real plane and in a Gauss plane, see Figure 1.

(a) (b)
Figure 1. Example of two periodic time series shifted by π. (a) Original time series and (b) the
two time series with added complexity via Hilbert transformation in a complex plane. The blue color
indicates (4), the red color indicates (5).

If we use the data sequence with added complexity, then the Marčenko–Pastur
law has to be modified by replacing p with 2p, since the imaginary part of a data se-
quence with added complexity is not independent of its real part, being related by the
Hilbert transformation [23].

Utilizing the Hilbert transformation, the covariance (cross-correlation) matrix is repre-
sented in a space where the eigenvectors’ components are spread across the complex plane.
This facilitates identifying lead–lag relationships between components through angular
disparities. The components of the complex covariance matrix can be denoted as follows:

σkj = Re(σkj) + i Im(σkj) = |σkj|eiϕkj , k, j = 1, . . . , n,

where the absolute value of each element of the complex covariance matrix gives the
strength of the correlation; meanwhile, ϕkj, k, j = 1, . . . , n, indicates the correlation in phase
space. The leading or lagging behavior of each component is determined by ϕkj, measuring
to what extent the time series k leads the time series j.

We can break down the covariance (correlation) matrix as:

Σ = VΛV−1 = V(Λnoise + ΛF)V−1

=Σnoise + ΣF

where Λnoise is the diagonal matrix of insignificant eigenvalues and ΣF and Σnoise denote
the principal and noisy components of the correlation matrix, respectively.

In the context of portfolio allocation, the Hilbert transformation technique proves
valuable for identifying lead/lag correlations in the performance of different assets over
time. This allows investors to uncover temporal patterns and optimize portfolio strategies
by understanding the timing of movements in asset values. Essentially, it helps to discern
how changes in one asset’s value relate to shifts in another asset, leading to more informed
and dynamic portfolio decision making.

3. Portfolio Selection Models

In this section, we explore the nuances of asset allocation problems. We begin by
outlining the classical portfolio model, inspired by Markowitz’s foundational work, which
employs the variance/covariance matrix to analyze the interdependencies among asset
returns, typically estimated through a sample approach. Following this, we describe the
approach rooted in network theory (see [15]), offering a novel perspective on portfolio
optimization. As also observed in recent studies [22,23] across various fields of the economic
literature, this methodological approach presents a modern and sophisticated way to
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address challenges in traditional portfolio selection processes. It aims to unveil an optimal
solution by using the interconnected relationships among different assets. Finally, we
explore the application of RMT in the portfolio selection model, focusing particularly on
the minimum variance portfolio.

3.1. Traditional Global Minimum Variance Portfolio

The classical global minimum variance (GMV) approach is designed to optimize
portfolio allocation by determining the fractions wi of a given capital to be invested in each
asset i from a predetermined basket of assets. The objective is to minimize the portfolio
risk, identified through its variance. In this context, n represents the number of available
assets, Xi, i = 1, . . . , n symbolizes the random variable of daily returns of the i-th asset and
Σ is the sample covariance matrix. The GMV strategy is formulated as follows:

min
w

w⊤Σw

w⊤e = 1

0 ≤ wi ≤ 1, i = 1, . . . , n,

(8)

where e is a vector of ones of length n and w = [wi]i=1,...,n is the vector of the fractions
invested in each asset. The first equation is the budget constraint and requires that the
whole capital should be invested. Conditions 0 ≤ wi ≤ 1, i = 1, . . . , n preclude the
possibility of short selling (as is well known, a closed-form solution of the GMV problem
exists if short selling is allowed). It is evident that the dependence structure between assets,
in [1], is assessed through the Pearson correlation coefficient between each pair of asset.

The process of estimating covariance matrices from samples is widely recognized for
its susceptibility to noise and its high estimation error. This introduces uncertainty and
instability when attempting to estimate the true covariance structure, which frequently
results in a suboptimal performance of portfolios when applied out of sample. Portfolios
based on unreliable covariance structures may exhibit increased volatility, high risk, and
compromised returns. Therefore, ensuring precise and stable covariance estimates is
crucial for enhancing the robustness and effectiveness of portfolio optimization models in
real-world applications.

3.2. Asset Allocations through Network-Based Clustering Coefficients

To address the challenges of estimating the dependence structure and improve the
reliability of covariance matrix estimation, network theory has recently been applied in
portfolio allocation models. Here, we employ network theory to enhance the reliability of
covariance matrix estimation in portfolio allocation. This approach involves representing
financial assets through an undirected graph G = (V, E), where V is the set of nodes
representing assets and E is the set of edges denoting dependencies or connections between
assets. The weights of the edges are represented by the Pearson correlation matrix ρij,
i, j = 1, . . . , n.

At this point, problem (8) is transformed into the following:
min

w
w⊤Hw

e⊤w = 1

0 ≤ wi ≤ 1, i = 1, . . . , n.

(9)

where H is a matrix obtained as described below. First, we create a binary undirected
adjacency matrix A, associated with the filtered (complex) correlation matrix obtained
through the techniques explained in Section 2. The binarization process (binarization is
often used to simplify the analysis of networks by reducing them to binary representations;
after applying the binarization process to the entire adjacency matrix, it is transformed
into a binary adjacency matrix where each entry is either 0 or 1, representing the absence
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or presence of an edge, respectively, based on the chosen threshold) is assessed with the
following threshold criteria: for every i, j = 1, . . . , n

Aij =

{
1 if ρF

ij ≥ ρij,

0 otherwise
, (10)

where ρF
ij are the elements of the filtered correlation matrix.

Second, we calculate for each node i the clustering coefficient ci as proposed in [33] for
binary and weighted graphs.

Third, we construct the interconnectedness matrix C, whose elements are:

Cij =

{
cicj if i ̸= j
1 otherwise.

(11)

Finally, we build H = ∆⊤C∆ to be the dependency matrix in (9), where ∆ = diag(si) is the
diagonal matrix with entries si =

σi√
∑n

i=1 σ2
i

as in [15]. This gives the new objective function

to be minimized in order to obtain the optimum allocation.

4. Empirical Protocol and Performance Analysis

In this section, we delineate the empirical protocol employed in this paper and subse-
quently apply it to assess the effectiveness of the proposed approach through empirical
applications. To test the robustness and mitigate data mining bias, we analyze four energy
portfolios, as will be explained in Section 4.3.

In portfolio allocation models, in-sample and out-of-sample analyses are crucial com-
ponents for assessing the performance and robustness of the strategies. The analysis of
portfolio strategies centers around key criteria, including portfolio diversification, transac-
tion costs, and risk–return performance measures. This examination is conducted using
a rolling window methodology characterized by an in-sample period of length l and an
out-of-sample period of length m.

This methodology begins by computing optimal weights during the initial in-sample
window spanning from time t = 1 to t = l. These optimal weights remain unchanged
during the subsequent out-of-sample period, extending from t = l + 1 to t = l + m. Then,
the returns and performance metrics for this out-of-sample period are calculated. This
process iterates by advancing both the in-sample and out-of-sample periods by m steps.
With each iteration, the weights are recalculated and the portfolio performance is evaluated
until the end of the dataset.

4.1. Diversification and Transaction Costs: In-Sample Analysis

We assess the performance of the obtained portfolios by analyzing diversification
and transaction costs, both of which play a crucial role in effective portfolio management.
Diversification represents a fundamental risk management tool that seeks to optimize
returns while minimizing exposure to undue risks associated with concentrated holdings.
This is essential to mitigate risk and enhance the stability of an investment portfolio. By
holding a diversified set of assets with potentially uncorrelated returns, investors aim to
achieve a balance between risk and return. In this paper, as a measure of diversification,
we use the modified Herfindahl index, defined as:

HI =
(w⋆)⊤w⋆ − 1

n

1 − 1
n

,

where w⋆ =
[
w⋆

i
]
, i = 1, . . . , n represents the vector of optimal weights. The index ranges

from 0 to 1, where a value 0 is reached in the case of the EW portfolio (deemed as the most
diversified one) and a value of 1 indicates a portfolio concentrated on only one asset.
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The second index used in this analysis is related to transaction costs which have a
direct impact on portfolio performances: higher transaction costs lead to lower returns.
Understanding and minimizing transaction costs is an integral component of effective
portfolio management, ensuring that investment decisions are cost-efficient and align
with the investor’s goals. By addressing these aspects, investors can enhance the overall
competitiveness and sustainability of their investment strategies. In this paper, as a proxy
for transaction costs, we use the portfolio turnover, denoted as ϕ and computed as:

ϕ =
n

∑
i=1

∣∣w⋆
i − −w⋆

i
∣∣,

where w⋆
i and −w⋆

i are the optimal portfolio weights of the ith asset, respectively, before
and after rebalancing (based on the optimization strategy). A higher turnover often comes
with increased transaction costs. Monitoring turnover is crucial for understanding the level
of trading activity and its impact on the portfolio’s performance. In particular, a lower
turnover percentage indicates that the portfolio has experienced relatively minimal changes
in asset weights. This might be indicative of a more stable managed portfolio.

4.2. Performance Measurements: Out-of-Sample Analysis

Analyzing risk-adjusted performance measures for different allocation methods is
essential as it evaluates the portfolio’s success in generating returns relative to the level of
risk assumed. By examining metrics like the Sharpe ratio and omega ratio, investors gain
valuable insights into how effectively a portfolio balances risk and return. This analysis
assists investors to select the best approach that delivers favorable returns while aligning
with their risk tolerance.

Here, we briefly recap the definitions of the risk-adjusted performance measures used
in the empirical part of this paper to compare the different models under analysis. The
Sharpe ratio (SR) is defined as:

SR =
E
(

rp − r f

)
√
Var(rp − r f )

,

where rp indicates the out-of-sample portfolio returns (obtained using the rolling window
methodology) and r f denotes the risk-free rate (in our empirical analysis, we adopt a
constant risk-free rate, set to zero, following the approach used in [9]). This ratio indicates
the mean excess return per unit of overall risk. The portfolio with the highest SR is typically
considered the best, especially in cases of positive portfolio excess returns concerning the
risk-free rate.

The omega ratio (OR), introduced in [34], is defined as:

OR =
E
[(

rp − ϵ
)+]

E
[(

ϵ − rp
)+] ,

where ϵ is a specified threshold. Returns above the threshold are considered gains by
investors, while those below are considered as losses. An OR greater than one suggests that
the portfolio provides more expected gains than expected losses. The choice of threshold ϵ
can vary, and in our empirical analysis, it is set to 0.

4.3. Data Description and Empirical Results

In this empirical analysis, we examine four equity indexes, sourcing our data from
Bloomberg. The selected indexes are as follows: (i) the Nasdaq 100 index; (ii) the energy
sector of the S&P500 index, which focuses only on energy companies; (iii) the Dow Jones
Industrial Average index; and (iv) the benchmark stock market index of the Bolsa de Madrid.
We construct each portfolio by including only components listed in the specified index
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from 2 January 2014 to 19 January 2024. Detailed information regarding the Bloomberg
tickers of the selected assets in each portfolio can be found in Appendix A. The dataset
for each portfolio is composed of 2622 daily observations spanning from 2 January 2014 to
19 January 2024.

As detailed in Section 3, we address optimization problems (8) and (9), both of which
account for the dependence structure in constructing the optimal portfolio. In problem (8),
this structure is captured by the covariance matrix Σ, which is estimated using both the
sample and the shrinkage approaches. Conversely, in (9), the dependence structure is
represented by the matrix H, leveraging the clustering coefficient method as outlined in [15]
and along with the approach proposed in Section 2 (utilizing the Hilbert transformation
and RMT).

To evaluate the performances of the approaches considered in this paper, we em-
ploy four distinct buy-and-hold rolling window methodologies: the first three are 6, 12 or
24 months in-sample and 1 month out-of-sample; the last one is 24 months in-sample and
2 months out-of-sample.

After obtaining the out-of-sample returns for each approach under analysis, we then
proceed to compute their respective out-of-sample performances. Figure 2 illustrates the
out-of-sample performances of the four portfolios under analysis, specifically for the rolling
window methodology of 6 months in-sample and 1 month out-of-sample. (Please note that,
due to space limitations, we have omitted the out-of-sample performances for the other
rolling window methodologies. Nevertheless, this information is readily available upon
request to the corresponding author.)

Observing Figure 2, it becomes clear that across all portfolios under analysis, and in
the case of the rolling window methodology with 6 months in-sample and 1 month out-of-
sample, the CC-RMT strategy exhibits a superior out-of-sample performance compared
to the “Sample”, “Shrink”, and “CC” strategies. This finding holds true for the other
rolling window methodologies as well. However, relying solely on the out-of-sample per-
formance as a singular index may not provide a comprehensive evaluation of the various
investment strategies under analysis. This limitation arises because the out-of-sample
performance prioritizes returns overlooking the aspect of evaluating risk. Therefore, a
more comprehensive assessment requires the consideration of both return and risk metrics
to understand the inherent risk–return trade-off in each strategy. For this, we compute
two risk-adjusted performance measures: the Sharpe ratio and the omega ratio. Table 1
displays key out-of-sample statistics, including the first four moments, the SR, and the
OR, for the portfolios under analysis across the four rolling window methodologies consid-
ered. While the first four moments may not clearly indicate which strategy performs better
due to potential inconsistencies in mean, skewness, standard deviation, and kurtosis, a
different picture emerges when examining risk-adjusted performance measures like the SR
and OR. In particular, the CC-RMT strategy consistently exhibits a superior risk-adjusted
performance across all portfolios and rolling windows considered.

In contrast to more traditional methods, the CC-RMT strategy seems to effectively
capture the complex interdependencies and structural patterns within the financial markets,
providing a more accurate representation of the market dynamics. Moreover, the two net-
work approaches (CC and CC-RMT) yield differing outcomes. Although both employ the
clustering coefficient to measure the dependence structure, they differentiate for the thresh-
old criteria used in the binarization process of the correlation adjacency matrix. Unlike our
approach, the authors in [15] do not employ the Hilbert transformation of time series or the
RMT filtering method to identify significant correlations exclusively. Instead, they consider
different thresholds on correlation levels to generate multiple binary adjacencies matrices
and compute the corresponding clustering coefficient of nodes. Finally, they compute the
average clustering coefficient for each node to derive the interconnectedness matrix as
outlined in Equation (11).
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Figure 2. Out-of-sample performance using the rolling window methodology with 6 months in-sample
and 1 month out-of-sample.

Considering transaction costs is crucial in practical portfolio management, as excessive
turnover can erode returns. As mentioned earlier, this study evaluates transaction costs by
using turnover as a proxy. Figure 3 illustrates the turnover values in each rebalancing period
for the four portfolios under examination, employing a rolling window of 6 months in-sample
and 1 month out-of-sample. The figure clearly indicates that CC-RMT consistently yields
a lower portfolio turnover. To provide a comprehensive overview of portfolio turnover,
Table 2 presents the average turnover for the four portfolios across all considered rolling
window. These results consistently highlight that CC-RMT tends to produce portfolios with
a lower turnover, leading to reduced transaction costs.

We have additionally computed the modified Herfindahl index as a proxy for assessing
portfolio diversification. Due to space limitations, the average modified Herfindahl indexes
for the analyzed portfolios and rolling window methodologies are presented on the right-
hand side of Table 2. Notably, the findings reveal that the CC-RMT approach consistently
produces a lower modified Herfindahl index, indicating a more diversified portfolio. This
observation highlights the contribution of the CC-RMT model to enhancing diversification
within the portfolio, a crucial aspect of effective risk management.
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Table 1. Out-of-sample statistics for the various portfolios and the four strategies under analysis are
reported for each rolling window methodology. The mean, standard deviation, and Sharpe ratio are
provided on an annual basis. The best strategy for each computed statistic is emphasized in bold.
The cells corresponding to negative Sharpe ratios are left blank.

RW 6 Months In-Sample, 1 Month Out-of-Sample

NDX S5ENRS

µ σ Skewness Kurtosis SR OR µ σ Skewness Kurtosis SR OR

Sample 0.150 0.158 −0.388 12.404 0.953 1.193 −0.020 0.278 −2.044 54.406 – 0.985
Shrinkage 0.156 0.158 −0.421 13.869 0.989 1.203 −0.023 0.278 −2.027 53.787 – 0.983
CC 0.170 0.168 −0.432 15.126 1.014 1.212 −0.028 0.286 −2.182 58.677 – 0.980
CC-RMT 0.173 0.169 −0.549 19.508 1.027 1.217 −0.006 0.278 −1.004 26.446 – 0.996

DJI IBEX

Sample 0.069 0.135 −0.097 14.955 0.511 1.103 0.011 0.171 −2.202 30.704 0.065 1.012
Shrinkage 0.061 0.135 −0.109 15.777 0.452 1.090 0.014 0.170 −2.233 30.384 0.085 1.016
CC 0.036 0.140 −0.010 15.197 0.260 1.051 0.015 0.178 −2.176 30.847 0.082 1.016
CC-RMT 0.075 0.146 −0.435 25.338 0.514 1.108 0.021 0.174 −1.697 24.944 0.118 1.022

RW 12 Months In-Sample, 1 Month Out-of-Sample

NDX S5ENRS

µ σ Skewness Kurtosis SR OR µ σ Skewness Kurtosis SR OR

Sample 0.138 0.162 −0.462 15.083 0.852 1.173 0.003 0.273 −1.605 40.578 0.009 1.002
Shrinkage 0.137 0.162 −0.443 15.292 0.846 1.173 0.000 0.274 −1.623 40.714 0.001 1.000
CC 0.138 0.174 −0.435 18.384 0.798 1.165 0.000 0.277 −1.562 38.124 0.001 1.000
CC-RMT 0.149 0.175 −0.550 21.857 0.854 1.179 0.031 0.284 −0.853 24.782 0.110 1.021

DJI IBEX

Sample 0.056 0.140 −0.348 17.637 0.403 1.081 0.009 0.168 −1.926 27.381 0.056 1.010
Shrinkage 0.055 0.139 −0.249 16.768 0.393 1.079 0.010 0.167 −1.966 26.984 0.059 1.011
CM 0.036 0.142 −0.234 14.925 0.256 1.050 0.011 0.176 −1.703 24.097 0.060 1.011
CM RMT 0.052 0.150 -0.467 26.307 0.349 1.073 0.017 0.179 −1.499 24.244 0.097 1.018

RW 24 Months In-Sample, 1 Month Out-of-Sample

NDX S5ENRS

µ σ Skewness Kurtosis SR OR µ σ Skewness Kurtosis SR OR

Sample 0.144 0.168 −0.515 18.621 0.857 1.178 0.038 0.274 −0.903 24.810 0.139 1.028
Shrinkage 0.143 0.168 −0.544 19.674 0.851 1.178 0.037 0.275 −0.926 25.209 0.134 1.027
CC 0.152 0.181 −0.428 22.929 0.840 1.179 0.032 0.284 −1.059 26.698 0.111 1.022
CC-RMT 0.156 0.179 −0.557 21.381 0.868 1.184 0.071 0.294 −0.814 24.310 0.241 1.048

DJI IBEX

Sample 0.061 0.142 −0.465 20.465 0.429 1.089 −0.013 0.167 −1.924 27.775 – 0.986
Shrinkage 0.056 0.142 −0.463 20.226 0.392 1.081 −0.014 0.166 −1.982 27.653 – 0.985
CC 0.031 0.145 −0.487 17.511 0.216 1.043 0.006 0.175 −1.676 23.275 0.032 1.006
CC-RMT 0.071 0.153 −0.457 28.351 0.467 1.101 0.037 0.182 −1.552 25.414 0.203 1.039
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Table 1. Cont.

RW 24 Months In-Sample, 2 Months Out-of-Sample

NDX S5ENRS

µ σ Skewness Kurtosis SR OR µ σ Skewness Kurtosis SR OR

Sample 0.148 0.170 −0.425 18.565 0.871 1.183 0.055 0.278 −0.844 23.960 0.198 1.040
Shrinkage 0.148 0.171 −0.448 19.505 0.862 1.181 0.054 0.279 −0.868 24.361 0.194 1.039
CM 0.159 0.183 −0.327 22.713 0.867 1.187 0.048 0.289 −0.994 25.798 0.166 1.034
CM RMT 0.153 0.175 −0.465 21.145 0.873 1.177 0.080 0.299 −0.780 23.468 0.267 1.053

DJI IBEX

Sample 0.057 0.144 −0.453 20.131 0.392 1.082 −0.016 0.168 −1.882 27.501 – 0.982
Shrinkage 0.051 0.144 −0.436 19.930 0.356 1.074 −0.015 0.169 −1.876 26.742 – 0.983
CM 0.026 0.147 −0.470 17.269 0.176 1.035 0.005 0.177 −1.624 22.751 0.026 1.005
CM RMT 0.076 0.155 −0.394 27.803 0.489 1.107 0.038 0.182 −1.548 25.313 0.211 1.041

Table 2. Average portfolio turnover and average modified Herfindahl index for the four portfolios
under analysis across different rolling window methodologies. The strategies with a lower average
turnover and a lower average modified Herfindahl index are highlighted in bold.

RW 6 Months In-Sample and 1 Month Out-of-Sample

Average Turnover Average Modified Herfindahl

NDX S5ENRS DJI IBEX NDX S5ENRS DJI IBEX

Sample 0.453 0.268 0.407 0.384 0.128 0.358 0.157 0.226
Shrinkage 0.413 0.255 0.347 0.344 0.138 0.372 0.156 0.207
CC 0.473 0.282 0.369 0.391 0.221 0.519 0.256 0.320
CC-RMT 0.446 0.197 0.289 0.161 0.102 0.115 0.067 0.042

RW 12 Months In-Sample and 1 Month Out-of-Sample

Average Turnover Average Modified Herfindahl

NDX S5ENRS DJI IBEX NDX S5ENRS DJI IBEX

Sample 0.266 0.140 0.226 0.220 0.120 0.366 0.148 0.192
Shrinkage 0.247 0.138 0.197 0.197 0.131 0.374 0.151 0.180
CC 0.285 0.160 0.219 0.215 0.221 0.532 0.242 0.277
CC-RMT 0.287 0.105 0.220 0.112 0.102 0.117 0.070 0.035

RW 24 Months In-Sample and 1 Month Out-of-Sample

Average Turnover Average Modified Herfindahl

NDX S5ENRS DJI IBEX NDX S5ENRS DJI IBEX

Sample 0.135 0.084 0.120 0.119 0.115 0.364 0.139 0.174
Shrinkage 0.130 0.084 0.109 0.111 0.123 0.370 0.142 0.164
CC 0.168 0.095 0.120 0.122 0.220 0.536 0.222 0.261
CC-RMT 0.190 0.065 0.128 0.026 0.102 0.114 0.070 0.012

RW 24 Months In-Sample and 2 Months Out-of-Sample

Average Turnover Average Modified Herfindahl

NDX S5ENRS DJI IBEX NDX S5ENRS DJI IBEX

Sample 0.207 0.146 0.186 0.194 0.115 0.359 0.140 0.175
Shrinkage 0.202 0.147 0.170 0.186 0.124 0.366 0.143 0.166
CC 0.258 0.157 0.189 0.191 0.222 0.533 0.222 0.262
CC-RMT 0.266 0.105 0.183 0.045 0.102 0.109 0.073 0.012
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Figure 3. Portfolio turnovers using the rolling window methodology with 6 months in-sample and
1 month out-of-sample.

5. Discussions

This study introduces a novel method for estimating the dependence structure, a
critical aspect in portfolio selection. In particular, we combine the Hilbert transformation
technique and Random Matrix Theory. The Hilbert transformation is used as a data pre-
processing technique which identifies lead/lag correlations in asset performance, enabling
investors to optimize strategies based on timing as explained in Section 2.2. Random Ma-
trix Theory is used as a filtering technique to differentiate between noise and meaningful
information in the covariance matrix, as explained in Section 2.1. The proposed approach
aims to obtain a denoised version of the dependence structure, capturing the genuine
connections between assets more precisely. By integrating these two techniques, this study
enables a more accurate and resilient estimation of the portfolio allocation process.

The empirical analysis demonstrates that the resulting CC-RMT model not only re-
duces transaction costs, as evidenced by a lower turnover, and enhances portfolio diver-
sification by decreasing the modified Herfindahl index, but also excels in risk-adjusted
performance measures. Across different portfolios and rolling window, the CC-RMT strategy
consistently exhibits a superior risk-adjusted performance compared to other approaches,
including the sample, shrinkage, and clustering coefficient strategies (as discussed in [15]).
The CC-RMT model provides investors with a clearer understanding of market dynamics,
offering a well-informed framework for making investment decisions. This paper only
deals with a one-objective function as we consider the global minimum variance portfolio.
A possible extension is to apply network theory to the estimation of other portfolio mo-
ments and co-moments. This would lead to the investigation of multi-objective portfolio
optimization techniques as in [35,36].

This research significantly contributes to portfolio management by providing insights
into the underlying structures and dynamics of investments. It assists investors in making
smarter and more effective investment decisions by providing valuable insights and guiding
them towards strategies that are better adjusted for risk.
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Abbreviations
The following abbreviations are used in this manuscript:

RMT Random Matrix Theory
GMV Global Minimum Variance
HI Herfindahl Index
OR Omega Ratio
SR Sharp Ratio
CC Clustering Coefficient Approach
CC-RMT Clustering Coefficient via the Random Matrix Theory Approach

Appendix A

Table A1. This table reports the selected components of the four portfolios under analysis.

IBEX-P DJI-P SP5ENRS-P NDX-P

IBE SM Equity UNH UN Equity OXY UN Equity AMZN UW Equity
SAN SM Equity MSFT UQ Equity OKE UN Equity CPRT UW Equity
BBVA SM Equity GS UN Equity CVX UN Equity IDXX UW Equity
TEF SM Equity HD UN Equity COP UN Equity CSGP UW Equity
REP SM Equity AMGN UQ Equity XOM UN Equity CSCO UW Equity
ACS SM Equity MCD UN Equity PXD UN Equity INTC UW Equity
RED SM Equity CAT UN Equity VLO UN Equity MSFT UW Equity
ELE SM Equity BA UN Equity SLB UN Equity NVDA UW Equity
BKT SM Equity TRV UN Equity HES UN Equity CTSH UW Equity
ANA SM Equity AAPL UQ Equity MRO UN Equity BKNG UW Equity
NTGY SM Equity AXP UN Equity WMB UN Equity ADBE UW Equity
MAP SM Equity JPM UN Equity CTRA UN Equity ODFL UW Equity
IDR SM Equity IBM UN Equity EOG UN Equity AMGN UW Equity
ACX SM Equity WMT UN Equity EQT UN Equity AAPL UW Equity
SCYR SM Equity JNJ UN Equity HAL UN Equity ADSK UW Equity
COL SM Equity PG UN Equity CTAS UW Equity
MEL SM Equity MRK UN Equity CMCSA UW Equity

MMM UN Equity KLAC UW Equity
NKE UN Equity PCAR UW Equity
DIS UN Equity COST UW Equity
KO UN Equity REGN UW Equity
CSCO UQ Equity AMAT UW Equity
INTC UQ Equity SNPS UW Equity
VZ UN Equity EA UW Equity

FAST UW Equity
ANSS UW Equity
GILD UW Equity
BIIB UW Equity
LRCX UW Equity

https://www.bloomberg.com/professional
https://www.bloomberg.com/professional
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Table A1. Cont.

IBEX-P DJI-P SP5ENRS-P NDX-P

TTWO UW Equity
VRTX UW Equity
PAYX UW Equity
QCOM UW Equity
ROST UW Equity
SBUX UW Equity
INTU UW Equity
MCHP UW Equity
MNST UW Equity
ORLY UW Equity
ASML UW Equity
SIRI UW Equity
DLTR UW Equity
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