
Citation: Drozd, K.; Furfaro, R.;

D’Ambrosio, A. A Theory of

Functional Connections-Based

hp-Adaptive Mesh Refinement

Algorithm for Solving Hypersensitive

Two-Point Boundary-Value Problems.

Mathematics 2024, 12, 1360.

https://doi.org/10.3390/

math12091360

Academic Editor: Alicia Cordero

Received: 15 March 2024

Revised: 20 April 2024

Accepted: 22 April 2024

Published: 29 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Theory of Functional Connections-Based hp-Adaptive Mesh
Refinement Algorithm for Solving Hypersensitive Two-Point
Boundary-Value Problems
Kristofer Drozd , Roberto Furfaro * and Andrea D’Ambrosio

System & Industrial Engineering, University of Arizona, Tucson, AZ 85721, USA; kdrozd@arizona.edu (K.D.);
dambrosio@arizona.edu (A.D.)
* Correspondence: robertof@arizona.edu; Tel.: +1-520-621-2525

Abstract: This manuscript introduces the first hp-adaptive mesh refinement algorithm for the Theory
of Functional Connections (TFC) to solve hypersensitive two-point boundary-value problems (TP-
BVPs). The TFC is a mathematical framework that analytically satisfies linear constraints using an
approximation method called a constrained expression. The constrained expression utilized in this
work is composed of two parts. The first part consists of Chebyshev orthogonal polynomials, which
conform to the solution of differentiation variables. The second part is a summation of products
between switching and projection functionals, which satisfy the boundary constraints. The mesh
refinement algorithm relies on the truncation error of the constrained expressions to determine the
ideal number of basis functions within a segment’s polynomials. Whether to increase the number
of basis functions in a segment or divide it is determined by the decay rate of the truncation error.
The results show that the proposed algorithm is capable of solving hypersensitive TPBVPs more
accurately than MATLAB R2021b’s bvp4c routine and is much better than the standard TFC method
that uses global constrained expressions. The proposed algorithm’s main flaw is its long runtime due
to the numerical approximation of the Jacobians.

Keywords: mesh refinement; hypersensitive boundary-value problems; functional interpolation;
optimal control; theory of functional connections

MSC: 49M05

1. Introduction

In recent years, the Theory of Functional Connections (TFC) [1] has garnered much
interest from researchers for obtaining numerical solutions to scientific and engineering
problems. A few examples of the types of problems the TFC has been used to solve
include those from transport theory [2], solid mechanics [3,4], and orbit transfer [5–7].
The increase in the TFC’s popularity is due to its successful use of functional interpolation
to analytically satisfy linear constraints exactly. Functional interpolation is performed
by approximating a solution via a constrained expression, which comprises an arbitrary
free function and a summation of products between switching functions and projection
functionals. Some constraints that could be handled were immediately apparent during the
TFC’s inception by Daniele Mortari [8]. Examples include point, derivative, and relative
constraints. The ability of the TFC to analytically satisfy these constraints exactly allowed
it to be used to solve one-dimensional nonlinear ordinary differential equations (ODEs)
in milliseconds and with machine-level accuracy [9]. In this work, we are concerned
with solving linear and nonlinear hypersensitive two-point boundary-value problems
(TPBVPs) stemming from optimal control problems (OCPs) involving point and derivative
constraints. These problems are challenging because of steep gradients in their solutions,
which are difficult to approximate with global constrained expressions. We overcome this

Mathematics 2024, 12, 1360. https://doi.org/10.3390/math12091360 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12091360
https://doi.org/10.3390/math12091360
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1064-0581
https://orcid.org/0000-0001-6076-8992
https://orcid.org/0000-0002-8084-4101
https://doi.org/10.3390/math12091360
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12091360?type=check_update&version=2

Mathematics 2024, 12, 1360 2 of 35

challenge by developing the first hp-adaptive mesh refinement algorithm for the TFC.
The algorithm splits the constrained expressions into multiple segments and adaptively
determines the length, location, and hyperparameters for each segment to accurately
approximate a solution.

Three families of optimal control methods exist: dynamic programming (DP) [10],
direct [11,12], and indirect methods [13,14]. DP solves an OCP by transforming it into the
Hamilton–Jacobi–Bellman (HJB) partial differential equation, which gives the necessary
and sufficient conditions for an optimal solution when solved and enables closed-loop
control effort. Direct methods convert the OCP into a nonlinear programming (NLP)
problem that can be solved by any of the available NLP solvers in the literature but are
inherently open-loop. Indirect methods are also open-loop, but they analytically construct
the necessary conditions for optimality via Pontryagin’s Minimum Principle (PMP) and
solve a resulting dual TPBVP to obtain the OCP solution. Indirect methods tend to solve
OCPs more accurately than direct methods but are less likely to converge because they
are more sensitive to an initial guess. Whether one class of methods should be used over
another is problem-dependent. Hence, the TFC has already been used to solve OCPs via
all three families, but some more than others. Schiassi et al. used a subset of the TFC,
called the Extreme Theory of Functional Connections (X-TFC), to solve the HJB for finite
and infinite horizon OCPs with linear and nonlinear dynamics [15]. For the direct method,
Zhang et al. solved several coplanar orbit low-thrust multi-target visit problems, governed
by aspherical gravity perturbation, with the TFC to analytically satisfy the orbital multi-
target visit constraints in an NLP [16]. The TFC has been used to solve OCPs via the indirect
method much more extensively in the literature. For example, by forming a TPBVP via
PMP, the TFC has been used to solve many spacecraft energy optimal rendezvous problems
in order to avoid keep-out-zones [17], planetary landing problems [18], and the famous
Riccati problem of optimal control [19].

Even though the TFC has been shown to solve many OCPs very well via the indirect
method, the method fails to converge on solutions that are not smooth (e.g., bang-bang
problems). This occurs because the TFC initially utilizes global orthogonal polynomials for
the free function, which only converge exponentially on smooth continuous functions [20]
(p. 29). This issue was rectified by Johnston et al. by splitting the domain of a fuel-optimal
planetary landing OCP into several intervals connected by knot points [18]. The knot points
were placed where the discontinuity in the solution occurred, making each interval smooth.
The total solution could then be converged upon by using constrained expressions for
each segment and tying them together. The locations of the knot points were found via
an optimization algorithm, which was feasible because the number of switching points
in a fuel-optimal planetary landing OCP is known when the gravity is assumed to be
constant [21]. A technique where the domains of TPBVPs could be split into segments
and solved with the TFC was eventually formalized by Johnston and Mortari [22] for
solving hybrid problems. Nonetheless, Johnston and Mortari provided no insight into
how to determine the number of orthogonal polynomial basis terms in an interval and
how to determine the number of intervals when they are unknown a priori. Hence,
our desire to develop a TFC-based adaptive mesh refinement algorithm for determining
these hyperparameters.

Researchers have heavily investigated the use of adaptive mesh refinement algorithms
in conjunction with many OCP techniques. One of the more well-known applications in
optimal control theory is the coupling with pseudospectral methods for solving OCPs
directly [23–27], where the state and control are approximated using Lagrange orthogonal
polynomials with Gaussian quadrature collocation points. Most adaptive mesh refinement
methods for pseudospectral methods are referred to as hp methods because they achieve
better convergence toward the solution by varying the number of intervals on the domain
(the h method) and the degree of the orthogonal polynomial (the p method). A more
in-depth explanation of the h, p, and hp methods can be found by studying finite-element
methods [28–30], where they are also widely used. For the mesh refinement algorithm

Mathematics 2024, 12, 1360 3 of 35

to be adaptive, an a posteriori estimate of the error between the actual and approximate
solutions must be quantified to determine the ideal number of intervals, the degree of the
approximating polynomials, and the location of the knot points for each interval. For ex-
ample, Darby et al. approximated the error by computing the residuals on and between
collocation points [24]. When the error was above some tolerance, they increased the
polynomial degree in intervals with low curvature or uniform error across the collocation
points. An interval was divided into subintervals instead when the curvature was high
or the error across the collocation points in an interval was not uniform. Unfortunately,
the error estimates from Darby et al. [24] created much noise, making them computationally
intractable when a highly accurate solution is desired. Patterson et al. developed a more
accurate error estimate by using the difference between an interpolated value of the state
and a quadrature approximation to the integral of the state dynamics [25]. They performed
adaptive mesh refinement based on an error estimate ratio: when a set number of polyno-
mial degrees was used to approximate the state, the degree number was increased by one
for interpolation. The spectral convergence properties of pseudospectral methods could
then be used to determine how many degrees to increase the polynomial by or to divide
the interval into smaller subintervals.

The mesh refinement methods proposed in [24,25] only increased the mesh, which
sometimes increased the computational complexity. Liu et al. [26] introduced a technique
that both increased and decreased the mesh based on the error estimate from Patter-
son et al. [25] and used a ratio between the second derivative of the approximation on
the current mesh and the previous one to determine the smoothness of an interval. Their
algorithm used the power-series representation of the Lagrange polynomial to reduce the
degree of the approximating polynomial within a mesh interval for smooth intervals when
the estimated error was lower than the tolerance. Smooth neighboring mesh intervals were
also combined when the estimated error of the larger interval, which extended into the
smaller one, was similar. More recently, Liu et al. [27] discovered a new way to estimate
the smoothness of mesh intervals according to the decay rate of a Legendre polynomial
approximation and increased the mesh size based on the decay rate. The work performed
in this manuscript is heavily inspired by [27].

This paper proposes an hp-adaptive mesh refinement algorithm that the TFC, with a
truncated Chebyshev orthogonal polynomial-free function, can use to solve hypersensitive
TPBVPs. The error between the actual solution and the constrained expression approxi-
mation is estimated using an exponential least-squares fit of the Chebyshev coefficients,
the orthogonal property of Chebyshev polynomials, and a rule of thumb that correlates the
error associated with Chebyshev polynomials when approximating functions with their
truncation error. The decay rate of the exponential least-squares fit of the Chebyshev coeffi-
cients can be used to determine the smoothness of the solution on an interval. When the
error estimate is greater than some tolerance and the interval is deemed smooth, the super-
geometric convergence of the truncation error for Chebyshev polynomials can be used to
relate the error to the ideal number of basis functions in the Chebyshev polynomial needed
to satisfy the tolerance. If the interval is not smooth, it is divided into subintervals so that
the solution in each subinterval is easier to approximate with a constrained expression.
Smooth intervals can have the number of basis functions in the Chebyshev polynomial
decreased when they already satisfy the error estimate. Furthermore, smooth intervals can
also be combined if they are exceptionally smooth or if the number of basis functions in all
their constrained expression approximations is some minimum number.

As the name of this manuscript suggests, we only demonstrate how the proposed
hp-adaptive mesh refinement algorithm can be used to solve hypersensitive TPBVPs, even
though it can also be used for more well-behaved problems. Hypersensitive problems
have a very long time domain with respect to the rates of expansion and contraction of the
dynamics in specific directions within a neighborhood of the optimal solution [31]. Thus,
the TPBVPs solved in this work have sharp increases in the gradients near the boundary
conditions and a smooth segment between them. These sharp increases concerning the

Mathematics 2024, 12, 1360 4 of 35

entire domain make hypersensitive TPBVPs challenging to solve with global constrained
expression approximations. Although hypersensitive TPBVPs can stem from the indirect
method of optimal control, the ones we solve in this work do not contain inequality
constraints on the control or states. We do not solve these types of problems in this
work because they require smoothing techniques along with a continuation procedure,
drastically decreasing computational efficiency. The computation time of our hp-adaptive
mesh refinement algorithm is already long (see Section 6 for more details). Therefore, we
hope to speed up the computational runtime before coupling the proposed hp-adaptive
mesh refinement algorithm with continuation.

This manuscript is outlined as follows. In the next section, we introduce how to solve
a general TPBVP with the TFC, as well as how to split the domain into intervals and solve
the solution over each with the TFC. The derivation of an error estimate for constrained
expressions with orthogonal polynomial-free function approximations is highlighted in
Section 3, along with an error analysis for smooth and nonsmooth functions. The TFC-
based hp-adaptive mesh refinement algorithm that uses our derived error estimate is then
proposed in Section 4. Numerical results for solving three hypersensitive TPBVPs are
then provided and discussed in Section 5, along with a computational time study. Lastly,
conclusions and an outlook on future work are presented in Section 7.

2. Theory of Functional Connections

Here, the TFC is first presented for solving a TPBVP with a single ODE and with a
global constrained expression. We then show how global constrained expressions can be
used to solve a TPBVP composed of a system of ODEs. Lastly, we demonstrate how global
constrained expressions can be replaced with piecewise constrained expressions, where
each only approximates a domain segment.

2.1. General TPBVP Outline

Solving a TPBVP via the TFC can be accomplished by following a simple set of
procedures. Indeed, a “cookbook” guide can be summarized in three steps:

1. Define the loss equation(s), which are represented by the residuals of the differential
equations (DEs).

2. Derive the constrained expression(s).
3. Map the problem domain to that of the free function (if necessary) or simply normalize

it for numerical stability.

Assume a general TPBVP,

ÿ(t) = f (t, y(t), ẏ(t)) subject to:

{
y(t0) = y0

y(t f) = y f
, (1)

where f is some function in terms of time t and the differentiation variable y. As its name
suggests, the TPBVP is constrained at the beginning and end of the time domain t ∈ [t0, t f].
With the TFC, we approximate the solution with a constrained expression Y,

y(t) ≈ Y(t, g(t)) = g(t) +
Nconst

∑
l=1

Ωl(t) ϱl(tl , g(tl)), (2)

where g(t) is a free function, Ωl(t) are switching functions, ϱl(tl , g(tl)) are projection
functionals, and Nconst is the number of linear constraints.

Defining the loss equation for any set of DEs, including the ODE in Equation (1), is
easy. Simply bring all terms to one side of the equals sign, like so,

ÿ(t)− f (t, y(t), ẏ(t)) = f̂ (t, y(t), ẏ(t), ÿ(t)) = 0, (3)

Mathematics 2024, 12, 1360 5 of 35

where f̂ is the constrained DE residual. To turn the TPBVP into an unconstrained problem
(i.e., f̂ is no longer subject to y0 and y f), the constrained expressions for y and ẏ must
be derived.

We start the process of figuring out the constrained expressions by rewriting
Equation (2) as

Y(t, g(t)) = g(t) + Ω1(t) ϱ1(t0, g(t0)) + Ω2(t) ϱ2(t f , g(t f)).

The projection functionals (i.e., ϱ1 and ϱ2) are simply the difference between the constraint
value and the free function evaluated at the point where the constraint is defined:

ϱ1 = y0 − g(t0)

ϱ2 = y f − g(t f).

The most cumbersome part of deriving the constrained expressions is the derivation of the
switching functions, which are of the general forms

Ω1(t) =
Nconst=2

∑
i=1

si(t) αi1 and Ω2(t) =
Nconst=2

∑
i=1

si(t) αi2.

Only two switching functions exist because the ODE has two boundary constraints. Com-
bining the equations for the switching functions into a compact linear combination where
the constraints occur yields[

s1(t0) s2(t0)
s1(t f) s2(t f)

][
α11 α12
α21 α22

]
=

[
Ω1(t0) Ω2(t0)
Ω1(t f) Ω2(t f)

]
.

To figure out the switching functions, compute the unknown coefficients αij. The sup-
port functions si do not have to be derived but can merely be chosen. However, to ensure
the support matrix is invertible, the columns of the support matrix must be linearly inde-
pendent. For point constraints, like in our case, the selection of s1(t) = 1 and s2(t) = t
satisfies this condition. A switching function is defined as being equal to 1 when evaluated
at the constraint it is referencing and equal to 0 at all other constraints. Therefore, the system
can be solved as [

1 t0
1 t f

][
α11 α12
α21 α22

]
=

[
1 0
0 1

]
[

α11 α12
α21 α22

]
=

[
1 t0
1 t f

]−1[1 0
0 1

]
=

1
t f − t0

[
t f −t0
−1 1

]
.

Substituting the coefficients back into the switching functions and simplifying them gives

Ω1(t) =
t f s1(t)− s2(t)

t f − t0
=

t f − t
t f − t0

and

Ω2(t) =
s2(t)− t0 s1(t)

t f − t0
=

t− t0

t f − t0
.

With the switching and projection functions defined, all that is left to do to finish
deriving the constrained expression is to decide what the free function should be. One

Mathematics 2024, 12, 1360 6 of 35

commonly selected free function among researchers who utilize the TFC method for solving
ODEs is a Chebyshev polynomial expansion of the first kind,

g(t) =
Nconst+L−1

∑
j=Nconst

ξ j Tj(τ) = ξ⊺ T (τ),

where ξ j are the coefficients, Tj(τ) are the Chebyshev basis functions, and L is the number
of chosen basis functions. When one expresses a Chebyshev series, one often starts the
summation from the zeroth order (i.e., j = 0). The TFC process requires the series summa-
tion to begin at the order equal to the number of constraints (i.e., j = Nconst) because the
Chebyshev series terms of order less than Nconst are linearly dependent on the switching
functions. The algebraic system of equations formed via the loss functions must be linearly
independent to ensure that the Jacobian products are invertible in the Gauss–Newton
algorithm and linear least squares give a unique solution. The loss function eventually
derived is guaranteed to be linearly independent when the Chebyshev series begins at
j = Nconst.

The domain of Chebyshev polynomials τ ∈ [−1, 1] does not coincide with the time
domain t ∈ [t0, t f] unless t0 = −1 and t f = 1. Thus, to ensure all terms within the
constrained expressions are on the same domain, the switching functions can be linearly
mapped to the τ domain using the equations,

τ = τ0 +
τf − τ0

t f − t0
(t− t0) ←→ t = t0 +

t f − t0

τf − τ0
(τ − τ0).

The w-th derivative of the free function can then be defined as

dwg
dtw = ξ⊺

dwT (τ)

dτw cw, (4)

where the mapping constant c is

c =

(
2

t f − t0

)
. (5)

With the free function and subsequent mapping defined, the constrained expressions for
the y, ẏ, and ÿ(t) variables that make up the loss equation can be defined as

Y(t) = Y(τ) = ξ⊺ T (τ) + Ω1(τ)
(

y0 − ξ⊺ T (τ0)
)
+ Ω2(τ)

(
y f − ξ⊺ T (τf)

)
=
(
T (τ)−Ω1(τ)T (τ0)−Ω2(τ)T (τf)

)⊺
ξ + Ω1(τ) y0 + Ω2(τ) y f ,

dY(t)
dt

= c
dY(τ)

dτ
=

(
2

t f − t0

) [(dT (τ)

dτ
− dΩ1(τ)

dτ
T (τ0)−

dΩ2(τ)

dτ
T (τf)

)⊺
ξ

+
dΩ1(τ)

dτ
y0 +

dΩ2(τ)

dτ
y f

]
,

and

d2Y(t)
dt2 = c2 d2Y(τ)

dτ2 =

(
2

t f − t0

) [(d2T (τ)

dτ2 − d2Ω1(τ)

dτ2 T (τ0)−
d2Ω2(τ)

dτ2 T (τf)
)⊺

ξ

+
d2Ω1(τ)

dτ2 y0 +
d2Ω2(τ)

dτ2 y f

]
.

The constrained expressions can now be plugged into Equation (3), which transforms
the constrained ODE f̂ into an unconstrained ODE f̌ consisting of the basis domain τ,

Mathematics 2024, 12, 1360 7 of 35

unknown Chebyshev coefficients ξ, endpoints of the time domain (t0 and t f), and the
boundary conditions of the constrained ODE β:

f̌ (τ, ξ, β, t f , t0) = c
d2Y(τ)

dτ2 − f
(

τ, Y(τ), c
dY(τ)

dτ

)
= 0,

where β =
{

y0, y f
}⊺.

With the constrained expressions plugged into the DE residual, an algebraic sys-
tem of equations can be formed after the domain is discretized with Chebyshev–Gauss–
Lobatto nodes,

τd = − cos
dπ

N
for all d = (0, . . . , N − 1),

where N is the number of discretization points, also called collocation points. Note that
having N ≥ L ensures that the algebraic system of equations formed via the loss equa-
tions is not undetermined. Chebyshev–Gauss–Lobatto nodes are better than uniformly
spaced points for discretizing the domain because they avoid the Runge phenomena. Once
the domain is discretized, a vector of loss functions at each discretization point can be
expressed as

L(ξ) =

f̌ (τ0, ξ, β, t f , t0)
...

f̌ (τd, ξ, β, t f , t0)
...

f̌ (τN−1, ξ, β, t f , t0)

, (6)

where ξ is the only unknown variable, which is why we write the loss only in terms of it
here. If f is linear, then ξ within f̌ will show up linearly. Equation (6) then yields the form

Aξ + b = 0, (7)

where the matrix A is a linear combination of terms multiplied by ξ, while the vector b is the
loss vector evaluated at ξ = 0. Linear least squares can then be used to solve Equation (7)
for ξ.

In the case of nonlinear DEs, Equation (6) will be nonlinear in the unknown ξ j coeffi-
cients. The Gauss–Newton method, also known as iterative least squares, can then be used
to solve for the change in ξ at each p iteration step, which is denoted by

∆ξ p = ξ p+1 + ξ p. (8)

The Gauss–Newton technique is expressed as

∆ξ p = −
(

J(ξ p)
⊺ J(ξ p)

)−1
J(ξ p)

⊺L(ξ p),

where J(ξ p) is the Jacobian of the loss vector with respect to the ξ variables and is computed
at ξ p. Iterations are repeated until some stopping criterion(s) is met, which in this work is

∥L(ξ p)∥∞ < εGN, ∥L(ξ p+1)∥∞ − ∥L(ξ p)∥∞ < εGN, or p = pmax, (9)

where εGN defines some user-prescribed tolerance, ∥ · ∥∞ refers to the L∞-norm, and pmax
is the maximum number of iterations. When any stopping criterion is met, the solution is
obtained by substituting ξ into the constrained expression and mapping back to the problem
domain, which in this example is time. If the last two stopping criteria were met before the
first, then the Gauss–Newton algorithm failed to converge toward an accurate solution.

Mathematics 2024, 12, 1360 8 of 35

2.2. Solving Systems of ODEs

The example of the general TPBVP solved via the TFC method in the previous walk-
through only contained a single ODE. TPBVPs composed of n ODEs can also be solved via
the TFC. Consider the following TPBVP:

ÿi(t) = fi(t, y(t), ẏ(t)) subject to yi(til) = βil , (10)

where i ∈ (1, . . . , n), l ∈ (1, . . . , Nconsti) and y ∈ Rn. The βil constant in Equation (10) is
the l-th point constraint on the i-th differentiation variable. Furthermore, til is the time at
which the l-th constraint occurs on the i-th differentiation variable. To solve this problem
with the TFC, a constrained expression may be written for each i-th differentiation variable,

yi(t) ≈ Yi(t) = gi(t) +
Nconsti

∑
l=1

Ωil(t)ϱil(til , gi(til)),

where Nconsti represents the number of constraints on the i-th differentiation variable.
The free function, switching functions, and projection functionals can be derived/chosen

following the same procedure as in the previous subsection. Likewise, each constrained
expression can be discretized to form a system of algebraic equations,

Li(Ξ, B, t0, t f) =

f̌i(τ0, Ξ, B, t0, t f)

...
f̌i(τN−1, Ξ, B, t0, t f)

=

c2 d2Yi(τ0)

d2τ
− fi

(
τ0, Y(τ0), c dY(τ0)

dτ

)
...

c dYi(τN−1)
dτ − fi

(
τN−1, Y(τN−1), c2 d2Y(τN−1)

d2τ

)
,

(11)

Consider that the ξ i and βi variables refer to the vector of Chebyshev coefficients and vector
of point constraints associated with the i-th differentiation variable, respectively. Then, the
Ξ and β variables in Equation (11) represent the vectors of all Chebyshev coefficient vectors
and point constraint vectors appended together as follows:

Ξ =
{

ξ⊺1 , . . . , ξ⊺i , . . . , ξ⊺n
}⊺ (12)

and
B =

{
β⊺

1 , . . . , β⊺
i , . . . , β⊺

n
}⊺.

Note that the lengths of ξ i and βi do not have to be identical. Furthermore, Y ∈ Rn in
Equation (11) is a vector of constrained expressions, where the i-th element approximates
the i-th differentiation variable. An augmented algebraic system of equations can be
formed as

L(Ξ) =

L1(Ξ)
...

Li(Ξ)
...

Ln(Ξ)

.

We wrote the final form of the loss only in terms of the unknowns, as in the previous
subsection. Substituting ξ with Ξ and L(ξ) with L(Ξ) into Equations (8) and (9) then
allows Ξ to be computed via the Gauss–Newton method. If all of the fi functions are linear,
then linear least squares can be used.

Mathematics 2024, 12, 1360 9 of 35

2.3. Domain Decomposition

The domain decomposition technique we employ is the same as that presented by
Johnston and Mortari [22]. In their work, the authors developed a TFC algorithm that
decomposes the domain for solving TPBVPs related to hybrid systems (i.e., systems where
a time-sequence of DEs governs the dynamics), along with those that are not but have
dynamics that contain transient or stiff behavior. One example is the fuel-optimal planetary
landing problem whose control action is bang-bang [18] (i.e., switches between a maximum
and minimum, and vice versa). However, the numerical examples provided only involved
splitting the domain into two or three segments. This work uses the same procedure when
the domain is split into many more segments. How the domain is decomposed is described
here for the reader’s convenience. If the reader has any lingering questions, we recommend
they read Refs. [18,22].

Assume a TPBVP with one ODE and two boundary conditions, as in Equation (1).
To solve this problem with the domain decomposed, separate constrained expressions must
be derived for each segment Sk for k = (1, . . . , K), where K is the total number of segments.
Between each segment, C1 continuity must be enforced and computed together with the
Chebyshev coefficients. Figure 1 depicts a solution to the TPBVP where the domain is
decomposed into multiple segments. Be aware that Yt in the figure refers to the derivative
of Y with respect to t. First, let us talk about the segments at the ends of the domain, i.e., S1
and SK. The initial segment needs a constrained expression that analytically satisfies three
constraints: y(t0) = y0, y(t1) = y1, and ẏ(t1) = ẏ1. The boundary condition gives the first
constraint, y0, while the last two, y1 and ẏ1, are continuity conditions with the next segment.
Similar to the first segment, the last segment’s constraint expression analytically satisfies
three constraints as well: y(tK−1) = yK−1, y(t f) = y f , and ẏ(tK−1) = ẏK−1. Following the
TFC process already introduced, the constrained expression for the first and last segments
can be written as

(1)Y
(
t, (1)g(t)

)
= (1)g(t) + (1)Ω1(t)

(
y0 − (1)g(t0)

)
+ (1)Ω2(t)

(
y1 − (1)g(t1)

)
+ (1)Ω3(t)

(
ẏ1 − (1) ġ(t1)

)
and

(K)Y
(
t, (K)g(t)

)
= (K)g(t) + (K)Ω1(t)

(
yK−1 − (K)g(tK−1)

)
+ (K)Ω2(t)

(
y f − (K)g(t f)

)
+ (K)Ω3(t)

(
ẏK−1 − (K) ġ(tK−1)

)
,

where the switching functions are

(1)Ω1(t) =
1

(t1 − t0)
2

(
t2
1 − t1 t + t2

)
(1)Ω2(t) =

1

(t1 − t0)
2

(
t0(t0 − 2 t1) + 2 t1 t− t2

)
(1)Ω3(t) =

1
t1 − t0

(
t0 t1 − (t0 + t1)t + t2

)
(K)Ω1(t) =

1(
t f − tK−1

)2

(
t f

(
t f − 2 tK−1

)
+ 2 tK−1t− t2

)
(K)Ω2(t) =

1(
t f − tK−1

)2

(
−t f tK−1 +

(
t f + tK−1

)
t− t2

)
(K)Ω3(t) =

1
t f − tK−1

(
t2
K−1 − 2 tK−1 t + t2

)
.

Mathematics 2024, 12, 1360 10 of 35

𝑡

(0)𝑌 𝑡0

(0)𝑌𝑡 𝑡0

(1)𝑌 𝑡1

(1)𝑌𝑡 𝑡1

(𝑘−1)𝑌 𝑡𝑘−1

(𝑘−1)𝑌𝑡 𝑡𝑘−1

(𝐾−1)𝑌 𝑡𝑛−1

(𝐾−1)𝑌𝑡 𝑡𝑛−1

(𝑘)𝑌 𝑡𝑘

(𝑘)𝑌𝑡 𝑡𝑘

𝑌
(𝐾)𝑌 𝑡𝑛

(𝐾)𝑌𝑡 𝑡𝑛

Figure 1. K-segment constrained expressions with C1 continuity enforced. Red dots indicate the
boundary/continuity conditions for each constrained expression.

The switching functions for the first and last segments are different because the
continuity conditions are at the end of the first segment and the beginning of the last
segment. On the other hand, the constrained expressions for the interior segments, Sk for all
k = (2, . . . , K− 1), have constrained expressions with identical switching functions because
they always analytically satisfy three continuity constraints at both ends of their domain:
y(tk−1) = yk−1, y(tk) = yk, ẏ(tk−1) = ẏk−1, and ẏ(tk) = ẏk. Unlike the end segments, none
of the constraints for the interior segments are associated with the boundary conditions.
Thus, the interior segments only have to deal with enforcing continuity. The constrained
expressions for these segments can be written as

(k)y
(
t, (k)g(t)

)
= (1)g(t) + (k)Ω1(t)

(
yk − (k)g(tk−1)

)
+ (k)Ω2(t)

(
yk − (k)g(tk)

)
+ (k)Ω3(t)

(
ẏk−1 − (k) ġ(tk−1)

)
+ (k)Ω4(t)

(
ẏk − (k) ġ(tk)

)
where the switching functions are

(k)Ω1(t) =
1

(tk − tk−1)
3

(
−t2

k(2tk−1 − tk) + 6 tk−1 tk t− 3(tk−1 + tk)t2 + 2t3
)

(k)Ω2(t) =
1

(tk − tk−1)
3

(
−t2

k−1(tk−1 − 3 tk)− 6 tk−1 tk t + 3(tk−1 + tk)t2 − 2 t3
)

(k)Ω3(t) =
1

(tk − tk−1)
2

(
−tk−1 t2

k + tk(2 tk−1 + tk)t− (tk−1 + 2 tk)t2 + t3
)

(k)Ω4(t) =
1

(tk − tk−1)
2

(
−t2

k−1 tk + tk−1(tk−1 + 2 tk)t− (2 tk−1 + tk)t2 + t3
)

.

Mathematics 2024, 12, 1360 11 of 35

Now, assume the TPBVP is composed of n ODEs. The free functions within the
various constrained expressions can be expressed as truncated Chebyshev polynomials on
the domain τ ∈ [−1, 1]. Using Equations (4) and (5), we have

(k)gi(t) = (k)gi(τ),
d(k)gi(τ)

dt
= (k)c

d(k)gi(τ)

dτ
, and ck =

2
tk − tk−1

.

Then, by discretizing the domains, the augmented loss vector that combines the loss vectors
for each differentiation variable in each segment can be written as

(k)L
(
(k)Ξ, (k)B, tk−1, tk

)
=

(k)L1

(
(k)Ξ, (k)B, tk−1, tk

)
...

(k)Li

(
(k)Ξ, (k)B, tk−1, tk

)
...

(k)Ln

(
(k)Ξ, (k)B, tk−1, tk

)

where

(k)Li

(
(k)Ξ, (k)B, tk−1, tk

)
=

f̌i

(
τ0, (k)Ξ, (k)B, tk−1, tk

)
...

f̌i

(
τN−1, (k)Ξ, (k)B, tk−1, tk

)

=

c2

k
d2(k)Yi(τ0)

dτ2 − fi

(
τ0, (k)Y(τ0), ck

d(k)Y(τ0)
dτ

)
...

c2
k

d2(k)Yi(τN−1)
dτ2 − fi

(
τN−1, (k)Y(τN−1), ck

d(k)Y(τN−1)
dτ

)

.

The unknown variable (k)Ξ represents the k-th segment’s appended unknown Chebyshev
coefficient vector,

(k)Ξ =
{
(k)ξ⊺1 , . . . , (k)ξ⊺i , . . . , (k)ξ⊺n

}⊺
.

Likewise, (k)B refers to the augmented vector of point constraints for the k-th segment and
can be written as

(k)B =
{
(k)β⊺

1 , . . . , (k)β⊺
i , . . . , (k)β⊺

n

}⊺
.

Not all point constraints are known in constrained expressions that approximate only
a segment of the domain. Only the initial conditions on S1 and final conditions on SK are
known. All continuity conditions within a k-th segment and for an i-th differentiation
variable are unknown and are represented by (k) β̂i. Grouping the continuity conditions in
a segment gives

(k)B̂ =
{
(k) β̂1

⊺, . . . , (k) β̂i
⊺, . . . , (k) β̂n

⊺
}⊺

.

Likewise, grouping the continuity conditions in all segments gives

B̂ = unique
({

(1)B̂⊺, . . . , (k)B̂⊺, . . . , (K)B̂⊺
}⊺)

,

where unique(·) means only consider the unique elements of the · vector. All unknowns
can then be grouped to form

Z =
{
(1)Ξ⊺, . . . , (k)Ξ⊺, . . . , (K)Ξ⊺, B̂⊺

}⊺
.

Mathematics 2024, 12, 1360 12 of 35

Exactly how B̂ can be built for a specific TPBVP is shown in Appendix A.
The complete augmented loss vector that contains all segments and forms the system

of algebraic equations to be solved is

L(Z) =

(1)L(Z)
...

(k)L(Z)
...

(K)L(Z)

.

Once again, L is only explicitly written in terms of Z because the boundary conditions
within (1)B and (K)B are known, and so too are tk for all k = (1, . . . , K). The unknown Z
values can be computed using linear least squares when every fi is linear or the Gauss–
Newton algorithm when any fi is nonlinear. The L algebraic system will be taken in a
block diagonal form due to its segment-wise construction, allowing efficient algorithms for
computing sparse matrices to be exploited.

3. Error Estimation

The most critical aspect of an hp-adaptive mesh refinement algorithm is how it relates
the approximation error to when the order of the approximating polynomial should be
increased (p-adaptive mesh refinement) or when an approximating polynomial should
be divided into more segments (h-adaptive mesh refinement). For the TFC, increasing
the approximating polynomial order corresponds to adding more basis functions to the
constrained expression’s free function (a truncated expansion of Chebyshev polynomials).
In the previous section, it was shown that the TFC minimizes ∥L∥∞ to obtain an accurate
solution. However, a criterion for when to increase the number of basis functions in a
constrained expression or split the constrained expression into multiple segments can be
made by examining the constrained expression’s truncation error. Therefore, that criterion
is presented in this section, along with an error analysis of a few problems to demonstrate
that a low truncation error corresponds with a small ∥L∥∞.

3.1. Truncation Error of the Constrained Expression

Let y(τ) be a piecewise smooth bounded function on the interval τ ∈ [−1,+1] that
has Nconst point constraints at τl with l = (1, . . . , Nconst). Then, y(τ) can be approximated
with a constrained expression Y(τ), where the free function is a linear combination of
L Chebyshev polynomials, Tj for all j = (Nconst, . . . , L + Nconst − 1). Assuming point
constraints, the projection functionals within the constrained expression take the form

ϱj(τl) = y(τl)−
L+Nconst−1

∑
j=Nconst

ξ j Tj(τl).

Hence, the approximation (constrained expression) takes the form

y(τ) ≈ Y(τ) =
L+Nconst−1

∑
j=Nconst

ξ j Tj(τ) +
Nconst

∑
l=1

Ωl(τ)

(
y(τl)−

L+Nconst−1

∑
j=Nconst

ξ jTj(τl)

)
, (13)

where Ωl is the switching function for the l-th constraint. Since y(τ) is piecewise smooth
and bounded, it can be represented exactly by an infinite Chebyshev polynomial series,

y(τ) =
∞

∑
j=0

aj Tj(τ) =
Nconst−1

∑
j=0

aj Tj(τ) +
L+Nconst−1

∑
j=Nconst

aj Tj(τ) +
∞

∑
j=L+Nconst

aj Tj(τ),

Mathematics 2024, 12, 1360 13 of 35

where aj for all j = (0, . . . , ∞) are the Chebyshev coefficients of the infinite series. The Eu-
clidean norm, otherwise called the L2-norm, of the error between y(τ) and Y(τ) satisfies
the following inequality:

e = ∥y(τ)−Y(τ)∥2

=

∥∥∥∥∥ ∞

∑
j=0

aj Tj(τ)−
(

L+Nconst−1

∑
j=Nconst

ξ j Tj(τ) +
Nconst

∑
l=1

Ωl(τ)

(
y(τl)−

L+Nconst−1

∑
j=Nconst

ξ j Tj(τl)

))∥∥∥∥∥
2

≤ eT + eA + eC,

where eT is the truncation error, eA is the aliasing error, and eC is what we call the constraint
error. They are given as

eT =

∥∥∥∥∥ ∞

∑
j=L+Nconst

aj Tj(τ)

∥∥∥∥∥
2

, (14)

eA =

∥∥∥∥∥L+Nconst−1

∑
j=Nconst

(
aj − ξ j

)
Tj(τ)

∥∥∥∥∥
2

,

and

eC =

∥∥∥∥∥Nconst−1

∑
j=0

ajTj(τ)−
Nconst

∑
l=1

Ωl(τ)

(
y(τl)−

L+Nconst−1

∑
j=Nconst

ξ j Tj(τl)

)∥∥∥∥∥
2

.

The aliasing and constraint errors can only be calculated if the function being approxi-
mated is known. A critical conclusion about the magnitude of the truncation error can be
made from Rule of Thumb 1, as presented by Boyd [32] (p. 32):

Rule of Thumb 1. eA will be of the same order of magnitude as eT.

Furthermore, through testing, we found that the constraint error is of a similar magni-
tude to the aliasing error. Thus, if the truncation error is low, so too should be the aliasing
and constraint errors.

Note that ∥ f ∥2 = ⟨ f , f ⟩1/2 is the norm induced by the inner product

⟨ f , g⟩ =
∫ 1

−1
f (τ) g(τ)dτ. (15)

Using the definition of the inner product in Equation (15), the orthogonal property of
Chebyshev polynomials is

⟨Tm, Tn⟩ =
∫ 1

−1
Tm(τ) Tn(τ)

(
1− τ2

)−1/2
dτ =

π

2
δmn, (16)

where δmn is the Kronecker delta function. Multiplying
(
1− τ2)−1/4 by Equation (14) and

applying the absolute homogeneity of norms gives

(
1− τ2

)−1/4
eT =

(
1− τ2

)−1/4
∥∥∥∥∥ ∞

∑
j=L+Nconst

aj Tj(τ)

∥∥∥∥∥
2

=

∥∥∥∥∥ ∞

∑
j=L+Nconst

aj Tj(τ)
(

1− τ2
)−1/4

∥∥∥∥∥
2

.

(17)

Mathematics 2024, 12, 1360 14 of 35

Expanding the norm in Equation (17), substituting in Equation (15), and plugging in
Equation (16) gives a new expression for eT,

eT =
(

1− τ2
)1/4

∥∥∥∥∥ ∞

∑
j=L+Nconst

aj Tj(τ)
(

1− τ2
)−1/4

∥∥∥∥∥
2

=
(

1− τ2
)1/4

[
∞

∑
j=L+Nconst

∫ 1

−1
a2

j T 2
j (τ)

(
1− τ2

)−1/2
dτ

]1/2

=
(

1− τ2
)1/4

[
∞

∑
j=L+Nconst

a2
j

∫ 1

−1
T 2

j (τ)
(

1− τ2
)−1/2

dτ

]1/2

=
(π

2

)1/2 (
1− τ2

)1/4
[

∞

∑
j=L+Nconst

a2
j

]1/2

.

(18)

It has been shown that the Chebyshev series has super-geometric convergence when
y(τ) is analytic in the neighborhood of τ ∈ [−1,+1] [32,33]. Hence, the Chebyshev
coefficient values from the infinite expansion aj for all j = (0, . . . , ∞) decay as

|aj| ∼ O
(

s e−q̃ jr
)

,

with constants s, q̃ > 0, and r > 1. Following in the spirit of Lie et al. [27], we note that a
slightly smaller value q > 0 exists, such that

s e−q̃ jr ≤
(

s−min
j

(
s e−q j − |aj|

))
e−q j. (19)

The exponential upper bound is more convenient because it allows the Chebyshev
coefficients to be approximated with an exponential least-squares fit. The minimum in
Equation (19) represents a translation that ensures every value of aj is below the bound.
Since the solution of the problem being solved is often not known, the |aj| values cannot be
computed to perform the regression, but the truncated coefficients from the constrained
expression |ξ j| can. Based on Rule of Thumb 1, aj ≈ ξ j when the truncation error is low.
Thus, simply replace aj with ξ j in Equation (19) to obtain an upper bound estimate for
aj for all j = (Nconst, . . . , L + Nconst − 1). Extrapolation can then be used to obtain an
upper bound for j = (0, . . . , ∞). As a result, in this work, the upper bound for |aj| is
approximated by

ln
(
|aj|
)
≈ ln

(
|ξ j|
)
≤ ln (s)− δ− q j, (20)

with s, q > 0, j = (Nconst, . . . , L + Nconst − 1), and

δ = min
j

(
ln (s) − q j− ln

(
|ξ j|
))

.

The s and q coefficients are obtained by performing an exponential least-squares fit on |ξ j|,

ln
(
|ξ j|
)
= ln (s)− q j. (21)

Note that q represents the exponential decay of the Chebyshev coefficients. Furthermore,
an upper bound of eT can be derived by plugging Equation (20) into (18),

eT ≤
(π

2

)1/2 (
1− τ2

)1/4
[

∞

∑
j=L+Nconst

e2 (ln (s)−δ−q j)

]1/2

≤
(π

2

)1/2 (
1− τ2

)1/4
[

∞

∑
j=L+Nconst

(
s2 e−2 δ

)
e−2 q j

]1/2

.

(22)

Mathematics 2024, 12, 1360 15 of 35

The summation in Equation (22) is a geometric series with the common
ratio e−2 q,

∞

∑
j=L+Nconst

(
s2 e−2 δ

)
e−2 q j =

(
s2 e−2 δ

)
e−2 q (L+Nconst)

1− e−2 q .

Thus, Equation (22) becomes

eT ≤
(π

2

)1/2 (
1− τ2

)1/4
[(

s2 e−2 δ
)
e−2 q(L+Nconst)

1− e−2 q

]1/2

≤
π1/2 (1− τ2)1/4 (s e−δ

)
e−q(L+Nconst)(

2
(
1− e−2 q

))1/2

≤ π1/2 s e(−δ−q(L+Nconst))(
2
(
1− e−2 q

))1/2 = êT.

(23)

From Equations (20) and (23), one can see that the coefficients |ξ j| and the approximate
truncation error upper bound êT decrease at the same exponential rate q, a result sim-
ilar to that seen in Liu et al. [27]. Consequently, the Chebyshev coefficients ξ j for all
j = (Nconst, . . . , L + Nconst − 1) can be used to estimate the decay rate, q, of the trunca-
tion error as a function of the free function’s Chebyshev polynomial degree given in
Equation (13).

Before moving on, the reader may have noticed that the L2-norm is used to derive the
analytical expression for the truncation error (see Equation (14)). The L2-norm had to be
used to derive the expression using the orthogonal property of Chebyshev polynomials
(Equation (16)). On the other hand, the accuracy of the TFC is quantified by taking the
L∞-norm of the losses (see Equation (9)). In general, the L2-norm of the loss can also be
used to quantify the accuracy of the TFC, but we chose to use the L∞-norm in order to align
with the only textbook on the TFC [1]. Although the L2-norm of the truncation error and
the L∞-norm of the loss are two separate measurements, for one to be used for hp-adaptive
mesh refinement and the other used to be used as a stopping criterion, it is required that
both correlate. When one decreases, so must the other, and vice versa. This correlation is
demonstrated in Sections 3.3 and 3.4.

3.2. Determining Function Smoothness

How to determine when to add basis functions to a constrained expression within
a segment or split it up is a critical aspect of our mesh refinement algorithm. In the
same vein as Liu et al. [27], this decision can be made based on the decay rate of the ξ j
coefficients and the truncation error, i.e., the q value from Equations (21) and (23). The main
distinction between our work and [27] is that our decay rate comes from an exponential fit
on the truncated Chebyshev expansion coefficients within an approximating constrained
expression, whereas the decay rate from [27] comes from an exponential fit on the truncated
Legendre expansion coefficients computed from an approximating Lagrange polynomial.
Similar to [27], the function is smooth enough to be approximated with a single polynomial
if q is large. In other words, only basis functions need to be added to bring the error
down to some desired tolerance. If q is sufficiently small, then the function is not smooth
enough to be approximated with a single polynomial, and a piecewise polynomial should
be employed to approximate it. The cutoff decay rate value q̄, which decides when to
add basis functions or split a segment, is a design choice determined by the engineer.
When q ≥ q̄, basis functions should be added to the free function of the constrained
expression to improve the approximation. On the other hand, when q < q̄, the segment
the constrained expression approximates should be divided to improve the approximation.
In the next two subsections, error analysis studies are carried out on a normal TPBVP with a
smooth solution and a hybrid TPBVP with a nonsmooth solution to demonstrate agreement
between the decay rate of the ξ j coefficients and the truncation error’s maximum upper

Mathematics 2024, 12, 1360 16 of 35

bound êT, as well as determine how they correspond to the aliasing error, constraint error,
actual error, and L∞-norm of the loss.

3.3. Case 1 Error Analysis: TPBVP with a Smooth Solution

Consider the following TPBVP:

2 ÿ1(t)− y1(t) = 4 sin (2 t), s.t.

{
y(0) = 0
y(1) = 0

, (24)

which has the analytical solution

y1(t) = c1 et/
√

2 + c2 e−t/
√

2 − 4
19

sin (3 t),

where

c1 = − 4 e1/
√

2 sin (3)

19
(
−e
√

2 + 1
)

and

c2 =
4 e1/

√
2 sin (3)

19
(
−e
√

2 + 1
) .

It can be seen that y1(t) is a smooth function. Using the TFC procedure outlined in
Section 2, Equation (24) can be solved by approximating y1 as a constrained expression with
the truncated Chebyshev coefficients ξ j. Using the computed ξ j values via the TFC, a least-
squares exponential fit of the form shown in Equation (21) can be constructed. Equation (20)
can then be used to build an upper bound on the ξ j values. Subsequently, an upper bound
on the truncation error êT can be computed, as shown in Equation (23). The aliasing error eA
and the constraint error eC can also be computed because the true solution is known. Only
the infinite Chebyshev expansion coefficients aj have to be computed, which we performed
using the open-source MATLAB toolbox Chebfun [34]. Figure 2 shows how the actual error;
two variants of êT, eA, eC; two estimated error bounds (e = êT + eA + eC); the L∞-norm of
the loss shown in Equation (6); and the final Chebyshev coefficient ξL+Nconst−1 changed as
the number of Chebyshev basis functions L increased. The number of collocation points
N was set equal to L + 3. Note that the results in Figure 2 correspond to Rule of Thumb 2
from Boyd [32] (p. 51), which states the following:

Rule of Thumb 2. The truncation error is the same order of magnitude as the last coefficient
retained in the truncation for a series with geometric convergence.

For L ≥ 15, the ξL+Nconst−1 coefficients are so low in value that they are negligible.
Hence, the accuracy of the solution will not improve by adding more than 15 basis functions
to the Chebyshev polynomial. This can be observed by following the ∥L∥∞ and e curves in
Figure 2. All coefficients with j > LR, where LR = 15, are called the roundoff plateau [32]
(pp. 30–31) because their values are less than the machine-level error, which is 1× 10−16.
Since the inclusion of Chebyshev series terms with their coefficients on the roundoff
plateau has no effect on the accuracy of the solution, they do not have to be included
in the exponential regression. Not including them results in an improved upper bound
(IUB) for the non-negligible ξ j coefficients, i.e., those that are off the roundoff plateau.
Including the ξ j coefficients that are on the roundoff plateau in the exponential regression
results in a conservative upper bound (CUB) for them. The resulting truncation errors from
using a CUB or IUB on the ξ j coefficients are referred to as CUB êT and IUB êT in Figure 2.
The CUB and IUB êT curves are practically identical until L > LR. The CUB causes êT to
level out, while the IUB causes êT to keep decreasing for larger values of L. One of the main
takeaways from Figure 2 is that it validates the truncation error bound because the actual
error is always below the estimated total error bounds with a CUB and IUB êT. Figure 2 also

Mathematics 2024, 12, 1360 17 of 35

shows that when êT is low, so too is ∥L∥∞. Lastly, both truncation errors follow ξL+Nconst−1,
demonstrating that the decay rate of the ξ j coefficients is the same as the truncation error
for a smooth analytic function.

Figure 2. Error analysis of the TFC solution to Equation (24).

Figure 3 aids in the analysis of the exponential regression performed on the ξ j values
computed via the TFC for solving Equation (24). Subplot (a) shows the ξ j coefficients for
j = (2, . . . , L) when L = 30, the exponential fit performed on all coefficients (Exp. Fit 1),
the exponential fit performed on only the coefficients of the roundoff plateau (Exp. Fit 2),
the CUB, and the IUB. From the subplot, one can clearly see that the IUB bounds the ξ j
coefficients off the roundoff plateau tighter than the CUB. Furthermore, it is clear that
geometric convergence is maintained until the roundoff plateau is reached. Subplot (b)
shows the goodness of the exponential fit according to the coefficient of determination R2

as L increases. R2 can be expressed as

R2 = 1−
∑L+Nconst

j=Nconst

(
|ξ j| − f j

)2

∑L+Nconst
i=Nconst

(
|ξ j| −mean(ξ)

)2 ,

where f j is the value of the fit for the j-th coefficient and

mean(ξ) =
1

L + 1

L+Nconst

∑
i=Nconst

|ξ j|.

From subplot (a), one can see that the exponential fit is not very good when all ξ j

coefficients are included in the regression. This is confirmed by subplot (b) because R2

for Exp. Fit 1 moves further from 1 when more ξ j coefficients with j > LR are included in
the regression. However, when only the ξ j coefficients off the roundoff plateau are fitted,

Mathematics 2024, 12, 1360 18 of 35

R2 ≈ 1 as j increases. Subplot (c) shows the decay rates q computed via Exp. Fit 1 and Exp.
Fit 2 as L increases. One can see that all decay rates are greater than 1.5, which is emblematic
of the y1 function’s smoothness. The different decay rates are identical until L = LRP = 15.
The Exp. Fit 2 decay rates for L > LRP are constant because the ξ j coefficients included in
the fit are only for j = 2, . . . , LRP. One can see that the Exp. Fit 1 decay rates are greater
than those for the Exp. Fit 2 directly after LRP is reached but then start to decrease quickly
as L is further increased. Hence, when L = 50, the decay rate for Exp. Fit 1 could be close
to 0. This means that a smooth function could have a very low decay rate if the round-off
plateau is included in the exponential regression of the ξ j coefficients. Therefore, Exp. Fit 2
is preferred over Exp. Fit 1.

(a) Exponential regression (b) Exponential wellness

(c) Decay rates

Figure 3. Three plots that aid in the analysis of the exponential fits performed on the truncated
Chebyshev coefficients computed with TFC for the TPBVP shown in Equation (24). Subplot (a) shows
Exp. Fit 1 for L = 30, where all truncated Chebyshev coefficients are included in the regression,
and Exp. Fit 2 for L = 30, where only the truncated Chebyshev coefficients off the roundoff plateau
(RP) are included in the regression. The resulting conservative upper bound (CUB) and improved
upper bound (IUB) when Exp. Fit 1 and Exp. Fit 2 are used, respectively, are also shown. Subplot
(b,c) shows the goodness and decay rates of each fit for increasing values of L.

3.4. Case 2 Error Analysis: Hybrid TPBVP with a Nonsmooth Solution

Consider the hybrid TPBVP

ÿ(t) = t2 + a, subject to:

{
y(0) = 0
y(1) = 0

where:

{
a = 0 for t ≤ 0.5
a = 1 for t > 0.5

. (25)

which has a discontinuous solution. We instead find a smoothed solution by transforming
Equation (25) into

ÿ2(t) = t2 + 1
(

1
2
− 1

2
tanh

(
γ− t

α

))
, subject to:

{
y(0) = 0
y(1) = 0

, (26)

Mathematics 2024, 12, 1360 19 of 35

which has the analytical solution

y2(t) =
1

12

(
−3α2Li2

(
−e

−2(γ−t)
α

)
+ 6α ln (2)(γ− t)− 3γ2 + 6γt + t4

)
+ c1t + c2,

where

c1 =
1
4

α2Li2

(
−e

−2(γ−1)
α

)
− 1

4
α2Li2

(
−e

−2γ
α

)
− γ

2
+

α ln (2)
2

+
11
12

,

c2 =
1
4

α2Li2
(
−e

−2γ
α

)
− γα ln (2)

2
+

γ2

4
,

and
Li2(x) =

∫ x

2

dτ

ln (τ)
.

The γ variable represents the discontinuous point, which is set to γ = 0.5. The α
variable determines how smooth the region around t = γ is. The closer α is to 0, the sharper
the gradient at t = γ, and the closer the solution of Equation (26) to Equation (25). Thus,
we set α = 1.5× 10−3. An error analysis study, similar to that shown in Section 3.3, was
then performed. The main difference from the previous study is that y2 is nearly not
smooth. This results in the ξ j coefficients, computed via the TFC, oscillating severely
between local maximums and local minimums. Hence, in this study, Exp. Fit 2 refers to
performing an exponential regression on only the local maximums of the ξ j coefficients.
Exp. Fit 1 refers to performing an exponential regression on all ξ j coefficients, just like in
Section 3.3. The resulting CUB and IUB are from using Equation (20) with Exp. Fit 1 and
Exp. Fit 2, respectively.

Error curves of the TFC solutions to Equation (26) as L increases are shown in Figure 4.
Compared with Figure 2, many more basis functions are required for the actual error to
converge. Furthermore, the L∞-norm of the loss is still decreasing and greater than the
actual error. The reason for this is that the sharp gradient that replaces the discontinuity in
Equation (25) appears for ÿ2, which contributes to the loss equation, while the actual error
is only for the constrained expression of y2. Another important observation from Figure 4
is that both truncation error bounds are well above the actual error, meaning they do not
accurately represent the total error. Rule of Thumb 1, as described in Section 3.1, does not
seem to apply. However, this makes sense because our selection of α = 1.5× 10−3 creates
such a sharp gradient that the solution has a difficult time being approximated by a global
polynomial, i.e., it is nearly not smooth. However, the IUB êT is much closer to the actual
error and the L∞-norm of the loss curve than the CUB êT. This is because the IUB êT is,
as its name suggests, an improved upper bound, considering only the local maximums of
the ξ j coefficients during the exponential regression, as shown in Figure 5.

Subplot (a) in Figure 5 shows the ξ j coefficients for j = (2, . . . , L) belonging to the
TFC solution when L = 4000, the exponential fit performed on all coefficients (Exp. Fit 1),
the exponential fit performed on only the local maximums (Exp. Fit 2), the CUB, and the
IUB. As can be clearly seen, the coefficients fluctuate significantly. This results from the
Gibbs Phenomenon, which is the oscillatory behavior of an approximation around a jump
discontinuity, or in our case, a sharp gradient nearly identical to a jump discontinuity.
The oscillatory behavior of the coefficients causes their exponential fit to be poor, as seen
in subplot (b), which shows the R2 value as L increases. When an exponential fit of only
the local maximum ξ j coefficients is performed, the R2 values are much closer to 1, and the
resulting upper bound is much less conservative while still bounding all coefficients.
Comparing Figure 3a with Figure 5a, one can see that the local maximum ξ j coefficients
for approximating y2 yield algebraic convergence instead of geometric convergence. This
is a sign that y2 is very close to not being smooth, if not already. Indeed, geometric
convergence is only a given for a truncated series of Chebyshev polynomials if the function
they approximate is definitively continuous and smooth.

Mathematics 2024, 12, 1360 20 of 35

Figure 4. Error analysis of the TFC solution to Equation (26).

Since the local maximums of the ξ j coefficients for approximating y2 yield algebraic
convergence, Rule of Thumb 2 does not apply (which can be seen in Figure 4). Also,
the IUB in subplot (a) has a lot of room between it and the local maximum ξ j coefficients
as j increases. Hence, the translated exponential fit shown in Equation (20) is not the best
representation for nonsmooth functions. Nonetheless, the translated exponential fit is still
a sufficient upper bound, meaning the resulting IUB êT is still valid. Other than the global
polynomial not approximating the solution well, another reason why Rule of Thumb 1 is
not valid in this case is that the IUB êT is still a conservative upper bound, although not as
conservative as the CUB êT. Therefore, Exp. Fit 2 is better than Exp. Fit 1 because it leads to
the IUB êT. Figure 4 shows that the IUB êT is closer to the L∞-norm of the loss and, as such,
correlates better with how the TFC method determines the accuracy of a solution.

An indication that the approximated function is not smooth, other than the local
maximums of the ξ j coefficients yielding algebraic convergence, is the decay rate of the
exponential fits, as shown in subplot (c). The decay rate of the exponential fits as L increases
are all very close to 0. Thus, since the solution to Equation (26) is very close to not being
smooth (i.e., α = 1.5× 10−3), the decay rate of the ξ j coefficients alone can be used to
determine that the actual solution is not smooth, or very close to not being smooth. When
this is the case, the segment of the domain the constrained expression approximates should
be divided.

Mathematics 2024, 12, 1360 21 of 35

(a) Exponential regression (b) Exponential wellness

(c) Decay rates

Figure 5. Three plots that aid in the analysis of the exponential fits performed on the truncated
Chebyshev coefficients computed with TFC for the TPBVP shown in Equation (26). Subplot (a) shows
Exp. Fit 1 for L = 4000, where all truncated Chebyshev coefficients are included in the regression,
and Exp. Fit 2 for L = 4000, where only the local maximums of the truncated Chebyshev coefficients
are included in the regression. The resulting conservative upper bound (CUB) and improved upper
bound (IUB) when Exp. Fit 1 and Exp. Fit 2 are used, respectively, are also shown. Subplot (b,c) shows
the goodness and decay rates of each fit for increasing values of L.

4. hp-Adaptive Mesh Refinement Algorithm

The proposed hp-adaptive algorithm for solving hypersensitive TPBVPs begins by
constructing an initial mesh Mh=0 and formulating the unconstrained system of ODEs via
the TFC. All meshes Mh are composed of mesh segments Sk = [tk, tk+1] for all k = (1, . . . , K),
the number of basis functions for each constrained expression on each segment (h,k)Li,
and the number of collocation points on each segment of each mesh (h,k)N. Note that the
subscript h refers to an iteration of the hp-adaptive algorithm. Hence, each iteration of
the algorithm has its own mesh. Furthermore, the number of basis functions does not
have to be the same among the constrained expressions on Sk belonging to Mh. However,
the number of collocation points for all constrained expressions on the same segment must
be identical. Therefore, we express (h,k)N as

(h,k)N = max
i

(
(h,k)Li

)
+ N+,

where N+ is a user-defined parameter.
With M0 and the unconstrained system of ODEs formed via the TFC, an iteration of the

hp-adaptive mesh refinement algorithm begins by solving the algebraic system of equations
representing the unconstrained system of ODEs on M0 with the Gauss–Newton method
or linear least squares. Afterward, the truncated Chebyshev series terms/coefficients on
the roundoff plateau or the local minimums of significant oscillation are first eliminated for
the decay rate and bounded truncation error computations of the constrained expressions.

Mathematics 2024, 12, 1360 22 of 35

The reason for this was explained in Sections 3.3 and 3.4, and the method for accomplishing
this is explained in Section 4.1. The estimated truncation error bound and decay rates, as de-
scribed in Section 3, for each constrained expression in each interval can then be computed.
If a k segment’s maximum absolute loss on Mh, ∥(h,k)L∥∞, is greater than some prescribed
tolerance, ϵMR, then (h+1,k)Li for all i = (1, . . . , n) are increased, decreased, or the mesh
interval is divided into subintervals for the next mesh iteration (see Sections 4.2 and 4.3).
The computational efficiency of subsequent mesh iterations can be improved by combining
neighboring pairwise segments that are “super smooth” or by combining all neighboring
segments that contain the minimum number of basis functions in their constrained expres-
sions, Lmin (see Section 4.4). With the next mesh interval defined as Mh+1, the process can be
repeated until a maximum number of mesh iterations is reached, h = H, or ∥(h,k)L∥∞ ≤ ϵMR
for all k = (1, . . . , K). An outline of the process is given in Section 4.5.

4.1. Disregarding Unnecessary Truncated Chebyshev Series Terms for Bounded Truncation
Error Computation

In Section 3.1, we showed that a bounded exponential least-squares approximation of
the truncated Chebyshev coefficients is necessary to obtain an expression for the maximum
bound of a constrained expression’s truncation error. If the bounded exponential least-
squares approximation of the Chebyshev coefficients is bad, then so too is the computation
for the truncation error bound of the constrained expression. By “bad”, we do not only
mean that the bounds are not valid. Instead, we mean that the Chebyshev coefficients and
actual truncation error are well below their respective bounds (i.e., too conservative). In the
next subsection, it is mathematically shown that conservative bounds lead to overly large
mesh sizes. Hence, conservative bounds are undesirable. Obviously, bounds that are not
valid are also undesirable.

In Sections 3.3 and 3.4, it was shown that performing an exponential least-squares fit
on all ξ j coefficients can lead to an incorrect or highly conservative bound for ξ j. However,
it was also shown that performing an exponential least-squares fit without the ξ j values
that are on the roundoff plateau and without including the local minimums of significant
oscillation leads to much better bounds. Representing the set of indices corresponding to
the coefficients not on the roundoff plateau and not local minimums of significant oscillation
as ς, the exponential least-squares fit equation for computing q and s can then be given as

ln (|ξς|) = ln (s)− q ς.

To determine the j indices not included in ς, we refer to the coefficients on the roundoff
plateau as those that are less than double machine epsilon. Furthermore, coefficients are
believed to be a local minimum of significant oscillation when they are smaller than 3 orders
of magnitude from their neighboring coefficients.

4.2. Increasing or Decreasing the Number of Basis Functions

Suppose ∥(h,k)L∥∞ > ϵMR and q ≥ q̄. Then, all constrained expressions in Sk are
considered to be smooth. Every (h+1,k)Li can then be increased to reduce ∥(h+1,k)L∥∞.
Let (h,k) êTi denote the constrained expression’s estimate for the upper truncation error
bound over interval Sk, on mesh h, and for the i-th differentiation variable. Then, we have
the relationship

(h,k) êTi =
π1/2 s exp

(
−δ− q

(
(h,k)Li +

(h,k)Nconsti + 1
))

(2 (1− exp (−2 q)))1/2 , (27)

where (h,k)Nconsti is the number of constraints on the i-th differentiation variable in Sk
belonging to Mh. On the next mesh, Mh+1, it is desired to achieve (h+1,k) êTi = εT ≈ 0

Mathematics 2024, 12, 1360 23 of 35

because, as Section 3.3 shows, a small (h+1,k) êTi corresponds to a small ∥(h+1,k)Li∥∞. There
is a specific value of (h+1,k)Li that yields (h+1,k) êTi = εT,

εT =
π1/2 s exp

(
−δ− q

(
(h+1,k)Li +

(h+1,k)Nconsti + 1
))

21/2 (1− exp (−2 q))1/2 . (28)

Dividing Equations (27) and (28), recognizing that (h,k)Nconsti =
(h+1,k)Nconsti when

the intervals are not changed, and solving for (h+1,k)Li gives

(h+1,k)Li =

⌈
(h,k)Li +

1
q

ln

(
(h,k) êTi

εT

)⌉
, (29)

where q is calculated as shown in Section 4.1. Note that ⌈·⌉ rounds the · inside it up to the
next highest integer, which is necessary because the number of basis functions has to be
an integer that strictly increases for a lower (h+1,k) êTi . In Equation (29), one can see that if
(h,k) êTi < εT, then the number of basis functions decreases (i.e., (h+1,k)Li <

(h,k)Li). This is
ideal because it allows the number of basis functions for specific constrained expressions
in a specific segment to decrease and still have ∥(h+1,k)L∥∞ ≤ ϵMR. Allowing smoother
constrained expressions to decrease their (h,k)Li values reduces computational complexity
when obtaining the Jacobians and optimizing for the Chebyshev coefficients. Lastly, note
that εT is a user-defined value but should be as low as possible.

4.3. Dividing a Mesh Interval

Let ∥(h,k)L∥∞ > ϵMR and q < q̄. Then, computing (h+1,k)Li with Equation (29) will
be very large for some small εT. Large (h+1,k)Li values cause large inversion matrices
in the Gauss–Newton and linear least-squares algorithms, which raises the condition
number. This can cause both algorithms to become numerically unstable and fail. Instead
of increasing the number of basis functions in a mesh interval, it can instead be divided.
The number of subintervals, Vk, into which Sk is divided should equal the predicted number
of basis functions in the constrained expression for the next mesh in Equation (29) using q̄,

(h,k) L̄i =
(h,k)Li +

1
q̄

ln

(
(h,k) êTi

εT

)
.

Thus, we have

Vk = max
i

(⌈
(h,k) L̄i
(h,k)Li

⌉)
.

The locations of the knot points for all Vk intervals within Sk are equidistant.

4.4. Combining Mesh Intervals

The prescribed decay rate q̄ indicates whether a function is smooth (q ≥ q̄) or nons-
mooth (q < q̄). Here, a new prescribed decay rate q̀ > q̄ is introduced to determine whether
a function is super-smooth (q ≥ q̀). If two and only two adjacent mesh intervals have q > q̀
in all of their constrained expressions, then the intervals are combined. The number of
basis functions on the new interval is equal to the sum of the basis functions in the intervals
being combined. Only two neighboring mesh intervals are combined in a mesh iteration at
a time to reduce the chance that multiple super-smooth segments are combined into one
nonsmooth segment. Furthermore, neighboring pairwise super-smooth segments can only
be combined in a mesh iteration if they were not divided in the same iteration.

Another way in which segments are combined is if adjacent segments have

max
i

(
(h,k)Li

)
= Lmin, (30)

Mathematics 2024, 12, 1360 24 of 35

which means every constrained expression in a segment has the minimum number of basis
functions. Hypersensitive TPBVPs have a solution that typically consists of constant values
for long periods of time, followed or proceeded by sharp changes in its gradient. When the
equality in Equation (30) holds true, the solution on the k segment is often constant. Thus,
all neighboring segments where Equation (30) holds true are combined. We do not have to
worry about combining a collection of super-smooth segments into a nonsmooth segment
because the solution on the combined segments consists of constant values. Segments can
only be combined if they were not divided in the same mesh iteration as well.

4.5. hp-Adaptive Mesh Refinement Algorithm Outline

For the reader’s convenience, a brief step-by-step procedure of the hp-adaptive mesh
refinement algorithm is given as follows:

Step 1: Set h = 0 and provide an initial mesh M0 that is composed of initial segments
(0,k)S and an initial number of basis functions for each constrained expression
within each segment, (0,k)Li. Furthermore, make sure to set the hyperparameters,
which are listed in Table 1.

Step 2: Formulate the unconstrained system of ODEs from the TPBVP by building the
constrained expressions for the differentiation variables on Mh.

Step 3: Solve the unconstrained system of ODEs on mesh Mh, as described in Section 2.
Step 4: If ∥(h,k)L∥∞ ≤ ϵMR for all k = (1, . . . , K), then the TPBVP is solved with the

user’s desired accuracy, and the mesh refinement is complete. If h = H, then the
mesh refinement is also complete, even though the TPBVP may not be solved at
the desired accuracy. Otherwise, for every Sk where k = (1, . . . , K) on Mh:

• Proceed to the next segment if ∥(h,k)L∥∞ ≤ ϵMR.
• Calculate qi and êTi for every i = 1, . . . , n in the segment, as shown in

Section 3.1. Make sure to disregard the terms from the Chebyshev polyno-
mial within the constrained expressions that contain negligible coefficients
on the roundoff plateau or are a local minimum of significant oscillation,
as described in Section 4.1.

• If max
i

(qi) > q̄, modify the segment for the next mesh iteration by either

increasing/decreasing the number of basis functions in any of the seg-
ment’s constrained expressions (Section 4.2) or by dividing the segment
(Section 4.3).

Step 5: For neighboring segments that were not divided for the next mesh iteration,
combine them for the next mesh iteration, as shown in Section 4.4).

Step 6: Set h = h + 1 and return to Step 2.

Table 1. Hyperparameters.

Symbol Value Description

ϵGN 1× 10−15 Gauss–Newton error tolerance.
ϵMR 1× 10−13 Mesh refinement error tolerance for an acceptable solution.
εT 1× 10−15 Desired truncation error for a constrained expression.
pmax 40 Maximum number of Gauss–Newton iterations.
H 20 Maximum number of mesh refinement iterations.
N+ 3 Number of collocation points more than the number of basis functions.
q̄ 0.8 Cutoff decay rate that determines whether a function is smooth or not.

q̀ 1.2 Cutoff decay rate that determines whether a function is super-smooth or
just smooth

Lmin 3 Minimum number of basis functions in a constrained expression.

5. Results

We solved three hypersensitive TPBVPs with our proposed TFC hp-adaptive mesh
refinement algorithm. Each TPBVP was derived by applying PMP to its respective OCP.

Mathematics 2024, 12, 1360 25 of 35

A brief procedure for how to use PMP to formulate TPBVPs from OCPs is given in
Appendix B. All programming was performed in MATLAB® R2021b and run on an Intel
Core i7-9700 CPU PC with 64 GB of RAM. The hyperparameters used for the algorithm are
given in Table 1, except that ϵMR equaled 1−15 for the first test problem.

5.1. Linear Hypersensitive Problem

The first OCP we attempted to solve was

min
u

J =
1
2

∫ t f

t0

(
x2 + u2

)
dt

s.t. ẋ = −x + u

with the boundary constraints {
x(t0) = 1.5
x(t f) = 1

. (31)

The initial and final times were t0 = 0 and t f = 10,000, respectively. After applying PMP,
the dual TPBVP ODEs were {

ẋ = −x− λ

λ̇ = −x + λ
, (32)

where λ is the costate variable that can be used to compute the control,

u = −λ.

As its name suggests, the TPBVP is subject to the same boundary conditions as the OCP
(Equation (31)). The main reason we decided to solve this hypersensitive TPBVP was
because its linearity allows a true analytical solution to be found quite easily:

x∗(t) = c1 exp
(

t/
√

2
)
+ c2 exp

(
−t/
√

2
)

and
u∗(t) = ẋ∗(t) + x∗(t)

with
c1 =

1

exp
(
−t f /

√
2
)
− exp

(
t f /
√

2
) (1.5 exp

(
−t f /

√
2
)
− 1
)

and
c2 =

1

exp
(
−t f /

√
2
)
− exp

(
t f /
√

2
) (1− 1.5 exp

(
t f /
√

2
))

.

To quantify the benefits of using our TFC-based hp-adaptive mesh refinement algo-
rithm, we first solved this problem with the standard TFC procedure that uses global
constrained expressions to approximate x and u with a hard-coded number of basis func-
tions and collocation points. Multiple solutions were calculated, each having the same
number of basis functions in the constrained expressions approximating x and u, but
increased by one for each run. The number of collocation points for each solution was
fixed at 1050. Figure 6 shows the L∞-norm of the loss and actual error for the solutions.
As can be seen, the TFC with global constrained expressions was very capable of solving
this problem, but around 600 basis functions were required for the minimum loss and
minimum actual error to be reached. With the hp-adaptive mesh refinement algorithm, this
problem should be able to be solved with a much fewer number of total basis functions,
and even with better accuracy.

The TFC-based hp-adaptive mesh refinement algorithm began with an initial mesh
of only two knot points: one at t0 and another at t f , i.e., global constrained expressions.

Mathematics 2024, 12, 1360 26 of 35

The number of basis functions in the x and λ constrained expressions on the initial mesh
was set to 50. The algorithm did not find a solution that satisfied ∥L∥∞ ≤ ϵMR = 1× 10−15,
meaning it ran for the maximum number of iterations, but the solution it did find was still
very accurate. Figure 7 shows the final solutions for x and u, each overlapping with the
truth. The subplots in Figure 8 show how the loss decreased and the mesh knots changed
over the mesh iterations. The final mesh consisted of five segments, i.e., six knots at t0 = 0,
t1 = 19.5, t2 = 29.3, t3 = 9970.7, t4 = 9980.5, and t5 = t f = 10,000. The ∥L∥∞ of the final
solution was 9.3× 10−15. Summing the number of basis functions for all segments of the
constrained expressions for x and λ yielded 100 and 103, respectively.

Figure 6. L∞-norm curves for the error and loss of the TFC’s solution to the TPBVP represented
by Equations (31) and (32) when global constrained expressions are used as the number of basis
functions increases.

Figure 7. Solutions to the linear hypersensitive problem.

Mathematics 2024, 12, 1360 27 of 35

(a) Loss per iteration (b) Mesh knot points

Figure 8. Evolution of the mesh by the proposed hp-adaptive mesh refinement algorithm for solving
the linear hypersensitive problem. Subplot (a) shows the L∞-norm of the loss for each mesh iteration.
Subplot (b) shows the knot points for each mesh iteration.

5.2. Nonlinear Hypersensitive Problem

The nonlinear hypersensitive OCP we attempted to solve was

min
u

J =
1
2

∫ t f

t0

(
x2 + u2

)
dt

s.t. ẋ = −x3 + u

with the boundary constraints {
x(t0) = 1.5
x(t f) = 1

. (33)

As before, the initial and final times were t0 = 0 and t f = 10,000. After applying PMP,
the dual TPBVP ODEs were {

ẋ = −x3 − λ

λ̇ = −x + 3 x2 λ
, (34)

where the control is related to the costate by

u = −λ.

The TPBVP given by Equations (33) and (34) does not have a true analytical solution due
to its nonlinearity. Due to this nonlinearity, an initial guess needed to be provided for the
Gauss–Newton step of the TFC procedure. The initial guess we provided for x and λ was
simply zero over the entire time domain. Unlike for the linear hypersensitive problem, here,
we do not provide a plot showing how ∥L∥∞ decreases when the number of basis functions
is increased and global constrained expressions are used because ∥L∥∞ was greater than
1× 10−4 when 1000 basis functions were used.

Similar to the approach used to solve the previous problem, the TFC-based hp-
adaptive mesh refinement algorithm began with an initial mesh of only one segment
and with the number of basis functions in the x and λ constrained expressions set to 50.
The algorithm ran for the maximum number of mesh iterations, i.e., h = H = 20. Thus,
∥L∥∞ ≤ ϵMR = 1× 10−13 was not satisfied by the final loss, even though it was still ex-
ceptionally low. Table 2 gives the L∞-norm of the loss for the TFC solution at the final
mesh iteration (TFC Split), the TFC when only global constrained expressions were used
with L = 300 (TFC Global), and MATLAB’s bvp4c routine. Note that the bvp4c routine
is a finite-difference implementation of the three-stage Lobatto IIIa formula [35,36] and
can be regarded as an h method. The same initial guess was used for each mesh. Figure 9

Mathematics 2024, 12, 1360 28 of 35

shows the final solutions for x and u near the boundaries of the time domain. The proposed
mesh refinement algorithm’s and bvp4c curves overlap, but it is clear that the proposed
approach’s solutions are better based on its L∞-norm of the loss being nine orders of mag-
nitude lower. The subplots in Figure 10 show how the loss decreased in the proposed
algorithm over its mesh iterations and how the mesh knots changed. The final mesh
consisted of nine segments, one long segment in the center of the time domain, and several
much smaller segments clustered near the boundaries to handle the gradients.

Table 2. L∞-norm of the loss for different methods for the nonlinear hypersensitive problem.

TFC Split TFC Global bvp4c

1.285× 10−13 4.969× 10−1 4.128× 10−4

Figure 9. Solutions to the nonlinear hypersensitive problem.

(a) Loss per iteration (b) Mesh knot points

Figure 10. Evolution of the mesh by the proposed hp-adaptive mesh refinement algorithm for solving
the nonlinear hypersensitive problem. Subplot (a) shows the L∞-norm of the loss for each mesh
iteration. Subplot (b) shows the knot points for each mesh iteration.

Mathematics 2024, 12, 1360 29 of 35

5.3. Mass Spring Problem

The last problem solved was a common mass spring system OCP,

min
u

J =
1
2

∫ t f

t0

(
x2 + u2

)
dt

s.t. ẋ1 = x2

ẋ2 = −x1 − x3
1 − u− 1,

with the boundary constraints
x1(t0) = 1
x2(t0) = 0.75
x1(t f) = 0
x2(t f) = 0

. (35)

The initial and final times were t0 = 0 and t f = 10,000, respectively. After applying PMP,
the dual TPBVP ODEs were

ẋ1 = x2

ẋ2 = −x1 − x3
1 − u− 1

λ̇1 = −x1 + λ2
(
1 + 3 x2

1
)

λ̇2 = −x2 − λ1

, (36)

where the control is related to the costate by

u = −λ.

Like the previous TPBVP solved, the TPBVP given by Equations (35) and (36) does not
have a true analytical solution due to its nonlinearity. The initial mesh and initial guess of
the solution were identical to what was used to solve the nonlinear hypersensitive problem.
Table 3 shows the L∞-norm of the loss for the proposed approach and the other approaches
shown in Table 2. Once again, the proposed approach performed the best. Figure 11
shows the trajectories of the various solutions. The subplots in Figure 12 show how the
loss decreased in the proposed algorithm over its mesh iterations and portray how the
mesh knots changed. The final mesh consisted of 20 segments, and most of them were
near the boundary, while one long segment was used to approximate the constant part of
the solution, as shown in Figure 12b.

Table 3. L∞-norm of the loss for different methods for the mass spring problem.

TFC Split TFC Global bvp4c

2.345× 10−12 5.455× 10−1 9.878× 10−4

Mathematics 2024, 12, 1360 30 of 35

Figure 11. Solutions to the mass spring problem.

(a) Loss per iteration (b) Mesh knot points

Figure 12. Evolution of the mesh by the proposed hp-adaptive mesh refinement algorithm for solving
the mass spring problem. Subplot (a) shows the L∞-norm of the loss for each mesh iteration. Subplot
(b) shows the knot points for each mesh iteration.

6. A Discussion on Computation Time

The main drawback of the proposed algorithm is its computation time when the prob-
lem is nonlinear. Figure 13 shows how the size of the mesh affects the most computationally

Mathematics 2024, 12, 1360 31 of 35

intensive aspects of the proposed algorithm for the nonlinear hypersensitive problem (a)
and mass spring problem (b). The steps that took the longest to complete were the numeri-
cal approximations of the Jacobian and the least-square computations performed within
the Gauss–Newton algorithm. Hence, Figure 13 shows the total accumulated runtime for
performing these calculations at each mesh iteration. The size of the Jacobian is related
to the number of basis functions (columns) and the number of collocations (rows) being
solved. As can clearly be seen, a larger mesh correlates to a longer runtime. The reason
why all accumulated least-squares computations were so small was due to MATLAB’s
efficient storage of sparse matrices. The numerical approximation of the Jacobian was time-
consuming because it required a number of computations equal to the number of columns
in the Jacobian, i.e., the derivatives of the loss with respect to all Chebyshev coefficients in
all constrained expressions in all segments were needed. Hence, the proposed algorithm
has a long runtime because of the need to numerically approximate the Jacobian at each
iteration of the Gauss–Newton algorithm within each mesh iteration.

The best way to reduce the time needed to numerically compute the Jacobian would
be to break apart the partial derivatives of the loss with respect to the unknown coefficients
into two parts using the chain rule: the partial derivatives of the loss with respect to the
differentiation variables and the partial derivatives of the constrained expressions with
respect to the unknown coefficients. The partial derivatives of the constrained expressions
with respect to the unknown coefficients could be computed by hand a priori. Thus, only
the partial derivatives of the loss with respect to the differentiation variables would need to
be computed numerically, which would drastically reduce the number of loss evaluations
needed. Patterson and Rao [37] demonstrated a similar approach for the pseudospectral
method when Lagrange polynomials are used to approximate the differentiation variables.
We hope to do the same but for the TFC’s constrained expressions in future work.

(a) Nonlinear hypersensitive problem (b) Mass spring problem

Figure 13. The computation time of a mesh iteration versus the size of the Jacobian pertaining to the
same mesh iteration for the nonlinear hypersensitive problem (a) and the mass spring problem (b).

7. Conclusions

An hp-adaptive mesh refinement algorithm has been developed for the TFC method
that utilizes Chebyshev polynomial-free functions. The algorithm relies on the correlation
between the L∞-norm of the loss and the truncation error to determine the ideal number of
basis functions in a constrained expression. Whether to add basis functions to constrained
expressions within a segment or divide the segment is determined by the decay rates of
the Chebyshev coefficients in the segment’s constrained expressions. Smooth segments
have larger decay rates, while nonsmooth segments have small decay rates. The error is
decreased by adding basis functions to the smooth segments and dividing the segments that
are not smooth. To improve computational performance, the number of basis functions is
decreased in constrained expressions on smooth segments that already satisfy the L∞-norm

Mathematics 2024, 12, 1360 32 of 35

of the loss tolerance well. Lastly, segments that are very smooth are combined to further
improve computational performance.

The only problems solved in this work were TPBVPs generated by performing PMP
on hypersensitive OCPs without inequality constraints. All problems were solved using the
proposed approach with a maximum loss on the order of 1× 10−12 or better. In contrast,
MATLAB’s bvp4c solved each nonlinear problem with a maximum loss on the order of
1× 10−4. Hypersensitive OCPs with inequality constraints will be solved in future work,
which will require the continuation of regularization or smoothing parameters. Since
the continuation process will be iterative, increased computational performance will be
required. As the algorithm is currently constructed, it is too slow to be coupled with
continuation due to the cost of numerically approximating the Jacobian. Hence, a major
challenge of future work will be discovering new ways to approximate the Jacobian with
fewer calculations, similar to what has already been accomplished with other collocation
procedures (e.g., the pseudospectral method for optimal control).

Author Contributions: Conceptualization, K.D.; methodology, K.D.; software, K.D.; validation,
K.D.; formal analysis, K.D.; investigation, K.D.; resources, K.D. and R.F.; writing—original draft
preparation, K.D. and A.D.; writing—review and editing, K.D., A.D. and R.F.; visualization, K.D. and
A.D.; supervision, R.F. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data will be made available by the authors on request.

Acknowledgments: The authors would like to thank Enrico Schiassi and Mario De Florio for sharing
problems to test the proposed algorithm with at the beginning stages of this research.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Constraint Vector Generalization

The constraint vector for the end segments (i.e., S1 and SK) depends on the bound-
ary conditions of the TPBVP being solved. For example, suppose we are solving the
following TPBVP:

ẋ1 = x2

ẋ2 = 2x1

λ̇1 = 3λ2

λ̇2 = x1 + x2 + 3λ2 − λ1

subject to:

x1(t0) = x10

x2(t0) = x20

x1(t f) = x1 f

λ2(t f) = 0

. (A1)

The constraint vectors for the initial and final segments when solving the TPBVP are

(1)B =

x1(t0)

x1(t1)
dx1(t1)

dt

x2(t0)

x2(t1)
dx2(t1)

dt

λ1(t1)
dλ1(t1)

dt

λ2(t1)
dλ2(t1)

dt

and (K)B =

x1(tK−1)

x1(t f)
dx1(tK−1)

dt

x2(tK−1)
dx2(tK−1)

dt

λ1(tK−1)
dλ1(tK−1)

dt

λ2(tK−1)

λ2(t f)
dλ2(tK−1)

dt

,

respectively. The continuity conditions in the first and last segments, (1)B̂ and (K)B̂, are
identical to (1)B and (K)B without x1(t0), x2(t0), x1(t f), and λ2(t f). Unlike the constraint

Mathematics 2024, 12, 1360 33 of 35

vectors for the end segments, the constraint vectors for the interior segments are not unique.
Each differentiation variable has four constraints, two on each end of the segment, to
enforce continuity. Hence, the constraint vectors for the interior segments when solving
Equation (A1) are

(k)B =

x1(tk−1)

x1(tk)
dx1(tk−1)

dt
dx1(tk)

dt

x2(tk−1)

x2(tk)
dx2(tk−1)

dt
dx2(tk)

dt

λ1(tk−1)

λ1(tk)
dλ1(tk−1)

dt
dλ1(tk)

dt

λ2(tk−1)

λ2(tk)
dλ2(tk−1)

dt
dλ2(tk)

dt

, for k = (2, . . . K− 1).

Since the constraint vectors in the interior segments are made up of only continuity
conditions, we have (k)B = (k)B̂ when k = (2, . . . K− 1).

Appendix B. Deriving a Dual Two-Point Boundary-Value Problem from an Optimal
Control Problem

The goal of an optimal control problem is to minimize a cost functional J(x(t), u(t), t f)
through the selection of the state vector x(t) ∈ Rn and control vector u(t) ∈ Rm, along with
the initial time t0 and the final time t f when both are free. The general form of a fixed final
time OCP can be given as

min
x,u,t0,t f

J(t0, t f , x(t), u(t)) = Φ(t0, t f , x(t0), x(t f)) +
∫ t f

t0

L(t, x(t), u(t))dt (A2a)

s.t. ẋ(t) = f (t, x(t)u(t)) (A2b)

u(t) ∈ U (A2c)

ϕ(t0, x(t0), t f , x(t f)) = 0 (A2d)

where J is made up of a scalar penalty term Φ(t0, t f , x(t0), x(t f)), called the Meyer cost,
and a scalar integral term, called the running or Lagrangian cost, with the integrand
L(t, x(t), u(t)). Furthermore, the problem is subject to equations of motion f (t, x(t)u(t)),
an admissible set of controls U, and boundary conditions ϕ(t0, x(t0), t f , x(t f)). Note that
inequality constraints on the state can exist but were not considered in the above OCP.
The same is true for the control. Hence, the admissible control and its derivative are
continuous, U ∈ C1

(
[t0, t f]

)
.

Following the indirect method, the OCP can be transformed into a TPBVP whose
solution is the solution to the OCP. Formulating the TPBVP first requires the Hamiltonian
equation H(t, x(t), u(t)),

H(t, x(t), u(t)) = L(t, x(t), u(t)) + λ⊺(t) f (t, x(t), u(t)),

Mathematics 2024, 12, 1360 34 of 35

where λ(t) ∈ Rn is the costate vector. Minimizing the Hamiltonian with respect to the
control, ∂H

∂u = 0, allows an equation for the optimal control with respect to the costate to
be derived, u∗(t, λ(t)). When u does not appear linearly in the Hamiltonian, and it is not
transcendental, substituting it with u∗ in the Hamiltonian allows it to be written in terms of
the costates instead of the controls, H(t, x(t), u∗(t), λ(t)) = H(t, x(t), λ(t)). When u does
appear linearly in the Hamiltonian, the equation for u∗ must be added to the final TPBVP.
By Pontryagin’s minimum principle, the first-order necessary conditions that minimize the
Hamiltonian and solve the OCP are given by

ẋ =
∂H
∂λ

. (A3)

and
λ̇ = −∂H

∂x
(A4)

The states are still constrained by the boundary condition shown in Equation (A2d).
Likewise, the costates have boundary conditions given by

λ(t0) = −
∂Φ

∂x(t0)
+ v⊺ ∂ϕ

∂x(t0)
(A5)

and
λ(t f) =

∂Φ
∂x(t f)

+ v⊺ ∂ϕ

∂x(t f))
, (A6)

where v ∈ Rq is the Lagrange multiplier associated with the state boundary condition ϕ.
If t f is unspecified, then the transversality condition must also hold,

H(t f , x(t f), λ(t f)) +
∂Φ
∂t f

= 0. (A7)

If t0 is unspecified, then the following transversality condition must also hold:

H(t0, x(t0), λ(t0))−
∂Φ
∂t0

= 0. (A8)

Equations (A2d) and (A3)–(A8) then form the dual TPBVP.

References
1. Leake, C.; Johnston, H.; Daniele, M. The Theory of Functional Connections: A Functional Interpolation Framework with Applications;

Lulu: Morrisville, NC, USA, 2022.
2. De Florio, M.; Schiassi, E.; Furfaro, R.; Ganapol, B.D.; Mostacci, D. Solutions of Chandrasekhar’s basic problem in radiative

transfer via theory of functional connections. J. Quant. Spectrosc. Radiat. Transf. 2021, 259, 107384. [CrossRef]
3. Yassopoulos, C.; Leake, C.; Reddy, J.; Mortari, D. Analysis of Timoshenko–Ehrenfest beam problems using the theory of functional

connections. Eng. Anal. Bound. Elem. 2021, 132, 271–280. [CrossRef]
4. Yassopoulos, C.; Reddy, J.N.; Mortari, D. Analysis of nonlinear Timoshenko–Ehrenfest beam problems with von Kármán

nonlinearity using the Theory of Functional Connections. Math. Comput. Sim. 2023, 205, 709–744. [CrossRef]
5. Schiassi, E.; D’Ambrosio, A.; Drozd, K.; Curti, F.; Furfaro, R. Physics-informed veural vetworks for optimal planar orbit transfers.

J. Spacecr. Rockets 2022, 59, 834–849. [CrossRef]
6. De Almeida, A.K., Jr.; Johnston, H.; Leake, C.; Mortari, D. Fast 2-impulse non-Keplerian orbit Transfer using the theory of

functional connections. Eur. Phys. J. Plus 2021, 136, 223. [CrossRef]
7. de Almeida Junior, A.K.; Prado, A.F.; Mortari, D. Using the theory of functional connections to create periodic orbits with a linear

variable thrust. New Astron. 2023, 104, 102068. [CrossRef]
8. Mortari, D. The theory of connections: Connecting points. Mathematics 2017, 5, 57. [CrossRef]
9. Mortari, D.; Johnston, H.; Smith, L. High accuracy least-squares solutions of nonlinear differential equations. J. Comput. Appl.

Math. 2019, 352, 293–307. [CrossRef]
10. Bertsekas, D. Dynamic Programming and Optimal Control, 4th ed.; Athena Scientific: Nashua, NH, USA, 2012; Volume 2.
11. Enright, P.J.; Conway, B.A. Discrete approximations to optimal trajectories using direct transcription and nonlinear programming.

J. Guid. Control Dyn. 1992, 15, 994–1002. [CrossRef]

http://doi.org/10.1016/j.jqsrt.2020.107384
http://dx.doi.org/10.1016/j.enganabound.2021.07.011
http://dx.doi.org/10.1016/j.matcom.2022.10.015
http://dx.doi.org/10.2514/1.A35138
http://dx.doi.org/10.1140/epjp/s13360-021-01151-2
http://dx.doi.org/10.1016/j.newast.2023.102068.
http://dx.doi.org/10.3390/math5040057
http://dx.doi.org/10.1016/j.cam.2018.12.007
http://dx.doi.org/10.2514/3.20934

Mathematics 2024, 12, 1360 35 of 35

12. Kelly, M. An introduction to trajectory optimization: How to do your own direct collocation. SIAM Rev. 2017, 59, 849–904.
[CrossRef]

13. Bryson, A.E.; Ho, Y.C. Applied Optimal Control: Optimization, Estimation, and Control, rev. printing ed.; Taylor & Francis Group,
LLC: New York, NY, USA, 1975.

14. Longuski, J.M.; Guzmán, J.J.; Prussing, J.E. Optimal Control with Aerospace Applications; Springer: New York, NY, USA, 2014.
[CrossRef]

15. Schiassi, E.; D’Ambrosio, A.; Furfaro, R. Bellman neural networks for the class of optimal control problems with integral quadratic
cost. IEEE TAI 2022, 5, 1016–1025. [CrossRef]

16. Zhang, H.; Zhou, S.; Zhang, G. Shaping low-thrust multi-target visit trajectories via theory of functional connections. Adv. Space
Res. 2023, 72 257–269. [CrossRef]

17. Drozd, K.; Furfaro, R.; Mortari, D. Rapidly Exploring Random Trees with Physics-Informed Neural Networks for Constrained
Energy-Optimal Rendezvous Problems. J. Astronaut. Sci. 2024, 71, 361–382. [CrossRef]

18. Johnston, H.; Schiassi, E.; Furfaro, R.; Mortari, D. Fuel-efficient powered descent guidance on large planetary bodies via theory of
functional connections. J. Astronaut. Sci. 2020, 67, 1521–1552. [CrossRef]

19. Drozd, K.; Furfaro, R.; Schiassi, E.; D’Ambrosio, A. Physics-informed neural networks and functional interpolation for solving
the matrix differential riccati equation. Mathematics 2023, 11, 3635. [CrossRef]

20. Trefethen, L.N. Spectral methods in MATLAB. In Optimal Control with Aerospace Applications; SIAM: Philadelphia, PA, USA, 2014;
pp. 29–39. [CrossRef]

21. Lu, P. Propellant-optimal powered descent guidance. J. Guid. Control Dyn. 2018, 41, 813–826. [CrossRef]
22. Johnston, H.; Mortari, D. Least-squares solutions of boundary-value problems in hybrid systems. J. Comput. Appl. Math. 2021,

393, 113524. [CrossRef]
23. Darby, C.L.; Hager, W.W.; Rao, A.V. An hp-adaptive pseudospectral method for solving optimal control problems. Optim. Control

Appl. Methods 2011, 32, 476–502. [CrossRef]
24. Darby, C.L.; Hager, W.W.; Rao, A.V. Direct trajectory optimization using a variable low-order adaptive pseudospectral method. J.

Spacecr. Rockets 2011, 48, 433–445. [CrossRef]
25. Patterson, M.A.; Hager, W.W.; Rao, A.V. A ph mesh refinement method for optimal control. Optim. Control Appl. Methods 2015,

36, 398–421. [CrossRef]
26. Liu, F.; Hager, W.W.; Rao, A.V. Adaptive mesh refinement method for optimal control using nonsmoothness detection and mesh

size reduction. J. Frankl. Inst. 2015, 352, 4081–4106. [CrossRef]
27. Liu, F.; Hager, W.W.; Rao, A.V. Adaptive mesh refinement method for optimal control using decay rates of Legendre polynomial

coefficients. IEEE Trans. Control Syst. Technol. 2017, 26, 1475–1483. [CrossRef]
28. Gui, W.; Babuška, I. The h, p, and h-p versions of the finite element method in 1 dimension. I. the error analysis of the p-version.

Numer. Math. 1986, 49, 577–612. [CrossRef]
29. Gui, W.; Babuška, I. The h, p, and h-p versions of the finite element method in 1 dimension. II. The error analysis of the h- and

h-p versions. Numer. Math. 1986, 49, 613–657. [CrossRef]
30. Gui, W.; Babuška, I. The h, p, and h-p versions of the finite element method in 1 dimension. III. The adaptive h-p version. Numer.

Math. 1986, 49, 659–683. [CrossRef]
31. Pan, B.; Wang, Y.; Tian, S. A high-precision single shooting method for solving hypersensitive optimal control problems. Math.

Probl. Eng. 2018, 2018, 7908378. [CrossRef]
32. Boyd, J.P. Chebyshev and Fourier Spectral Methods, 2nd ed.; Dover Publishing: New York, NY, USA, 2001; pp. 19–57.
33. Trefethen, L.N. Is Gauss quadrature better than Clenshaw–Curtis? SIAM Rev. 2008, 50, 67–87. [CrossRef]
34. Driscoll, T.A.; Hale, N.; Trefethen, L.N. Chebfun Guide; Pafnuty Publications: Oxford, UK, 2014. Available online: http:

//www.chebfun.org/docs/guide/ (accessed on 21 April 2024).
35. Kierzenka, J.; Shampine, L.F. A BVP solver based on residual control and the Maltab PSE. ACM Trans. Math. Softw. 2001,

27, 299–316. [CrossRef]
36. Shampine, L.F.; Kierzenka, J.; Reichelt, M.W. Solving boundary value problems for ordinary differential equations in MATLAB

with bvp4c. Tutor. Notes 2000, 2000, 1–27.
37. Patterson, M.A.; Rao, A.V. Exploiting sparsity in direct collocation pseudospectral methods for solving optimal control problems.

J. Spacecr. Rockets 2012, 49, 354–377. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/16M1062569
http://dx.doi.org/10.1007/978-1-4614-8945-0
http://dx.doi.org/10.1109/TAI.2022.3206735
http://dx.doi.org/10.1016/j.asr.2023.03.030
http://dx.doi.org/10.1007/s40295-023-00426-3
http://dx.doi.org/10.1007/s40295-020-00228-x
http://dx.doi.org/10.3390/math11173635
http://dx.doi.org/10.1137/1.9780898719598
http://dx.doi.org/10.2514/1.G003243
http://dx.doi.org/10.1016/j.cam.2021.113524
http://dx.doi.org/10.1002/oca.957
http://dx.doi.org/10.2514/1.52136
http://dx.doi.org/10.1002/oca.2114
http://dx.doi.org/10.1016/j.jfranklin.2015.05.028
http://dx.doi.org/10.1109/TCST.2017.2702122
http://dx.doi.org/10.1007/BF01389733
http://dx.doi.org/10.1007/BF01389734
http://dx.doi.org/10.1007/BF01389735
http://dx.doi.org/10.1155/2018/7908378
http://dx.doi.org/10.1137/060659831
http://www.chebfun.org/docs/guide/
http://www.chebfun.org/docs/guide/
http://dx.doi.org/10.1145/502800.502801
http://dx.doi.org/10.2514/1.A32071

	Introduction
	Theory of Functional Connections
	General TPBVP Outline
	Solving Systems of ODEs
	Domain Decomposition

	Error Estimation
	Truncation Error of the Constrained Expression
	Determining Function Smoothness
	Case 1 Error Analysis: TPBVP with a Smooth Solution
	Case 2 Error Analysis: Hybrid TPBVP with a Nonsmooth Solution

	hp-Adaptive Mesh Refinement Algorithm
	Disregarding Unnecessary Truncated Chebyshev Series Terms for Bounded Truncation Error Computation
	Increasing or Decreasing the Number of Basis Functions
	Dividing a Mesh Interval
	Combining Mesh Intervals
	hp-Adaptive Mesh Refinement Algorithm Outline

	Results
	Linear Hypersensitive Problem
	Nonlinear Hypersensitive Problem
	Mass Spring Problem

	A Discussion on Computation Time
	Conclusions
	Constraint Vector Generalization
	Deriving a Dual Two-Point Boundary-Value Problem from an Optimal Control Problem
	References

