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Abstract: This paper investigates the adaptive neural network (NN) tracking control problem for
stochastic nonlinear systems with multiple actuator constraints and full-state constraints. The issue
of system full-state constraints is tackled by a generalized barrier Lyapunov function (GBLF), and the
output constraints of the system are considered to be in the form of time-varying functions, which are
more in line with the needs of real physical systems. The NN approximation technique is utilized to
overcome the influence of the uncertainty term on controller design due to randomness. Based on the
backstepping technique, a neural adaptive fixed-time tracking control strategy is designed. Under the
designed control strategy, the tracking accuracy of the controlled system can reach the expectation in
a fixed time. The multi-actuator constraints are converted into a generalized mathematical model to
simplify the controller design process. Using the characteristics of the hyperbolic tangent function,
a new function called practical virtual control signal is designed using the virtual control signal
as the input. Due to the saturation constraint property of the hyperbolic tangent function, it is
theoretically ensured that no state of the system exceeds the constraints through to the new form of
the virtual controller. Using the adaptive controller constructed in this paper, the controlled system is
semi-global fixed-time stabilized in probability (SGFSP). Finally, the effectiveness of the proposed
control strategy is further verified by simulation examples.

Keywords: actuator constraint; full-state constraints; stochastic nonlinear systems; adaptive;
NN fixed time control

MSC: 93C10; 68T05; 93-10; 93C40; 93D40; 93D21; 93E03; 93E35

1. Introduction

The control and tracking theory of uncertain nonlinear systems has been extensively
developed in the last two decades and occupies an essential place in many applications,
such as unmanned aerial systems [1–3], electromechanical systems [4,5], and robotic sys-
tems [6–8]. The existence of uncertainty in nonlinear systems makes the construction of
controllers a difficult and important task, and stochastic nonlinear systems, as a special
case of uncertain nonlinear systems, have also attracted much attention [9,10]. The back-
stepping method is a practical approach to nonlinear control problems, and was proposed
by Krstic, Kanellakopoulos, and Kokotovic at the end of the last century [11]. Combining
the backstepping method with a fuzzy or neural adaptive technique yields an effective
control tool for solving uncertain nonlinear systems [12–14]. Due to the characteristics of
the adaptive backstepping method, it is possible to achieve asymptotic sedimentation of
nonlinear systems and guarantee boundedness of the signal under parameter uncertainty,
which has led to many fruitful results [15–17]. Researchers have [18] investigated the
robust adaptive control of non-triangular stochastic nonlinear systems. The neural adaptive
finite-time control (FTC) technique is widely used as it allows the controlled system to
achieve good tracking performance in finite time [19–21].
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However, all of the above research results contain a common distinctive trait, which is
that the finite time control method has this serious drawback while having good control
performance. The establishment time of the controlled system utilizing the FTC strategy is
directly related to the initial conditions of the controlled system and is positively related to
the deviation of the initial state and the equilibrium point [22]. A more important point
is that the preliminary conditions for many real industrial physical systems are hardly
directly accessible. In contrast, using the fixed-time control strategy, the establishment
time of the controlled system is independent of the preliminary conditions of the system,
which can be predicted by the system and controller parameters, and this has led to the
emergence of many excellent fixed-time control results [23–25]. Compared with the FTC
strategy, the fixed-time control method can achieve stabilization in the state of unknown
initial parameters in a predicted time and has better control performance.

Notice that real systems will always have various nonlinear constraints, which include
input saturation, input deadband, and state constraints. The presence of these nonlinear
constraints reduces the performance of the controlled system and affects the stability of the
system. Therefore, much work has been conducted to solve the problems posed by these
nonlinear constraints [26–28]. Reference [26] investigates the problem of adaptive full-state
constrained control for stochastic nonlinear systems with unknown virtual control sys-
tems. The adaptive fixed-time control problem for stochastic nonlinear systems with state
constraints and input saturation is studied in Reference [27]. Reference [28] considers the
problem of tracking control for a class of state-constrained stochastic nonlinear systems with
parameter uncertainty and input saturation. Unfortunately, the constraints on the output
of the system are fixed value constraints rather than time-varying function constraints.

The time-varying function constraints for the controlled system have more stringent
conditions compared to the constraints with fixed values and are more in line with the
reality of real physical systems. In the case of the obstacle Lyapunov function, the time-
varying function type of the bounds corresponds to an additional complexity term when
obtaining the time derivative in relation to it, which greatly increases the subsequent
process of controller design.

Note that almost all control strategies on state constraints are designed based on
backstepping methods. When using the backstepping method for controller design, cor-
responding to the state constraint ∥xi∥ < Li, the virtual error is defined as zi = xi − αi−1,
where αi−1 is the virtual controller built for the (i − 1)th subsystem. In order to accomplish
the task of state constraints using the barrier Lyapunov technique, it is generally necessary
to determine the constraints on the virtual error ∥zi∥ < Hi = Li − ∥αi−1∥. However, the fol-
lowing problems arise with this approach. We need to ensure that the virtual controller
αi−1 satisfies the constraints of the corresponding state xi, i.e., ∥αi−1∥ < Li, otherwise,
the above equation will be meaningless because Hi ≤ 0. However, to avoid the above
problems, existing literature often assumes that the virtual controller satisfies the corre-
sponding constraints. This paper will challenge the solution to the above paradoxical
problem concerning virtual controllers in the context of tracking control problems for
stochastic nonlinear systems subject to time-varying state constraints.

In summary, it is an interesting task to explore the fixed-time control problem for fully
constrained stochastic nonlinear systems. In order to obtain more practically meaningful
control schemes for stochastic nonlinear systems, this paper will consider both multi-
actuator constraints and time-varying constraints on the system output. Compared with
the current research results, the main contributions can be summarized as follows:

1. Compared with the existing stochastic nonlinear systems with fixed numerical con-
straints on the system output, the control strategy designed in this paper ensures that
the system output satisfies the time-varying function constraints, which is more in
line with the state requirements of the actual physical system.

2. By using the properties of the hyperbolic tangent function, this paper ensures that
the intermediate virtual controllers required to realize the control task also meet the
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corresponding constraints. It is mathematically ensured that any state of the controlled
system satisfies the constraint requirements at any moment.

3. With the control method used in this paper, the control inputs and intermediate states
are consistent with the constraints, which meets the realistic requirements of the actual
physical control process, and the output tracking error can be quickly converged to
within a bounded and adjustable tight set in fixed time.

The rest of this paper is described below. Section 2 provides an introduction to the
problem description and preparatory knowledge. Section 3 presents controller design
and stability analysis. Section 4 presents the simulations and the result analysis. Finally,
Section 5 analyzes and concludes the paper.

2. Preliminaries

In this section, the system model, neural network, and preparatory knowledge are
described. The main symbols used in this paper are shown in Table 1.

Table 1. Notations.

Symbol Definition Symbol Definition

|∗| Absolute value Ω Sample space
Ω0 Compact set around zero Π σ-algebra
P The probability measure xT The transpose of matrix x

E{∗} The mathematical expectation of ∗ R+ Set of non-negative real numbers
∥∗∥ The Euclidean or Frobenius norm Rn Real n-dimension space

Ci The set of i-times continuous
differentiable functions

For simplicity, all variables x in this paper denote the function x(t).

2.1. Stochastic Theory

Consider a Itô stochastic nonlinear system

dx = g(t, x)dt + f (t, x)dω(t), ∀x0 = x(0) ∈ Rn, t ≥ 0 (1)

where x ∈ Rn indicates the system state, g : R+ × Rn → Rn, f : R+ × Rn → Rn×m, and ω
illustrates the m-dimensional standard Wiener process defined on a complete probability
space (Ω, Π, P). The associated stochastic settling time function is denoted as T(x0, ω) =
inf{t ≥ 0|x(t, x0) ∈ Ω0 }, which is the first time at which it arrives at Ω0. To continue with
the design of the control scheme in this paper, the following definitions are given with
reference to article [29–31].

Definition 1. As for system (1) and a Lyapunov function V(x) ∈ C2(Rn), the infinitesimal
generator L can be expressed as follows:

LV(x) =
∂V
∂x

g(t, x) +
1
2

Tr
{

f T(t, x)
∂2V
∂x2 f (t, x)

}
(2)

where Tr(�) indicates the trace for the matrix.

Definition 2. System (1) is said to be SGFSP, if, for any initial state x0 ∈ Rn and a given positive
constant Tmax > 0, the following statements hold:

1. The system is semi-globally finite-time stable in probability.
2. Mathematical expectation of the settling time function T(x0, ϖ) is bounded and the upper

bound is a positive constant Tmax, which is independent of the initial state of system (1). That
is to say, E(T(x0, ω)) ≤ Tmax, ∀x0 ∈ Rn.
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Remark 1. The fixed time stability theory can be given by the above definition. The setting time of
the fixed-time control strategy can be independent of the initial state, which has better tracking error
convergence performance.

2.2. Related Lemmas

Lemma 1 ([32]). For any real variables ζ ∈ R and a positive constant ε, the following inequality
holds

0 ≤ |ζ| − ζ tanh
(

ζ

τ

)
≤ ςτ (3)

in which ς = 0.2785.

Lemma 2 ([33]). For xi > 0 and the positive real number ρ, the following inequality holds(
n

∑
i=1

xi

)ρ

≤ max
{

nρ−1, 1
} n

∑
i=1

xρ
i (4)

Lemma 3 ([34]). For any positive real numbers b1, b2, b3 and real variable x, y, the below inequality
holds

|x|b1 |y|b2 ≤ b1

b1 + b2
b3|x|b1+b2 +

b2

b1 + b2
b
− b1

b2
3 |y|b1+b2 (5)

Lemma 4 ([27]). Regarding the stochastic nonlinear system (1), for any x0 ∈ Rn and ∀t ≥ 0,
if the function V(x) ∈ R+ is positive definite, and the κ∞ class functions ξ1 and ξ2, and normal
numbers c1, c2, δ, 0 < ρ1 < 1, and ρ2 > 1 meet{

ξ1(∥x∥) ≤ V(x) ≤ ξ2(∥x∥)
LV(x) ≤ −c1Vρ1(x)− c2Vρ2(x) + δ

(6)

Then, we can say that the stochastic system (1) is SGFSP, and the settling time function is
expressed as follows:

E(T) ≤ Tmax = max
{

1
c1µ(1 − ρ1)

+
1

c2(ρ2 − 1)
,

1
c1(1 − ρ1)

+
1

c2µ(ρ2 − 1)

} (7)

where 0 < µ < 1, which is independent of the initial state.

Remark 2. In the above equation, we choose the parameter as ρ1 = 3
4 , ρ2 = 2. This operation,

which also exists in other related literature [35], facilitates the subsequent controller design process
and satisfies the Lemma condition.

Lemma 5 ([35]). Let h(Z) be an unknown continuous function over a compact set ΩZ ⊂ Rm; for
∀δ̄ > 0 and with m > 0 being the NN node number, there exists a radial basis function (RBF) NN,
satisfying the following:

h(Z) = ϕT R(Z) + δ(Z), ∥δ(Z)∥ ≤ δ̄ (8)

where

ϕT = arg minϕ∈Rn

{
sup

Z∈ΩZ

∣∣∣h(Z)− ϕT R(Z)
∣∣∣} (9)
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where Z = [Z1, · · · , Zm] ∈ Rm denotes the input vector, ϕ = [ϕ1, ϕ2, . . . , ϕm]
T ⊂ Rm represents

the ideal weight vectors. δ(x) indicates the approaching error, R(Z) = [R1(Z), . . . , Rm(Z)]T

represents the vectors of RBF basis functions, which can be shown as follows:

Ri(x) = exp

[
−∥Z − cri∥

2

σ2
NN,i

]
(10)

in which ci = [ci1, ci2, . . . cim]
T and σNN,i are the center and breadth of the RBF NN radial basis

functions, respectively. The structure of NN used in this paper is depicted in Figure 1.

Figure 1. Neural network structure.

Lemma 6 ([36]). The following inequality holds for any σi ∈ R+ and for any ϖ ∈ R

|ϖ| − ϖ2√
ϖ2 + ε2

i

≤ εi (11)

2.3. Practical Virtual Controller

Since the virtual control signals perform control operations in the system correspond-
ing to the state variables, a practical virtual controller transformation is introduced in
order to make them conform to the state constraints of the corresponding states. Using the
concepts of the hyperbolic tangent function as well as the saturation function, a practical
virtual controller transformation function is constructed as follows:

ϕ(α) = D tanh
( α

D

)
(12)

where D represents the state constraint value for the corresponding state. The designed
virtual controller is introduced to the conversion function and the system control task is
replaced by the output practical virtual controller. The constraints on the virtual control
signals can be realized by using the saturation property of the practical virtual controller
function. Then, using the familiar differential median theorem, it is easy to see that at the
point α∗, and the constant 0 < µ < 1, there exists

ϕ(α) =
∂ϕ(α)

∂α

∣∣∣∣
α=αµ

(α − α0) + ϕ(α0) (13)

in which αµ = µα + (1 − µ)α0. Let α0 = 0, one can obtain

ϕ(α) = ϕαα (14)
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where ϕα = ∂ϕ(α)
∂α

∣∣∣
α=αµ

. Since the hyperbolic tangent function is monotonically increasing

in the interval (−∞,+∞), it can be assumed—without loss of generality—that 0 < bi <
ϕα ≤ 1, which will be used in each step of the controller design section.

2.4. System Description

Consider the following class of stochastic nonlinear systems:

dxi = (gi(xi)xi+1(t) + fi(x̄i)dt + φi(t)dω

dxn = (gn(xn)u(t) + fn(x̄n))dt + φn(t)dω

y(t) = x1(t)

(15)

where x̄i(t) = [x1(t), x2(t), . . . , xi(t)]
T ∈ Ri, i = 1, . . . , n signifies the state, y ∈ R signifies

the system output, fi(�) and gi(�) represent the smooth functions that are nonlinear. u(t)
denotes control inputs subject to nonlinearities of multiple actuator constraints, described
as follows:

u = h(v)v + π(v) (16)

where v represents the input signal for dead zone and saturation nonlinear models. Param-
eters l+, l−, u+, u− are design parameters, uH , uL represent the positive normal numbers to
be designed. h(v), π(v) are described as follows:

h(v) =



uH
v

, v > uH

l+, u+ < v < uH

0, − u− < v < u+

l−, − uL < v < u−

− uL
v

, v < −uL

(17)

π(v) =



0, v > uH

− l+u+, u+ < v < uH

0, − u− < v < u+

− l−u−,−uL < v < u−

0, v < −uL

(18)

Assumption 1 ([37]). Two slopes of the deadband and saturation nonlinear models are equal, i.e.,
l+ = l− = l. Dead zone parameters of the controller u+, u− and l are bounded, i.e., the existence of
known parameters u+max, u−max and lmax that |u+| < u+max, |u−| < u−max and |l| < lmax.

Remark 3. It is easy to conclude from Assumption 2 that |π(v)| ≤ H, where H represents the
upper limit value; this feature can greatly reduce the controller design workload.

Assumption 2. The anticipated tracking trace signals yd and their nth-order derivatives y(n)d
considered in this paper are continuous and bounded. Furthermore, to simplify the representation of
the subsequent time-varying constraint functions, the following equations are listed, for constants
d1 and d2

Ly(t) < d1 < yd < d2 < Hy(t) (19)

Assumption 3. Functions gi(xi) are bounded. Suppose that there are constants ai, there exists
0 < ai ≤ |gi(xi)| < ∞, i = 1, 2, . . . , n.
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Remark 4. Consider the actual situation; the control input v must be bounded. Then, consider that
m(v), the following inequality naturally holds:

0 < r ≤ min
{

uH
vmax

, l
}

≤ h(v) ≤ max{1, l} (20)

where vmax represents the maximum value of the designed controller.

The control objective of this paper is to design an adaptive control strategy, such
that (1) all variables of the controlled system are bounded; (2) all system states do not
violate their constraint boundaries; (3) system inputs obey the limits of dead zone and
saturation constraints; and (4) the virtual controllers that perform the control tasks satisfy
the constraints of the corresponding system states. For the convenience of the proof, we set
gi = gi(xi), fi = fi(x̄i) and all the time variables t will be omitted in the following.

3. Adaptive NN Control Design and Stability Analysis

Building on the previous section, this section shows the detailed steps for designing
a neural adaptive tracking controller using the backstepping method. In the first step,
for a given reference trajectory signal yd(t), the system output tracking error is designed
as z1 = y − yd. In the next step, the virtual controller is designed as αi. In the control
process, ϕ(ai), a new function defined by αi will be specified later. During the controller
design process, ϕ(ai) will replace αi and completely substitute the control work of αi.
To distinguish it from the original virtual controller, this is named the practical virtual
controller. To realize the task with full state constraints, in step i, we design the practical
virtual tracking error to be zi = xi − ϕ(αi−1)(1 < i ≤ n). The GBLF method will be used
to solve the state constraints task and, therefore, give the expression for the associated
tracking error zi constraint as follows:{

− DL1 < z1 < DH1

− Di < zi < Di
(21)

where DL1, DH1 are in a time-varying function form and Di is in real-number form.
From system (15), we can obtain the dynamics of z1, zi, and zn as follows

dz1 = (g1x2 + f1 − ẏd)dt + φ1dω (22)

dzi = (gixi+1 + fi − ϕ̇(αi−1))dt + φ̄idω (23)

dzn = (gnh(v)v + gnπ(v) + fn − ϕ̇(αn−1))dt + φ̄ndω (24)

where φ̄i =

(
φi −

i−1
∑

i=1

∂ϕ(ai−1)
∂ξ j

φj

)T

(i = 2, . . . , n),

ϕ̇(αi−1) =
i−1

∑
j=1

∂ϕ(αi−1)

∂xj

[
f j + gjxj+1

]
+

i−1

∑
j=1

∂ϕ(αi−1)

∂θ̂j

˙̂θ j

+
i−1

∑
j=0

∂ϕ(αi−1)

∂y(j)
d

yj+1
d +

1
2

i−1

∑
p,q=1

∂2ϕ(αi−1)

∂xp∂xq
φT

p φq

(25)

which i = 1, 2, . . . , n.
Step 1: Construct the following GBLF

V1 =
1
4

ξ4
1 +

γ1

2
θ̃2

1 , ξ1 =
DL1DH1z1

(DH1 − z1)(DL1 + z1)
(26)
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where γ1 = a1b1, θ̃1 = θ1 − θ̂1, in which θ̂1 denotes the estimate of the uncertain parameter
θ1. To simplify the arithmetic process, the coefficient terms are first defined as

ξ∆ = ∏1ḊH1 + ∏2ḊL1, ∆1 =
DH1DL1

(
DH1DL1 + z2

1
)

(DH1 − z1)
2(DL1 + z1)

2 (27)

where ∏1 =
−DL1z2

1
(DH1−z1)

2(DL1+z1)
, ∏2 =

DH1z2
1

(DH1−z1)(DL1+z1)
2 .

Taking the time derivative of V1 yields

LV1 = ξ3
1ξ∆ + ξ3

1( f1 + g1x2 − ẏd)∆1 − γ1θ̃1
˙̂θ1 +

3
2

ξ2
1 φT

1 φ1

= ξ3
1∆1(F1(Z1) + g1ϕ(α1)) + ξ3

1∆1g1z2 −
3ξ4

1
4ς2

1
∥φ1∥4 − γ1θ̃1

˙̂θ1 +
3
2

ξ2
1 φT

1 φ1

(28)

where F1(Z1) = ξ∆
∆1

+ f1 − ẏd +
3ξ1

4ς2
1∆1

∥φ1∥4 and Z1 =
[
x1, yd, ẏd, DH1, DL1, ḊH1, ḊL1

]T .

Based on the approximation ability of NNs as well as Lemma 5, as to any constant δ,
the following equality holds:

F1(Z1) = ϕT
1 R1(Z1) + δ1(Z1) |δ1(Z1)| ≤ δ (29)

According to Lemma 1, it follows that

ξ3
1∆1(ϕ

T
1 R1(Z1) + δ1(Z1))

≤
∣∣∣ξ3

1

∣∣∣∆1(
∥∥∥ϕT

1

∥∥∥∥R1(Z1)∥+ |δ1(Z1)|)

≤
∣∣∣ξ3

1

∣∣∣∆1γ1θ1h̄1

≤ ξ3
1∆1γ1θ1h̄1 tanh(

ξ3
1∆1h̄1

τ1
) + ςτ1γ1θ1

(30)

where θ = ([max{δ1,
∥∥ϕT

1

∥∥}/γ1]) and h̄1 = (1 + ∥R1(Z1)∥).
According to Young’s inequality, the following inequality holds

3
2

ξ2
1 φT

1 φ1 ≤ 3
4ς2

1
ξ4

1∥φ1∥4 +
3
4

ς2
1 (31)

where ς1 > 0 denotes design parameters. With the aid of (28) (30), we can obtain

LV1 ≤ ξ3
1∆1g1ϕ(α1) + ξ3

1∆1g1z2 − γ1θ̃1
˙̂θ1

+ ξ3
1∆1γ1θ1h̄1 tanh(

ξ3
1∆1h̄1

τ1
) + ςτ1γ1θ1 +

3
4

ς2
1

(32)

We construct virtual control laws and adaptive laws as follows:

α1 = − 1
∆1γ1

ξ1ᾱ2
1√

ξ4
1ᾱ2

1 + ε2
1

(33)

ᾱ1 = k11(
1
4
)

3
4
ξ1 + k12

(
1
4

)2
ξ6

1 + ξ1γ1θ̂1∆1h̄1 tanh(
ξ3

1∆1h̄1

τ1
) (34)

˙̂θ1 = ξ3
1∆1h̄1 tanh(

ξ3
1∆1h̄1

τ1
)− η1

γ1
θ̂1 −

κ1

γ1
θ̂3

1 (35)
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According to Lemma 6, it follows that

ξ3
1∆1g1ϕ(α1) = ξ3

1∆1g1ϕα1 α1

≤ ε1 − ξ2
1ᾱ1

(36)

Substituting (33)–(36) into (32), yields

LV1 ≤ −k11(
ξ4

1
4
)

3
4

− k12(
ξ4

1
4
)

2

+ ξ3
1∆1g1z2 + η1θ̃1θ̂1 + κ1θ̃1θ̂3

1 + σ1 (37)

where σ1 = ε1 +
3
4 ς2

1 + ςτ1γ1θ1.
Step i: Construct the following GBLF

Vi =
1
4

ξ4
i +

γi
2

θ̃2
i , ξi =

D2
i zi

D2
i − z2

i
(38)

where γi = aibi, θ̃i = θi − θ̂i, in which θ̂i represents the estimated value of θi.
To simplify the arithmetic process, we define the coefficient terms and the additional

terms as

∆i =
D2

i
(

D2
i + z2

i
)(

D2
i − z2

i
)2 , (i = 2, . . . , n) (39)

Ψi = ξ3
i−1∆i−1gi−1zi, (i = 2, 3, . . . n) (40)

Taking the time derivative of Vi yields

LVi = ξ3
i ( fi + gixi+1 − ϕ̇(αi−1))∆i − γi θ̃i

˙̂θi +
3
2

ξ2
i φ̄T

i φ̄i

=ξ2
i ∆iFi(Zi) + ξ3

i ∆igiϕ(αi) + ξ3
i ∆igizi+1 −

3ξ4
i

4ς2
i
∥φ̄i∥4

− γi θ̃i
˙̂θi +

3
2

ξ2
i φ̄T

i φ̄i −
(Ψi)

2√
(Ψi)

2 + ε2
i

(41)

where Fi(Zi) = ξi fi − ξiϕ̇(vi−1) +
3ξ2

i
4ς2

i ∆i
∥φ̄i∥4 +

(ξi−1∆i−1gi−1)
2(D2

i +z2
i )

∆2
i D2

i

√
Ψ2

i +ε2
i

. Based on the approx-

imation ability of NNs as well as Lemma 5, as to any constant δ, the following equality
holds:

Fi(Zi) = ϕT
i Ri(Zi) + δi(Zi), |δi(Zi)| ≤ δ (42)

According to Lemma 1, it follows that

ξ2
i ∆i(ϕ

T
i Ri(Zi) + δi(Zi))

≤ ξ2
i ∆iγiθi h̄i tanh(

ξ2
i ∆i h̄i

τi
) + ςτiγiθi

(43)

where θi = ([max{δi,
∥∥ϕT

i

∥∥}/γi]) and h̄1 = (1 + ∥R1(Z1)∥). According to Young’s inequal-
ity, the following inequality holds

3
2

ξ2
i φ̄T

i φ̄i ≤
3

4ς2
i

ξ4
i φ̄4

i +
3
4

ς2
i (44)

Construct virtual control laws and adaptive laws as

αi = − 1
∆iγi

ξiᾱ
2
i√

ξ4
i ᾱ2

i + ε2
i

(45)



Mathematics 2024, 12, 1378 10 of 21

ᾱi = ki1(
1
4
)

3
4
ξi + ki2

(
1
4

)2
ξ6

i + γi θ̂i∆i h̄i tanh(
ξ2

i ∆i h̄i

τi
) (46)

˙̂θi = ξ2
i ∆i h̄i tanh(

ξ2
i ∆i h̄i

τi
)− ηi

γi
θ̂i −

κi
γi

θ̂3
i (47)

According to Lemma 6, it follows that

ξ3
i ∆igiϕ(αi) = ξ3

i ∆igiϕαi αi

≤ εi − ξ2
i ᾱi

(48)

Substituting (43)–(48) into (41), yields

LVi ≤ −ki1(
ξ4

i
4
)

3
4

− ki2(
ξ4

i
4
)

2

+ ξ3
i ∆igizi+1 + ηi θ̃i θ̂i + κi θ̃i θ̂

3
i −

(Ψi)
2√

(Ψi)
2 + ε2

i

+ σi (49)

where σi = εi +
3
4 ς2

i + ςτiγiθi.
Step n: Construct the following GBLF

Vn =
1
4

ξ4
n +

γn

2
θ̃2

n, ξn =
D2

nzn

D2
n − z2

n
(50)

where γn = anbn, θ̃n = θn − θ̂n, where θ̂n represents the estimated value of θn.
Taking the time derivative of Vn gives

LVn = ξ3
n( fn + gnh(v)v + gnπ(v)− ϕ̇(αn−1))∆n − γn θ̃n

˙̂θn +
3
2

ξ2
n φ̄T

n φ̄n

≤ ξ2
n∆nFn(Zn) + ξ3

n∆ngnh(v)v − 3ξ4
n

4ς2
n
∥φ̄n∥4 − γn θ̃n

˙̂θn +
3
2

ξ2
n φ̄T

n φ̄n −
(Ψn)

2√
(Ψn)

2 + ε2
n

(51)

where Fn(Zn) = ξn fn − ξnϕ̇(vn−1) + ξn Hgn +
3ξ2

n
4ς2

n∆n
∥φ̄n∥4 + (ξn−1∆n−1gn−1)

2(D2
n+z2

n)

∆2
nD2

n
√

Ψ2
n+ε2

n
.

Construct the real control laws and adaptive laws as follows:

u = − 1
∆nanr

ξnᾱ2
n√

ξ4
nᾱ2

n + ε2
n

(52)

ᾱn = kn1(
1
4
)

3
4
ξn + kn2

(
1
4

)2
ξ6

n + γn θ̂n∆n h̄n tanh(
ξ2

n∆n h̄n

τn
) (53)

˙̂θn = ξ2
n∆n h̄n tanh(

ξ2
n∆n h̄n

τn
)− ηn

γn
θ̂n −

κn

γn
θ̂3

n (54)

Similar to the n-1 steps above, it can be obtained that

LVn ≤ −kn1(
ξ4

n
4
)

3
4

− kn2(
ξ4

n
4
)

2

+ ηn θ̃n θ̂n + κn θ̃n θ̂3
n + σn −

(Ψn)
2√

(Ψn)
2 + ε2

n

(55)

where σn = εn +
3
4 G2

n + ςτnγnθn.
After the above discussion, the following theorem can be concluded.

Theorem 1. For the stochastic nonlinear system (15) under Assumptions 1–3, we conclude that
if the control input and the adaptive laws are selected as (33), (35), (45), (47), (52) and (54), then
the controlled system is SGFSP and the system signal is almost certainly bounded.
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The proof is presented in Appendix A.
To obtain a clearer picture of the controller designed in this paper and to facilitate the

design of the simulation in the next section, the adaptive NN control algorithm scheme is
shown in Figure 2.

Figure 2. The block diagram of the control scheme.

4. Simulation

In the above formulation of the paper, the research work presented has been completed.
In this section, two simulation examples will be used to verify the effectiveness of the
proposed control strategy.

A. Mathematical example

The following second-order stochastic nonlinear system is used as the simulation
object:

ẋ1 = (x2 + e−0.5x2
1)dt + 0.5x1dω

ẋ2 = (x1 sin(x2
2) + u)dt + 0.5x1dω

(56)

where xi(i = 1, 2) is the state, y = x1 is the system output, and u represents the input to
the system suffering from dead zone and saturation constraints. The control objective is
to enable the system output to track the desired trajectory signal stably. Let the reference
trajectory be yd = sin(t).

In order to construct a neural network-based adaptive controller, a set of nine neural
networks is defined for each state variable on the interval [−4, 4] with the center point as
−4,−3,−2,−1, 0, 1, 2, 3, 4. The neural network basis vector function is Ri(Zi) =

[
R1

i , R2
i , . . . , R9

i
]T.

The neural membership functions are defined by Rl
i = exp

(
−0.5(Zi + (−5+ l))2

)
for l =

1, 2, . . . 9 and Z1 =
[
x1, yd, ẏd, DH1, DL1, ḊH1, ḊL1

]T, Z2 =
[
x1, x2, ξ1, ξ2, θ̂1

]T
.

The corresponding system state constraints and tracking error constraints as well as
the system’s initial values and controller parameters are designed, as shown in Table 2.
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The relationship between the system input u and the design controller v, i.e., the dead zone
and saturation nonlinear models, is described as follows:

u =



52, v > 52

0.7(v − 0.6), 0.6 < v < 52

0, − 0.6 < v < 0.6

0.7(v + 0.6), − 20 < v < −0.6

− 20, v < −20

(57)

Table 2. System parameters for A.

System Parameter

Constraint functions for system outputs and constraints for state x2
Ly(t) = sin(t)− 0.2 − 0.4e−0.6t; Hy(t) = sin(t) + 0.3 + 0.4e−0.5t; −3.41 < x2 < 3.41
The constraint function or constraint value corresponding to the tracking error

DL1 = 0.2 + 0.4e−0.6t; DH1 = 0.3 + 0.4e−0.6t; D2 =
√

2
Initial values and design parameters

[x1(0), x2(0)]
T = [0.5,−0.2]T ;

[
θ̂1(0), θ̂2(0)

]T
= [0.1, 0.1]T ; k11 = 35, k12 = 20; k21 = 28, k22 = 25;

γ = 2, τ1 = τ2 = 0.1; η1 = η2 = 2, k1 = k2 = 1; ε1 = ε2 = 0.01

In order to make the virtual controller also comply with the corresponding constraints,
we design the following practical virtual control signals:

ϕ(α1) = 2 tanh(
α1

2
) (58)

The simulation results in this example are presented in Figures 3–7. Figure 3a depicts
the trajectory of the system output, y, with the desired trajectory, yd. From Figure 3a, it can
be seen that the control strategy designed in this paper has a good control performance,
and the system output can quickly track the desired trajectory signals while satisfying
the corresponding time-varying function constraints. The control scheme proposed in
Reference [26], with the addition of the same dead zone and saturation constraint models
used in this example, is compared with the scheme in this paper, and the trajectory compar-
ison of the system output is shown in Figure 3b. From Figure 3b, it can be seen that the
presence of dead zones and saturation constraints causes violent jitter in the early stage
of the comparison control scheme, which demonstrates the effectiveness of the control
strategy in this paper.

(a) (b)

Figure 3. (a) System output and desired trajectory. (b) Output comparison with algorithms [26].



Mathematics 2024, 12, 1378 13 of 21

(a) (b)

Figure 4. (a) Control input. (b) Virtual control signals.

(a) (b)

Figure 5. (a) State variable x2. (b) Adaptive parameters.

(a) (b)

Figure 6. System output (a) and control input (b) with disturbance and without disturbance.
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Figure 7. Tracking error of A and algorithms [26].

From the comparative simulation results, it can be seen that the control algorithm
designed in this paper can cope with the tracking control of stochastic nonlinear systems
with dead zones and saturated nonlinear constraints.

Figure 4a illustrates the controller trajectory and the control input trajectory suffering
from dead zone and saturation nonlinearity constraints. Figure 4b illustrates the trajectory
of the virtual control signal and the practical virtual controller. From Figure 4b, it can be
seen that the practical virtual controller designed in this paper adheres to the constraints of
the corresponding system states. The problem of ∥zi∥ = ∥xi∥ − ∥αi−1∥ < Li − ∥αi−1∥ =
Di < 0 is solved. Figure 5a,b illustrates the trajectory of the system state x2 and adaptive
parameters θ̂1, θ̂2. Figure 7 illustrates the output tracking error of the control strategy in
this paper and the tracking error of the comparison scheme.

Remark 5. In order to demonstrate the robustness and stability of the adaptive neural network
tracking control algorithm proposed in this paper for stochastic nonlinear systems, we add pertur-
bations d(t) = 1.2 sin(5t) to the control input signal u. Figure 6a,b presents a comparison of the
trajectories of the control input signal and the system output for additional disturbances and no
disturbances. From the figure, it can be seen that the adaptive NN controller designed in this paper
has good robustness and stability.

B. Simulations on a single-link manipulator system

A single-link manipulator system containing stochastic perturbations is used as an
example to prove the practicality of the designed controller. The single-link manipulator
system model is given as follows:

Jq̈ = −Mgl0 sin(q)− Bq̇ + u(v) (59)

where q, q̇ and q̈ are the coordinate, velocity, and acceleration of angles, respectively. u(v)
is the input torque subject to saturation and deadband. Affected by white noise, the
coefficient of viscous friction can be rewritten as B = B0 + BωΘ(t), where Θ(t) satisfies∫ t

0 Θ(s)ds = ω(t). Table 3 lists all the parameters of the single-link manipulator system.



Mathematics 2024, 12, 1378 15 of 21

Table 3. Example 2: Parameters of a single link robotic arm system.

Parameter Description Value

J Torsion coefficient 0.5 kg·m2

M Mess of the link 1 kg
g Acceleration of gravity 9.8 m/s2

l0 Length of the connecting rod 1 m
B Coefficient of viscous friction 0.5 N·m·s

Bω Noise coefficient 0.1 N·m·s

We can rewrite system (59) as follows:
dx1 = x2dt

dx2 = 2u(v)dt − (19.6 sin(x1) + x2)dt − 0.2x2dω

y = x1

(60)

The corresponding system state constraints and tracking error constraints, as well as
the system’s initial values and controller parameters, are designed as shown in Table 4.
The practical virtual controller is designed as ϕ(α1) = 2.5 tanh(α1/2.5). The relationship
between the system input u and the design controller v, i.e., the dead zone and saturation
nonlinear models, is described as follows:

u =



50, v > 50

0.6(v − 0.6), 0.6 < v < 50

0, − 0.7 < v < 0.6

0.75(v + 0.7), − 55 < v < −0.7

− 55, v < −55

(61)

Table 4. System parameters for B.

System Parameter

Constraint functions for system outputs and constraints for state x2
Ly(t) = 0.5 sin(t) + 0.5 sin(0.5t)− 0.2 − 0.4e−0.6t;

Hy(t) = 0.5 sin(t) + 0.5 sin(0.5t) + 0.3 + 0.4e−0.5t; −3.91 < x2 < 3.91
The constraint function or constraint value corresponding to the tracking error

DL1 = 0.2 + 0.4e−0.6t; DH1 = 0.3 + 0.4e−0.6t; D2 =
√

2
Initial values and design parameters

[x1(0), x2(0)]
T = [0.5, 0]T ;

[
θ̂1(0), θ̂2(0)

]T
= [1, 0.5]T ; k11 = 28, k12 = 25, k21 = 25, k22 = 20;

γ = 2, τ1 = τ2 = 0.1; η1 = η2 = 2, k1 = k2 = 1; ε1 = ε2 = 0.01

The simulation results in this section are presented in Figures 8–10. Figure 8a depicts
the trajectory of the system output y, the expectation trajectory yd. The practical virtual
controller of this paper is introduced to the scheme proposed in Reference [27] and then
compared with the scheme designed in this paper, as shown in Figure 8b. As can be seen in
Figure 8b, the tracking accuracy of the comparison schemes becomes significantly worse
when the virtual controller satisfies the corresponding state constraints.
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(a) (b)

Figure 8. B. (a) System output. (b) Output comparison with algorithms [27].

(a) (b)

Figure 9. B. (a) Control input. (b) virtual control signals.

(a) (b)

Figure 10. B. (a) Tracking error of B and algorithms [27]. (b) Trajectories of the system state.

By using practical virtual controllers instead of the original virtual control signals,
all the signals performing control operations in the system control are in accordance with
the corresponding constraints, which really achieves the full-state constraint control of
stochastic nonlinear systems. As is well known, many practical physical systems such as
flight vehicles, chemical reactors, and aircraft controls are subject to constraints to ensure
the safe operation of the system. Therefore, as a control variable that performs the control
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task, imposing appropriate boundary constraints on the virtual control signal is also of
considerable significance for the safe and reliable operation of the controlled system.

From Figure 9b, it can be seen that the practical virtual controller overcomes the issue
of the original virtual controller violating the state constraints. Figure 10a demonstrates
the system output tracking error for the control strategy of this paper and the comparison
scheme. Figure 10 illustrates the trajectory of system states x1, x2.

Remark 6. It is clear from Figure 9a that the original control input signal amplitude exceeds
1700, which is unlikely for a robotic arm system. After constraining by saturation and dead-
band, the control input signal amplitude is reduced to the achievable range without affecting the
control performance.

From the simulation results shown in this section, it is easy to see that by applying
the fixed-time neural network tracking controller designed in this paper and choosing
the appropriate parameters, the system can obtain good tracking performance when all
signals are bounded and the actual control inputs satisfy the dead zone and saturation
constraints. In addition, the introduced practical virtual controller satisfies the constraints
of the corresponding system states, and the control objective is achieved with all states
and control variables in the system complying with the constraints, which proves the
effectiveness and practicality of the designed control strategy.

5. Conclusions and Future Work

Since the uncertainty factor of randomness is often seen in practical application sce-
narios, in this paper, an adaptive neural network tracking control algorithm is designed for
a class of stochastic nonlinear systems. It applies neural network approximation methods
to address the interference of system uncertainty in controller design.

In order to practically meet the practical scenarios, this paper considers the full state
constraints of the system. Compared with the existing fixed output constraints, the system
output considered in this paper satisfies the time-varying function constraints, which have
more practical relevance. With the corresponding actuator constraints, the actual control
inputs can meet the demands of a realistic industrial production environment.

The use of practical virtual controllers ensures that the virtual control signals perform-
ing the control tasks always satisfy the constraints of the corresponding virtual control
states throughout the control operation. The adaptive tracking control algorithm designed
in this paper ensures that all the variables in the controlled system performing control tasks
conform to the predefined boundary constraints; this is of great significance for the safe
and reliable operation of real physical systems. Finally, the simulation demonstrates the
control effect and verifies the effectiveness of the algorithm designed in this paper. In future
research, adaptive fixed-time fault-tolerant control for MIMO stochastic nonlinear systems
with full-state constraints will be considered.
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Appendix A

Proof of Theorem 1. The summation function is chosen as

V =
n

∑
i=1

Vi (A1)
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Then, by Equations (37), (49) and (55), as well as Lemma 6, it follows that

LV ≤ −
n

∑
j=1

k j1(
ξ4

j

4
)

3
4

−
n

∑
j=1

k j2(
ξ4

j

4
)

2

+
n

∑
j=1

ηj θ̃j θ̂j +
n

∑
j=1

κj θ̃j θ̂
3
j

+
n

∑
j=2

ξ3
j−1∆j−1gj−1zj −

n

∑
j=2

(
Ψj
)2√(

Ψj
)2

+ ε2
j

+
n

∑
j=1

σj

≤ −
n

∑
j=1

k j1(
ξ4

j

4
)

3
4

−
n

∑
j=1

k j2(
ξ4

j

4
)

2

+
n

∑
j=1

ηj θ̃j θ̂j +
n

∑
j=1

κj θ̃j θ̂
3
j +

n

∑
j=1

σj +
n

∑
j=2

ε j

(A2)

From Lemma 2, the following inequality can be obtained:

−
n

∑
j=1

k j1

(
ζ4

j

4

) 3
4

≤ −ω1

(
n

∑
j=1

ζ4
j

4

) 3
4

(A3)

−
n

∑
j=1

k j2

(
ζ4

j

4

)2

≤ −ω2

n

(
n

∑
j=1

ζ4
j

4

)2

(A4)

By using Young’s inequality and the definition of θ̂, it follows that

n

∑
j=1

ηj θ̃j θ̂j ≤
n

∑
j=1

ηj

2
θ2

j −
n

∑
j=1

ηj

2
θ̃2

j (A5)

With the aid of (A3)–(A5), it is easy to obtain

LV ≤ −ω1

(
n

∑
j=1

ζ4
j

4

) 3
4

− ω2

n

(
n

∑
j=1

ζ4
j

4

)2

− (
n

∑
j=1

ηj

2
θ̃2

j )

3
4

+
n

∑
j=1

σj

+(
n

∑
j=1

ηj

2
θ̃2

j )

3
4

+
n

∑
j=1

ηj

2
θ2

j −
n

∑
j=1

ηj

2
θ̃2

j +
n

∑
j=1

κj θ̃j θ̂
3
j +

n

∑
j=2

ε j

(A6)

From Lemma 3, the following inequality can be obtained:

(
n

∑
j=1

ηj θ̃
2
j

2

) 3
4

≤ ρ +
n

∑
j=1

ηj θ̃
2
j

2
(A7)

in which A = 1, B =
n
∑

j=1

ηj θ̃
2
j

2 , b1 = 1
4 , b2 = 3

4 , b3 =
( 3

4
)3

, ρ = 1
4
( 3

4
)3

. Then,

LV ≤ −ω1

(
n

∑
j=1

ζ4
j

4

) 3
4

− ω2

n

(
n

∑
j=1

ζ4
j

4

)2

− (
n

∑
j=1

ηj

2
θ̃2

j )

3
4

+
n

∑
j=1

κj θ̃j θ̂
3
j + Ω (A8)

in which Ω =
n
∑

j=1
σj +

n
∑

j=2
ε j + ρ +

n
∑

j=1

ηj
2 θ2

j . Since θ̃j θ̂
3
j = θ̃j

(
θ3

j − 3θ2
j θ̃j + 3θj θ̃

2
j − θ̃3

j

)
.

By Young’s inequality, the following inequality will arise:

n

∑
j=1

κj θ̃jθ
3
j ≤

n

∑
j=1

3κj θ̃
2
j θ2

j +
n

∑
j=1

κjθ
4
j

12
(A9)
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n

∑
j=1

3κj θ̃
3
j θj ≤

n

∑
j=1

9κjλ
4
3 θ̃4

j

4
+

n

∑
j=1

3κjθ
4
j

4λ4 (A10)

Then, the following equation can be derived:

LVn ≤ −ψ1


(

n

∑
j=1

ζ4
j

4

) 3
4

+

(
n

∑
j=1

γj θ̃
2
j

2

) 3
4

− ψ̂2


(

n

∑
j=1

ζ4
j

4

)2

+

(
n

∑
j=1

γj θ̃
2
j

2

)2
+ Φ (A11)

where ψ1 = min
{(

ηj
γj

) 3
4 , ω1

}
, ψ̂2 = min

{
4κj

γ2
j
− 9λ

4
3 κj

γ2
j

, ω2
n

}
, and Φ = Ω +

n
∑

j=1

3κjθ
4
j

4λ4 +

n
∑

j=1

κjθ
4
j

12 .

Then, by Lemma 2, it follows that

LVn ≤ −ψ1V
3
4

n − ψ2V2
n + Φ (A12)

in which ψ2 = ψ̂2
2n . Then,

EV(t) = EV(s) + E
t∫

s

LV(v)dv

= EV(s) +
t∫

s

E[LV(v)]dv

(A13)

Considering Jensen’s inequality, from the above equation, it follows that

E[LV(t)] ≤ −ψ1E[V(t)
3
4 ]− ψ2E[V(t)2] + Φ

≤ −ψ1[EV(t)]
3
4 − ψ2[EV(t)]2 + Φ

(A14)

Then, by utilizing Lemma 4, it follows that

E(T) ≤ Tmax =
1

ψ1 φ(1 − 3
4 )

+
1

ψ2 φ(2 − 1)
=

4
ψ1 φ

+
1

ψ2 φ
(A15)

For (A14), two discussions are conducted:

1. If −ψ1[EV(t)]
3
4 + Φ > 0, which means EV is bounded and E[V(t)] <

(
Φ
ψ1

) 4
3 .

2. If −ψ1[EV(t)]
3
4 + Φ ≤ 0, It is not difficult to derive that E[LV(t)] ≤ −ψ2[EV(t)]2 < 0.

As a result, EV is bounded.

From the above discussion, it can be concluded that ξ j, θ̃j is bounded. Because θ̂j

denotes the estimate of the uncertain parameter θj, and θ̃ = θ − θ̂, one has that θ̂j is
bounded. From (33), (34), (45) and (46), it follows that αi are bounded because they are
composed of ξ j and θ̂j. By definition (12), ϕ(αi−1) is absolutely bounded. It follows from
the GBLF definition that the boundedness of ξ j dictates that zi is also bounded. Since
the desired trajectory yd is a continuous bounded function, the boundedness of xi can be
obtained from z1 = x1 − yd. Due to the practical virtual tracking error zi = xi − ϕ(αi−1)
and definition of GBLF, we can obtain that zi, xj is bounded. The boundedness of the
controller u (52) can be deduced, too. Thus, we prove the boundedness of all closed-loop
signals of the system.
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