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Abstract: In this paper, we constructed a new and robust fixed point iterative scheme called the UO
iterative scheme for the approximation of a contraction mapping. The scheme converges strongly to
the fixed point of a contraction mapping. A rate of convergence result is shown with an example, and
our scheme, when compared, converges faster than some existing iterative schemes in the literature.
Furthermore, the stability and data dependence results are shown. Our new scheme is applied in
the approximation of the solution to the oxygen diffusion model. Finally, our results are applied
in the approximation of the solution to the boundary value problems using Green’s functions with
an example.

Keywords: UO iterative scheme; boundary value problem; strong convergence; 7 -stability; almost
T -stability; oxygen diffusion model; Green’s function; data dependence; rate of convergence
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1. Introduction

Let B be a nonempty closed convex subset of a Banach space E. A self-mapping
T : B — Bis called a contraction if forany é € [0,1), x,y € E,

ITx =Tyl < ollx = yll, ©)
holds. An element T € [ is called a fixed point of 7 if it satisfies the operator equation
T8 =1" )

The set of all fixed point of 7 is denoted by .Z (7).

A Banach space E is said to be uniformly convex (as introduced by Clarkson [1]
in 1936) if for any €, 0 < € < 2, the inequalities ||x|| < 1, [|y]| < 1and ||x — y|| > € imply
that there exists a § = d(e) > 0 such that H(szy)H <1-29.

Quite a number of physical problems are modeled as partial differential equations and
ordinary differential equations in the form of initial value problems (IVPs) or boundary
value problems (BVPs). Most times, these equations are in the form of nonlinear problems
that are usually difficult (if not impossible) to solve through the use of analytical methods.
In a way to circumvent this difficulty of obtaining the solutions to nonlinear problems
through the use of the analytical method, the fixed point theory approach becomes useful
by way of proving the existence and uniqueness of solutions to the problems of concern.
Due to this advantage, since inception, fixed point theory has made a remarkable impact
in mathematics and other areas of applied science, including its application to BVPs. For
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instance, the papers [2—4] and the references therein have been dedicated specifically to the
use of fixed point iterative processes in approximating the solutions to BVPs via the use
of Green’s functions. The idea involved in fixed point theory is to transform any problem
of focus into a fixed point equation as in (2) which thereafter solved for T* being the fixed
point. In practice, the fixed point represents the approximate solution which is obtained
more suitably through the use of a robust fixed point iterative scheme. The fixed point
theory method has been applied in solving diverse problems in science and engineering
(see, e.g., [5]) and the references therein.

While an ordinary differential equation is an equation involving differential coefficients
to the integer order, a fractional differential equation exists as an equation involving
differential coefficients to the fractional order.

The remarkable thing about a fractional differential equation is its wide range of
applications. For example, it can be applied in modeling some physical phenomena in
science and engineering, such as in optics [6]; in electrochemistry; in viscoelasticity [7]; in
control theory; in biology; in fluid flow; and in other fields (see, for example, [8,9] and other
references therein).

In the sequel, 0 < ay, By, vn < 1 are parametric sequences of real numbers.

The aim of this paper is to answer the following question.

Question Is there a fixed point iterative scheme that can converge faster than other existing
schemes in the literature and solve some problems in its application?

To answer the question above, we construct the following fixed point iterative scheme
and call it the UO iterative scheme:

v, €B

= "Ton

Sn = (1 - ‘xn)rn +anTry 3)
th = Tsy

Uy = (1= Bn)tn + BuTtn

Op+1 = (1 - ')’n)un + Y Tup, n €N,

which, as will be shown in the subsequent sections, converges faster than some existing
iterative schemes in the literature as outlined in the next section.

Our iterative scheme generalizes and extends other existing iterative schemes in
the literature.

Remark 1. Observe that the UQ iterative scheme (3) is a five-step iterative iterative scheme,
which is not as simple as one-step or two-step iterative schemes such as the Mann and Ishikawa
iterative schemes.

The remaining part of this paper is arranged as follows: Section 2 is dedicated to
preliminary definitions and lemmas. Section 3 is for the main results which comprise the
convergence results, rate of convergence, stability and data dependence. In Section 4, the
application to an oxygen diffusion model is covered. Meanwhile, Section 5 is assigned to the
application of our new scheme to BVPs, where the construction of the Green’s function, the
UO-Green iterative scheme, convergence analysis of the UO-Green iterative and numerical
example are considered. Section 6 contains the conclusion.

2. Preliminary

Research in the area of fixed point theory via use of iterative scheme has experienced
a surge due to construction of varying forms of iterative scheme that have been useful
in application.

In 2012, Chugh et al. [10] introduced the CR iterative as follows:
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po € B

=1 =9n)pn+vnT Pn

Gn = (1= Bn)Tpu+BuTrn

Pni1 = (1 —an)qn + 0y Tqn, n €N

(4)

Another iterative scheme is Picard-S, which was introduced by Giirsoy et al. [11] in
2014 and defined thus:
Zy = (1 - ,Bn)xn + ,BnTxn
Yn = (1 —an)Txn+anTzy (5)
Xp41 = Tyn, neN.

Abbas et al. (2022) [12] constructed the following AA iteration scheme:

Zn+1 = Tyn

Yn = T[(1—yn)Tdn + 70T wy]
Wy = T[(l - ,Bn)dn + ﬁann]

dy = (1—an)zn +anTzy, n €N,

which was used to approximate the solution to a delay fractional differential equation.
Uddin et al. [13], in 2022, introduced the following iterative scheme:

8o € B

en = T[(1—an)gn+ anT gnl
fu="Ten

n+1 = Tfn/ neN,

and they were able to show that it converges faster than Thakur New, Vatan, M and
M* iterations.
The following are, respectively, the F*, Modified-SP [14] and Picard-Ishikawa [15]
iterative schemes:
po € B
Pni1="Tan 8)
dn = T[(l - “n)Pn + “nTPn], neN,

X0 € B

Xp1 = TYn

Yn = (L —an)zn + 0y T zn

zn = (1= Bu)xn+ BnTxn, n €N,

Wp = (1 - gn)un + gnTun/
Up = (1 — (Dn)un + @4 Twy, (10)
Upp1 = Ton, n€N.

Recently in 2023, Okeke et al. [16] introduced the AG iterative scheme, defined thus:

uy=uchB
Upy1 = Ton
vy = T[(1— ay)wy + oy Twy] (11)

Wy = (1 - ﬁn)Tun + ,BnTxn
Xn = (1= yn)tn +ynTun, n €N,
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which was used to approximate the fixed point of contraction mapping in a uniformly
convex Banach space with applications.

Definition 1. Two sequences, {uy } and {vy, }, are said to guarantee equivalence if h_1>n ||ty —vn|| = 0.
n—oo

Definition 2 ([17]). Let T : B — B be an operator on a real Banach space E. Assume that
vp € Band v, = f(T,vn) defines an iterative scheme which generates a sequence {vy }o_, in
B. Assume, furthermore, that {v,}5°_, converges strongly to T € F(T) # @, where F(T ) is
the set of all fixed points of T. Assume that {py}5y_ is an arbitrary bounded sequence in E and set
én = ||pns1 — f(T, pn)l|. Then,
1. The iterative scheme {v, }>_, in a real Banach space E defined by v, 1 = f(T,vy) is said to
be T -stable if lim €, = 0 implies lim ||p, — T*| = 0.
n—o0 n—o0
2. The iterative scheme {vy, }5;_ defined by v, 11 = f(T,vy) is said to be almost T -stable if
Y00 g €n < oo implies that lim lpn — T = 0.

Definition 3 ([18]). Let {a,,}> , and {b,}5>_, be two sequences of real numbers converging to a
and b, respectively. If

ool —all
w2 by — b]

then {ay } is said to converge to a faster than {by} to b.

0, (12)

Definition 4 ([18]). Suppose that for two fixed-point iterative processes {1, }5>_ and {v,}5,
both converging to the same fixed point p, the error estimates

lln — p|| < ap, foralln €N,

|lonw — pl| < by, foralln € N,

exist, where {a, }5_ and {b, }_, are two sequences of positive numbers converging to zero. If
{an}5> ) converges faster than {b, }5_ then {u, }_ converges faster than {v,}5>_ to p.

Lemma 1 ([19]). If p € [0,1) is a real number and {e,};_, is a sequence of positive num-
bers such that r}gr;o €n = 0, then for any sequence of positive numbers, {p,}5_, satisfying

Pui1 < ppn+€n, (n =0,1,2,...) such that nlgn pn =0.

Lemma 2 ([20]). Let {pn}5_oand {€, }5_ be sequences of nonnegative numbers and 6 € [0,1)
such that

Vpt1 = O0Vy + €4, n 2> 0.

IfY o g€n < oo, then Y ;> g vy < oo.

Lemma 3 ([21]). Let {,} be a nonnegative sequence for which one assumes there exists ng € N
such that all n > ng, and suppose the following inequality is satisfied:

Cnt1 < (1= @n)Cn + @uon
where ¢, € (0,1),Vn € N, Y57y ¢ = coand ¢, > 0n € N. Then,

0 <limsup ¢, < limsup g;.

n—oo n—oo

Lemma 4 ([22]). Let 0y, be a nonnegative sequence satisfying the inequality

Opi1 < (1 - 7771)0—;1 + Ay
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with n, € [0,1], Z}’io 1j = coand Ay = 0(#n). Then, lijn 0, = 0.
n (o)

3. Main Results

We begin this section by establishing some useful convergence results for our newly
developed iteration process in Banach spaces.

3.1. Convergence Analysis of the UO Iterative Process

Theorem 1. Assume B is a nonempty closed convex subset of a Banach space Eand T : B — Bisa

contraction mapping satisfying condition (1). Assume {vy }5;_ is an iterative sequence genemted by

the UO iterative scheme (3) with real sequences {an },{Bn},{1n} € (0,1), satisfying Z &y = oo,
n=1

Then, {vy, }_, converges to a unique fixed point T € F(T).

Proof. It can easily be verified that the Banach contraction principle guarantees the exis-
tence and uniqueness of T* € .7 (7). What is left is to show is that nh_r}rolo |lon — 7| = 0.

Using the contraction condition (1) and the iterative scheme (3), we have the
following estimates:

[ — T = | Ton — ]
=||Tv, — TT" (13)
< dllon — 7.
Using (3) and (13),
[sn — ¥l = (1 — an)rn + anTra — T°

< (T —an)lra — T +anl| Tro — 7|
< (1= an)|rn — T + and||rn — T
=

« (14)
(1= an) +and]|[rn — *||
<=1 =0)an]llra —
<6[1—(1=8)an|lon — T,
again, using (3) and (14),
[ty —T*[ = [ Tsu — T
< 6lsn — 77| 15)
<O[1— (1= d)an]llrn — T
<81 — (1= 8)an]flon — T,
furthermore, using (3) and (15),
lun — ¥ = [[(1 = Bu)tin + BuT tn — T*|
<@ =Bu)ltn =T+ Bull Ttn — 7
< (X =Bu)ltn — T + Budlltn — T7 16)
= [(1 = Bn) + Bud]lltn — 7
[

1= (1=8)Bullltn — "
1= (1= 8)an][1 — (1 = 8)Bulllon — T

VANVAN



Mathematics 2024, 12, 1339

6 of 29
Finally,
o1 = T = (0= yn)utn + v Tun — 77|
< (=)l = T+ vl Tun — 7]
< (U =yn)lfun = T +vndlfun — 77| a”

(1 =) + 70w — T°|
(1= =0)yalllun — 7
[ = (1= 8)yul[1 — (1= 0)Bul [l — (1 = &)an]llvn — T".

Since d € [0,1), [1 — (1 —0)Bn] < 1and [1 — (1 —5)ys] < 1, we have that

IN A

[on1 = 7| < 8*[1 = (1 = &)a]l|on — ']
Via induction, we have the following inequalities:

lon =) < [1 = a1 (1 = &)]flon-1 — "
[og-1 =7 < 6*[1 = wn—2(1 = )][[vg—2 — 7°|

lor — || < 6*[1 — ag(1 = 8)]lvo — 7.

n
01 — T < DT — ag(1 - 6)] oo — 7|
k=0 (18)

= D)o — 7 [1 - (1 - 6)a]" 1,

From elementary analysis, it is clear that 1 — g < e 7 for g € (0,1). Consequent upon
that fact and inequality (18), we have

n
[onr1 — 7] < TTe v — 7|
! g (19)

= Jfog — ]~ B0t
Taking the limit as 7 — oo of both sides of (19), then, lim lon —T*|| =0. O
n—,oo

Theorem 2. Suppose B is a nonempty closed convex subset of a Banach space E and T : B — B is
a mapping satisfying condition (1) with a unique fixed point T* € Z (T ). Suppose that {v, } and
{zy} are two iterative sequences generated by the UO iterative scheme and the AA iterative scheme,
respectively, with real sequences {an}, {Bn}, {vn} € (0,1) satisfying Y > o ay = oo. Then, the
following are equivalent:

1.  lim |jv,— 7% =0
n—oo

2. lim ||z, —T¥|| =0.
n—o0

Proof. We start by showing that (1) = (2); that is, if the UO iterative scheme converges
to the fixed point 7%, then the AA iterative also converge to the same fixed point T*.

lonr1 = znall = (L= yn)un + v Tn — Tynl|
< (A =yu)llun = Tynll +vull Tun — Tyall
< (T =y)llun = Tynll + vndllun — yul|
< (=) llun — Tunll + 0llun — yul-

(20)
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[un = ynll = [[(1 = Br)tn + BuTtn — TI(1 — ) Tdn + ynTwnl||
< (1 - IBH)th - T[(l - 'Yn)Tdn + 7nTwn]||
+ Bull Tty — T —yn)Tdn + ynTwy]|
< (1 - ,Bn)th - Ttn + Ttn - T[(l — 'Yn)Tdn + ')/nTwn] ”
+ Bull Tty — T{(X = yn) Tdn + v Twy]||
< (1 - ,Bn)th - Ttn” + (1 - ,Bn)HTtn - T[(l - %z)Tdn + 'YnTwn] ||
+Bull Tty — TI(X =) Tdn + ynTwnl|l
< (T=Bu)lltn = Ttall + [ Ttn = TI(X = vn)Tdn + v T wsl ||
< (X =Bu)lltn = Ttull + 0ltn — [(L = vn) T + vn Twn] || (21)
< (1 - ,Bn)th - Ttn” +5(1 - ’Yn)th - Ttn” + 5'Yn||tn - Twn”
S (A =Bu)ltn = Ttull +0(1 —vu)lltn — Tty + Tty — Tdul|
+ 5'Yn||tn — Tty +Tt, — Twn”
< (1= Bu)lltn = Ttall + (1 = yu)[ltn — Ttull + (1 = vu) I Ttn — Tl
+6vulltn — Ttull + 6vul| Ttn — Twnl|
< {(1 - ﬁn) + 5(1 - 'Yn) +5'Yn}||tn - Ttn” +52(1 - 'Yn)”tn - dn”
+ 82 |tn — wa
< [1=Bu+8lltn = Ttall + 6*(1 = yu) ltn — dull + 0% yulltn — wal|.
ltn — wall = [ Tsn — T[(1 = Bn)dn + BnTdul|l
< 6|lsn — [(1 = Bu)dn + BnTdn]|
< 01— Bu)llsn — dull +0Bullsn — Tdal| 22)
< 6(1 = Bn)llsu — dull + 0Bnllsn — Tsu + Tsn — Tdn|
< 6(1=Bu)llsn — dull + 6Bullsu — Tsull + 6*Bullsu — dul
< 6Bullsn — Tsull + [6(1 = Bu) + 6°Bu]llsn — dnl|.
llsn —dnll = |(1 —an)rn +anTra — (1 — an)zn — an T zul|
< (X —an)llrn — zull + @nl| Trn — Tzl (23)
< (X —an)llrn — zull + danllrn — zul|
= [(1 —an) + dan]|rn — zn]|-
lrn —znll = [|Ton — zul|
S ||'Tvn — TZn + TZn — ZnH (24)
< Ollon =zl + llzn — Tznl|-
Put (24) in (23):
lIsn — dull < O[(1 —ay) + dan]||vn — znll + [(1 — an) + dan]l|zn — Tzu||- (25)
Put (25) in (22):
[tn — wull < 6Bnllsn — Tsnll + [6(1 — Bn) + 6Bn] X (26)
{0[(1 — an) + dan]llon — zull + [(1 — an) + dan]||zn — Tznl }
[tn —dull = [ Tsn — (1 — an)zn — anTzn||
< (A =an)||Tsn—znll + anl| Tsn — Tzal|
< (1= ) Ts0 — Ton + T2n — 2a]) + anbllsn — zal @)

< (L —=an)dl[sn — znll + (1 — an) || Tzn — znl| + andl[sn — za||
< Olisn —zull + (1 = an) | Tzn — za|
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s — znll = [[(1 = &n)rn + anTrn — za||
< (1 —=an)|lrn — zal| + anl| Trn — zu|

IN

<A —=an)|lrn—znll Fanl|Trn — Tzn+ Tzn — za|
< (1 =an)|lrn — zall + @néllrn — znl| + anl| Tzn — zu|| (28)
< [(1 —ap) + an ]H”n — zZp|| + anllzn — Tzal|
S [(1 - an) +an5]{5||vn - ZnH + ||Zn TZn”} —l—anHZn - TZnH
<O[(1—ap) + andll|lon — za || + [1 + andll|zn — T zu||-
Putting (28) in (27),
[t — dull < 6%[1— (1= 8)an]||on — znll + [6 + 0%an] |20 — Tzl (29)
+ (1= an) | Tzn — zull,
and, putting (26) and (29) in (21),
tn = yull < [1—= B+ 6]lltn — Ttull +6*(1 = yu) [1 = (1 = 8)an][|on — za]|
+ 8 (1 = )6 + 0%l |20 — Tzull + 6*(1 = 1) (1 — an) |20 — Tza| (30)

+ 8 Buynllsn — Tsnll + 8*yn[l — (1= 8)Bal[1 — (1 = 8)an]||vn — zn||
+ 8yl = (1= 0)Bul[1 — (1 = &)an]l|zw — Tz

Putting (30) in (20),

10011 = Znga | < (U= yn)lltn = Tunl| +6[1 = Bu + 0]t — T'ta]|

+ 81— vn)[1— (1= 8)an]||on — zall + 8> (1 — 7) [0 + %] ||zn — T zu||
+83(1—vn) (1 — an)lzn — Tzull + 6*Buynllsn — Tsnll

+ 87l = (1= 6)Bal [l — (1 = 8)an]|lvn — 2

+ 8% [1 = (1= 6)Bal[1 — (1= 8)an][lzw — Tzul|

< (1= 7)1t = Totall + 811 = B + 8]l1w = Tl + 6 Buvilsn — T (1)
+ {1 =)= (1= )]
[l = (1= 0)Bulll = (1 = d)a] fllon — 2
+ {80 m)[8+ 6]
8t 1= (1= 0)Bull1 — (1= &)l Iz — Tzl
Since 6 € [0,1) and 6°(1 — vy) + &2y, [1 — (1 — 8)By] < 1, we have

0541 = zusall < (U =) ltn = Ttnll + 6[1 = B + 6] | tn — Ttull + 6*Buvullsn — Tsull

+{E (1= 1) [6 + 0%n] + 6 yu[1 = (1= 8)Bal[1 — (1 = 8)an] 2w — Tz (32)
+[1= (1= d)an]l|on — zu.
Let

= (1—=208)ay € (0,1)

Tty = [|vn — 2|
en = (1= yu)llun — Tun|| + 01 = B + ) |tn — Ttull + 6*Buyullsn — Tsull
+ {8 (1 = n)[6 + 0%an] + 6*yu[1 — (1 = 8)Bu][1 — (1 = &)au] H|zn — Tznl|.



Mathematics 2024, 12, 1339 9 of 29

Moreover, using 7 t* = 7 and ||z, — T*|| = 0,
lim ||z, — Tzu|| = Um ||sy — Tsul| = Um ||ty — Ttu|| = lim ||uy — Tuu| =0,
n—00 n—00 n—00 n—00

and it follows that ;—':' — 0asn — oo.

Clearly, (32) satisfies the conditions of Lemma 4 and, hence, nlgn l|lon — zn|| = 0. Since
o0
zn — TN = llon — zall + ||lzn — T
we have
lim ||z, — T*|| = 0.
n—,oo

Next, we show that (2) = (1):

1Zn41 = Onyall = IITyn = (L= vn)un + vn T un|
A=) Tyn = unll + vl Tyn — Tun||
( = V)| TYn — ttnll + 0vnllyn — ]|
< Q=) Tyn — Tun + Tun — un|| + 6vnl[yn — un||
< (T =9)0lyn — wnll + (L= yn) lun — Tunll + vnllyn — unl|
= lyn — unll + (1 — yn)l[un — Tun||

(33)

Iyn — unll = I TI(L = yu) Tdn + v Twn] — (1= Bu)tn — BuT tal
<A =BT = 7yu)Tdn + T wa] — tul
+ Ball TI(1 = vn) Tdn + vnTwn] — Tt
<@ =B)ITIA = vn)Tdn+ ynTwn] — Tty + Tty — t]
+ Budll (1 = vn) Tdn + nTwn — tu
< (1 - ﬁn)‘5||<1 - 'Yn)Tdn + v T wy — th + (1 - ,Bn)HTtn - th
+ Bud (1= ) [ Tdn — tull + Buynd || Twn — tu
< (A =Bn)(X—=9n)o|Tdn — tull + (1 = Bu)¥ud|| Twn — tu]| (34)
+ (L= Bu)l|Ttn — tull +,37152(1 = Yn)lldn — tull + Bnd (1 — vu) | Ttn — tul|
+ Bun0?l|wn — tal + Buynd|| Ttn — tall
< (1= Bu) (1= 7)8|ldn — tull + (1= Bu) (1 = 70)8|| Tty — tull
+ (1= Bu)yn0? ||ty — tull + (1= Bu) || Ttn — tu]
+ (1= Bu) I Ttn — tal| + ,31152(1 —yn)lldn — tull + Bud (L — yu) | Ttn — tal|
+ Buynd?(|wn = tll + Buynd | Ttn — tu
= (1= 1)8|[dn — tull + 110> [wn — tu| + [0+ (1 = Bu) ]| Tt — tull
lwn — tnl = [|T1(1 = Bu)dn + BuTdn] — Tsull
<O[(1 = Bu)dn + BnTdn — sl
<61 = Bu)lldn — sull + Bud|| Tdn — snll (35)
<O(1—Bu)lldn —sull + ﬁnészn = 8nl| + Budl| Tsn — sl
= 0[(1 = Bn) + Budllldn — sl + Bndl|Tsn — sull



Mathematics 2024, 12, 1339 10 of 29

ldn — sull = |(1 —an)zy + anTzn — (1 — ay)ry — an Ty
< (A —=an)|lzn = rall + anl|Tzn — Trull

<(@1- “n)”Zn rull + andllzn — 7a|
=[1—(1=0)an]llzn —ru] (36)
<=1 =0)an]l|lzn — Toull
<[1- (1 —0)an)llzn — Tzn + Tzn — Toul
<[U==08)anlllzn — Tznll +6[1 — (1 = 0)an]||zn — vall
Putting (36) in (35),

o = tall < 61 = (1= 8)Bal{ [1 = (1 = alllzu = Tzu| + 61 — (1 = E)a]2n — vl }
+ Bnd || Tsn — sull (37)
< 5[1 - (1 - ‘S)ﬁn][l - (1 - 5)"‘n]||zn - TZnH
+ 52[1 —(1- 5).3n][1 - (1~ 5)0‘71]”211 — | + 5n5||TSn — syl

Next,

ldn — tnl] = |(1 — an)zn + anTzn — Tsul|
< (1 —an)|lzn — Tsull + anl|Tzn — Tsall
< (T —an)znTzn+ Tzn — Tsull + and||zn — sul|
< (1 —an)llzn — Tznll + (1 — an)d|zn — snll + @nd||zn — sul|
= 0llzn — sull + (1 — an)llzn — Tzl
<Oz — (1 —an)rn — anTrnl| + (1 — an)||zn — T zal|
< (1 —an)dllzn — rall + @ndllzn — Trnl| + (1 — an)||zn — T zul|
< (1 —wan)dllzn — Ton|| + andllzn — Tzn+ Tzn — Tral
+ (1 —an)llzn — Tzal|
< (1—an)dllzn — Tzn + Tzn — Ton|| + andl|zn — Tzul| + €062 ||z — 74|
+ (1 —an)llzn — Tzl (38)
< (1= wn)d||zn — Tzall + (1 — 20)0%|| 20 — vul| + @nd||zn — Tzn|
+ 0,02 ||zn — Ton|| + (1 — ay)||lzn — Tzal|
< (1= wn)d||zn — Tzall + (1 — 20)0%|| 20 — vnl| + 2nd||zn — Tzn|
+ 000?20 — Tzn + Tzn — Ton| + (1 — an)||za — Tza|
< (1= wn)d||zn — Tzall + (1 — 20)0%|| 2 — vul| + @nd||zn — Tzn|
+ 0,0%|| 20 — Tzn| + 2n0% |20 — vn]| + (1 — an) |20 — Tz
= [(1 — ay)d + and + y6> + (1 — ay)]||zn — Tzul|
4+ [(1 = )% + 4 8°] || 20 — vn|
<[+ 0% + (1 —an)]llzn — Tzall + 52[1 — (1= 8)an]llzn — vnl|

Put (37) and (38) in (34):

Iy = tenll < (1= )8 {16+ @00 + (1= w)]l1z0 — Tzall +02[1 — (1~ S)awn] 2 — v}
+ 7002 {811 = (1= 8)Bu][1 = (1 = )] 20 — T
+0[1 = (1= 8)Bal[1 — (1 = )] |20 = Oull + Budllsn — Tsull }

+ [‘5"’ (1 - ,Bn)]th - Ttn”
< (1= 7)6%6 + and® + (1 — an)]llzn — Tzall + (1 = 9u)8*[1 = (1 — 8)atu] |20 — al|
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+ 98’ [1— (1= 6)Bal[l — (1 = 8)tn]l|zn — Tz (39)
+ 0L = (1= 0)Bal[L — (1 — &)au]l|zu — vl + Buyn6’llsn — Tsull
+ [0+ (1= Bau)llltn — Ttall
= {(1=70)8[0 + 2n6” + (1 — an)] + 720°[1 = (1 = 8) Bl [1 — (1 — &) }|2u — Tzul
A {1 = 7)d 1= (1= O)an] + 76 [1 = (1= 0)Bul[L — (1 = 8)au]}|2n — va
+ Bu¥nd|lsn — Tonll + 6+ (1= Bu)lllta — Tt
and, putting (39) in (33), we have
lzns1 = usall < {1 = 70)8%0 + @ad® + (1 - )]
+ 701 = (1= 8)Bal[L = (1= 8] bllzn — Tz
+ {1 =7)8 1 = (1= O)aa] + 7061 = (1= 8)Bu][1 = (1= )] bllzn — 00
+ Buynd*lsu — Tsull + [0+ (1= Bu)llltn — Ttull + (1 — 7)1t — Tt (40)
< {0 =780 +an8 + (1 - )]
71— (1= 0)Bulll = (1 = d)a] 1z — Tz
+ Buynd*||sn — Tsnll + 66 + (1= Bu)llltn — Ttull + (1 — u) lun — Tt
{1 = 70)0° + 6’1 = (1= 6)Bal 1 — (1 — 8)atn] | zn — vl
Let
= (1-208)a, € (0,1)
Ttn = [|zn — oul|
e = { (1= )80 + d® + (1= )] + 76" [1 = (1 - 6)Bu] %
(1= (1= 8)a] bllzn — Tzall + Buyad* 50 — Tl
+0[6 4+ (1 — Bu)]lltn — Ttull + (1 —vn) [un — T uun]]
F{(1=7)6 + 181 = (1 = 8)Bul}H[1 = (1 = )an]||zu — vl
Using 77t* = 7" and ||v, — T¥|| = 0,
nlgr.}o lzn — Tzl = nlgr.}o [sn — Tsull = nlglc}o [t — Ttull = nlgrolo un — Tun|| =0

and it follows that ;—':' — 0asn — oo.

Hence, (40) satisfies the assumption of Lemma 4 and, as such, we have 1Lm llzn —ou]| =0
n—oo

since |[v, — T*|| = ||zn — Unl| + ||zn — T*|| = 0 @s n — co.
Therefore, nlgrolo |lv, — || = 0, thereby completing the proof. [

3.2. Rate of Convergence of Some Iteration Processes

Theorem 3. Let B be a nonempty closed convex subset of a Banach space EandT :B — Bbea
contraction mapping satisfying condition (1) and having the fixed point T € F (T ) # . Assume
that {an },{Bn},{vn} € (0,1) are real sequences for n € N. Given that vy = zo € B, consider the
iterative sequences {vy }o_o, {Pn}oo and {x, }o_, defined by the UO (3), CR (4) and Picard-S
(5) iterative schemes, respectively. Then, the iterative sequence {v, } converges faster to the fixed

point T* than {pn }.

Proof. From Theorem 1, we have that
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n
g1 — 7% < DT = (1= 8)a]llvo — 77
k=0
= 0D g — |1~ (1 - 8)a)"
From the CR iterative scheme (4),
[rn =75 = |1 = vn)pn + 1T pn — T
< = 1)llpn = |+ 7 Tpu = | "
<@ =v)llpn — TN+ 100llpn — Tl
=[1— 1 =8)vulllpn — "I
lgn — TN = (1 = Bu) T pn + BuTrn — 7"
<A =B Tpn =T + Bull Tra — "
< (1= Bud)lpn = 71| + Budllra = 7' )
< (X =Bu)dllpn — T\ + Bnd[L = (L= 6)valllpn — Tl
={(1=Bn)d + Bnd[1 = (1 =) ynlHpn — 7
<61 —(1=0)Burnlllpn — "
[pne1 =Tl = [[(T = an)gn + anTgn — T°|
< (X —an)llgn — T + anl|Tgn — 7 3)

< (1 —a)llgn — 7" + andllgn — "
=[1— (1 =0)an]llgn — 7|
Putting (42) in (43), we have
1Pn1 — T < 61 = (1= S)an][1 = (1= 6)Buyalllpn — 77|

Since 6 € (0,1) and ay, By, vn € (0,1),

IPns1 = TN <01 = (1 = S)au]llpn — -

Via induction, we have
n
Ipnr1 — T < VT — ax(1 = 0)]flpo — 77|
k=0
8 |1pg — T1[1 — w(1 — 8)] V)

From the Picard-S iteration method (5) and the contraction condition (1), we have

1z — T = [[(1 = Bu)xn + BnT xn — T
< (T =Bu)llxn =T + Bl Toxn — 7"
< (1= Bu)llxn — TN + Budllxn — 77|
=[1—1=9)Bulllxn— 7"

11— an)Txn 4+ anTzy — T

(1 — )| Txp — T + an||Tzn — T

(1 —a)d||xy — TF|| + andl|zn — T (45)
(

[

(44)

[

ININ A

1—an)d]xp — T + and{[1 — (1 = 6)Bulllxn — "I}
(1 =)0+ and[1 = (1= 6)Bnl]llxn — 77|
w1 =Tl = [ Tyn — 77
< Sllyn — 7|

(46)
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Putting (45) in (46), we have
[xn41 — T < O[(1 — an)d + and[1 — (1 = 6)Bul]l|xn — T°|-
Since 6 € [0,1) and «ay, By € (0,1), we have

(1= an)d + and[1 — (1= 6)Ba]] <1

and it follows that i i}
|41 = T < Ol — T
< 5" |x, — |
< 6" lxo — .
Let
1y = 0 D[1 = (1= 8)a]™*Jog — 7
by = 8" || po — T [1 — (1 — 6)] ")
and
cp = 5"+1||x0 -7
Set

ay _ B[~ (1 - 8)a]" oy — |

= 0
S g — T [ — a1 — o) T

~y
=

and 2n41) )
n+ _ _ n+ _ ok
@ _ PO (=8 o -
Cn 6" [xp — ¥

Hence, the UO iterative scheme (3) converges to T* faster than the CR and Picard-S
iterative schemes. Therefore, the proof is complete. [

Example 1. Let B = R. We define a mapping T : B — B by Tx = 32 which is a contraction
mapping with the contraction constant § = % and F (T) = {2}. If we choose &y, = Bp = yn = %,
then it is clear from Tables 1 and 2 and Figures 1 and 2 that our iterative scheme converges to the
fixed point, 2, faster than all of the CR [10] as in (4), F* [14] as in (8), Picard-S [11] as in (5),

Modified-SP [14] as in (9), Uddin et al. [13] as in (7) and Picard—Ishikawa [15] as in (10) methods.

2.5 & T
—b>—uo
‘ —6— Picard-S
24 F | — A i
—#&— Picard-Ishikawa
231
c
>
k)
8 22f
=
©
>
21
2t
1.9 L L L L
0 5 10 15 20 25

Number of iterations

Figure 1. Graph corresponding to Table 1.
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Table 1. Comparison of speed of convergence of some iterative schemes for Example 1.

Step uo Picard-S F* Picard-Ishikawa
1 2.5000000000 2.5000000000 2.5000000000 2.5000000000
2 2.1508560181 2.2416992188 2.2285156250 2.2651367188
3 2.0455150764 2.1168370247 2.1044387817 2.1405949593
4 2.0137324464 2.0564788352 2.0477317870 2.0745537723
5 2.0041432444 2.0273017807 2.0218149183 2.0395338851
6 2.0012500667 2.0131976381 2.0099700994 2.0209637692
7 2.0003771602 2.0063797176 2.0045566470 2.0111165299
8 2.0001137938 2.0030839455 2.0020825301 2.0058948005
9 2.0000343329 2.0014907745 2.0009517813 2.0031258561
10 2.0000103587 2.0007206380 2.0004349938 2.0016575585
11 2.0000031253 2.0003483553 2.0001988058 2.0008789592
12 2.0000009430 2.0001683944 2.0000908604 2.0004660887
13 2.0000002845 2.0000814016 2.0000415261 2.0002471545
14 2.0000000858 2.0000393494 2.0000189787 2.0001310595
15 2.0000000259 2.0000190214 2.0000086739 2.0000694973
16 2.0000000078 2.0000091949 2.0000039642 2.0000368526
17 2.0000000024 2.0000044448 2.0000018118 2.0000195420
18 2.0000000007 2.0000021486 2.0000008280 2.0000103626
19 2.0000000002 2.0000010386 2.0000003784 2.0000054950
20 2.0000000001 2.0000005021 2.0000001730 2.0000029139
21 2.0000000000 2.0000002427 2.0000000790 2.0000015451
22 2.0000000000 2.0000001173 2.0000000361 2.0000008193
23 2.0000000000 2.0000000567 2.0000000165 2.0000004345
24 2.0000000000 2.0000000274 2.0000000075 2.0000002304
25 2.0000000000 2.0000000133 2.0000000034 2.0000001222

Table 2. Comparison of speed of convergence of some iterative schemes for Example 1.

Step uo CR Uddin et al. Modified SP
1 2.5000000000 2.5000000000 2.5000000000 2.5000000000
2 2.1508560181 2.2618408203 2.1713867188 2.2475585938
3 2.0455150764 2.1371212304 2.0587468147 2.1225705147
4 2.0137324464 2.0718078709 2.0201368476 2.0606867685
5 2.0041432444 2.0376044636 2.0069023765 2.0300470621
6 2.0012500667 2.0196927672 2.0023659513 2.0148768169
7 2.0003771602 2.0103127406 2.0008109853 2.0073657677
8 2.0001137938 2.0054005929 2.0002779842 2.0036469182
9 2.0000343329 2.0028281914 2.0000952856 2.0018056519
10 2.0000103587 2.0014810719 2.0000326614 2.0008940093
11 2.0000031253 2.0007756102 2.0000111955 2.0004426394
12 2.0000009430 2.0004061728 2.0000038375 2.0002191584
13 2.0000002845 2.0002127052 2.0000013154 2.0001085091
14 2.0000000858 2.0001113898 2.0000004509 2.0000537247
15 2.0000000259 2.0000583328 2.0000001546 2.0000266000
16 2.0000000078 2.0000305478 2.0000000530 2.0000131701
17 2.0000000024 2.0000159973 2.0000000182 2.0000065208
18 2.0000000007 2.0000083775 2.0000000062 2.0000032285
19 2.0000000002 2.0000043871 2.0000000021 2.0000015985

20 2.0000000001 2.0000022975 2.0000000007 2.0000007914
21 2.0000000000 2.0000012031 2.0000000003 2.0000003919
22 2.0000000000 2.0000006301 2.0000000001 2.0000001940
23 2.0000000000 2.0000003300 2.0000000000 2.0000000961
24 2.0000000000 2.0000001728 2.0000000000 2.0000000476
25 2.0000000000 2.0000000905 2.0000000000 2.0000000235
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2.5 = T T T T
—P— U0
\ —&—CR
24 —4— Uddinetal | -
—#&— Modified SP

n

227

Values of v

1.9 1 1 1 1

Number of iterations

Figure 2. Graph corresponding to Table 2.

3.3. Stability and Data Dependence Results

Theorem 4. Let E be a Banach space. Assume that T : B — B is a contraction mapping with
0 € [0,1) with a fixed point T € F(T) # D. Assume further that {v,}5_, is a sequence
generated by the UO iterative scheme (3) and that it converges to T*. Then, (3) is T -stable.

Proof. Assume that {p,}?"_, is an arbitrary sequence in B3 and let the sequence generated

by the UQ iterative scheme be v,,11 = f(7T,v,), which converges to a unique fixed point

T*

Let €, = ||pu+1 — f(T,pn)|l. Our aim is to show that lim €, = 0 if and only if
n—oo

’111_1}010 lpn — T%|| = 0. Set vy, = T pa.

Suppose V}E;Iolo €, =0:

1Pns1 = TN = llpnsa = f(Topn) + f(T, pu) — Tl
< pnr = F(T, p) | + (T pn) = 7|l
<en+ If(T,pn) =T
Sen+ H(l — Yn)un + YT iy — T*H
< en+ (1 =) llun — T + vud||un — T
=en+[1— (1= 06)7nlllun —

(47)

Next,
[un =T = |1 = Bu)yn + PuTtn — 7|
< (L= Bu)lltn — ¥l + Bull Tt — 7|
< (1= Bu)litn — T + Budl|tn — 7
=[1—=(1=06)Bulllts =77
[t = T = | T'sn — 7|

< bllsu — "

(48)

(49)

llsn — T = |(1 — ap)rn + ay Try — T
< (1 —an)|rn— T + and|rn — T (50)
=[1— (1= )an]llrn — "
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and, combining (49) and (50), we have

[tn — || < 6[1 = (1 = S)an][rn — 7|
<1 = (1 =d0)an]|Tpn — " (51)
< &1~ (1 - )aulllpn — "l

Putting (51) in (48), we have

lun =T < *[1 = (1= 8)Bul[1 — (1 = O)an] [ pn — 7| (52)
Again, putting (52) in (47), we have
pns1 = T < €n + 621 = (1= 8)an][L — (1= 8)Bul[L — (1 = &)yl pn — T°
Since 6 € [0,1), {an}, {Bu}, {7} € (0,1), from Lemma 1, we have that
tim s — | =0,

Conversely, suppose nh_r)r(}o [lpn — T*|| = 0; then,

en = |pnt1 — f(T, pn)ll
< pupr =T+ T = (T, pa) |
<pner = TN+ 1175 = F(T, pu)l
<pner = TN+ 1= vn)ttn A0 Tty — |
< Mputr = TN+ @ =y lun — T + yud|lun — 77
= [[pnt1 — T+ [L = (1 = 0)yn]llun — T°|
< pupr = TN+ 1= (1= 6)7al[l = (1= 6)Bullltn — T
< pngr =T+ 61 = (1= 8)yul[l = (1 = 6)Bulllsn — 7
<lpnsr =T+ 01 = (1= 6)7al[l = (1= 06)Bn][1 — (1 = d)an]|[rn — 7
< pas1 — T+ 61 = (1= 8) ] [1 = (1 = 8)Bul [T — (1 — &)an] || pn — T*-

Take the limit as n — oo on both sides and note that li_r>n €, = 0.
n—,oo

Hence, our new fixed point iterative scheme is 7 -stable. [J

Next, we show the near-7 -stability of our new iterative scheme.

Theorem 5. Let E, B and T remain the same as in Theorem 4, with T satisfying (1) for Z(T) #
@. The iterative scheme is almost T -stable.

Proof. Let {p,} be an approximate sequence of {v, } in B. Suppose that our new iterative
scheme (3) is represented as v, = f(7,v,), which converges to a fixed point 7%, and
€n = ||pu+1 — f(T,pn)ll, n € N. It is our aim to show that };” je, < oo implies that
lim ||p, — T*|| = 0.

n—oo
Let ) ;> €y < oo; then, via (3), we have

[pns1 = TN = [lpnsr = F(T pn) + (T, pu) = 77|
1 = F(T, o) | + F (T pn) = 77|
<en+ 1 f(T,pn) =77
<en+ (1= vu)un +ynTun — T
<en+ (L= ym)llun — T + bl — |
=en+ [1— (1= 6)yn]llun — 77
<en+[1=(1=0)yn][1 = (1=06)Bullltn — 7
<en+0[1=(1=0)yn][1 — (1 =06)Bulllsn — 7"
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<en+0[1—(1=0)yn][1 = (1=6)Bul[l — (1= d)an]l|rn — 7
< en+ 21— (1= 8)pal[1 — (1= 8)Bal[l — (1~ ][ pu — 7'
Set v, = ||pn — T*|| and, since & € [0,1), {an}, {Bn},{1n} € (0,1), [1 — (1 — &)ay]
[1=(1=0)Bul[l = (1=0)7a] <1,
Vpt1 < 521/n + €,

Again, since ) ;> ; €, < oo, then, via Lemma 2, we have }_;° v, < 0. It implies that
lim v, = 0 (thatis, lim ||p, — "] =0). O
n—oo n—oo

Remark 2 ([23]). An iterative scheme {v, } which is T -stable is also almost T. Howeuver, the
converse is not true.

Theorem 6. Suppose G is an approximate operator of a contraction operator T. Let {v, }_ be
a sequence generated by the UO iterative scheme (3) for T. Let the approximate scheme of the
sequence {0y }o_, be

op=veEDB

Fn = G0n

%” = (1—an)Pu+ 2y Gy (53)
tn = G5y

iy = (1 - ,Bn)fn + ﬁngfn

Opr1 = (1 - ')’n)L_ln + Gily, n €N

where {a}, {Bn}, {yn} are real parametric sequences in (0,1) satisfying the condition; 3 < a,
Vn e N. If Tt = v° and Gs* = s* such that lim |5, —s*|| = 0, then, for 0 < 6 < 1,
n—oo

[T —s*|| < %5, where € > 0 is a fixed constant.

Proof. Using (3) and (53),

lrn —7ull = | Ton — GOl
< |Toy—T0y+ Ty — GOy

< || Tvn—Ton|| +€
< Ollon —Oull +€

l5m = Sull = 11— @n)ri + @n T — (1= )P — 3G
(1 —ap)|rn — Pull + an || Tra — G|

(L—an)|lrn = Pull + an||Trn — TFn + Trn — GFul|

(1 —ap)||rn — Pull + an || Trn — Ton|| + an || T70 — G|
( )

[1-

A

(55)

INIAIA

1 —an)||rn — Full + andl|rn — 7ull + ane

(1= d)an]llrn — 7ull + ane

Putting (54) in (55),

lsn — 8l < 0[1 — (1= 8)atn]llon — Bl + [1 — (1 — &)an]e + ane
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Again, from (3) and (53),

[tn — Eull = | Tsn — G&ul|
< HTSn —T5,+ T8, — g§n||
<|[Tsn = TSull + | 750 — G5l

< 8llsn— 5l +e (56)
<o{o[1 — (1= d)an]l[vn — Oull + [1 — (1 = S)anle + ane} +e€
<O — (1—0ay||on — Bul +[1 — (1 —6)anle + dane +€
un = inl| = [[(L = Bu)tn + BuTtn — (L= Bu)tn — PuGHn|
< (1= Bu)lltn — Eull + Ball Ttn — GHal
< (X =Bu)lltn — tull + Bull Ttn — Tty + Tty — GHa|| (57)
< (L= Bu)lltn — Eall + Bull Ttn — TEull + Bul| TE: — Gu|
< (1 - IBn)th - En” +ﬁn5th - En“ +ﬁ€
=[1—(1—=0)Bullltn — Eull + Bne
Putting (56) in (57),
g — ]| <[1— (1= 08)Bul{6*[1 — (1 = &)ay]||vn — Fnl| +[1 — (1 — 8)an]e
+ dape + €} + Bue 58)
< 52[1 = (1=0)Bu][1 = (1 = d)an]|[vn — Tl +6[1 — (1 —6)Bn][1 — (1 —d)ayle
+6[1— (1= 8)Bulane + [1— (1— 8)Bule + Bue
Next,
0011 = Ops1ll = [[(1 = Yn)tn + vuTtin — (1 = )i — yn Gl ||
< (=) llun — | + yal| Tun — G|
< (1_771)Hun—un” +r)/n||7—un T+ Ty —gﬁnH (59)
< (Y= y)llun — || + vYul Tun — Tl + vul| T — Gitn |
< (=) llun — @ull + vl |lun — dn|| + yne
< [T= (1= 6)ynlllun — nl| + yue
Putting (58) in (59),

o1 = Opall <1 — (1 - 5)%]{52[1 = (1=6)Bul[l — (1 = S)an]|[von — 0|
+6[1—(1=0)Bn][1— (1 —0)anle +[1— (1 —0)Bulane
+ 1= (1= 0)Bule+Bue} +ue

< 52[1 —(1=0)yn][1 = (1= 0)Bu][1 — (1 = )an]|lvn — Ol
+6[1—= (1 =8) ][l = (1 =0)Bn][1 — (1 = 6)anle
+0[1— (1 =08)7a)[l — (1 = 0)Bu]ane +[1— (1= 8)ya)[l — (1 —0)Bule
+ 1= (1= 6)7n]Bne + 1ne

Since § € [0,1) and {ay}, {Bu}, {7n} € (0,1), n € N, &[1 — (1 — 6)vx]
[1—=(1=0)pn] <1,6[1—(1=8)1a][l = (1—=0)Bn][l — (1= 6)an] < 1,6[1—(1—08)ys]
g (1—0)Bu] <hl 1= =6)ym]1 =1 =0)Bu] <1, [1=(1—=8)ynlpn <1, <land

— oy < gy, so that



Mathematics 2024, 12, 1339

19 of 29

[on11 = Ol < [1 = (1= 0)an]l[vn — Onll + ane + 4e
< [1 — (1 — 5)0(11]”'011 - ?7n|| +0€n€+4(1 —ay + D(n)é'
9¢
<[1—(1=08an]llvn — Fnll + an(1—9) a-o)

Let &y := [|[v—0nl|, ¢n := an(1 —5) (0,1) and ¢y, := % From Lemma 3, it is clear

that 0 < limsup ||v, — T < 11m sup 2%, Again, from Theorem 1, it is easy to confirm that
n—oo

nlgr.}o o, — || = 0. Consequently, given that nlgr;o |8, — s*|| = 0, wehave || T* —s*|| < 5.

Therefore, the proof is complete. [

4. Application to Oxygen Diffusion Model

Oxygen diffusion transport is a critical chain reaction happening seamlessly within
the human body to make oxygen available to every cell by basically moving oxygen down
a concentration gradient across tissue barriers, including the alveolar—capillary membrane,
and across the extracellular matrix between the tissue capillaries and diffusion distance,
which is related to the tissue capillary density. Oxygen diffuses from the air into the blood
in the lungs and it does not have the same rate of consumption (see, e.g., [24]) as in a
real situation, which tends to be influenced by the thermal energy of particles induced
by its kinetic energy. Oxygen most particularly binds to hemoglobin (in a large volume)
and dissolves in the blood plasma (in a minute volume), and it is altogether transported
through the arteries to capillaries.

Our aim here is to study the model as developed by Srivastava and Rai [25]. The
model shown below

o%C /\8 c

=~ Ag = V(d-VC)—K, &uc(0,1] (60)

is based on a fractional diffusion equation where 2 tg is a fractional order derivative for

0 < ¢ < 1 representing the subdiffusion process, C(r, z, t) is the concentration of oxygen,
k(r,z,t) is the rate of consumption per volume of tissue and d is the diffusion coefficient of

oxygen. The net diffusion of oxygen to tissue is %ig )\aa’;,(,:, with A being the time lag in
the concentration of oxygen C along the z-axis.

The equation (60) can be reduced to an integral equivalent:

G—p
C(r,z,t) = C(r,z,0) (1—A ! )) +AD, M e 1D E(V(d- V) - D K (61)

rg—u+1

Equation (61) can alternatively be written as

Y (r,z,t) =¥(r,z20) (1 - /\r((,:t_é:+1)> + AD;(C*H) Y+ Dt”z(v(d -V¥) —K) (62
or 1 ;
¥(r2) = K(¥o) + 1 /O (s, ¥(s), K)ds 63)

where K(¥y) = ¥(r,z,0) {1 - A%} and H(s,¥,K) = Af’a";}’ +[V(d-VY) —K].
Let

T¥(r,2,t) = K(¥o) + r(1§> /0 "M (s, ¥(s), K)ds 64)

be an integral operator.
We define, for t € [0, T] and the space S = ([0, T], R), the supremum norm:

]l = sup {|¥(#)[: ¥ € S}.
te[0,T]
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The following result will be useful in proving our main result in this section.

Theorem 7. Suppose that the following conditions are satisfied:
(Eq1) There exists a constant Ly, > 0 such that
|H(t, ¥1(t), K) — H(t, ¥2(t), K)| < Ly [¥1 — Y2
foreach¥ € Sandt € [0, T].

(E2) 5 <1

Then, (60) has a unique solution.
Here, we are set to present our main result of this section.

Theorem 8. Assume that the condition of theorem 7 holds. Let {an},{Bn}, {vn} € (0,1) be
real sequences of the iterative scheme (3) such that y ;> (&, = oo. Then, the diffusion model
Equation (60) has a solution c and the iterative scheme (3) converges to c.

Proof. Consider the space S = ([0, T], R) with a supremum norm defined as

I¥]] = sup {|¥(t)
t€[0,T]

¥ e S}

Let {v,, } be a sequence generated by the iterative scheme (3) for the operator 7 : S —
S defined by

1 t
TY(E) = K(¥0) + 5 /O H(s, ¥ (s), K)ds.

We want to show that {v, } converges to ¢ as n converges to co.
From (3), (64) and the conditions of Theorem 7, we have

[l —cll = | Tow —c|

< | Tou—Tel
< max [Ton(t) = Te(t)

te[0,T]

1 t 1 ;

_ tgm IK(¥0) + @/0 (5,0 (5), K)ds = K (¥0) = 5z [ Gt K0 .
= ey [ 7405, 00(6), ) = M (9, KOs

LH t
< @ tgg’%/o [on(s) —c(s)|ds

Ly
=il

s —c|| = [[(1 = an)rn + anTru —c|

< (1 —ap)||rn —c|| + an||Trn — Tel|
< (I—=an)|[rn — ¢l + an max |Try — Tl
te[0,T]

t
< (1 —an)||rn — c|| + an max ’IC(‘FO) + —/ H(s, 1y, K)ds
te[0,T) 0

1 gt
_@/o H(s,c(s),K)ds‘

< (1—=ap)||rn —c|| + an max / H(s, rn(s (66)
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_F(lé)/otfu(s o(s), K)d|

= (1= )l — el + £y max | [ G H(s,c(s), K)|ds

L
@M%ﬂ/vayw@Ws
“n LH o

F Tl —el

=[1-(1- rL(g)T)ocn}llrn —

< (T —an)llrn —

< (I =an)|ra—c| +

= ||Tsn — CH < ||T5n - TCH
< max | Tsu(t) — Te(t)]

te[0,T]

S 1 t
< max ’IC(‘I’OH—@/O H(s,5u(s), K)ds

ot
~ K (%) — r(lg) O H(s,c(s),K)ds]

1 - 67)
F(é te[OT‘/ (s,sn(s),K)ds /Hsc

i max/ |H (s, sn(s — H(s,c(s),K)|ds
e[OT

A

=" _
< 8 b~ et

LH T
ST
Putting (66) in (67), we have

lsn —c

Iy Ly e
[tn —cl| < T(C) T —(1- @T)“nmrn |

[un —cll = [|(1 = Bu)tn + BuTtn — c||
<@ =Bu)ltn —cll + Bull Ttn — |
< (A =Bu)lltn —cll + Bull Tty — Tl
< (1= Bn)lltn —cll + Bn max | Ttn(s) — Te(s)]

A

1 t
< (1= B)lltn — ]| + B max ‘IC(‘PO)Jr—/O H(s,ta(s), K)ds

€[o,] ')
t
—M%%&@AWHU)M (69)
= (1—Bu)|ltn — || te[OT]‘/ (s,tn(s ds—/?-[sc
su—mmm—¢+7—ggJWHawmm H(s,c(s), K)lds
smmm¢+*%%/m—cm

su—MNM—w+5@$mm—w

= [1_( (g) ﬁn]th_ |
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< P = (1= Pl (1= ) pullra —c]
[on1 —cll = (X = yn)un + 7y Tun —
< (X =yu)llun —cll +vnll Tun —c|l
< (X = yu)llun —cll + vl Tun — Tell
< (1= yu)|lttn — || + vn max |Tu, — Tc|
te[0,T]

1 t
< (U ) — el - mave [ (¥0) + gy | s mas), Kyds

%/;H(s c(s), K)ds|

(C teOT’/Hsun ds—/’Hsc K)ds 69)

Tn
I'(g) tren[Lo,)T(]/o [H(s,un(s), K) — H(s, c(s), K)|ds

- K(Yo) -

< (=) llun —cll +

< (1 =) llun — | +

1, t
S (=l el + i g | lints) et

< (1= 7a)llun — (thrrEg?]\un c|
< (@ —yu)llun —cll + (g’)"Tllun*CII
(1 uT _
=[1-(1 T )n]l[un — ||
Combining (65), (68) and (69), we have
L3, T? Ly Ly Ly
lowsr —ell < w1 = (1= )] [1 = (1= 135 7)ol [1 = (1= 15 T) ] ow =€l (70)

From assumption (E;) and the fact that [1 — (1 — %T)[Sn][l —(1—E5T)y,] <1,
(70) reduces to

L
[ont1 —cf < [1—(1— 7“?) T)an]||on — |-
Via induction,
Ly
—c]| < — = .

From classical analysis, 1 — x < e * for x € [0,1].

Ly T
1 L)Zm 0&m

w1 — el < flog —clle” 7T

Taking the limit as n — oo, we have ILm |lvw — c|| = 0. Hence, the proof is com-
n—oo
plete. O

5. Application to Boundary Value Problem via Green’s Function
5.1. Construction of Green’s Function

To construct the Green’s function, we consider a third-order boundary value prob-
lem (BVP),

L[g] = p1(t)g" (t) + pa(t)g" (t) + p3(t)g' (t) + pa(t)g(t) = M(t) (72)

where t € [a,b], with the corresponding boundary conditions (BCs)
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By, [8] = ¢18(k1) + 928" (k1) + ¢38” (k1) = ¢
By, (8] = @18(k2) + @28 (k2) + 038" (k2) = @ (73)
By, [8] = 818(k3) + 028’ (k3) 4 038" (k3) = ¢

for k3 = ky or ks = ky. From (72), L[g] is linear and the righthand side can be written as
M(t, g(t),§'(t),£" (t)). The righthand side could be linear or nonlinear; ¢, @, ¢ are constants.

The homogeneous part L[g] = 0 of (72) can be solved to obtain three linearly inde-
pendent complementary solutions, g1, g2 and g3, and will be used to obtain the Green’s
function, which is a piecewise function expressed as a linear combination of the linearly
independent complementary solutions g1, g2 and g3; thus,

digy + daga +d t
G(t,s) —{ 1816282 583, 4 <P (74)

e181 +exgr +e3g3, s<t<b,

where dy,dy, d3,e1, ), e3 are constants that can be determined accordingly through the
hypotheses of the following axioms;

(A1) G satisfies the associated boundary conditions:
Bi [G(t )] = By, [G(t,5)] = By, [G(t,5)] = 0
(Az) Giscontinuous at t = s:
d181(s) + daga(s) + dsga(s) = e181(s) + eag2(s) + e383(s)
(A3) G'iscontinuous at t = s:
d181(s) +d285(s) +dags(s) = e (s) + eaga(s) + eags(s)
(A4) G" hasjump discontinuity at t = s:

1
dig (s) + dag (s) + dag5 (s) + ) e181 (s) + €287 (s) + €383 (s)

If the Green’s function G(t,s) is the solution to the BVP (72), then it will satisfy
the equation
—L[G(t,s)] =6(t—s) (75)

where ¢ is the Kronecker Delta that is subject to the homogeneous boundary conditions
By, [G(t,5)] = B, [G(t,s)] = By, [G(t,5)] = 0.

As a matter of fact, the righthand side of (75) will be —d(¢ — s) for self-adjoint operators.
The Green’s function in (73) will satisfy the homogeneous equation L[G(t,s)] = 0 for t # s.

5.2. UO-Green Iterative Scheme

Our aim here is to embed the Green’s function obtained from the preceding section in
the iterative scheme (3). This aim can be achieved by considering the nonlinear boundary
value problem

Llg] + Nlg] = M(t,g), (76)

where L[g] is linear in g, N[g] is nonlinear in ¢ and M(t, g) is a function in g that could
be linear or nonlinear. The general solution to (76) is given as g = gc + g where g is
the complementary solution obtained from the homogeneous part L[g] = 0 subject to the
boundary conditions as expressed in axiom (A ).
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Assume gy, is the particular solution to the nonhomogeneous part of (76). We define
an integral operator in terms of the Green’s function, G(t, s), and the particular solution,

8- ,
Olgy) = [ Gt,s)Llglds. 77)
Setting ¢, to ¢ for convenience so that (77) becomes
b
Qlg] = [ Glts)Llglds. (78)

Obviously, g is a fixed point if and only if g is the solution to (76). Suppose
b
8p —8 = Jo G(£,5)[M(t,g) — N[gl]ds,

Qlg] = [ G(t9)[Lig] + Nig] — M(t.g) ~ Nlg] + M(t, s

ub
glc@@mg+Mﬂwaw%
b

Applying the UO iterative scheme (3), we have

rm = Qfoy]
sn = (1 —an)rn + anQry]
th = [Sn} (79)

Uy = (1= Bn)tn + BnQtn]
Ony1 = (1= vn)tn + 1uQun],

where {a,}, {B,} and {7, } are real sequences in (0,1) for all # € N. In an expanded form,
(79) can be expressed as

b
p— +/ G(t,5)[L[on] + Nlo] — M(t, v,)]ds
Sp = (1 —ay)ry + aylry + /b G(t,s)[L[ry] + N[rn] — M(t,ry)]ds]
by = S+ /: G(t,5)[L[sn] + N[sa] — M(t, s,)]ds
b
tty = (1= Bt + Bu{tn + /a G(t,)[LIt] + N[ta] — M(t,t,)ds }
Upr1 = (1= yp)un + 'yn{un + /b G(t,s)[L[un] + N[uy) — M(t, un)]ds}
which reduces to
b

Fu = On +/ G(t,5)[L[on] + N[oa] — M(t, 0n)]ds

Sn = Tn + ttn /ﬂb G(t,8)[L[rn] + N[ra] — M(t, r)]ds

ty = Sn + /ub G(t,8)[L[sn] + N[sn] — M(t,s,)]ds (80)

b
Uy = by + B / G(t,8)[L{ta] + N{ta] — M(t, t,)]ds
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b
Vi1 = tin + %/a G(t,8)[L[utn] + Nitn] — M(t, un)]ds.

5.3. Convergence Analysis

It is our aim to show the convergence of our iterative scheme (3) to a solution to the
BVP via Green'’s function. To achieve our aim, we consider the following BVP:

—8"(t) = M(t,8(1),¢'(1),8"(1))
with boundary conditions
§(1) =Cp, §"(1) = C2, g(2) = G5

When the homogeneous equation ¢"”’(t) = 0 is solved, the following Green’s function
is obtained

dit? +dpt+d;, 1<t<s<2

Gt,s) = IF Ty ASsss (81)
ef +ext+ey, 1<s<t<2

If axioms (A;)—(A4) are invoked, then real values for the constants d;,e; (i = 1,2,3)

are obtained. Hence, (81) becomes

N

SZ S
-5 +25 -2+ (5 —25s+2)t,
G(t,s)z{ : 3 )
2

<2
B (82)
—s2+ 25— 24 (5 — 25+ 2)t, <2

Furthermore, the UO-Green iterative scheme (80) is given as

= TGgUn
sp = (1 —an)rn +ayTgrn

un = (1= Bu)tn + BnTctn
Opg1 = (1 —yn)un + Tguin

where the operator 75 : C%([1,2]) — C2([1,2]) is defined as

Te(v) =v+ /12 G(t,s) (0" — M(s,v,7',v"))ds (84)

The initial iterate vy to (83) satisfies the homogeneous equation v}’ = 0 and the BCs:

00(1) = Cl/ 06/(1> = C2 and 00(2) = C3‘
Suppose we use integration by parts for ff G(t,8)v"ds in (84) and, noting that

12 a3(a;s(3t,s)g(s)ds _ f12 5(t — s)g(s)ds, we then have

2
Te(v) = (2—t)Cy + %(tz —3t+2)Co+ (t—1)C3 — /1 G(t,s)M(s,v,v',0")ds.

Our next aim is to prove that the operator 7; is a contraction on the Banach space

C2([1,2]) for the norm
2

[z =Y sup [0 (s)]
i=0s€[1,2]

under certain conditions on M. Moreover, we shall show that 7 is a Zamfirescu operator
under certain hypotheses on M.

Theorem 9. Let M, which appears in g, satisfy the following Lipschitz condition:

[M(s, 0,0",0") = M(s, £, £, £")] < pafo(s) = £(s)| + pa[0'(s) = £'(s)| + u3[0" (s) — £"(s)| (85)
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where yy, yp and y3z are positive constants such that

1
g maX{]/ll, FZI ,1’13} S 1

The operator Tg is a contraction on the Banach space C>([1,2], || - ||c2), and the sequence
{vn} defined by the UO iterative scheme (3) converges to the fixed point of Tg.

Proof. Assume v1,v, € C2([1,2]), so that by (85), we have
76 (v1) = Tg(v2)|

2 2

= |/ G(t,s)M(s,vl,v’l,v’l’)ds—/ G(t,s)M(s, vy, vh, 05 )ds]|
1 J1
2

= |/1 G(t,s)(M(s,v1,v],0Y) — M(s, vy, 05,05 ))ds|
2

§/1 |G(t,8)||M(s, 01,0}, 0)) — M(s, v, 05, 05)|ds

2
S( sup |G(t,s)|>/ |M(s,v1,0],0]) — M(s,vp, b, 04 )|ds
[12] [1,2] 1

= G / |M S, 1)1,01,01) M(S/UZrUIer/Z/”dS

g/l |M(s,v1,0],0)) — M(s,v2,0h,0% ) |ds
1 2
< g/l [11]1(s) — v2(s)] + p2|o1(s) — v3(s)| + palvf (s) — v5 (s)[]ds

1 205 () (0
smaxtu s} [ (L1 60) —o o)) ds

IN

IN

1
3 max{py, pia, 43 t||v1 — 022

< ||v1 = v2]| 2.

which shows that 7 is a contraction.

Next, we want to show the strong convergence of the sequence {v, } defined by the
UO iterative scheme (3) to the fixed point of the operator 7¢.

Since 7 is a contraction, it is clear from the known Banach contraction principle that

the existence of a unique fixed point, 7%, of 7g in the Banach space C2([1,2], | - [|c2) is
certain. That is, we shall prove that nlgrolo ||o, — %] = 0.
From (83), we have
[rn — | = I Tgon — ||
< [ Tgvn — Tt (86)
< Offon — 77|
lIsn — T = (1 — an)rn + anTorn — T
< (A =an)lrn — | + anl| Torn — T°| 87)
< (M =an)lrn — | 4 andl|rn — 7|
— 1= (1= O]l — ta],
ltn =77 = [ Tesn — T°|
< |[|Tgsn — TcT"|| (88)

< Slsn =77,
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lun =T = [|(1 = Bu)tn + BuTctn — T°||

< A =Ba)lltn = Tl + Bull Tetn — T

(1= Bu)lltn = TN + Bull Totn — ToT™|| (89)
(1= Bn) + Budllltn — 7|

(1= (1=08)Ballltn — "

I IA A

IN

and
lop1 — T = (1 = yn)tn + Y Tgun — 77

< (T=7u)llun = T + vul Toun — 7|
< (1= an)[un — )+ 7u |t — ¥
=[1=QQ=8)yulllun — 77

and, combining (86)-(90), we have

(90)

[onsr =T < 81— (1= 8)an][1 = (1= 8)Bul[1 = (1= 8)Bulllon — 7"
Since 6 € [0,1) and ay, B, 1u € (0,1), we can say that [1 — (1 —8)B,][1 — (1 —0)7a) < 1.
It follows that ) )
OTOWS A g1 — Il < 21— (1= S)an[low — 7.

Inductively,
[on1 =T < VL — (1= S)au] oo — 7|

Op1 — T < 8D Jop — *||H1— (1 —8)ay]
From elementary analysis, it is clear that 1 — x < e for 0 < x < 1, so that

n
||vn+1 - T*” < 52(114-1)”-00 _ T*||n+1 He_(l—‘s)“k

Jes2(n+1) ”00 o ||n+l€7(175) Yo Xk

Clearly, if } 32, ax = oo, such that e~ (1=0) Xkco% — 0 as n — oo, then li_r>n o, — || =0,
n—oo
thereby completing the proof. [J
Example 2. Consider the BVP
(1) = —tg"(t) =282+t -2 91)
with BCs
8(0)=¢'(0) =g'(1) =0 (92)

The exact solution is g(t) = % - g

The corresponding Green’s function is given as follows:

c _ (s_l)tz 0<t<s
(t:5) = sti U L 8os st <

Embedding the Green’s function in the UO-Green fixed point iterative scheme (80), we have

Fo = Oy + /Ot [L ; D) tZ] g (£) + tg" (£) + 22 — t + 2]ds

1 Sl—t2 52—5
+/t [( 2 L > ][8/"(0+fg"(f)+2t2—t+2]ds

tor(s—
Sn="Tn+ an/O [%tz] [¢"(t) + tg" (t) +2t> — t +2]ds
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1 2 2
+an[ [5(12 t) +S _ S}[g’”(t)+fg//(t)+2t2—t+2]ds

t, = s, + /Ot [(S ; L) tz} [ () + tg" () + 2> — t +2)ds

1 Sl*tz sz—s
+/t [( 2 e 3 ][8/"(0+fg"(f)+2t2—t+2]ds

Uy =ty + Bn /Ot [(S > 1)t2} 8" (£) + tg" (t) + 262 — t + 2]ds

1 _\2 2
+,Bn/t {5(12 t) +S . S}[g///(t)+tg//(t)+2t2_t+2]ds

tr(s—1
Uyl = Uy +%,/0 [(S 5 )tz} [¢" () + tg" (t) + 212 — t +2]ds

1 2 2
+ 'Yn/ [S(l L S} [ () + tg" (t) + 282 — t + 2]ds.
t 2 2

With a better choice of ay, Bn, and v, € (0,1), it is guaranteed that the UO—-Green iterative
scheme converges faster than the Picard—Green [26], Mann—Green [27], Khan—Green [28], Ishikawa—
Green [29] and GA-Green [2].

Furthermore, the minimization of the L2-norm of the residual error guarantees a
perfect computation.

6. Conclusions

The UO iterative scheme generalizes and extends other existing iterative schemes in
the literature as shown in Example 1, where our scheme converges to the fixed point 2 faster
than all of the CR, F* Picard-S, Modified-SP Uddin et al. and Picard-Ishikawa iterative
schemes with visualization in tables and graphs. Our newly developed UO iteration
process is applied in solving a multi-term fractional diffusion equation for oxygen delivery
via a capillary of tissues, as found in [25]. Embedding the Green’s function in the UO
scheme (3) gives rise to the UO-Green iterative scheme, which is used to approximate the
solution of a BVP.
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