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Abstract: This study introduces a newly modified Lorenz model capable of demonstrating bifurcation
within a specified range of parameters. The model demonstrates various bifurcation behaviors,
which are depicted as distinct structures in the diagram. The study aims to discover and analyze
the existence and stability of fixed points in the model. To achieve this, the center manifold theorem
and bifurcation theory are employed to identify the requirements for pitchfork bifurcation, period-
doubling bifurcation, and Neimark–Sacker bifurcation. In addition to theoretical findings, numerical
simulations, including bifurcation diagrams, phase pictures, and maximum Lyapunov exponents,
showcase the nuanced, complex, and diverse dynamics. Finally, the study applies the Ott–Grebogi–
Yorke (OGY) method to control the chaos observed in the reduced modified Lorenz model.
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1. Introduction

The nonlinear dynamical model is well-known for its applications in various fields,
such as population growth, economics, physics, mechanics, technology, and others. One of
the most important discoveries in modern science is the identification of irregular vibrations
in addition to periodic and nearly periodic vibrations. A comprehensive study of nonlinear
scientific theory and its applications can significantly alter one’s perspective on various
nonlinear phenomena and laws, along with their profound implications across a wide
range of applications. Bifurcation theory, chaos theory, and singularity theory have all
gained increasing importance in the field of nonlinear science over the past few decades.
These theories are rapidly advancing in their applications to physics, mathematics, and
numerous technical fields worldwide. Chaotic mappings have witnessed extensive appli-
cations in computer sciences over the past few decades, particularly in domains such as
digital image processing [1] and communication systems [2]. Notable examples of general
chaotic mappings include logistic mapping [3], Henon mapping [4], Lorenz mapping [5],
and others. Numerous scholars have made significant contributions to understanding the
dynamic properties of these chaotic mappings. Annaby et al. [6] presented an image en-
cryption algorithm that combined Henon chaos and logistic systems. Experimental results
demonstrated superior security against statistical attacks and differential attacks compared
to the classical encryption algorithm and the improved encryption algorithm. Furthermore,
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Mliki et al. [7] introduced new chaotic maps with applications in stochastic processes, while
Ramadoss et al. [8] recently investigated the behaviors of a one-dimensional chaotic map
comprising two sine terms. Overall, these references highlight the wide-ranging applica-
tions and significant contributions made in the field of chaotic mappings, underscoring
their relevance and advancements in various areas of research.

Lorenz’s simplified model [9] involves a pair of coupled differential equations that are
estimated. The subsequent section provides the definition of the reduced Lorenz model:{

κn+1 = κn + αtκn − tκnγn,

γn+1 = γn − tγn + tκ2
n.

(1)

The integral step size is given by t, which originated from the simple forward Euler integral
between two paired nonlinear differential equations as follows:

dκ
dt

= ακ −κγ,

dγ

dt
= κ2 − γ.

(2)

This study will be based mostly on the Lorenz reduction model [9–11], which has been
modified from the Lorenz reduction model as follows:

dκ
dt

= ακ(1 −κ)−κγ,

dγ

dt
= κ2 − γ,

(3)

where a non-negative, from (3), we obtain the following model using the Euler technique:{
κn+1 = (1 + αh)κn − hκnγn − αhκ2

n,

γn+1 = (1 − h)γn + hκ2
n.

(4)

Numerical analysis of the model (1) was presented in [9,10], demonstrating a richer col-
lection of dynamical patterns compared to the continuous case. Elabbasy et al. [11]
provided both a theoretical examination and a numerical analysis of the bifurcation phe-
nomenon in the model (1). Zhao et al. [12] investigated the stability and bifurcation of a
discrete predator-prey model featuring a modified Holling–Tanner functional response.
Al-Kaff et al. [13] performed bifurcation analysis and chaos control in a discrete predator-
prey system, focusing on understanding the bifurcation behavior and developing control
methods. Additionally, Zhang et al. [14] explored transcritical and period-doubling bifur-
cations in a discrete predator-prey model with a strong Allee effect. For further papers
on nonlinear dynamical systems and models, readers can refer to [15–19]. The step size
used for integration is denoted by h. We have discovered that for the reduced modified
Lorenz model (4), a smaller integrated step size can demonstrate the model’s local stability.
However, using a larger integrated step size may result in model instability, leading to the
emergence of complex and diverse dynamics. This highlights the importance of the model
(4) in exploring the concepts of computational bifurcation and chaos. There are several
applications in which chaos can be used. Moreover, a chaotic dynamic model is not only
vital and valuable, but it may also bring a new approach or model that may help people
understand mathematics. A recent innovation in the field of encryption research is the
use of chaotic dynamics for information security. Two-dimensional and three-dimensional
discretized chaotic maps were presented as the foundation for a new encryption [20,21].
Zhu et al. [22] demonstrated the superiority of constructing chaotic maps based on en-
cryption techniques and have established that chaotic maps contain significant properties
connected to the essential criteria of traditional encryption algorithms in many respects.
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This model (4) had not been studied before, as we added the term ακ2 to the model (2)
until we had a logistic function of the model (3), which played an important role in our
findings. We presented a numerical and theoretical analysis of the bifurcation and chaos
for the model (4), which revealed a much richer and more complex structure with some
interesting results.

Motivated by the aforementioned works, this study focuses on examining the non-
linear dynamical behavior of (4). The paper is organized as follows: In Section 2, we
investigate the existence and stability of the fixed points in the model. Section 3 provides
a detailed discussion on the pitchfork bifurcation, Period-doubling bifurcation (PB), and
Neimark–Sacker bifurcation (NB). In Section 4, we employ a chaos control strategy to
effectively manage the chaotic behavior displayed by the model (4). Finally, numerical
simulations are conducted to further elucidate the main results obtained in the study.

2. The Existence and Stability of the Fixed Points Are Examined

In this section, we delve into the qualitative properties of the fixed points within the
model (4), as well as the conditions for asymptotic fixed point stability. We have fixed
points under different conditions:

(i) p0(0, 0) is the fixed point;
(ii) p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α));
(iii) p2(− 1

2 (
√

α2 + 4α + α), 1
2 (α

2 + 2α + α
√

α2 + 4α)).

Model (4) is reformulated in the following manner:{
κn+1 = η(κn, γn) = (1 + αh)κn − hκnγn − αhκ2

n,

γn+1 = µ(κn, γn) = (1 − h)γn + hκ2
n.

(5)

At the point p(κ, γ), the Jacobianimatrix (J) associated with model (5) is displayed as
follows:

J(κ, γ) =

 j11 j12

j21 j22

, (6)

where

j11 = ∂η(κn ,γn)
∂κn

|(κn ,γn) = 1 + ((−2κ + 1)α − γ)h, j12 = ∂η(κn ,γn)
∂γn

|(κn ,γn) = −hκ,

j21 = ∂µ(κn ,γn)
∂κn

|(κn ,γn) = 2hκ and j22 = ∂µ(κn ,γn)
∂γn

|(κn ,γn) = 1 − h.

The equation that represents the characteristics is expressed in the following form:

R2−T(κ, γ)R+ D(κ, γ) = 0. (7)

The quadratic Equation (7) with a single variable, represented by

T(κ, γ) = (j11 + j22) and D(κ, γ) = j11 j22 − j12 j21.

Lemma 1 ([23]). Let Γ(R) = R2 − TR+ D. Assume that Γ(1) > 0, R1 and R2 are two roots
of Γ(R) = 0. Then

(i) |R1| < 1, |R2| < 1 if and only if Γ(−1) > 0, D < 1.
(ii) |R1| < 1, |R2| > 1 (or |R1| > 1, |R2| < 1) if and only if Γ(−1) < 0.
(iii) |R1| > 1, |R2| > 1 if and only if Γ(−1) > 0, D > 1.
(iv) R1 = −1, |R2| ̸= 1 if and only if Γ(−1) = 0, T ̸= 0, 2.
(v) R1, R2 are complex and |R1| = |R2| = 1 if and only if T2 − 4D < 0, D = 1.

Definition 1 ([23]). The fixed point p(x, y) is called
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(1) Sink if |R1| < 1 and |R2| < 1. It is locally asymptotic stable.
(2) Saddle if |R1| < 1 and |R2| > 1 (or |R1| > 1 and |R2| < 1). It is locally unstable.
(3) Source if |R1| > 1 and |R2| > 1. It is locally unstable.
(4) Non-hyperbolic if either |R1| = 1 or |R2| = 1.

By utilising Lemma 1 and Definition 1, we obtain the following results:

Theorem 1. states the following properties for the simple fixed point p0(0, 0):

(1) When 0 < h < 2, p0(0, 0) is a saddle point.
(2) When h = 2, p0(0, 0) is non-hyperbolic fixed point.
(3) When h > 2, p0(0, 0) is a source fixed point.

Proof. The Jacobian matrix J(p0) at the point p0(0, 0) is expressed in the following form:

J(p0) =

 αh + 1 0

0 1 − h

. (8)

The matrix has two eigenvalues: R1 = αh + 1 and R2 = 1 − h. It is clear that by applying
Lemma 1, the result can be directly derived.

Theorem 2. (i) If any of the following sets of conditions is true, then p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 +

2α − α
√

α2 + 4α)) is asymptotically stable (sink):
(i-1) −2

√
ψ < φ < 0 and 0 < h < − φ

ψ , where φ = α2

2 − 1 − α
√

α2+4α
2 and ψ =

α2

2 + 2α − α
√

α2+4α
2 .

(i-2) φ < −2
√
ψ and 0 < h <

−φ−
√

φ2−4ψ
ψ .

(ii) If any of the following sets of conditions is true, then p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α −
α
√

α2 + 4α)) is unstable (source):
(ii-1) −2

√
ψ < φ and h > − φ

ψ .

(ii-2) φ < −2
√
ψ and h >

−φ+
√

φ2−4ψ
ψ .

(iii) If any of the following sets of conditions is true, then p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α −
α
√

α2 + 4α)) is unstable ( non-hyperbolic):

(iii-1) φ < −2
√
ψ and h =

−φ±
√

φ2−4ψ
ψ and h ̸= − 2

φ ,− 4
φ .

(iii-2) −2
√
ψ < φ and h = − φ

ψ .
(iv) The fixed point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) is unstable (saddle point) if
(iv-1) ϕ < −2

√
ψ.

(iv-2) −φ−
√

φ2−4ψ
ψ < h <

−φ+
√

ϕ2−4ψ
ψ .

Proof. The Jacobian matrix at p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) has the form

J(κ̂, γ̂) =

 j11 j12

j21 j22

,

where

j11 = 1 +
αh(α −

√
α2 + 4α)

2
, j12 = −h(

√
α2 + 4α − α)

2
,

j21 = h(
√

α2 + 4α − α) and j22 = 1 − h.

Let
R2 − (2 + ϕh)R+ (1 + ϕh + ψh2) = 0,
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where

ϕ =
α2

2
− 1 − α

√
α2 + 4α

2
,

and

ψ =
α2

2
+ 2α − α

√
α2 + 4α

2
,

since
Γ(R) = R2 − TR+ D,

where
T = j11 + j22 and D = −j12 j21 + j11 j22,

then, we obtain
Γ(−1) = 4 + 2ϕh + ψh2. (9)

According to Lemma 1, the fixed point is locally asymptotically stable if and only if D < 1
and Γ(−1) > 0. Furthermore, the fixed point is non-hyperbolic if and only if T ̸= 0 or 2
and Γ(−1) = 0. Theorem 2 is obtained by calculating (9), thus completing the proof.

According to Theorem 2, it is evident that if condition (iii-1) holds, one of the eigen-
values of the fixed point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) is −1, while the
other eigenvalue is neither 1 nor −1. When condition (iii-2) of Theorem 2 is true, the
eigenvalues of the fixed point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) are a pair of
complex conjugate numbers with equal modulus.
Let

F1P1 =
{

(α, h) : h = h1 =
−ϕ−

√
ϕ2−4ψ

ψ , ϕ < −2
√

ψ, α, h > 0
}

,

and
F2P1 =

{
(α, h) : h = h

′
1 =

−ϕ+
√

ϕ2−4ψ
ψ , ϕ < −2

√
ψ, α, h > 0

}
.

In a small neighborhood of F1P1 or F2P1 , the positive fixed point p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 +

2α − α
√

α2 + 4α)) may undergo period-doubling bifurcation when the parameters are
varied.

NP1 =
{

(α, h) : h = h2 = − ϕ
ψ ,−2

√
ψ < ϕ < 0, α, h > 0

}
.

In a small neighborhood of NP1 , the positive fixed point p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α −
α
√

α2 + 4α)) may undergo Neimark–Sacker bifurcation when the parameters are varied.

3. Bifurcations Analysis

In this section, the discussion on fixed points is divided into two parts. First, we exam-
ine the pitchfork bifurcation when the trivial fixed point is p0(0, 0). Then, we analyze the
case of the positive fixed point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)), we discuss
the PB and NB separately. Then, by applying the center manifold theorem and bifurcation
theory [24], we establish the conditions for the existence of these various bifurcations.

3.1. Pitchfork Bifurcation

If α = 0, then the Jacobian matrix J(P0) has two eigenvalues: R1 = 1 and R2 = 1 − h.
When h ̸= 2, then |R2| ̸= 1, indicating the conditions for the appearance of a pitchfork
bifurcation at P0. These conditions are represented by the following theorem:

Theorem 3. If α = 0, h ̸= 2, then the model (4) is subject to a pitchfork bifurcation at P0(0, 0) and
has only one fixed point.

Proof. Let us consider the parameter σn = α as a newly introduced dependent variable.
Then, the model (4) becomes
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κn+1

γn+1

σn+1

 →


1 0 0

0 1 − h 0

0 0 1




κn

γn

σn

+


f̂ (κn, γn, σn)

ĝ(κn, γn, σn)

0

, (10)

where
f̂ (κn, γn, σn) = −hκnγn + hκnσn − hκ2

nσn,

ĝ(κn, γn, σn) = hκ2
n.

(11)

Let
γn = s(κn, σn) = δ̃1κ2

n + δ̃2κnσn + δ̃3σ2
n + o((|κn|+ |σn|)3). (12)

The center manifold must satisfy

W(s(κn, σn)) = s(κn + f (κn, (κn, σn), σn), σn+1)− (1 − h)s(κn, σn)− g(κn, (κn, σn), σn+1) = 0. (13)

Thus, we can obtain that
δ̃1 = 1, δ̃2 = 0 and δ̃3 = 0. (14)

And the map is limited to the central manifold that was given by

f̂1 = κn − hκ3
n + hκnσn − hκ2

nσn + o((|κn|+ |σn|)3). (15)

Since
∂2 f̂1

∂κn∂σn
= h ̸= 0 and

∂3 f̂1

∂κ3
n
= −6h ̸= 0.

A pitchfork bifurcation occurs at the point P0(0, 0) in model (4). This concludes the proof.

3.2. Period-Doubling Bifurcation

This study examines the PB of the discrete–time model (4) with respect to the fixed
point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)). When the parameters are varied in
a small neighborhood of F1P1 , similar arguments can be applied. The same applies to the
case of F2P1 . We consider model (4) with (α, h) ∈ F1P1 by selecting the parameters (α, h)
arbitrarily from the set F1P1 described by{

κn+1 = κn + h1(ακn(1 −κn)−κnγn),

γn+1 = γn − h1
(
κn

2 − γn
)
.

(16)

Then model (16) has a fixed point p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) with
eigenvalues R1 = −1 and R2 = 3 + ϕh1 with |R2| ̸= 1 by Theorem 2.{

κn+1 = κn + (h1 + h∗)(ακn(1 −κn)−κnγn),

γn+1 = γn − (h1 + h∗)
(
κn

2 − γn
)
.

(17)

Here, |h∗| << 1 represents a small disturbance parameter.
Suppose that u = κ − κ̂, v = γ − γ̂. Subsequently, we perform a transformation to

relocate the fixed point p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) or p1(κ̂, γ̂) of the
model (17) to the origin.

Consequently, we obtain

 u

v

→


E11u + E12v + E13uv + E14u2

+P1uh + P2vh + P3uvh + P4u2h

E21u + E22v + E23u2

+P5uh + P6vh + P7u2h

, (18)
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where

E11 = 1 + ((1 − 2κ̂)α − γ̂)h, E12 = −hκ̂, E13 = −h

E14 = −αh, P1 = (1 − 2κ̂)α − γ̂, P2 = −κ̂

P3 = −1, P4 = −α,

E21 = 2hκ̂, E22 = 1 − h, E23 = h,

P5 = 2κ̂, P6 = −1 and P7 = 1,

(19)

and h = h1.
We construct an invertible matrix

M =

 E12 E12

−1 − E11 R2 − E11

,

and we apply the translation (κ, γ)T = M(κ̄, γ̄)T . As a result, map (18) can be transformed
into  κ

γ

 →

 −1 0

0 R2

 κ̄

γ̄

+

 f (u, v, h∗)

g(u, v, h∗)

, (20)

where

f (u, v, h∗) =
(E14(R2 − E11)− E12E23)

E12(1 +R2)
u2 +

(R2 − E11)E13

E12(1 +R2)
uv

+
(P4(R2 − E11)−P7E12)

E12(1 +R2)
hu2 +

P3(R2 − E11)

E12(1 +R2)
huv

+
(P1(R2 − E11)−P5E12)

E12(1 +R2)
hu +

(P2(R2 − E11)−P6E12)

E12(1 +R2)
hv

+ o((|u|+|v|+|h1|)4),

(21)

and

g(u, v, h∗) =
(E14(1 + E11) + E12E23)

E12(1 +R2)
u2 +

E13(1 + E11)

E12(1 +R2)
uv

+
(P4(1 + E11) + E12P7)

E12(1 +R2)
hu2 +

P3(1 + E11)

E12(1 +R2)
huv

+
(P1(1 + E11) + E12P5)

E12(1 +R2)
hu +

(P2(1 + E11) + E12P6)

E12(1 +R2)
hv

+ o((|u|+|v|+|h1|)4).

With u = E12κ̄ + E12γ̄ and v = −(1 + E11)κ̄ + (R2 − E11)γ̄. The dynamics of the fixed
point (κ̄, γ̄) = (0, 0) at h∗ = 0 are then computed using the center manifold theorem, as
presented in [25]. Consequently, a center manifold Wc(0, 0) of map (20) arises. It can be
described as follows:

Wc(0, 0) = (κ̄, γ̄)|γ̄ = s(κ̄, h∗), s(0, 0) = 0, Dh(0, 0) = 0.

Assume that
s(κ̄, h∗) = c1κ̄2 + c2κ̄h∗ + c3h2

∗ + o((|u|+ |h∗|)3), (22)
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where o((|u|+ |h∗|)3) is a function with variables of at least three orders (κ̄, h∗) and

c1 =
E2

12E23 + E14E12 + (E14E12 − 2E13)E11 − (E2
11 + 1)E13(

1 −R2
2
) ,

c2 =
P2(1 + E11)

2 − E2
12P5 − (1 + E11)(P1 −P6)E12

E12(1 +R2)
2 ,

c3 = 0.

Therefore, the map (20), when restricted to Wc(0, 0), can be expressed as follows:

F : κ̄ → −κ̄ + s1κ̄2 + s2κ̄h∗ + s3κ̄2h∗ + s4κ̄h2
∗ + s5κ̄3 + O((|κ̄|+ |h∗|4),

where

s1 = 1
R2+1 ((R2 − E11)(E12E14 − (1 + E11)E13)− E2

12E23,

s2 = 1
E12(R2+1) ((R2 − E11)(E12P1 − (1 + E11)P2)− (E12P5 − (1 + E11)P6)E12,

s3 = 1
E12(R2+1) (((2E14c2 + P4)R2 − (P4 + 2E14c2)E11 − c1P5)E2

12

− (E3
12(2E23c2 + P7) + (E11 −R2)((2E13c2 + P3)E11 − E13c2R2

+ (P6 −P1)c1 + E13c2 + P3)E12 + c1P2(R2 − E11)
2),

s4 = 1
E12(R2+1) ((−E2

12P5 + (P1 −P6)(R2 − E11)E12 + P2(R2 − E11)
2)c2),

and

s5 = 1
(R2+1) (c1(E13(R2 − E11)(R2 − 2E11 − 1)− 2E12(E11E14 + E12E23 − E14R2))).

Let

Ψ1 =

(
∂2F

∂κ̄∂h∗
+

1
2

∂F
∂h∗

∂2F
∂κ̄2

)
|(0,0) = s2,

and

Ψ2 =

(
1
6

∂3F
∂κ̄3 + (

1
2

∂2F
∂κ̄2 )

2
)
|(0,0) = s2

1 + s5.

Based on the previous argument, we have the following theorem:

Theorem 4. If Ψ1 ̸= 0 and Ψ2 ̸= 0, then model (4) is subject to a PB at the unique positive fixed
point p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) when the parameter h differs in a small
neighborhood of FP1 . Furthermore, if Ψ2 > 0 (respectively, Ψ2 < 0), then the period-2 orbits that
biforkeds from p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) are stable (respectively, unstable).

3.3. Neimark–Sacker Bifurcation

We now delve into the NB of p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) when the
parameters (α, h) vary within a small neighborhood of Np1 . We examine model (4) with
(α, h) ∈ Np1 , defined by the following expression:{

κn+1 = κn + h2(ακn(1 −κn)−κnγn),

γn+1 = γn − h2
(
κn

2 − γn
)
.

(23)

Model (23) has a fixed point p1(
1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)). Then, by
choosing h̄∗ as a bifurcation parameter, we consider a perturbation of (23) as follows:
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{
κn+1 = κn + (h2 + h̄∗)(ακn(1 −κn)−κnγn),

γn+1 = γn − (h2 + h̄∗)
(
κn

2 − γn
)
.

(24)

Here,
∣∣h̄∗∣∣ << 1 represents a small disturbance parameter.

Suppose that υ = κ − κ̂, ν = γ − γ̂. Then, we transform the positive fixed point
p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) of the model (24) into the origin. Then,
we have  υ

ν

 →

 E11υ + E12v + E13υν + E14υ2

E21υ + E22ν + E23υ2

. (25)

Here, E11, E12, E13, E14, E21, E22, E23 are obtained in (19) by substituting h with h2 + h̄∗.
Then, model (24) has a fixed point p1(κ̂, γ̂), where κ̂ = 1

2 (
√

α2 + 4α − α)‚ γ̂ = 1
2 (α

2 + 2α −
α
√

α2 + 4α).
The characteristic equation for p1(κ̂, γ̂) is given by the model (24):

R2 − p(h̄∗)R+ q(h̄∗) = 0,

where
p(h̄∗) = 2 + (α − 2κ̂α − γ̂ − 1)

(
h2 + h̄∗

)
,

and

q(h̄∗) = 1 + ((2κ̂ − 1)α + 2κ̂2 + γ̂)
(
h2 + h̄∗

)2
+ (α − 2κ̂2α − γ̂ − 1)

(
h2 + h̄∗

)
.

Since parameters (α, h) ∈ Np1 , the eigenvalues of p1(κ̂, γ̂) are a pair of complex conjugate
numbers R, R with model (4) by Theorem 2, where

R,R = − p(h̄∗)
2

± i

√
4q(h̄∗)− p2(h̄∗)

2
,

= 1 +
ϕ(h2 + h̄∗)

2
± i(h2 + h̄∗)

√
4ψ − ϕ2

2
.

Then we obtain

|R| =
√

q(h̄∗), ℓ =
d|R|
dh̄∗

|h̄∗=0 =
−ϕ

2
> 0.

Additionally, h̄∗ = 0, Rn and Rn ̸= 1, n = 1, 2, 3, 4, which is equivalent to p(0) ̸= −2, 0, 1
and 2. Note, that (α, h) ∈ Np1 , so p(0) ̸= −2 and 2. As a result, we only require satisfactory
p(0) ̸= 0 and 1, which leads to

ϕ2 ̸= 2ψ, 3ψ. (26)

Afterward, we proceed to discuss map (25) when h̄∗ = 0. Put

m = 1 +
ϕh
2

,

and

ω =
h
√

4ψ − ϕ2

2
.

Using the translation  υ

ν

 =

 E12 0

m − E11 −ω

 υ̌

ν̌

,
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the map (25) becomes υ̌

ν̌

 →

 m −ω

ω m

 υ̌

ν̌

+

 �̌(υ̌, ν̌, h∗)

ϑ̌(υ̌, ν̌, h∗)

, (27)

where
�̌(υ̌, ν̌, h∗) =

1
E12

(E13υν + E14υ2),

and

ϑ̌(υ̌, ν̌, h∗) =
((m − E11)E14 − E12E23)υ

2

E12ω
+

(m − E11)E13υν

E12ω
.

We have found the following:

�̌υ̌υ̌ = 2((m − E11)E13 + E12E14), �̌υ̌ν̌ = −ωE13, �̌ν̌ν̌ = 0,

�̌υ̌υ̌υ̌ = 0, �̌υ̌υ̌ν̌ = 0, �̌υ̌ν̌ν̌ = 0, �̌ν̌ν̌ν̌ = 0,

and
ϑ̌υ̌υ̌ =

2
ω
(E12E14(m − E11) + (m − E11)

2E13 − E2
12E23),

ϑ̌υ̌ν̌ = −(m − E11)E13,

ϑ̌ν̌ν̌ = 0, ϑ̌υ̌υ̌υ̌ = 0, ϑ̌υ̌υ̌ν̌ = 0, ϑ̌υ̌ν̌ν̌ = 0, ϑ̌ν̌ν̌ν̌ = 0.

If the discriminant quantity is non-zero, map (27) may undergo the NB.

ξ = Re[
(1 − 2R)R̄2

1 −R Φ11Φ20] +
1
2
|Φ11|2 + |Φ02|2 − Re(R̄Φ21),

where

Φ20 =
1
8
[�̌υ̌υ̌ − �̌ν̌ν̌ + 2ϑ̌υ̌ν̌ + i(ϑ̌υ̌υ̌ − ϑ̌ν̌ν̌ − 2�̌υ̌ν̌)],

Φ11 =
1
4
[�̌υ̌υ̌ + �̌ν̌ν̌ + i(ϑ̌υ̌υ̌ + ϑ̌ν̌ν̌)],

Φ02 =
1
8
[�̌υ̌υ̌ − �̌ν̌ν̌ − 2ϑ̌υ̌ν̌ + i(ϑ̌υ̌υ̌ − ϑ̌ν̌ν̌ + 2�̌υ̌ν̌)],

Φ21 =
1

16
[�̌υ̌υ̌υ̌ + �̌υ̌ν̌ν̌ + ϑ̌υ̌υ̌ν̌ + ϑ̌ν̌ν̌ν̌ + i(ϑ̌υ̌υ̌υ̌ + ϑ̌υ̌ν̌ν̌ − �̌υ̌υ̌ν̌ − �̌ν̌ν̌ν̌)].

Considering this study and the NB theorem described in [24,26], we can now present the
following theorem:

Theorem 5. If condition (26) is satisfied and ξ ̸= 0, Model (4) undergoes an NB at the fixed point
p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)) when the parameter h varies within a small
neighborhood of Np1 . Additionally, if ξ < 0 (respectively, ξ > 0), an attracting (respectively,
repelling) invariant closed curve bifurcates from the fixed point for h > h2 (respectively, h < h2).

4. Control of Chaos

In this section, the utilization of different bifurcation parameters significantly enhances
our ability to comprehensively analyze the system’s behavior. By selecting independent
parameters, we can isolate their influences and gain insights into their effects on the sys-
tem’s dynamics. This approach enables us to examine the system’s sensitivity to various
parameters, identify those with a significant impact on bifurcations, and develop a deeper
understanding of its behavior under diverse conditions. Choosing multiple parameters
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makes the study practical and feasible, as some may be controlled or measured in ex-
periments. Additionally, effective ecological conservation management solutions can be
devised to preserve these intricate ecosystems. Chaotic dynamics within a system can lead
to instabilities and undesirable behaviors. Therefore, effective techniques for chaos control
are crucial for mitigating harmful chaotic behaviors. Regulating chaotic dynamics towards
a periodic orbit or a fixed point is necessary to improve system performance. We applied
the feedback control method known as OGY, as documented in the literature [27,28], to
model (4). The basic aim is to make small, time-dependent linear perturbations to the
control parameter α in order to nudge the state towards the stable manifold of the desired
fixed point, thus controlling the chaos resulting from the NB and PB at the fixed point of
model (4). We utilize the OGY technique to express model (4) as follows:

κn+1 = (1 + αh)κn −κnγn − αhκ2
n = f (κn, γn, α),

γn+1 = (1 −κn)γn + ακ2
n = g(κn, γn, α).

(28)

Here, α is treated as the chaos control parameter. Furthermore, we assume that α lies
within the range α ∈ (α0 − δ, α0 + δ), where δ > 0 and α0 represents the nominal value
of α. Moreover, we consider p1(κ̂, γ̂) = p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α))
as the fixed point of model (4). In the neighbourhood of the fixed point p1(κ̂, γ̂) =
p1(

1
2 (
√

α2 + 4α − α), 1
2 (α

2 + 2α − α
√

α2 + 4α)), model (28) can be approximated as follows:[
κn+1 − κ̂
γn+1 − γ̂

]
≈ J(κ̂, γ̂, α0)

[
κn − κ̂
γn − γ̂

]
+ C[α − α0], (29)

where

J(κ̂, γ̂, α0) =


∂ f (κ̂,γ̂,α0)

∂κ
∂ f (κ̂,γ̂,α0)

∂γ

∂g(κ̂,γ̂,α0)
∂κ

∂g(κ̂,γ̂,α0)
∂γ

,

and

C =


∂ f (κ̂,γ̂,α0)

∂α

∂g(κ̂,γ̂,α0)
∂α

 =

 − 1
4 h(

√
α2 + 4α − α)(−α +

√
α2 + 4α − 2)

0

.

It is easy to see that system (28) is controllable provided that the following matrix

Ť = [C : JC] =


∂ f (κ̂,γ̂,α0)

∂α
∂ f (κ̂,γ̂,α0)

∂κ · ∂ f (κ̂,γ̂,α0)
∂α

∂g(κ̂,γ̂,α0)
∂α

∂g(κ̂,γ̂,α0)
∂κ · ∂g(κ̂,γ̂,α0)

∂α

.

Since the matrix Ť has a rank of 2 and − 1
4 h(

√
α2 + 4α − α)(−α +

√
α2 + 4α − 2) ̸= 0, we

proceed with the assumption that [α − α0] = −K
[
κn − κ̂
γn − γ̂

]
, where K =

[
κ1 κ2

]
, then

model (29) can be written as[
κn+1 − κ̂
γn+1 − γ̂

]
≈ [J − CK]

[
κn − κ̂
γn − γ̂

]
.

Moreover, the p1(κ̂, γ̂) is locally stable if and only if both eigenvalues of the matrix J - CK
lie within an open unit disk. The matrix J - CK is given by the following expression:

J − CK =

 Φκ1 + j11 Φκ2 + j12

j21 j22

,
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where
j11 = 1 + h( 1

2 α2 − 1
2 α

√
α2 + 4α), j12 = − 1

2 h(
√

α2 + 4α − α),

j21 = h(
√

α2 + 4α − α), j22 = 1 − h,

Φ =
1
4

h(
√

α2 + 4α − α)(−α +
√

α2 + 4α − 2).

The characteristic equation of the matrix J − CK is given by

ρ(R) = R2 − (j11 + j22 + Φκ1)R+ j22(Φκ1 + j11)− j21(Φκ2 + j12) = 0. (30)

Let R1 and R2 represent the eigenvalues of the characteristic Equation (30). We then have:

R1 +R2 = j11 + j22 + Φκ1, (31)

and
R1R2 = j22(Φκ1 + j11)− j21(Φκ2 + j12). (32)

Moreover, we take R1 = ±1 and R1R2 = 1. Thus, the lines of marginal stability of (31)
and (32) are computed as follows:

L1 : j22(Φκ1 + j11)− j21(Φκ2 + j12)− 1 = 0. (33)

Next, we suppose that R1 = 1, then (32) and (31) yield that

L2 : j11 + j12 j21 + Φ(j21κ2 + κ1) + j22(1 − Φκ1 − j11)− 1 = 0. (34)

Finally, if R1 = −1 and using (31), then we obtain

L3 : j11 − j12 j21 + Φ(κ1 − j21κ2) + j22(1 + Φκ1 + j11) + 1 = 0. (35)

Therefore, the stability region of (28) is a triangular region bounded by L1,L2 and L3 in
κ1κ2-plane.

5. Numerical Simulations

In this section, we present bifurcation diagrams, phase pictures, and maximum Lya-
punov (ML in short) exponents of the model (4) to validate our theoretical findings and
showcase the intricate dynamical behaviors through numerical simulations.

5.1. Period-Doubling Bifurcation

Example 1. Case 1. We consider parameter h and examine the following subcases:

(I) α = 4.04. In this case, we have a single positive fixed point. By performing calculations, we
observe the PB of model (4) from p1(κ̂, γ̂) = (0.829631555, 0.688288520) at h = 0.8874794,
confirming Theorem 4. The values of Ψ1 = −2.253699854 and Ψ2 = 18.7591491 for
(α, h) ∈ FP1 are obtained. Figure 1a,b illustrate that p1(κ̂, γ̂) remains stable for 0.87 ≤ h <
0.8874794 but loses stability at the PB parameter value h = 0.8874794. Additionally, an orbit
with a period of 2 is observed. The ML exponents corresponding to Figure 1a,b are depicted in
Figure 1c.
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(a) (b) (c)

Figure 1. (a,b) Bifurcation diagram and (c) ML of model (4) for value of α = 4.04, h ∈ [0.87, 0.929].

(II) For α = 9, we computed the PB of model (4) and found that it occurred at p1(κ̂, γ̂) =
(0.908326915, 0.82505776) for h = 0.2519820562 with Ψ1 = −7.937073099, Ψ2 =
0.2377290476 and (α, h) ∈ FP1 , confirming Theorem 4. Observations from Figure 2a,b
indicate that p1(κ̂, γ̂) remained stable for 0.25 ≤ h < 0.2519820562 but lost stability at the
PB parameter value h = 0.2519820562. Additionally, orbits with periods of 2, 4, 8, and 16
were observed. The ML exponents corresponding to Figure 2a,b are shown in Figure 2c.

(a) (b) (c)

Figure 2. (a,b) Bifurcation diagram and (c) ML of model (4) for value of α = 9, h ∈ [0.25, 0.35].

Case 2. We consider parameter α and examine the following subcases:

(I)
′

At h = 0.8874794, we observe from Figure 3a,b, that p1(κ̂, γ̂) remains stable for 4 ≤ α < 4.04
but loses stability at The PB parameter value α = 4.04. Furthermore, there is an orbit with a
period of 2. The ML exponents, corresponding to Figure 3a,b, are shown in Figure 3c.

(a) (b) (c)

Figure 3. (a,b) Bifurcation diagram and (c) ML of model (4) for value of h = 0.8874794, α ∈ [4, 4.36].

(I I)
′

At h = 0.2519820562, it can be observed from Figure 4a,b that p1(κ̂, γ̂) remains stable for the
range 8.5 ≤ α < 9 but loses its stability at the PB parameter value α = 9. Furthermore, there
are orbits with periods of 2, 4, 8, and 16. The ML exponents, corresponding to Figure 4a,b, are
depicted in Figure 4c.
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(a) (b) (c)

Figure 4. (a,b) Bifurcation diagram and (c) ML of model (4) for value of h = 0.2519820562, α ∈
[8.5, 12.34].

5.2. Neimark–Sacker Bifurcation

Example 2. Case 3. We consider parameter h and examine the following subcases:

(I) For α = 0.6, the NB of Model (4) occurs, revealing the fixed point p1(κ̂, γ̂) = (0.530662386
5, 0.2816025681) at h = 1.495455526. This fixed point satisfies ξ = −1.033549625 and
(α, h) ∈ Np1 , confirming the validity of Theorem 5. Observing Figure 5a,b, it can be
seen that p1(κ̂, γ̂) remains stable for 0 < h < 1.495455526 but loses stability at the NB
parameter value h = 1.495455526. The ML exponents, shown in Figure 5c, are correlated with
Figure 5a,b. Additionally, Figure 6 displays the phase pictures associated with Figure 5a,b.

(a) (b) (c)

Figure 5. (a,b) Bifurcation diagram and (c) ML of model (4) for value of α = 0.6, h ∈ [1.49, 2].

h = 1.493 h = 1.4976 h = 1.5159

h = 1.746 h = 1.795 h = 1.865

Figure 6. Cont.
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h = 1.8926 h = 2.0329 h = 2.0817

Figure 6. The phase pictures associated with Figure 5a,b.

(II) For α = 2.1, we computed the NB of Model (4), which resulted in the fixed point p1(κ̂, γ̂) =
(0.739553017, 0.546938664) at h = 0.9645336217. This fixed point satisfies ξ = −0.0983919023
and (α, h) ∈ NP1 , illustrating the validity of Theorem 5. By examining Figure 7a,b, we
observe that p1(κ̂, γ̂) remains stable for 0 < h < 0.9645336217 but loses stability at the NB
parameter value h = 0.9645336217. The ML exponents, shown in Figure 7c, are correlated with
Figure 7a,b. Furthermore, Figure 8 displays the phase pictures associated with Figure 7a,b.

(a) (b) (c)

Figure 7. (a,b) Bifurcation diagram and (c) ML of model (4) for value of α = 2.1, h ∈ [0.96, 1.12].

h = 0.962 h = 0.965 h = 0.9674

h = 0.97451 h = 0.9782 h = 1.0481

h = 1.094332 h = 1.1002 h = 1.1253

Figure 8. The phase pictures associated with Figure 7a,b.

Case 4. We consider parameter α and examine the following subcases:
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(I)
′

Let h = 0.9336269198. It is observed from Figure 9a,b that p1(κ̂, γ̂) remains stable for
the parameter range of 2.6 ≤ α < 2.85. However, it loses stability at the NB parameter
value of 2.85 ≤ α < 2.8634708. then it suddenly transitions to a steady state. The ML
exponents, depicted in Figure 9c, confirm this behavior. Additionally, Figure 9d depicts a
LA for α ∈ [2.6, 2.91]. Furthermore, Figure 10 displays the phase pictures corresponding to
Figure 9a,b.

(a) (b)

(c) (d)

Figure 9. (a,b) Bifurcation diagram and (c) ML of model (4) for value of h = 0.9336269198,
α ∈ [2.6, 2.91] and (d) LA for α ∈ [2.8, 2.91].

α = 2.7953 α = 2.84 α = 2.85

α = 2.852 α = 2.8533 α = 2.9009

Figure 10. The phase pictures associated with Figure 9a,b.
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(I I)
′

If h = 1.495455526, we observe from Figure 11a,b that p1(κ̂, γ̂) is stable within the parameter
range of 0.5 ≤ α < 0.6. However, it loses stability at the NB parameter value α = 0.6. The
ML exponents, depicted in Figure 11c, are related to Figure 11a,b.

(a) (b) (c)

Figure 11. (a,b) Bifurcation diagram and (c) ML of model (4) for value of h = 1.495455526,
α ∈ [0.5, 1.21].

(I I I)
′
If h = 0.9645336217, it is observed from Figure 12a,b that p1(κ̂, γ̂) remains stable for the
parameter range of 1.98 ≤ α < 2.02061. However, it loses stability at the NP parameter
value α = 2.02061. Next, we find that the dynamics of the Lorenz model reach their highest
chaotic value when α = 2.666659, and then it suddenly transitions to a steady state. The ML
exponents, depicted in Figure 12c, confirm this behavior.

(a) (b) (c)

Figure 12. (a,b) Bifurcation diagram and (c) ML of model (4) for value of h = 0.9645336217,
α ∈ [1.98, 2.81].

5.3. Control of Chaos

To study the chaos control for model (4), we apply the OGY method with parameters
α = 0.45 and h = 1.782443101. Model (4) has an equilibrium point p1(κ̂, γ̂) = (0.482548585,
0.2328531368), which is unstable. We consider α0 = 0.45 as the nominal value. Therefore,
the controlled model is formulated as follows:

κn+1 = (1 + (α0 − κ1(κn − κ̂)− κ2(γn − γ̂))h)κn
− hκnγn − (α0 − κ1(κn − κ̂)− κ2(γn − γ̂))hκ2

n,

γn+1 = (1 − h)γn + hκ2
n.

(36)

Let K=
[

κ1 κ2
]

be the gain matrix, and p1(κ̂, γ̂) = (0.4825485850, 0.2328531368) be the
unstable equilibrium point of model (4). Additionally, we obtain the following:

J =

 0.6129480718 −0.8601153962

1.720230792 −0.782443101

,

C =

 0.4450679288

0

,
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and

T = [C : JC] =

 0.4450679288 0.2728035288

0 0.7656195557

.

Then, it is easy to verify that the rank of T is 2. Therefore, the controlled model (36) is
controllable. Moreover, the Jacobian matrix J − CK of the controlled model (36) is given by

J − CK =

 0.6129480718 − 0.4450679288κ1 −0.8601153962 − 0.4450679288κ2

1.720230792 −0.782443101

. (37)

Then, the characteristic equation of (37) is given by

κ(R) = R2 + (0.169495029 + 0.4450679288κ1)R+ 1

+0.7656195559κ2 + 0.3482403304κ1. (38)

Then, the roots of Equation (38) lie within a unit disk |R| < 1 if the following conditions
are satisfied:

0 < 0.4548477474κ1 + κ2,

4.112866492 > κ1 ≥ −0.3808295724, 2.390880636

+κ2 > 0.1264695992κ1,

or
−0.3808295724 > κ1 > −4.874525637, 2.833646309 + 1.036165094κ1 > −κ2.

In this case, the lines of subaltern stability are given by

L1 : 0.3482403304κ1 + 0.7656195559κ2 = 0,

L2 : 1.830504971 + 0.7656195559κ2 = 0.0968275984κ1,

and
L3 : 0.7933082592κ1 + 0.7656195559κ2 + 2.169495029 = 0.

The stable triangular region, delineated by the sub-lines L1, L2 and L3 in the controlled
model (36) is depicted in Figure 13a. Moving forward, by setting κ1 = 1, we find that the
fixed point of the controlled model (36) is locally stable if and only if −2.264411037 < κ2 <
−0.4548477474. To further explore the dynamics, we choose κ1 = 1 and κ2 ∈ [−3.5, 1], and
present the bifurcation diagrams of the controlled model (36) in Figure 13b. In addition, we
provide examples of the phase of chaos control bifurcation [28]. Specifically, we consider
κ2 as a variable and illustrate the behavior of κn for κ2 ∈ [−3.5, 1]. Figure 14 showcases
various values of κ1 as indicated below:

(a) (b)

Figure 13. (a) The region of stability for the controlled model (36). (b) Diagrams of bifurcation for the
controlled model (36) with κ1 = 1, p1(κ̂, γ̂) = (0.482548585, 0.2328531368) and κ2 ∈ [−3.5, 1].
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κ1 = 0.001 κ1 = 0.9 κ1 = 2.2

κ1 = 4 κ1 = 4.15 κ1 = 4.3

Figure 14. The Phase of Chaos of the controlled model (36).

6. Conclusions

This study investigates the bifurcation behavior and chaos control in a two-dimensional
modified reduced Lorenz model. We examine the existence and uniqueness of a positive
steady state within the model. According to our theoretical study, the model (4) undergoes
pitchfork bifurcation, period-doubling bifurcation, and Neimark–Sacker bifurcation. Our
theoretical approach is supported by numerical simulations, which include bifurcation
diagrams, phase pictures, and maximum Lyapunov exponents for all model parameters (4).
These findings reveal interesting dynamic behaviors, such as stationary cycles and chaotic
attractors, confirming our theoretical analysis. The results contribute to a comprehensive
understanding of the modified Lorenz Reduction Model and its potential applications
in information security, the basin of attraction identification, and adaptive and global
synchronization. We employ a chaos control strategy to manage the chaotic behavior of the
model (4), and its effectiveness is demonstrated through numerical simulations. Finally, we
present examples of chaos control bifurcation phases.
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