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Abstract: We use Category Theory to construct a ‘bridge’ relating directed graphs with undirected
graphs, such that the notion of direction is preserved. Specifically, we provide an isomorphism
between the category of simple directed graphs and a category we call ‘prime graphs category’; this
has as objects labeled undirected bipartite graphs (which we call prime graphs), and as morphisms
undirected graph morphisms that preserve the labeling (which we call prime graph morphisms). This
theoretical bridge allows us to extend undirected graph techniques to directed graphs by converting
the directed graphs into prime graphs. To give a proof of concept, we show that our construction
preserves topological features when applied to the problems of network alignment and spectral
graph clustering.

Keywords: undirected graphs; directed graphs; spectral clustering; network alignment; category
theory

MSC: 00A69; 05C50; 18A99; 68R10

1. Introduction

Networks naturally arise in many real-world situations. Examples vary from macro-
structures, such as social networks [1] and economic trade networks [2], to microscopic
structures involving protein–protein interactions [3], transcriptional regulation networks [4],
gene regulatory networks [5], and both biological and artificial neural networks [6,7]. While
real-world networks are often modeled as directed graphs, their computational analysis is
not only challenging but far more cumbersome and restricted. Thus, it would be helpful
to analyze and solve certain classes of problems for directed graphs from an undirected
graph framework. Here, we tackle this problem by using notions and principles of Cate-
gory Theory (CT) within a graph context. Put simply, CT studies abstract structures and
their relations. These structures, or categories, are composed of a collection of things we
called “objects”, and a collection of relations between two objects that we call “morphisms”.
Originally, CT developed within pure mathematics; much more recently, it started to be
used broadly across the natural sciences and engineering, including applications in ma-
chine learning and artificial neural networks [8], biological networks [9,10], and social
networks [11].

The way we bridge a directed graph framework with an undirected one is by first
considering a category of undirected graphs that encode the notion of direction. This
category, which we call the prime graphs category, has as objects undirected graphs equipped
by a ‘prime labeling’, and as morphisms undirected graphs morphisms that preserve
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the prime labeling. Indeed, it is the prime labeling that provides a notion of direction
over the structure of the undirected graph, allowing us to define a unique direction when
transforming to a directed graph, and vice versa. With this in mind, we construct a bijective
functor that relates the category of simple directed graphs with the category of prime
graphs, such that the notion of direction is preserved. It is worth mentioning that one
can always relate a directed graph to an undirected graph in a trivial way: by simply
considering the underlying structure and ‘forgetting’ the direction. This correspondence
gives rise to a ‘forgetful’ functor which is not invertible. In [12], Miller provides one
of the first nontrivial transformations between simple directed graphs and undirected
graphs by the construction of “gadgets”. These gadgets are used to encode the notion of
direction, just as our prime label does. However, each gadget adds seven nodes to the
corresponding undirected graphs, while in our framework, we are just adding a prime label
node. Additionally, we are the first to address the problem of converting directed graph
morphisms into undirected graphs, while preserving the notion of direction. This latter
aspect is crucial for both of our applications; in network alignment, the labeling and its
preservation through prime graph morphisms ensures the mapping between appropriate
nodes through the node similarity metric, while in spectral graph clustering, the labeling
plays a role in determining edge weights.

Network alignment is a technique that allows us to compare two networks. This
is performed by “putting one on top of the other” in such a way that the structure—or
topology—between the networks being compared is preserved as much as possible, and
the similarity between the networks is quantified. To date, several network alignment tools
exist for undirected networks (see [13–16]), but to the best of our knowledge, none exist
for directed graphs. Our framework, hence, proposes to perform network alignment on
directed graphs via their corresponding prime graphs (which are undirected). Within this
line of applications, we show the efficacy of our approach empirically by using synthetically
generated pairs of networks whose pairwise similarity is known and controlled by the
graph generator’s pairwise correlation coefficient. Our results in Section 3.1.1 show that
there is a strong statistical correspondence between the generated networks and their
resulting pairwise network similarity scores.

Spectral clustering is a widely used and robust technique that considers the spectrum—
or eigenvalues and eigenvectors—of the graph Laplacian matrix to partition the nodes of
a graph into clusters. More precisely, one can cluster the nodes of a graph by sorting
the components of the eigenvector corresponding to the second-smallest eigenvalue of
the characteristic polynomial of the graph Laplacian matrix. Initially, spectral clustering
was developed for undirected graphs using their adjacency and Laplacian matrices [17].
Later, the technique was extended to directed graphs [18], where a transition probability
matrix—or random walk—is used to overcome the asymmetry found in their adjacency and
Laplacian matrices. There are heuristic techniques that circumvent the latter construction
by making the adjacency matrix of a directed graph symmetric; therefore, they can define a
symmetric graph Laplacian matrix [19], which they then use to find the cuts of the directed
graph. However, while they are able to show empirically that the resulting cuts are the
same, they do not prove equivalence, as we do. Precisely, we prove that our framework
preserves minimum cuts, and consequently, it preserves clusters in directed graphs and
their respective prime graph counterparts.

The paper is organized as follows. Section 2 gives preliminary notions about directed
and undirected graphs from a category theory perspective. We describe the category of
prime graphs and prime graph morphisms. We also present the concepts and theoretical
results used in the application of our framework. In Section 3, we discuss the applications
of network alignment and spectral clustering for directed graphs via functoriality. Finally,
Section 4 gives some concluding arguments.
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2. Methods

Mathematically, a graph G = (V, E) is a structure that consist of a set of vertices V
(nodes) and a set E ⊆ V×V, which we call edges (connections). Within this context, we say
that a graph is undirected if its set of edges are connections without directionality. A graph
is directed if all its edges are connections with a direction. Now, given an undirected graph,
we represent an edge between the nodes u and v by the unordered pair (u, v), equivalently
(v, u). Instead, for a directed graph, an edge from node u to node v is represented by the
ordered pair (u, v); conceptually, we can think of this edge as an arrow with initial node
u and terminal node v. Also, we say that the nodes u and v are neighbors if there is at
least one edge connecting nodes u and v. Throughout this work, we will consider simple
directed graphs, this is, directed graphs with no multiple edges and no self loops.

Intuitively, a graph morphism is a function between the vertex sets that preserves the
structure or topology of the graphs; this is, it preserves the edges under transformation:

Definition 1. Let G1 = (V1, E1) and G2 = (V2, E2) be two undirected graphs. An undirected
graph morphism is a function f : V1 −→ V2 that maps adjacent vertices in G1 into adjacent vertices
in G2. Algebraically, this means that for any pair of vertices u, v ∈ V1 with (u, v) ∈ E1, we have
( f (u), f (v)) ∈ E2.

For two directed graphs G1 and G2, we say that a function V1
f−→ V2 is a directed graph

morphism if f maps initial nodes into initial nodes, and terminal nodes into terminal nodes.
One can verify that the composition of two graph morphism always yields another graph
morphism, in both undirected and directed cases. Further, the composition is an associative
operation that has a neutral element, called the identity morphism (which coincides with
the identity map). With this in mind, one can show that the collection of all undirected
graphs and all undirected graph morphisms (UndGraph) forms a category. Similarly,
the collection of all simple directed graphs and all directed graph morphisms (DGraph)
forms a category. As we see next, the category DGraph is isomorphic to a subcategory
of UndGraph; this subcategory, in fact, is the category of prime graphs (PGraph) that
we define.

Before describing the isomorphism between DGraph and PGraph, we will detail the
category of prime graphs and its connection to simple directed graphs. Conceptually, a
prime graph is an undirected graph which admits a ’prime labeling’ on its set of nodes
(Figure 1). By allowing a “prime labeling”, we mean that there exists a labeling function
on the vertex set with the following two properties; any prime labeled node has only
non-prime labeled nodes as neighbors (and vice versa), and any prime labeled node is
always adjacent to its non-prime labeled counterpart node.

a a′ b b′

d′ d c′ c

Figure 1. A prime graph with eight nodes; four nodes have a prime labeling, while the other four
nodes have a non-prime labeling.

Definition 2. Let Gu =
(
Vu, Eu

)
be an undirected graph with 2n vertices, and let I = {a1, a2, · · · , an}.

We say that Gu admits a prime labeling if there exists a bijective function φ : Vu −→ I ∪ I′ such
that for v ∈ Vu, one has the following three cases:

(i) If φ(v) = i and i ∈ I, then for each neighbor u of v, φ(u) = k′ for some k′ ∈ I′. We visualize
this as
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k′ j′

i

s′ i′

(ii) If φ(v) = i′ and i′ ∈ I′, then for each neighbor u of v, φ(u) = k for some k ∈ I. We visualize
this as

k j

i′

s i

(iii) For each v ∈ Vu, if φ(v) = i and i ∈ I, then there exists u ∈ Vu a neighbor of v such that
φ(u) = i′ and i′ ∈ I′.

For illustrative purposes, consider the following graphs:

a a′ a a′

b b′ b b′

The graph on the left is not a prime graph, as the prime labeled nodes are connected
to each other. For the same reasons, the graph on the right is not a prime graph; however,
this last graph becomes a prime graph if we endow it with the following prime labeling:

a b

a′ b′

We also observe that one can visualize a prime graph as an undirected bipartite graph.
This is a consequence of the definition of a prime labeling, as prime labeled node only have
non-prime labeled nodes as neighbors, and vice versa. Please see in Figure 2.

a a′

c′ c d b b′

a d′ ←→ c c′

a′ b′ b d d′

Figure 2. A prime graph corresponds to a bipartite graph. The set of nodes of a prime graph can be
written as the disjoint union of prime labeled nodes and the non-prime labeled nodes.
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Now, due to condition (iii), we can naturally induce a directed graph from a prime
graph. In this case, the direction of an arrow will be given by the ’prime’ label vertex. For
instance, if we consider the linear undirected graph G

· · · ·

we can give the prime labeling

i′ i j′ j

which induces the directed graph

wi wj,

having a directed edge from an initial vertex wi to a terminal vertex wj.
In terms of morphisms, we can think of a prime graph morphism as an undirected

graph morphism that preserves the prime and non-prime labelings. Formally:

Definition 3. Let Gu1 and Gu2 be two prime graphs, with labeling functions φI1 and φI2 , respec-
tively. A prime graph morphism is an undirected graph morphism f : Vu1 −→ Vu2 that satisfies
the following conditions:

(i) (Non-prime label preservation) If v ∈ Vu1 with φI1(v) = i for some i ∈ I1, then f (v) ∈ Vu2

is such that

φI2( f (v)) = j

for j ∈ I2 ⊆ I2 ∪ I′2.
(ii) (Prime label preservation) If w ∈ Vu1 with φI1(w) = i′ for some i′ ∈ I′1, then f (w) ∈ Vu2 is

such that

φI2( f (w)) = j′

for j′ ∈ I′2 ⊆ I2 ∪ I′2.
(iii) If v, w ∈ Vu1 are adjacent vertices with φI1(v) = k and φI1(w) = k′, then one always has that

φI2( f (w)) =
(

φI2( f (v))
)′.

The above can be rephrased by saying that a prime graph morphism is an undirected
graph morphism compatible with the non-prime and prime labelings. From an algebraic
perspective, this compatibility condition means that, for each prime graph morphism
f : Vu1 −→ Vu2 , there exists a function f I : I1 ∪ I′1 −→ I2 ∪ I′2 making

Vu1 I1 ∪ I′1

Vu2 I2 ∪ I′2

φI1

f f I

φI2

a commutative diagram; that is, f I ◦ φI1 = φI2 ◦ f .
Furthermore, the composition of two prime graph morphisms results in a prime graph

morphism itself. This follows from the fact that the composition of undirected graph
morphisms is a closed operation, and also from the fact that the composition of prime
graph morphisms preserves the prime and non-prime labeling conditions. Expressed in
diagrams, this latter aspect is equivalent to saying that the commutativity of the large
diagram is a consequence of the commutativity of the smaller diagrams:
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Vu1 I1 ∪ I′1

Vu2 I2 ∪ I′2

Vu3 I3 ∪ I′3.

φI

f f I1
φI2

g gI

φI

Additionally, as the composition operation of undirected graph morphisms is an
associative operation, it follows that the composition of prime graph morphisms is also an
associative operation. Further, for any prime graph Gu, its identity prime graph morphism
coincides with the identity map defined on the undirected graph Gu. Considering the
above, one has that the collection of prime graphs, along with the collection of prime graph
morphisms, form a category.

Theorem 1. The collection of all prime graphs, and all prime graph morphisms, defines a category
denoted by PGraph.

It is worth noting that not every undirected graph morphism induces a prime graph
morphism. To see this, let us consider the following prime graphs:

y′ y and b′ b

x′ x z′ z a′ a c′ c

Then, the function with correspondence rule x′ 7−→ a′, x 7−→ a, y′ 7−→ c′, y 7−→ b,
z′ 7−→ b′, and z 7−→ a is an undirected graph morphism which is not a prime graph
morphism. In fact, this illustrates that the category PGraph is not a full subcategory
of UndGraph. Consequently, both the graph isomorphism problem and the subgraph
isomorphism problem for prime graphs differentiates that for undirected graphs, which
are known to be open and NP-complete, respectively.

2.1. DGraph and PGraph Are Isomorphic Categories

The first part of this subsection describes the functors L : DGraph −→ PGraph and
M : PGraph −→ DGraph. The second part of this subsection shows that L andM are
inverse of each other.

2.1.1. The Functors L andM
The following two propositions describe the assignment on objects and morphisms of

functor L : DGraph −→ PGraph:

Proposition 1. Let Gd be a directed graph in DGraph. Then, Gd induces a prime graph Gu in
PGraph.

Proof of Proposition 1. Let Gd = (Vd, Ed) be a finite directed graph in DGraph. Without
loss of generality, let us suppose that Vd is represented by the set {v1, v2, · · · , vn}. Thus, by
denoting vi′ = v′i for each i′ ∈ {1′, · · · , n′}, the prime graph Gu has vertex set

Vu : = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n}.

Now, to define the edge set Eu, we will consider the following two cases:

(i) for each i ∈ {1, . . . , n}, the tuple (vi, v′i) defines an edge in Gu;
(ii) for i ̸= j in {1, · · · , n}, we have that (vi, v′j) defines an edge in Gu if, and only if, there

exists a directed edge (vi, vj) ∈ Ed.
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In other words,

Eu =

{
(vi, v′j) if i ̸= j and (vi, vj) ∈ Ed

(vi, v′i) for each i ∈ {1, · · · , n}.

We claim that Gu admits an I-labeling. Let I = {1, 2, · · · , n} and I′ = {1′, 2′, · · · , n′}
be the non-prime and prime sets, respectively. We define the labeling function Vu

φ−→ I ∪ I′

as follows. For each v ∈ Vu,

φ(v) =

{
i if v = vi with vi ∈ {v1, v2, · · · , vn}
i′ if v = v′i with v′i ∈ {v′1, v′2, · · · , v′n}

Clearly, φ is a bijective function. Moreover, based on how Gu is defined, condition (iii) of
Definition 2 is satisfied. Thus, it suffices to show that Gu equipped by φ satisfies conditions
(i) and (ii). Now, if v ∈ Vu is such that φ(v) = i, then v = vi for i ∈ I. Hence, as the
incident edges to vertex vi ∈ Vu have the form (vi, v′j)—that is, when (vi, vj) ∈ Ed—or
(vi, v′i), it follows that the neighbors of vi also have the form v′j, with j ̸= i, or v′i. In any
case, one has that φ(v′j) = j′ for any possible neighbor v′j of v. Likewise, if φ(v) = i′ for
some i′ ∈ I′, then v = v′i. Again, based on how the undirected graph Gu is defined, one
has that the incident edges to vertex v′i in Gu are either of the form (vj, v′i) (namely, when
(vj, vi) ∈ Ed) or (vi, v′i). Thus, the neighbors of v′i can be either vj (for some j ̸= i) or vi,
which in turn implies that φ(vj) = j for any possible neighbor vj of v. Therefore, φ defines
a prime labeling function on Gu.

Figure 3 displays the correspondence between a directed graph Gd and its correspond-
ing prime graph Gu. Notice that the prime labeled nodes encode for the notion of incoming
edges of the corresponding directed graph.

C c′ c d

A D −→ a d′

B a′ b′ b

Figure 3. A directed graph Gd and its corresponding prime graph Gu.

Proposition 2. Let Gd1 and Gd2 be two directed graphs in DGraph, and let Vd1

f−→ Vd2 be a
directed graph morphism. Then, f induces a prime graph morphism f̄ between the prime graphs
Gu1 and Gu2 .

Proof of Proposition 2. Let Gd1 , Gd2 ∈ DGraph, and let us take f : Vd1 −→ Vd2 , a di-
rected graph morphism. Without loss of generality, assume that the vertex sets are
Vd1 = {v1, v2, · · · , vn} and Vd2 = {w1, w2, · · · , wm}, respectively. Then, by Proposition 1,
the vertex set of the corresponding prime graphs Gu1 and Gu2 are given by

Vu1 = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n}

and

Vu2 = {w1, w2, · · · , wm, w′1, w′2, · · · , w′n},

respectively. With this in mind, we define f̄ : Vu1 −→ Vu2 by

f̄ =

{
f̄ (vi) = f (vi) for vi ∈ {v1, v2, · · · , vn}
f̄ (v′i) = f (vi)

′ for v′i ∈ {v′1, v′2, · · · , v′n},
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where f (vi)
′ = w′k is the prime labeled vertex in Vu2 such that f (vi) = wk. We claim that f̄

is a prime graph morphism. Indeed, for any edge (vi, v′j) ∈ Eu1 , with i ̸= j, it corresponds
to a directed edge (vi, vj) in Ed1 . Thus, as f preserves adjacencies—in the directed case—we
have that ( f (vi), f (vj)) ∈ Ed2 , which in turn implies that ( f (vi), f (vj)

′) ∈ Eu2 . Considering
this, one has that

f̄ (vi, v′j) =
(

f̄ (vi), f̄ (v′j)
)
=

(
f (vi), f (vj)

′) ∈ Eu2 .

Moreover, for edges of the form (vi, v′i) ∈ Eu1 , one obtains

f̄ (vi, v′i) =
(

f̄ (vi), f̄ (v′i)
)
=

(
f (vi), f (vi)

′) ∈ Eu2 .

Thus, f̄ preserves adjacencies. Now, based on how f̄ is defined, it is clear that f̄ is compatible
with the labeling, as it preserves the prime and non-prime labelings:

(
f̄ (vi)

)′
= f (vi)

′ =
f̄ (v′i). Therefore, f̄ is a prime graph morphism.

To better visualize Proposition 2, let us consider a directed graph morphism f that
maps a directed edge (vi, vk) ∈ Ed1 into a directed edge ( f (vi), f (vk)) ∈ Ed2 :

vi vk f (vi) f (vk).

f

Then, in the prime graph context, one has a prime graph morphism f̄ mapping

vi vk f (vi) f (vk).

v′i v′k f (vi)
′ f (vk)

′

f̄

Remark 1. If Gd = (Vd, Ed) is a directed graph, then its corresponding prime graph Gu = (Vu, Eu)
satisfies that

|Eu| = |Ed|+ |Vd|.

This follows from the fact that an edge in Gu has either the form (vi, v′j)—corresponding to a directed
edge (vi, vj) in Gd—or the form (vi, v′i).

Considering the results from above, we have the following:

Theorem 2. The map L : DGraph −→ PGraph that assigns to each object Gd ∈ DGraph the
object Gu ∈ PGraph and to each morphism f ∈ DGraph the morphism f̄ ∈ PGraph defines a
functor from DGraph to PGraph.

Proof Theorem 2. Observe that the object and morphism assignments of functor L :
DGraph −→ PGraph are exactly Proposition 1 and Proposition 2, respectively. Thus,
it suffices to show that L preserves identity morphisms and composition of morphisms.

The fact that L preserves identity morphisms follows from Proposition 2 as Īd co-
incides with the identity map Id. To see that L preserves compositions, we will show
that, given the directed graph morphisms f : Vd1 −→ Vd2 and g : Vd2 −→ Vd3 , one has
that g ◦ f = ḡ ◦ f̄ . Following the notation so far, we will denote the vertex set of the
directed graph Gd1 by Vd1 = {v1, v2, · · · , vn}, the vertex set of the directed graph Gd2 by
Vd2 = {w1, w2, · · · , wm}, and the vertex set of the directed graph Gd3 by Vd3 = {z1, z2, · · · , zl}.
Then, by Proposition 10, the vertex sets of their corresponding prime graphs are given by

Vu1 = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n},
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Vu2 = {w1, w2, · · · , wm, w′1, w′2, · · · , w′m},

and Vu3 = {z1, z2, · · · , zl , z′1, z′2, · · · , z′l},

respectively.
Now, on the one hand, the image under functor L of the directed graph morphism

defined by the composition (g ◦ f ) is the prime graph morphism (g ◦ f ) : Vu1 −→ Vu3 ,
whose correspondence rule is given by

(g ◦ f ) =

{
(g ◦ f )(vi) = (g ◦ f )(vi) for vi ∈ {v1, v2, · · · , vn}
(g ◦ f )(v′i) =

(
(g ◦ f )(vi)

)′ for v′i ∈ {v′1, v′2, · · · , v′n}.

Here,
(
(g ◦ f )(vi)

)′
= z′r denotes the prime labeled vertex on Vd3 such that (g ◦ f )(vi) = zr.

On the other hand, the image of f under L is the prime graph morphism f̄ : Vu1 −→
Vu2 given by

f̄ =

{
f̄ (vi) = f (vi) for vi ∈ {v1, v2, · · · , vn}
f̄ (v′i) = f (vi)

′ for v′i ∈ {v′1, v′2, · · · , v′n},

while the image of g under L is the prime graph morphism ḡ : Vu2 −→ Vu3 given by

ḡ =

{
ḡ(wi) = f (wi) for wi ∈ {w1, w2, · · · , wm}
ḡ(w′i) = f (wi)

′ for w′i ∈ {w′1, w′2, · · · , w′m}.

Note that, as prime graph morphisms preserve the prime vertex and non-prime vertex
labelings, one then has that f̄ (vi) ∈ {w1, · · · , wm} and f̄ (v′i) ∈ {w′1, · · · , w′m}. This way,
when considering the composite morphism ḡ ◦ f̄ : Vu1 −→ Vu3 , one has that, for each
vi ∈ {v1, v2, · · · , vn},

(ḡ ◦ f̄ )(vi) = ḡ( f̄ (vi)) = ḡ( f (vi)) = g( f (vi)) = (g ◦ f )(vi) = (g ◦ f )(vi),

whereas for each v′i ∈ {v′1, v′2, · · · , v′n},

(ḡ ◦ f̄ )(v′i) = ḡ( f̄ (v′i)) = ḡ( f (vi)
′) =

(
g( f (vi))

)′
=

(
(g ◦ f )(vi)

)′
= (g ◦ f )(v′i).

Hence, (g ◦ f ) and (ḡ ◦ f̄ ) have the same correspondence rule, and hence, (g ◦ f ) = (ḡ ◦ f̄ ).
Consequently,

L(g ◦ f ) = (g ◦ f ) = ḡ ◦ f̄ = L(g) ◦ L( f ),

that is, L preserves compositions of morphisms.

Remark 2. The functor L preserves topological features. For instance, connectivity is preserved
under L. Also, if Gd is a complete directed graph, then its corresponding prime graph L(Gd) is a
complete bipartite graph.

On the other end, the next two propositions describe the assignment on objects and
morphisms of functorM : PGraph −→ DGraph:

Proposition 3. Let Gu be a prime graph. Then, Gu induces a simple directed graph Gd.

Proof of Proposition 3. Let Gu be a prime graph, and let φI : Vu −→ I ∪ I′ be its labeling
function, with I = {1, · · · , n}. If the vertex set of Gu is given by

Vu = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n},

then, we define the vertex set of the directed graph Gd, induced by Gu, as

Vd = {v1, v2, · · · , vn}.
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In order to define the edge set Ed, we must consider all incident edges to the set of prime
label vertices v′i in Vu. For instance, if v′j is adjacent to vi in Gu (with j ̸= i), then we will
obtain a directed edge in Gd from vertex vi towards vertex vj. In case v′i is the only adjacent
vertex to vi in Gu, then the corresponding vertex vi in Gd will not have incoming directed
edges. In other words, the set Ed is given by

Ed =
{
(vi, vj) | whenever i ̸= j and (vi, v′j) ∈ Eu

}
Proposition 4. Let Gu1 , Gu2 ∈ PGraph and let g : Vu1 −→ Vu2 be a prime graph morphism.
Then, g induces a directed graph morphism g̃ between their corresponding directed graphs Gd1
and Gd2 .

Proof of Proposition 4. Let Gu1 , Gu2 ∈ PGraph, and let f : Vu1 −→ Vu2 be a prime graph
morphism. Without loss of generality, let us assume that Vu1 = {v1, · · · , vn, v′1, · · · , v′n}
and Vu2 = {w1, · · · , wm, w′1, · · · , w′m}. Then, by Proposition 3, the vertex sets Vd1 and Vd2
are given by {v1, · · · , vn} and {w1, · · · , wm}, respectively. With this in mind, we define
the map f̃ : Vd1 −→ Vd2 as follows. For each vi ∈ Vd1 , we set f̃ (vi) = f (vi). We claim that
f̃ preserves adjacencies. Indeed, given (vi, vj) ∈ Ed1 , we have that (vi, v′j) ∈ Eu1). Thus,
as f is a prime graph morphism, we obtain that ( f (vi), f (v′j)) ∈ Eu2 . Moreover, since f is
compatible with the prime and non-prime labelings, it follows that f (v′j) = f (vj)

′, from
which we have that ( f (vi), f (vj)) ∈ Ed2 . Therefore,

f̃ (vi, vj) = ( f̃ (vi), f̃ (vj)) = ( f (vi), f (vj)) ∈ Ed2 ,

showing that f̃ is a directed graph morphism.

Considering the above, we have the following:

Theorem 3. The mapM : PGraph −→ DGraph that assigns to each object Gu ∈ PGraph the
object Gd ∈ DGraph, and to each morphism f ∈ PGraph the morphism f̃ ∈ DGraph is a functor.

Proof of Theorem 3. By Propositions 3 and 4, it suffices to show that the mapM preserves
identity morphisms and composition of morphisms.

The fact that M preserves identity morphisms follows from Proposition 4, as Ĩd
coincides with the identity map Id. To see thatM preserves compositions, we will prove
that, given the prime graph morphisms f : Vu1 −→ Vu2 and g : Vu2 −→ Vu3 , one has that
g̃ ◦ f = g̃ ◦ f̃ . Without loss of generality, let us suppose that

Vu1 = {u1, u2, · · · , un, u′1, u′2, · · · , u′n},
Vu2 = {v1, v2, · · · , vm, v′1, v′2, · · · , v′m} and

Vu3 = {w1, w2, · · · , wl , w′1, w′2, · · · , w′l}.

Following along with the notation, we will denote the vertex sets of the directed graphs
Gd1 , Gd2 and Gd3 by Vd1 = {u1, u2, · · · , un}, Vu2 = {v1, v2, · · · , vm} and Vu3 = {w1, w2, · · · , wl},
respectively. Now, on the one hand, the image underM of the prime graph morphism

g ◦ f is the directed graph morphism (̃g ◦ f ) : Vd1 −→ Vd3 , whose correspondence rule is
given by

(̃g ◦ f )(ui) = (g ◦ f )(ui), ∀ui ∈ Vd1 .

On the other hand, the directed graph morphism f̃ : Vd1 −→ Vd2 is defined by f̃ (ui) = f (ui),
for all ui ∈ Vd1 . Likewise, the directed graph morphism g̃ : Vd2 −→ Vd3 is defined by
g̃(vj) = g(vj), for all vj ∈ Vd2 . Therefore, the composition (g̃ ◦ f̃ ) : Vd1 −→ Vd3 is a directed
graph morphism such that, for each vertex ui ∈ {u1, u2, · · · , un},
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(g̃ ◦ f̃ )(ui) = g̃( f̃ (ui)) = g̃( f (ui)) = g( f (ui)) = (g ◦ f )(ui) = (̃g ◦ f )(ui).

The above shows that (g̃ ◦ f̃ ) and (̃g ◦ f ) have the same correspondence rule. Since both

functions have the same domain and codomain, we obtain that (g̃ ◦ f̃ ) = (̃g ◦ f ). Therefore,

M(g ◦ f ) = (̃g ◦ f ) = g̃ ◦ f̃ =M(g) ◦M( f ),

that is,M preserves compositions of morphisms.

2.1.2. The Functors L andM Are Isomorphisms

Recall that an isomorphism between two categories C and D is a functor T : C −→ D
that is a bijection on both objects and morphisms. In other words, a functor T : C −→ D is
an isomorphism if, and only if, there exists a functor S : D −→ C for which the compositions
T ◦ S and S ◦ T are the identity functors IdD and IdC , respectively. In this case, we say that
the categories C and D are isomorphic.

Proposition 5. Let Gd be a directed graph in DGraph. Then

(M◦L)(Gd) = Gd.

Proof of Proposition 5. Let Gd ∈ DGraph. Without loss of generality, we can assume that
Vd = {v1, · · · , vn}. Then, the prime graph L(Gd) = Gu has the vertex set

Vu = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n},

and the edge set

Eu =

{
(vi, v′j) if i ̸= j and (vi, vj) ∈ Ed

(vi, v′i) for each vi ∈ Vd.

If we now consider the directed graph induced by Gu, that is, M(Gu) = G∗d , then, the
vertex set V∗d is given by {v1, · · · , vn} and its edge by

E∗d =
{
(vi, vj) | i ̸= j and (vi, v′j) ∈ Eu

}
.

In this way, as (vi, v′j) ∈ Eu if, and only if, (vi, vj) ∈ Ed, it follows that (vi, vj) ∈ E∗d if, and
only if, (vi, vj) ∈ Ed. Moreover, since Gd and G∗d have the same vertex set {v1, v2, · · · , vn},
we can conclude that Gd = G∗d . Therefore,

(M◦L)(Gd) = Gd.

Proposition 6. Let Gd1 , Gd2 ∈ DGraph, and let f : Vd1 −→ Vd2 be a directed graph morphism.
Then,

(M◦L)( f ) = f .

Proof of Proposition 6. Let Gd1 and Gd2 be directed graphs, and let f : Vd1 −→ Vd2 be
a directed graph morphism. Without loss of generality, assume that Vd1 = {v1, · · · , vn}.
Then, by Theorem 2, we obtain the prime graphs L(Gd1) = Gu1 and L(Gd2) = Gu2 , along
with the prime graph morphism L( f ) = f̄ defined by

f̄ =

{
f̄ (vi) = f (vi) for vi ∈ {v1, v2, · · · , vn}
f̄ (v′i) = f (vi)

′ for v′i ∈ {v′1, v′2, · · · , v′n}.

Here, Vu1 = {v1, v2, · · · , vn, v′1, v′2, · · · , v′n}. Now, as

M(Gui ) =M(L(Gdi
)) = (M◦L)(Gdi

) = Gdi
,
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for i = 1, 2, it suffices to show that the functionsM( f̄ ) and f have the same correspondence
rule, since both have the same domain and codomain sets. By consideringM( f̄ ) = ˜̄f , we
see that ˜̄f (vi) = f̄ (vi) = f (vi), for each vertex vi ∈ {v1, · · · , vn}. Therefore,M( f̄ ) = f ,
and thus,

(M◦L)( f ) = f .

Corollary 1. The functor L : DGraph −→ PGraph and the functorM : PGraph −→ DGraph
satisfy

(M◦L) = IdDGraph.

On the other end, we have the following results:

Proposition 7. Let Gu be a prime graph. Then

(L ◦M)(Gu) = Gu.

Proof of Proposition 7. Let Gu ∈ PGraph. Without loss of generality, assume that the
vertex set Vu is given by the set {v1, v2, · · · , vn, v′1, v′2, · · · , v′n}. Then Gd =M(Gu) is the
directed graph with vertex set Gd = {v1, v2, · · · , vn}, and edge set

Ed =
{
(vi, vj) | i ̸= j and (vi, v′j) ∈ Eu

}
.

Now, if we denote by G∗u the prime graph induced by Gd, that is, L(Gd) = G∗u, then,
V∗d = {v1, · · · , vn, v′1, · · · , v′n}, and

E∗u =

{
(vi, v′j) if i ̸= j and (vi, vj) ∈ Ed

(vi, v′i) for each vi ∈ Vd.

Notice that (vi, v′j) ∈ E∗u if, and only if, (vi, vj) ∈ Ed, which holds if, and only if, (vi, v′j) ∈ Eu.
Since both graphs Gu and G∗u have as vertex set the set {v1, v2, · · · , vn, v′1, · · · , v′n}, we
conclude that Gu = G∗u. Therefore,

(L ◦M)(Gu) = Gu.

Proposition 8. Let f : Vu1 −→ Vu2 be a prime graph morphism. Then

(L ◦M)( f ) = f .

Proof of Proposition 8. Let f : Vu1 −→ Vu2 be a prime graph morphism, and let us sup-
pose that Vu1 = {v1, · · · , vn, v′1, · · · , v′n}. By Theorem 3, we have the directed graphs
M(Gu1) = Gd1 andM(Gu2) = Gd2 , along with the directed graph morphismM( f ) = f̃ :
Vd1 −→ Vd2 defined by f̃ (vi) = f (vi), for each i = 1, · · · , n. Now, as

L(Gdi
) = L(M(Gui )) = (L ◦M)(Gui ) = Gui

for i = 1, 2, it suffices to show that L( f̃ ) and f have the same correspondence rule, as these
have the same domain and codomain sets. By considering that L( f̃ ) = ¯̃f is such that

¯̃f =

{ ¯̃f (vi) = f̃ (vi) = f (vi) for vi ∈ {v1, v2, · · · , vn}
¯̃f (v′i) = f̃ (vi)

′ = f (vi)
′ for v′i ∈ {v′1, v′2, · · · , v′n},
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we see that L( f̃ ) and f have the same correspondence rule. Thus, L( f̃ ) = f , which in turn
implies that

(L ◦M)( f ) = f .

Corollary 2. The functor L : DGraph −→ PGraph and the functorM : PGraph −→ DGraph
satisfy

(L ◦M) = IdPGraph.

Therefore, by Corollaries 1 and 2, we have the following:

Theorem 4. The categories DGraph and PGraph are isomorphic.

We highlight that the property of functoriality on graph morphisms is what allowed
us to extend network alignment techniques for undirected graphs to directed graphs. As
previously mentioned, an alignment of two networks consists of a mapping between
the nodes of the compared networks. In doing this, one aims to preserve as much of
the structure (or topology) between the considered networks as possible. Thus, when
transforming two directed graphs into their corresponding prime graphs, the way we relate
these prime graphs is by defining a prime graph morphism. This prime graph morphism
preserves the topology and the labeling conditions, which ultimately gives the notion of
direction. Consequently, by functoriality, these prime graph morphisms correspond to the
directed graph morphisms used when aligning the compared directed graphs.

2.2. Prime Transformation Algorithm

This section outlines an algorithm (Algorithm 1) to convert a directed graph to a
prime graph, reflecting definitions and constructions found in the previous section. Then,
we discuss the time and space complexity for creating and storing a prime graph from a
directed graph. Note that the algorithm does not consider edge weights because weighting
schemes can vary based on application.

The input to Algorithm 1 is a directed graph, and the output is its corresponding
prime graph. The algorithm operates on each edge of the directed graph. As such, the
algorithm’s time complexity is O(n + e), where e is the number of edges and n is the
number of nodes in the directed graph. While additional space is required to store the
prime graph, the space necessary scales according to O(n + e). The extra space needed to
store a prime graph results from the additional nodes and edges it contains relative to its
directed graph counterpart. For prime graphs, the number of nodes is always double that
of directed graphs because each node in the directed graph spawns an additional prime
node. Additionally, an edge is created between each pair of prime and non-prime nodes;
therefore, additional n edges are required.
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Algorithm 1 Prime Transformation Algorithm
Input DGraph
Output PGraph

1: procedure MAKEPGRAPH
2: dirEdges← DGraph.edges ▷ Initialize edge list
3: dirNodes← DGraph.nodes ▷ Initialize node list
4: PGraph← Empty Graph ▷ Initialize an empty prime graph
5: for n in dirNodes do:
6: nonPrimeNode← n.label ▷ store the label of node n
7: primeNode← n.label + ‘p’ ▷ create a label for the n’s prime node
8: PGraph← AddNode(primeNode) ▷ add prime node
9: PGraph← AddNode(nonPrimeNode) ▷ add non-prime node

10: PGraph← AddEdge(primeNode, nonPrimeNode) ▷ add an edge between prime
and non-prime node pairs

11: for e in dirEdges do:
12: source← e.initial.label ▷ store edge head label
13: target← e.terminal.label ▷ store edge tail label
14: primeNode← e.terminal.label + ‘p’ ▷ store the tail node’s prime label
15: PGraph← AddEdge(source, primeNode) ▷ add edge to PGraph using labels
16: PGraph← AddEdge(primeNode, target) ▷ add edge to PGraph using labels
17: return PGraph

3. Numerical Results

This section contains the two applications of the isomorphisms between the category
of simple directed graphs DGraph and the category of prime graphs PGraph. To perform
the computations, we relied on two things: the explicit description of the objects and
morphisms of the category PGraph, and the explicit definition of functors L andM.

3.1. Network Alignment

Network alignment is a technique that consists of mapping the nodes of the compared
networks in such a way that the structure, or topology, is preserved as much as possible.
While mapping the nodes, the alignment looks to maximize node similarity and preserve
the edge topology. Network alignment algorithms use an objective function—which is
defined over candidate alignments—to find the best possible alignment between network
pairs. This objective function represents a score, usually based on node and edge similarity.
By considering this score, the aligner follows a “search algorithm" to find the fittest net-
work map that maximizes the objective function. For a deeper understanding of network
alignment and its applications, we recommend the reader see [13–15].

3.1.1. Synthetic Network Model

To demonstrate the efficacy of our correspondence between directed graphs and
prime graphs, we generated a synthetic dataset that allowed us to precisely control the
ground truth network similarity by generating correlated graph pairs. In this way, by
using a network aligner, we calculated the network similarity scores between pairs of
correlated prime graphs that were generated from pairs of correlated directed graphs
(where correlation values for each pair were known). Our results indicate that the alignment
scores between pairs of prime graphs are closely related to the correlation coefficients used
to generate the corresponding directed graphs.

To generate the synthetic dataset, we used a stochastic block model (SBM) network
topology [20] with the following parameters and values. The directed network consisted of
150 total nodes, organized into 3 blocks with 50 nodes per block, as well as 10 to 20 percent
connection density inter-block and 1 percent intra-block connection density. For each
discrete value of graph pair correlation coefficients ρ, we generated 50 pairs of directed
graphs. It is the correlation coefficient ρ that determines the similarity between graphs. This
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way, we first created a directed graph from an edge probability matrix, which is defined
by the previously mentioned inter- and intra-block connection density, and then, we use
the coefficient ρ to adjust the probability matrix for a second directed graph in the pair.
Observe that the closer ρ is to 1, the more similar the probability matrices will be, which
means that it is more likely that the two generated graphs will be similar. Our results iterate
through discrete values of ρ in the range of [0.5, 1] at 0.1 increments.

In summary, after generating all the directed graph pairs, we converted them to prime
graphs, ran the network alignment algorithm for each prime graph pair, and plotted the
similarity score as a function of ρ using the highest similarity score out of the 5 alignment
attempts per pair.

3.1.2. Numerical Result

We used both edge and node similarity scores to optimize network alignments. The
optimizer uses a cost function that consists of an equally weighted linear combination of
edge and node similarity scores. We used EC, ICS, and S3 edge similarity scores along
with a graphlet orbit degree-based node similarity score (see the references [13–15,21,22]
for details on each score’s definition). Finally, we used SANA [13], an off-the-shelf network
aligner, and the aforementioned similarity scores for alignment optimization.

Figure 4 is a box and whisker plot (see [23]), which contains empirical alignment
scores for varying values of the graph correlation coefficient. When the graph pairs are
perfectly correlated (ρ = 1), that is, they are exact copies, but the mapping between
nodes is unknown, the alignment tool finds the perfect mapping between the graphs.
As the ρ values decrease, the alignment scores decrease. The variance in the alignment
scores primarily results from the network alignment algorithm’s random initialization,
stochastic optimization routines, finite number of optimization steps, as well as because
the optimization function is not guaranteed to be convex. A secondary source of alignment
score variability is from the stochastic graph pair generation process (see Section 3.1.1).
Variation in alignment scores results in an R2 [24] value of 0.98 with a corresponding
p-value of 9× 10−6. These results indicate that calibrating for the slope yields a usable
network alignment metric.
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Figure 4. Box and whisker plot of network alignment scores of prime graphs as a result of varying
the underlying similarity between directed graph pairs. Each column in the plot corresponds to a
specific value of ρ, which is the correlation coefficient between a generated pair of graphs. The red
line is the linear regression of all of the boxes together with respect to the ρ values. It has an R2 value
of 0.98 with a corresponding p-value of 9× 10−6.
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3.2. Minimum Cuts and Spectral Clustering in Prime Graphs

We start by showing the connection between cuts in a directed graph and cuts in
its corresponding prime graph. Afterwards, we see that the functorial correspondence
preserves clusters. This will allow us to use spectral clustering and show that a weighted
prime graph maintains the same minimum cuts as its directed graph counterpart.

Recall that a cut in an undirected graph Gu = (Vu, Eu) is a partition of the vertex
set Vu into a subset S and its complement S̄ = Vu \ S. Likewise, one defines a cut in a
directed graph Gd = (Vd, Ed) as a partition of the vertex set Vd = S

.
∪ S̄. Now, for each

weighted directed graph Gd = (Vd, Ed) with weight values given by {wvi ,vj}(vi ,vj)∈Ed
, there

is a weighted prime graph Gu = (Vu, Eu) whose weight values are given as follows. For
each edge in Gu of the form (vi, v′j), we set the weight value w′vi ,v′j

equal to (wvi ,vj)/2. For

the remaining edges in Gu of the form (vi, v′i), we give a weight value w′vi ,v′i
satisfying

w′vi ,v′i
> ∑

vk |(vk ,v′i)∈Eu

w′vk ,v′i
2

.

With this in mind, we have a correspondence between cuts in Gd and cuts in Gu with lesser
volume. Recall that, given a weighted undirected graph Gu, we define the volume of a cut
(C, C̄) (where C̄ = Vu \ C) as

volu(∂C) = ∑
x∈C,y∈C̄

wx,y.

Notice that volu(∂C) considers those edges whose endpoints belong to different components
C and C̄. Furthermore, as the graph Gu is undirected, it follows that volu(∂C) = volu(∂C̄).
Considering this, for the weighted prime graph Gu, with weight values described as above,
we have the following:

Proposition 9. Any cut in the weighted prime graph Gu can be reduced to a cut of the form(
(S ∪ S′), (S̄ ∪ S̄′)

)
with lower volume. Here, S and S̄ are subsets that partition the non-prime

nodes of Vu, and S′ and S̄′ denote their prime node counterparts, which partition the set of prime
nodes of Vu.

Proof of Proposition 9. Suppose that (C, C̄) is a cut of the prime graph Gu such that vi ∈ C
and v′i ∈ C̄. This implies that the weight of the edge (vi, v′i) adds to the volume of the cut.
Now, if we consider the cut defined by the sets C ∪ {v′i} and C̄ \ {v′i}, the weight of the
edge (vi, v′i) will no longer add to the volume of the cut; instead, we will be adding those
weights corresponding to the edges that are adjacent to v′i, which turns out to be at most

∑
vk |(vk ,v′i)∈Eu

wvk ,v′i
< wvi ,v′i

.

By continuing with this process, we will obtain a cut of the form
(
(S ∪ S′), (S̄ ∪ S̄′)

)
, where

S and S̄ are subsets of Vu that partition the non-prime vertices, whereas S′ and S̄′ are
their corresponding prime nodes which partition the prime vertices of Vu. Note that, by
construction, this last cut has lower volume than the initial cut (C, C̄).

The above proposition shows that the cuts with less volume in the weighted prime
graph Gu are those with form

(
(S ∪ S′), (S̄ ∪ S̄′)

)
. These cuts, in turn, are clearly in a

one-to-one correspondence between cuts of the form (S, S̄) in the directed graph Gd. We
now show that the volume of a directed graph Gd is preserved when transformed to its
corresponding weighted prime graph Gu.

Definition 4. Let Gd = (Vd, Ed) be a directed graph. A circulation on Gd is a function F : Ed −→
R+ ∪ {0} that assigns each directed edge to a non-negative value such that
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∑
u∈Vd

(u,v)∈Ed

F
(
(u, v)

)
= F

w∈Vd
(v,w)∈Ed

(
(v, w)

)
,

for every vertex v ∈ Vd.

Intuitively, a circulation is a flow in the directed graph that is conserved at each vertex;
that is, the flow into each vertex equals the flow out of each vertex. We define the volume
crossing the cut (S, S̄) in Gd as

vold(∂S) = ∑
u∈S
v∈S̄

F(u, v).

Note that, as F is a circulation on Gd, we obtain that vold(∂(S)) = vold(∂(S̄)).
We now prove that the volume crossing a cut (S, S̄) in a directed graph Gd is the

same as the volume of the cut
(
(S ∪ S′), (S̄, S̄′)

)
in its corresponding weighted prime graph

Gd. To that end, we will assume that the weights of the directed graph Gd are given by a
circulation F : Ed −→ R+ ∪ {0}, and the weights of its corresponding prime graph Gu are
given as where previously stated.

Proposition 10. Let Gd be a weighted directed graph with weights given by a circulation F, and let
Gu be its corresponding weighted prime graph. Then, for any cut (S, S̄) of Gd, the corresponding
cut

(
(S ∪ S′), (S̄, S̄′)

)
in the prime graph Gu satisfies

volu
(
∂(S ∪ S′)

)
= vold(∂S).

Proof of Proposition 10. Let Gd be a weighted directed graph whose weights are given
by the circulation F : Ed −→ R+ ∪ {0}. In this case, wu,v = F(u, v). Let us denote by
Gu its corresponding weighted prime graph, and by w′i,j its weight values. Now, for the
sake of clarity, we will denote by (Sd, S̄d) the cut in the weighted directed graph Gd, and
denote by

(
(S ∪ S′), (S̄, S̄′)

)
the corresponding cut in the weighted prime graph Gu. Then,

by definition, we have that

volu
(
∂(S ∪ S′)

)
= ∑

u∈S∪S′
v∈S̄∪S̄′

w′u,v.

Notice that, by the way prime graphs are constructed, there are no edges between nodes in
S and nodes in S̄. The same can be said between nodes in S′ and nodes in S̄′. Hence,

volu
(
∂(S ∪ S′)

)
= ∑

u∈S,
v∈S̄′

w′u,v + ∑
u∈S′
v∈S̄

w′u,v = ∑
u∈S,
v∈S̄′

w′u,v + ∑
u∈S̄
v∈S′

w′u,v

= ∑
u∈Sd ,
v∈S̄d

F(u, v)
2

+ ∑
u∈S̄d
v∈Sd

F(u, v)
2

=
1
2
·
(
vold(∂S) + vold(∂S̄)

)

=
1
2
(
2 · vold(∂S)

)
= vold(∂S).

Consider now any vertex w in Gd lying in a cluster. Then, in its corresponding prime
graph Gu, the nodes vw and v′w belong to the same cluster. This latter aspect follows because
we have assigned a high weight value to the edge between v′w and vw in Gu. Now, from the
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local topology around the vertex w in Gd, and the local topology around the vertices vw
and v′w in Gu:

a k va vk

b w l vb v′w vw vl

c m vc vm

we can see that deg(v′w) = indeg(w) + 1 and deg(vw) = outdeg(w) + 1, where indeg(w)
and outdeg(w) denote the indegree and outdegree of vertex w ∈ Vd, respectively. Further,
observe that for any vertex in Gd within the same cluster as w, we obtain that its corre-
sponding prime and non-prime nodes belong to the same cluster as vw (and v′w), as the
functor L preserves connectivity. Therefore, by functoriality, each cluster in a directed
graph Gd induces a cluster in its corresponding prime graph Gu with twice the number of
nodes, namely the prime and non-prime vertices associated to the vertices of the cluster in
the directed graph.

Proposition 11. If C is a cluster in the directed graph Gd, then its corresponding cluster in
L(Gd) = Gu has twice the number of nodes as C.

Numerical Example: Spectrum of Graph Laplacian

For the technical application, we considered a method involving the graph Laplacian
for optimal clustering. For further references, we recommend the reader to see [17,18].

To illustrate that prime graphs preserve the cuts of a simple directed graph, we
numerically compute minimum cuts of directed graphs and prime graphs using the graph
Laplacian. The directed graph consists of 1000 nodes split into two clusters. The first
cluster consists of 450 nodes, and the second cluster consists of 550 nodes. The edge
connectivity parameters of the directed graph are as follows. In the first cluster, the
inter-cluster connectivity was 0.5, that is, there was a 50% chance of connection between
nodes; in the second cluster, the inter-cluster connectivity was 0.4; finally, the intra-cluster
connectivity was 0.1. Upon constructing the directed graph, we generated an associated
prime graph. In Figure 5, we show the values of the sorted eigenvector associated with the
second-smallest eigenvalue. This numerical example thus shows that the minimum cut is
preserved between directed graphs and prime graphs.
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Figure 5. (A) Plot of the sorted values in the eigenvector associated with the second-smallest
eigenvalue for the directed graph. (B) Plot of the sorted values in the eigenvector associated with the
second-smallest eigenvalue for the prime graph derived from the directed graph generated in (A).
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4. Discussion

This work shows a novel construction that reinforces the power of CT as a tool to
formalize structures and their relations. In this case, we use CT to bridge a directed
graph framework to an undirected graph framework, so that not only directionality is
preserved but also several topological features. This bridge enables the use of undirected
graph techniques to obtain information from systems that are represented as directed
graphs. Both the computational and space complexity of the transformations are O(N),
where N is the number of nodes in the network. As an empirical demonstration, we
provide a new option to perform network alignment for directed graphs. This is relevant
since network alignment tools do not exist for a directed graph setting. Furthermore, our
transformation does preserve network similarity between directed graphs and their prime
graph counterparts; we attained an R2 value of 0.98 (with a corresponding p-value of
9× 10−6) between the network aligner results, i.e., the similarity metric, a known graph
generation correlation coefficient. Because we proved that our construction leads to an
invertible transformation, there is only one prime graph that describes a simple directed
graph and vice versa; as such, and in that sense, our transformation is error-free. Be that as
it may, our transformation does not mitigate errors inherent in postprocessing the resultant
graphs, for example, not achieving an R2 value of 1 in the network alignment task.

Although the process of making an adjacency matrix of a directed graph symmetric
is not new [19], nor is transforming a directed graph into an undirected graph [12], our
framework is an advance. We proved that the minimum cuts are preserved when going
from a directed graph framework to a prime graph framework and vice versa. These results,
in turn, imply that clusters are preserved when moving from one setting to the other. As a
proof of concept, we proved cluster preservation by generating a directed SBM network
with known intra-block and inter-block connectivity.

While this work is a step towards a new application of existing network alignment
tools, there is much left in this area to be explored in future work. Adoption of this technique
may be limited by and rely upon showing additional mathematical proofs for commonly
used techniques on graphs, for example, answering how the existing undirected node and
edge similarity metrics might be skewed by the prime graph transformation. Another
avenue for the application of prime graphs is to take advantage of their bipartite nature in
problems such as the graph isomorphism problems for directed graphs. It is worthwhile
studying the complexity of checking for equivalence between arbitrarily labeled DGraphs
and PGraphs. Lastly, a categorical bridge, now between a multidirected graphs setting to a
prime graph setting, might unlock new ways to study high complex data.

Author Contributions: Conceptualization, S.P.-G. and J.R.; methodology, S.P.-G. and V.K.G.; soft-
ware, V.K.G. and V.M.; validation, S.P.-G., V.K.G., V.M., J.R. and G.A.S.; formal analysis, S.P.-G.;
investigation, S.P.-G. and V.K.G.; resources, G.A.S.; data curation, V.K.G. and V.M.; writing—original
draft preparation, S.P.-G.; writing—review and editing, S.P.-G. and G.A.S.; visualization, S.P.-G.;
supervision, G.A.S.; project administration, G.A.S.; funding acquisition, G.A.S. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received unrestricted funds to the Center for Engineered Natural Intelligence
at the University of California San Diego.

Data Availability Statement: All data and figures of this paper were generated synthetically. The
code used in this work can be found in the link https://github.com/vgeorgeucsd/prime_graphs,
accessed on 8 April 2024.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Scott, J. Social network analysis. Sociology 1988, 22, 109–127. [CrossRef]
2. Dimitrova, T.; Petrovski, K.; Kocarev, L. Graphlets in Multiplex Networks. Sci. Rep. 2020, 10, 1928. [CrossRef] [PubMed]
3. Pržulj, N.; Wigle, D.A.; Jurisica, I. Functional topology in a network of protein interactions. Bioinformatics 2004, 20, 340–348.

[CrossRef] [PubMed]

https://github.com/vgeorgeucsd/prime_graphs
http://doi.org/10.1177/0038038588022001007
http://dx.doi.org/10.1038/s41598-020-57609-3
http://www.ncbi.nlm.nih.gov/pubmed/32024867
http://dx.doi.org/10.1093/bioinformatics/btg415
http://www.ncbi.nlm.nih.gov/pubmed/14960460


Mathematics 2024, 12, 1357 20 of 20

4. Shen-Orr, S.S.; Milo, R.; Mangan, S.; Alon, U. Network motifs in the transcriptional regulation network of Escherichia coli. Nat.
Genet. 2022, 31, 64–68. [CrossRef] [PubMed]

5. Chu, B.K.; Tse, M.J.; Sato, R.R.; Read, E.L. Markov State Models of gene regulatory networks. Syst. Biol. 2017, 11, 1–17. [CrossRef]
[PubMed]

6. Buibas, M.; Silva, G.A. A framework for simulating and estimating the state and functional topology of complex dynamic
geometric networks. Neural Comput. 2011, 23, 183–214. [CrossRef] [PubMed]

7. Silva, G.A. The effect of signaling latencies and refractory node states on the dynamics of networks. Neural Comput. 2019, 31,
2492–2522. [CrossRef] [PubMed]

8. Fong, B.; Spivak, D.; Tuyéras, R. Backprop as functor: A compositional perspective on supervised learning. In Proceedings of
the 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), Vancouver, BC, Canada, 24–27 June 2019;
pp. 1–13.

9. Haruna, T. Theory of interface: Category theory, directed networks and evolution of biological networks. Biosystems 2013,
114, 125–148. [CrossRef]

10. Northoff, G.; Tsuchiya, N.; Saigo, H. Mathematics and the Brain: A Category Theoretical Approach to Go Beyond the Neural
Correlates of Consciousness. Entropy 2019, 21, 1234. [CrossRef]

11. Otter, N.; Porter, M.A. A unified framework for equivalences in social networks. arXiv 2020, arXiv:2006.10733.
12. Miller, G.L. Graph isomorphism, general remarks. J. Comput. Syst. Sci. 1979, 18, 128–142. [CrossRef]
13. Mamano, N.; Hayes, W.B. SANA: Simulated annealing far outperforms many other search algorithms for biological network

alignment. Bioinformatics 2017, 33, 2156–2164. [CrossRef]
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