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Abstract: Wavelet decomposition is pivotal for underwater image processing, known for its ability to
analyse multi-scale image features in the frequency and spatial domains. In this paper, we propose a
new biorthogonal cubic special spline wavelet (BCS-SW), based on the Cohen–Daubechies–Feauveau
(CDF) wavelet construction method and the cubic special spline algorithm. BCS-SW has better
properties in compact support, symmetry, and frequency domain characteristics. In addition, we
propose a K-layer network (KLN) based on the BCS-SW for underwater image enhancement. The
KLN performs a K-layer wavelet decomposition on underwater images to extract various frequency
domain features at multiple frequencies, and each decomposition layer has a convolution layer
corresponding to its spatial size. This design ensures that the KLN can understand the spatial and
frequency domain features of the image at the same time, providing richer features for reconstructing
the enhanced image. The experimental results show that the proposed BCS-SW and KLN algorithm
has better image enhancement effect than some existing algorithms.

Keywords: underwater image enhancement; K-layer network; wavelet decomposition

MSC: 94A12; 68T07; 42C10

1. Introduction

Underwater imaging introduces unique challenges that necessitate the exploration of
more advanced wavelet-based solutions. Underwater images are often compromised by
complex environmental factors, including lighting conditions, water quality, and scattering,
leading to blurred images and color distortion. Notably, there are significant differences
in the attenuation rates of the different wavelengths of light in water, longer wavelengths,
such as red light, attenuate more rapidly than shorter wavelengths, like blue or green light.
This discrepancy results in a pronounced color cast in underwater images, which typically
exhibit a blue or green hue.

The underwater environment’s lighting, combined with the scattering effects of am-
bient light on plankton and suspended particles, exacerbates the blurring of underwater
images. Hence, there is a pressing need for techniques capable of analysing the depth,
details, and texture information of images to discern their detailed features accurately.
Moreover, underwater images often feature complex backgrounds and biological elements.
Adjacent regions within an image may exhibit significantly different feature information
due to variations in the structure and physical location, while non-adjacent regions might
share similar features [1,2]. This complexity demands a nuanced approach to underwater
image analysis, highlighting the critical role of sophisticated wavelet-based methodologies
in addressing these challenges.
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Physics-based methods construct models using the physical and optical characteristics
of images captured underwater [3]. These approaches examine the physical processes
responsible for degradation, such as color distortion or scattering, and aim to correct
them to enhance underwater images. However, a singular physics-based model may not
encompass the diverse array of intricate physical and optical factors inherent in underwater
environments. This limitation results in inadequate generalization and may yield outcomes
characterized by either excessive or insufficient enhancement.

Wavelet analysis is a potent tool for signal processing, playing an instrumental role
in underwater image enhancement. While wavelet decomposition is known for its ability
to process image signals across multiple scales and to analyse signals in the frequency
domain [4,5]. Traditional wavelets, such as Haar, have been applied across a variety of
vision tasks for decomposing visual signals into single or multiple layers, aiming to reduce
noise and enhance the contrast of these signals. However, when faced with the complexities
inherent to underwater images, particularly in terms of multi-level decomposition and
the capture of high-frequency details, the limitations of these traditional wavelets become
apparent. This has led to a reevaluation of the trajectory of wavelet theory, with particular
emphasis on the contributions of Mallat’s multi-resolution analysis [6]. This reassessment
serves as a catalyst for rethinking the design of wavelet functions, thereby more effectively
addressing the specific enhancement needs of underwater images. By refining wavelet
functions to cater to the unique challenges posed by underwater environments, such as
blurring, color cast, and detail loss, this approach seeks to develop more sophisticated and
effective methods for underwater image enhancement.

Additionally, spline wavelets usually exhibit less of a ringing effect, which helps
to prevent the introduction of unnecessary artifacts in underwater image enhancement
tasks. This provides important inspiration for us to explore the combination of wavelet
decomposition with deep learning-based image enhancement tasks. As shown in Figure 1,
this is our decomposition of underwater images based on BCS-SW. After the underwater
image is decomposed by BCS-SW, four sub-band images, ca, cd, ch, and cv, are obtained
by conducting convolution and downsampling. Most deep neural network methods that
incorporate wavelet analysis tend to introduce Haar wavelets into the network; we aim
to explore the integration of more complex wavelets with deep neural networks to better
combine the advantages of deep neural networks with wavelet analysis. Our contributions
to this work can be summarized as follows:

1. We propose a new BCS-SW based on the CDF wavelet construction method and
the cubic special spline algorithm. BCS-SW is a compactly supported, symmetric spline
wavelet. Both BCS-SW and its corresponding dual wavelet are constructed for image
decomposition and reconstruction, respectively, based on a multi-resolution analysis and
two-scale equations. BCS-SW demonstrates superior performance in the frequency domain
signal extraction, particularly for complex signals, providing a more versatile and efficient
approach for interpreting local features and color degeneration in underwater images;

2. We propose a K-layer network (KLN) based on the BCS-SW for underwater image
enhancement. Specifically, the KLN utilizes K-layer wavelet decomposition on underwater
images to extract features across multiple frequency domains. Each layer of decomposition
is paired with convolution-based layers, each tuned to a distinct scale. These convolution-
based layers enhance the network’s comprehension of the images’ spatial characteristics,
facilitating more stable frequency domain signals;

3. We devise qualitative and quantitative experiments on multiple underwater im-
age datasets, showcasing the effectiveness of the BCS-SW and KLN in underwater im-
age enhancement. Our work serves as an important reference for the integration of
complex wavelet transforms into deep neural networks, demonstrating the potential of
this approach.
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Figure 1. Visualization of the decomposed underwater original and ground truth images by the
biorthogonal cubic special spline wavelet (BCS-SW). After the underwater image is decomposed
by BCS-SW, ca is the approximate information of the original image, cd is the diagonal information
of the original image, ch is the horizontal information of the original image, and cv is the vertical
information of the original image.

2. Related Work

For spline wavelet algorithms, Khan et al. [7] pioneered the formulation of B-spline
wavelet packets, alongside the creation of their corresponding dual wavelet packets, delving
into the exploration of the inherent properties of B-spline wavelet packets. Cohen et al. [8]
proposed the Cohen–Daubechies–Feauveau (CDF) wavelet family, and this wavelet family
uses the compact support set spline function as the parent wavelet and has the proper-
ties of compact support set and orthogonal, which becomes an important milestone in
the study of spline wavelet. Olkkonen et al. [9] introduced the shift-invariant gamma
spline wavelet transform for the tree-structured subscale analysis of asymmetric signal
waveforms and systems with asymmetric impulse responses. Building on this work,
Tavakoli and Esmaeili [10] subsequently orchestrated the development of biorthogonal
multiple knot B-spline (MKBS) scaling functions, along with the inception of multiple
knot B-spline wavelet (MKBSW) basis functions, thereby enriching the repository of the
tools available in wavelet analysis. Compared to Haar wavelets and Daubechies wavelets,
MKBSW offers superior smoothness and continuity, which make them perform better in
accurately approximating and analysing continuous signals.

For wavelet analysis applied to image processing, the advantages include its ability
to provide multi-resolution analysis, efficient compression, and effective denoising ca-
pabilities. However, the disadvantages include higher computational complexity, issues
with boundary effects, and difficulties in choosing the appropriate wavelet basis. Spline
wavelet transform has been applied to various image processing tasks, such as image
super-resolution and denoising proposed by Huang et al. [11] and Kang et al. [12]. A new
spatially adaptive method for recovering noisy blurred images proposed by Banham and
Katsaggelos [13], which is particularly effective in producing crisp deconvolution while
suppressing noise in the flat regions of the image. In the realm of underwater image en-
hancement, several physically based methods utilize the discrete wavelet transform (DWT)
to decompose the image and process it in the frequency domain. For instance, Sree Sharmila
et al. [14] proposed a novel image resolution enhancement method based on the combi-
nation of DWT and stabilized wavelet transform (SWT), employing the histogram shift
shaping method for wavelet decomposition to enhance the contrast and resolution of the
image. Singh et al. [15] employed a discrete wavelet transform-based interpolation tech-
nique for resolution enhancement. Ma and Oh [16] introduced a dual-stream network based
on Haar wavelets [17], which effectively tackles color cast and enhances blurry details in
underwater images. Huang et al. [11] introduced a convolutional neural network (CNN)
approach based on wavelets, capable of ultra-resolving very low-resolution face images, as
small as 16 × 16 pixels, to larger versions at multiple scaling factors (2×, 4×, 8×, and even
16×) within a unified framework.
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For deep neural networks applied to underwater image processing, their capability
primarily depends on the quality of the training dataset and the capacity of the network.
Introducing wavelet analysis into deep neural networks can effectively accelerate the
network’s processing of image features and enhance the network’s understanding of
images. Due to the robustness and generalization capabilities of deep neural networks in
underwater image enhancement tasks, a significant body of work has emerged focusing
on leveraging these networks. Perez et al. [18] proposed employing CNN for underwater
image enhancement. They trained the CNN using image restoration techniques to achieve
an end-to-end transformation model between a hazy image and its corresponding clear
image. Wang et al. [19] introduced a CNN-based method named UIE-Net, which is trained
on two tasks: color correction and haze removal. This unified training approach enables
the network to learn powerful feature representations for both tasks simultaneously. To
enhance the extraction of intrinsic features within local blocks, their learning framework
incorporates a pixel perturbation strategy, significantly improving convergence speed and
accuracy. Goodfellow et al. [20] introduced generative adversarial nets (GANs), presenting
a novel methodology for training generative models. As research into GANs deepens,
underwater image enhancement increasingly becomes a task of transforming between the
underwater domain and the enhancement domain. Li et al. [21] proposed Water-GAN to
generate a large training dataset comprising corresponding depth, in-air color images, and
realistic underwater images. Water-GAN’s generator is responsible for synthesizing real
and depth images into an underwater image, while Water-GAN’s discriminator classifies
the real images from the synthesized ones. Moreover, Fabbri et al. [22] proposed UGAN,
GANs specifically designed to enhance the quality of underwater images. The model’s
design objective is to improve the visibility and clarity of underwater images through
adversarial training, addressing the challenges posed by the absorption and scattering of
light in underwater environments.

Although deep neural networks (DNNs) have demonstrated strong capabilities in
underwater image processing, especially in image enhancement, object detection, and
classification, there are some obvious limitations in their application. Underwater images
are often heavily affected by noise and perturbations, and deep neural networks may
exhibit some vulnerability when processing such data, especially if the network has not
been trained on data containing high noise. We propose a new deep neural network K-layer
network for underwater image processing based on BCS-SW. In the experimental part, we
also compare it with other cutting-edge underwater image processing techniques to show
the advantage of the KLN network over other methods.

3. Methodology

The current research that has more combinations with deep neural networks is mostly
the Haar wavelets because of the orthogonality of Haar wavelets. Although they have
the advantages of simple computation and easy implementation, they also have some
limitations, such as a lack of smoothness, resulting in a loss of low-frequency information,
and sensitivity to noise, and may not be as good as spline wavelet transform in process-
ing complex images and continuous signals. Hence, we propose a novel spline wavelet
combined with deep neural networks to process underwater images.

Inspired by compactly supported spline wavelets [23], which provide a better approxi-
mation of various images and its wavelet basis functions can be flexibly adjusted according
to the needs of applications. We propose a new biorthogonal special cubic special spline
wavelet (BCS-SW) for underwater processing in this work. Furthermore, we also propose a
new deep neural network, the K-layer network (KLN), for underwater image enhancement
based on BCS-SW.
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3.1. A New Biorthogonal Cubic Special Spline Wavelet (BCS-SW)
3.1.1. Cubic Special Spline Algorithm

In our work, BCS-SW is based on the cubic special spline algorithm proposed by Chen
and Cai [24]. They proposed a novel spline algorithm and provided various representations
of cubic splines with different compact supports. In this paper, we selected one of the cubic
splines with the smallest compact support, as shown in Equation (1), and on the basis of
this spline, we derived a new class of spline wavelet algorithms following the CDF method
of wavelet construction.

S(t) =
451

3
β3(t)−

256
3

(β3(t −
1

16
) + β3(t +

1
16

)) +
64
3
(β3(t −

1
8
) + β3(t +

1
8
)), (1)

and β3(t) is the cubic B-spline:

β3(t) =
4

∑
i=0

(−1)i

3!

(
4
i

)
(t + 2 − i)3 · ϖ(t + 2 − i), t ∈ R, (2)

where ϖ(t) is the unit step function

ϖ(t) =

{
0, t < 0,
1, t ≥ 0.

(3)

S(t) comes out from a linear combination of the normalized and the shifted B-splines
of the same order. Consequently, S(t) can inherit nearly all the favourable properties
of β3(t), including analyticity, central symmetry, local support, and high-order smooth-
ness. Moreover, S(t) can directly interpolate the provided data without the need to solve
coefficient equations, a capability that B-spline lacks.

The Fourier transform expressions of S(t):

Ŝ(ω) =

(
451

3
− 512

3
cos

ω

16
+

64
3

cos
ω

8

)(
sin ω

2
ω
2

)4

. (4)

The spline S(t) and the Fourier transform Ŝ(ω) are separately plotted in Figure 2.
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Figure 2. Analysis of the cubic special spline S(t). (a) The graph of the S(t). (b) The graph of the
Fourier transform Ŝ(ω).

3.1.2. Constructing Biorthogonal Cubic Special Spline Wavelet (BCS-SW)

Chui [25] and Graps [26] have proved B-spline βm(t) is the scale function of the corre-
sponding multi-resolution analysis. S(t) is formed by the linear combination of B-spline
β3(t) translation and expansion. Therefore, we can naturally deduce the following conclusion.
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The subspaces V3
j are generated by S(t) binary dilation and integer translation, as

follows:
V3

j = span
{

2
j
2 S

(
2jt − k

)
, k ∈ Z

}
, j ∈ Z, (5)

where
{

V3
j

}
j∈Z

forms a general multi-resolution analysis (GMRA) in L2(R), called spline

multi-resolution analysis. g(t) is the corresponding scaling function. According to the
theory of wavelet construction, S(t), as a scale function, can construct a new wavelet ψ(t).
Let S∗(t) be the dual scaling function of S(t) and ψ∗(t) be the dual wavelet of ψ(t), then
their corresponding low-pass filters are:

H(ω) =
1
2

N2

∑
n=N1

hne−inω, H∗(ω) =
1
2

L2

∑
n=L1

h∗ne−inω. (6)

And high-pass filters are:

G(ω) =
1
2

1−L1

∑
k=1−L2

gke−ikω, G∗(ω) =
1
2

1−N1

∑
k=1−N2

g∗k e−ikω, (7)

where N1, N2, L1, L2 are all integers, N2 − N1 + 1 and L2 − L1 + 1 are the lengths of H(ω)
and H∗(ω), respectively, and gk = (−1)kh1−k, g∗k = (−1)kh∗1−k. All coefficients are real co-
efficients.

We also construct a new class of compactly supported wavelets based on CDF. We are
aware that wavelets with compact supports exist as long as the two-scale sequence of the
related scaling function is finite. In the paper, we set H(ω) and H∗(ω) as odd-length and
the support set is symmetric at about 0. The vanishing moment order of H(ω) and H∗(ω)
are N and N∗, respectively, and they can also have the following representation:

H(ω) = cos(
ω

2
)2NQ(cos(ω)), (8)

H∗(ω) = cos(
ω

2
)2N∗

Q∗(cos(ω)), (9)

where Q(cos(ω)), Q∗(cos(ω)) are the polynomials of cos(ω).
Let

P(sin2(
ω

2
)) = Q(cos(ω))Q∗(cos(ω)), (10)

and when y = sin2(
ω

2
), we also have:

P(y) =
L−1

∑
n=0

(
L − 1 + n

n

)
yn, (11)

where L = N + N∗.
From the time domain expression of the two-scale equation corresponding to S(t), the

low-pass filter of ψ(t) in the frequency domain can be obtained as follows:

H(ω) =
Ŝ(2ω)

Ŝ(ω)
=

451 − 512cos
ω

8
+ 64cos

ω

4
451 − 512cos

ω

16
+ 64cos

ω

8

cos4(
ω

2
). (12)

From Equations (8), (10) and (12), we can obtain N = 2, and

Q(cos(ω)) =
451 − 512cos

ω

8
+ 64cos

ω

4
451 − 512cos

ω

16
+ 64cos

ω

8

, (13)
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Q∗(cos(ω)) =
P(sin2(

ω

2
))

Q(cos(ω))
. (14)

When N = 2, L takes different values, for example, L = 4, 5, 6, 7 , we can obtain
multiple corresponding N∗. Bring these values into Equations (11), (9) and (14), by taking
the inverse Fourier transform as in Algorithm 1, we can obtain multiple groups hn, h∗n of the
corresponding low-pass filter coefficients of the new biorthogonal spline wavelet in Table 1.
Considering the symmetry of the coefficients, we only give n = 0, 1, 2, 3, ..., as shown in
Table 1. In practical application, the corresponding odd coefficients can be symmetrically
selected for image processing.

Algorithm 1 BCS-SW Filter Algorithm

Input:
L : sum of the vanishing moment order of H(ω) and H∗(ω) by Equations (8) and (9),
and L = 7;
P(sin()) : defined by Equation (11);
ω: axis angel;
n: integer, the subscript of the low-pass filter coefficient;

Output:
hn: the set of corresponding low-pass filter coefficients of H(ω);
h∗n: the set of corresponding low-pass filter coefficients of H∗(ω);

1: function: inverse_fourier_transform{ f };
2: nm = 0 : 1 : size( f , 2)− 1; j =

√
−1;

3: for i = 1 : 1 : size(nm, 2) do
4: f f = f . ∗ exp(j ∗ nmi ∗ ω);
5: ω = −π : 0.01 : π;
6: hni = (1/(2π)) ∗ real(trapz(ω, f f )) ;//trapz(): computes the integral
7: end for
8: return: hn.
9: for n = 1 : 1 : size( f , 2)− 1 do

10: f (k, :) = Q(cos(w)); // Q(cos(w)) is defined by Equation (13)
11: f ∗(k, :) = Q∗(cos(w)); // Q∗(cos(w)) is defined by Equation (14)
12: hn = inverse_fourier_transform(f );
13: h∗n = inverse_fourier_transform( f ∗);
14: end for
15: return: hn and h∗n.

Table 1. The low-pass filter coefficients hn, h∗n, (n = 0, 1, 2...) of the BCS-SW and its dual wavelet.

N hn N∗ h∗
n

2
813/731, 63/298, −419/1066, 91/1301,
81/992, −8/273, 3/689, −1/647,
1/1482, −1/3011, 1/5619. . .

2
1417/1969, 737/1491, 389/2760,
5/907, −1/1415, 1/6154, −1/19,642,
1/51,496. . .

3
330/317, 38/141, −157/398, −3/488,
137/972, −13/669, −17/1051, 7/1205,
−1/1437, 1/4657, −1/12,080 . . .

4
645/643, 96/319, −231/593, −45/733,
143/838, 3/610, −3/83, 7/1030,
5/1491, −1/819, 1/8087. . .

5
483/493, 319/994, −589/1535, −65/634,
93/502, 23/749, −25/496, 1/369,
3/308, −1/479, −1/1397. . .
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Due to gn = (−1)nh1−n, g∗n = (−1)nh∗1−n, from the data in Table 1, we can calculate
the corresponding gn, g∗n, the high-pass filter coefficients of the ψ(t) and ψ∗(t). The filter
bank in the frequency domain is {H(ω), G(ω), H∗(ω), G∗(ω)}, the decomposition and
reconstruction processes use two different sets of filters, respectively. It was decomposed
with {h∗n} and {g∗n}, the reconstruction uses a different pair of filters {hn} and {gn}.
Because of this, we make {h∗n} and {g∗n} wavelet decomposition filters, and {hn} and {gn}
wavelet synthesis filters.

3.2. K-Layer Network

Compared to traditional wavelets, the BCS-SW combines the smoothness of the spline
function with the localized accuracy of wavelet analysis [27]. In underwater image pro-
cessing, due to the influence of water and the scattering of light, the image is often affected
by noise and blur. BCS-SW is able to better capture smooth parts of the image, helping to
reduce noise and blur. BCS-SW provides better frequency localization. This means that
in underwater image processing, the spline wavelet can better capture the local details
and structural information of the image. BCS-SW generally has better time–frequency
localization characteristics and can better adapt to the different scale and frequency features
present in underwater images. And its gradient is more accurate and less prone to be lost,
which is beneficial for deep neural networks.

In this section, we propose the K-layer network (KLN) based on BCS-SW. BCS-SW
decomposition offers significant advantages for underwater image enhancement tasks
and separates high- and low-frequency information from images, and it can effectively
remove or reduce noise caused by suspended particles in underwater images. In the KLN
network, the input image undergoes K-layer decomposition, the encoder part has two
branches: one branch uses wavelets for feature decomposition, and the other branch uses
convolution for feature decomposition. Decoder part: the middle tensor of the same shape
of the decoder part is spliced upsampling, the upsampling process of decoding, and the
output of the previous step is used as the input of the next step, which speeds up the
network’s processing of features.

Specifically, the filters of decomposition and reconstruction of BCS-SW are truncated,
let L = 7, N = 2, N∗ = 5, {hn} selects 7 numbers that are symmetric about 0, in the same
way, the length of the {gn} also takes 7; and {h∗n} selects 21 numbers that are symmetric
about 0, similarly, the length of {g∗n} is also 21.

As shown in Figure 3, the KLN decomposes underwater image X based on BCS-SW to
get four wavelet coefficients in each layer, for example, c1, dh

1, dv
1, and dd

1, in the first layer,
c1 is the approximate information of the original image, dd

1 is the diagonal information of
the original image, dh

1 is the horizontal information of the original image, dv
1 is the vertical

information of the original image. In subsequent layers, the low-frequency coefficient cj of
the previous layer is decomposed to get new wavelet coefficients following Equation (15):

cj+1(n1, n2) = ∑
k1

∑
k2

h∗n(2n1 − k1)h∗n(2n2 − k2)cj(k1, k2),

dh
j+1(n1, n2) = ∑

k1

∑
k2

h∗n(2n1 − k1)g∗n(2n2 − k2)cj(k1, k2),

dv
j+1(n1, n2) = ∑

k1

∑
k2

g∗n(2n1 − k1)h∗n(2n2 − k2)cj(k1, k2),

dd
j+1(n1, n2) = ∑

k1

∑
k2

g∗n(2n1 − k1)g∗n(2n2 − k2)cj(k1, k2),

(15)

where cj(k1, k2) represents the low-frequency coefficient obtained in the jth layer. j + 1th
wavelet decomposition is carried out by the previous jth low-frequency coefficient. Specifi-
cally, the low-pass filter lod and the high-pass filter hid filter each row of cj and sample
at intervals, and then filter each column of cj and sample at intervals with them, respec-
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tively, to obtain the j + 1th layer wavelet coefficients: cj+1(n1, n2), dh
j+1(n1, n2), dv

j+1(n1, n2),

dd
j+1(n1, n2). We also use Equation (16) to represent this process.

ck, dh
k , dv

k , dd
k =

{
W(X), k = 1,
W(ck−1), k > 1,

(16)

where W() represents the wavelet decomposition based on BCS-SW. At the same time, the
KLN will also perform K convolutions on the input underwater image X.

xk = Fconv(xk−1), k > 0, (17)

where x0 = X, xk represents the features obtained in the kth convolution layer. Equation (17)
represents xk, which comes from the convolution processing of xk−1, which is the convolu-
tion result of the previous layer.

The KLN reconstructs the enhanced underwater images as follows Equation (18):

ri =

{
Fupconv(xk, ck, dh

k , dv
k , dd

k), i = 1,
Fupconv(ri−1, xk+1−i, ck+1−i, dh

k+1−i, dv
k+1−i, dd

k+1−i), i > 1,
(18)

where Fupconv() represents reconstructing the enhanced image based on upsampling and
convolution, rk is the enhanced underwater image, and also is the output of the KLN. We
use the L1 loss, L2 loss, SSIM loss, and Perceptual loss for reconstructing enhanced images.
Because we used more loss functions and spent a longer time on training, we also helped
to obtain good experimental results, as shown:

Lossreconstruct = Lossssim(rk, gt) + Lossperceptual(rk, gt) + |rk − gt|1 + ∥rk − gt∥2, (19)

where gt is the ground truth enhanced image.
The KLN leverages the Adam optimization method, which is renowned for its ef-

ficiency and effectiveness in handling large datasets with high-dimensional parameter
spaces. This method significantly enhances the convergence rates by adapting the learning
rates based on the estimations of the first and second moments of the gradients, making
it ideal for complex models like the KLN. In our implementation, the ‘concat’ command
plays a crucial role, as it is employed to perform the concatenation step during the model’s
layer fusion process. Specifically, this command facilitates the merging of features from
different layers, which is vital for preserving and integrating diverse spatial and contextual
information across the network. This technique not only enriches the model’s feature
representation but also boosts its overall performance by enabling more comprehensive
learning from multiple perspectives within the data.

Figure 3. The structure of a K-layer network based (KLN) on BCS-SW. Our method overview involves
training on a synthetic dataset. We obtain sub-band images with multiple frequency bands through
discrete wavelet transform (DWT). This process effectively decouples color cast and blurry details in
underwater images.
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4. Experiments
4.1. Implementation Details

In this section, we will introduce the quantitative experiments and qualitative experi-
ments of the BCS-SW and KLN. We verify the effectiveness of the BCS-SW and KLN on
various underwater datasets. In particular, the KLN is trained under the Pytorch. The
training is performed on an NVIDIA A100-PCIE-40GB GPU, we use the Adam optimizer
with a batch size of 25 and a learning rate of 1 × 10−4. The training set, which includes
5000 images, is the combination of 800 images from UIEBD proposed by Li et al. [28],
3200 images from LSUI proposed by Peng et al. [29], and 1000 images from UIQS proposed
by Liu et al. [30]. The test set includes UIEBD90 and UIQS. To evaluate the ability of the
BCS-SW and KLN, we introduce the non-reference underwater images metrics: UCIQE
proposed by Yang and Sowmya [31] and UIQM proposed by Panetta et al. [32], and the
full-reference metrics: PCQI proposed by Wang et al. [33]. UCIQE evaluates the quality
of the underwater images by calculating the color intensity, saturation, and contrast of
the underwater images. The larger the value, the better the quality of the underwater
image. UIQM evaluates the quality of the underwater images by calculating the brightness,
contrast, and saturation of the underwater images. The larger the value, the better the
quality of the underwater image. PCQI evaluates the quality of the enhanced image by
calculating the contrast difference between the enhanced image and the ground truth image
in a localized area. The larger the value, the more similar the enhanced image is to the
ground truth image.

We first compared the performance of the BCS-SW, Haar, Bior3.5 and DB2 wavelet in
underwater image denoising and enhancement tasks on the UIEBD and LSUI underwater
image datasets, as shown in Section 4.2. And then, we compare the KLN with other under-
water image enhancement methods, including UDCP proposed by Drews et al. [34], GDCP
proposed by Peng et al. [35], Ucolor proposed by Li et al. [36], MLLE proposed by Zhang
et al. [37], TOPAL proposed by Jiang et al. [38], WWPF proposed by Zhang et al. [39], U-
shape proposed by Peng et al. [29], and UIEBD and UIQS proposed by Liu et al. [30], as
shown in Section 4.3.

4.2. BCS-SW vs. Other Wavelets in Underwater Image Related Tasks

All existing wavelet-based deep learning network models predominantly utilize Haar
wavelets. The newly proposed BCS-SW has better local properties in the frequency do-
main than Haar and can capture local features in images better. It can represent complex
image structures and features more accurately and maintain image details and contours
better during image reconstruction, with continuity and smoothness. This means that
more continuous and smoother results can be produced during image reconstruction, in
contrast to the mutability of the transformation results of Haar, which may result in image
reconstruction results with jagged edges.

The process of image approximation information reconstruction after one layer decom-
position based on the BCS-SW is: the low-frequency information, horizontal high-frequency
information, vertical high-frequency information, and diagonal high-frequency information
are obtained after image wavelet decomposition. The wavelet decomposed the first layer
of the image, reconstructed the low-frequency information of the first layer of decompo-
sition, obtained the general appearance of the original image, and compared the general
appearance of these images. As shown in Figure 4 and Table 2, the experimental outcomes
demonstrate that the BCS-SW surpasses the Haar wavelet in terms of PSNR proposed
by Korhonen and You [40] and SSIM proposed by Hore and Ziou [41], indicating a better
performance in preserving the original image’s quality and structural integrity.
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Table 2. The PSNR and SSIM of approximation information reconstruction after 1 layer decomposition
using Haar and BCS-SW. The 1st best results are in bold. ↑: The higher, the better.

Haar BCS-SW

Image PSNR SSIM PSNR ↑ SSIM ↑

Figure 4a 31.7752 0.9922 32.7565 0.9938

Figure 4b 36.6892 0.9820 40.8069 0.9928

Figure 4c 40.3920 0.9979 42.1529 0.9986

Figure 4d 27.8036 0.9121 30.3055 0.9477

Original  Image

a

b

c

d

Haar BCS-SW(Ours)

Figure 4. The reconstruction images of approximation information after 1 layer decomposition
using BCS-SW transform and Haar wavelet transform. And (a–d) are the original images of the four
underwater images and processed by wavelet transform. The first column is the original underwater
images; the second column is the reconstructed image after haar wavelet transform; the third column
is the reconstructed images after BCS-SW wavelet transform.

As shown in Figure 5 and Table 3, we add Gaussian noise to the underwater images,
and the wavelet threshold denoising method is adopted. Firstly, the noisy image is decom-
posed in two layers by the wavelet, and the wavelet coefficient is processed by threshold;
that is, the wavelet coefficient greater than (or) less than a certain threshold is processed,
and the original image is reconstructed though using the processed results by Haar, Bior3.5,
DB2, and BCS-SW, respectively. Because of the BCS-SW’s representation capabilities, it
usually produces better denoising results. The coefficients of the BCS-SW transform are
generally easier to distinguish between signal and noise, and are therefore more suitable
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for removing noise from images. In Table 3, the comparison of PSNR and SSIM indicates
that, compared to other wavelets, the images processed by the BCS-SW are the closest to
their corresponding unaltered images captured on land.

In this section, we also show that when multi-layer wavelets decompose the under-
water image, the decomposed signal based on a spline wavelet has lower noise, and the
partially reconstructed image is closer to the original underwater image.

Table 3. The PNSR and SSIM of denoising results of four underwater images with Gaussian noise
intensity of 0.02 using different wavelets. The 1st best results are in bold. ↑: The higher, the better.

Haar Bior3.5 DB2 BCS-SW

Image PSNR SSIM PSNR SSIM PSNR SSIM PSNR ↑ SSIM ↑

Figure 5a 22.00 0.6166 21.80 0.5366 22.89 0.6664 23.36 0.6911

Figure 5b 22.11 0.5597 21.89 0.5521 23.12 0.6232 23.76 0.6547

Figure 5c 24.62 0.6159 23.53 0.5824 25.92 0.7137 27.00 0.7484

Figure 5d 22.31 0.5626 21.83 0.5335 23.19 0.6205 23.85 0.6528

BCS-SW(Ours)Gaussian NoisingOriginal Image Haar DB2Bior3.5

 a

b

c

d

Figure 5. The figures of four underwater images of BCS-SW, Haar, Bior3.5, and DB2 wavelet denoising.
And (a–d) are the original images, denoising with Gaussian noise and denoised by various wavelets
of the four underwater images. The first column is the original images, the second column is with
Gaussian noise, and columns 3–6 are denoising images using Haar, Bior3.5, DB2, and BCS-SW.

4.3. KLN vs. Other Underwater Image Enhancement Algorithms

As shown in Figure 6, the test results on UIEBT90 demonstrate significant improve-
ments in the background quality of the underwater images processed by the KLN. Par-
ticularly in the images in the first and third rows, a clearly visible change in background
color can be observed when compared with other processing methods. More importantly,
this enhancement in background color not only allows for the revelation of more details
in the background but also makes the subjects in the images more prominent, with color
restoration becoming more natural and realistic. The second row of images showcases
scenes abundant with fish. After the background improvement by the KLN, the contrast
between the background and the fish becomes more pronounced, making the target objects
within the images more discernible. Additionally, the texture information of the fish is more
clearly displayed in the images. As shown in Table 4, although the scores in PCQI, UIQM,
and UCIQE are not the highest, the gap from the highest value is minimal. Other methods
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might perform optimally in certain metrics, for example, the Ucolor method achieves the
highest score in UIQM, but its scores in UCIQE and PCQI are lower than our method’s
scores. Furthermore, compared with other methods, the images processed by our method
achieve the highest PSNR and SSIM values. Considering all factors, our model presents the
best overall performance.

Figure 6. The KLN vs. other underwater image enhancement methods on UIEBD. The PCQI of the
KLN is the best, meaning that the processing method has achieved good results in improving the
perceived color and quality of the underwater images.

Table 4. The mean UIQM, UCIQE, PCQI, PSNR, and SSIM scores of different methods on UIEBD90.
The best results are in bold. ↑: The higher, the better.

Original CLAHE
(1994)

UCDP
(2013)

GDCP
(2018)

Ucolor
(2021)

MLLE
(2022)

TOPAL
(2022)

U-Shape
(2023)

WWPF
(2023)

Semi-UIR
(2023) OURS

UIQM ↑ 2.4745 2.7409 2.0180 2.0995 3.0305 1.9561 2.8994 3.0141 2.3900 2.9503 2.8546

UCIQE ↑ 0.5031 0.5527 0.5860 0.6141 0.5709 0.6216 0.5726 0.5748 0.6341 0.6188 0.6089

PCQI ↑ — 1.2036 0.9324 1.0161 1.1033 1.2242 1.1377 1.0866 1.2187 1.1704 1.2516

PSNR ↑ — 23.9048 14.0771 15.5725 21.5026 15.3689 22.2745 21.9905 15.8602 19.3214 25.6162

SSIM ↑ — 0.9114 0.6379 0.7581 0.8984 0.5848 0.9028 0.8528 0.6345 0.8005 0.9538

As shown in Figure 7, a detailed examination of the images in the first and second
rows of the collection, especially the starfish at their centres, reveals a significant color
difference. These starfish should display a full orange-red hue in their natural state, but
after being processed by different methods, their color rendition varies. Compared to the
more subdued and greyish-orange appearance of the starfish processed by other methods,
those processed by the KLN exhibit a more vivid, rich, and natural orange-red color.
This stark contrast not only illustrates the KLN’s remarkable capability in restoring and
enhancing the red spectrum colors of underwater images but also highlights its superiority
in color authenticity. Further analysis of the data in Table 5 shows that the KLN ranks just
below WWPF in the UCIQE metric, demonstrating its strong performance in improving
the overall color quality of the underwater images. Notably, the KLN’s performance in
UIQM and PCQI is also very close to the best, validating its efficacy in maintaining image
color saturation, contrast, and brightness, while also emphasizing its exceptional ability
to preserve image details and texture. These comprehensive performances make the KLN
one of the best choices among various underwater image enhancement technologies for
overall effectiveness.
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Table 5. The mean UIQM, UCIQE, and PCQI scores of different methods on UIQS. The 1st and 2nd
best results are in bold and underline, respectively. ↑: The higher, the better.

Original CLAHE
(1994)

UCDP
(2013)

GDCP
(2018)

Ucolor
(2021)

MLLE
(2022)

TOPAL
(2022)

U-Shape
(2023)

WWPF
(2023)

Semi-UIR
(2023) OURS

UIQM ↑ 2.4641 2.6795 2.1315 2.4002 2.9963 2.4112 2.8644 2.9705 2.6591 2.9582 2.7684

UCIQE ↑ 0.4321 0.4761 0.5128 0.5467 0.5317 0.5829 0.5004 0.5456 0.5958 0.5667 0.5897

PCQI ↑ — 1.2268 1.1041 1.2127 1.2121 1.3304 1.0899 1.2035 1.3002 1.2911 1.2616

Figure 7. The KLN vs other underwater image enhancement methods on UIQS. The UCQIE of the
KLN is the 2nd best, showing that the processing method has a good effect on improving the color
quality of the underwater images.

When comparing our model with two other deep learning models, we observed
significant differences in the number of parameters and computational complexity (FLOPS),
as shown in Table 6. Our model has the highest number of parameters (57.24 M) and
FLOPS (207.8 G), indicating that its network structure is the most complex and suitable for
tasks that require synthesizing a large amount of global and local information. In contrast,
the U-shaped model performs tasks with fewer parameters (31.6 M) and FLOPS (26.11 G),
which may be more effective in simple or real-time applications. The UIR model operates
with an extremely low number of parameters (1.68 M) but relatively high FLOPS (36.44 G),
reflecting its efficient use of parameters, making it suitable for environments with limited
computational resources but that require high processing capabilities.

Table 6. The Flops (G) and total parameters of our method with others.

U-Shape Semi-UIR OURS

Flops (G) 26.11 36.44 207.8
Total Parameters (M) 31.6 1.68 57.24

5. Conclusions

In this work, we propose the BCS-SW and introduce the KLN model based on the BCS-
SW. We substantiate the effectiveness of both the BCS and the KLN through the theoretical
analysis in Section 3. Further, in Section 4, we demonstrate that that BCS-SW surpasses
other wavelets in terms of image decomposition, denoising, and reconstruction capabilities.
Additionally, we validate the effectiveness of the KLN for underwater image processing
tasks. Our approach provides a practical methodology that serves as a benchmark for
integrating wavelet and deep learning techniques in underwater image enhancement and
related efforts. However, our integration of wavelet processing in the network leads to
a higher computational demand compared to other methods, thus limiting our ability to
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further expand the depth and breadth of the KLN to enhance its performance. In future
research, we will focus on how to conveniently incorporate wavelet analysis into deep
neural networks. Moving forward, we aim to continue exploring strategies to address
image processing challenges through the fusion of wavelet and deep learning technologies.
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