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Abstract: The Sturm–Liouville boundary value problem (SLBVP) stands as a fundamental cornerstone
in the realm of mathematical analysis and physical modeling. Also known as the Sturm–Liouville
problem (SLP), this paper explores the intricacies of this classical problem, particularly the relationship
between its canonical and Liouville normal (Schrödinger) forms. While the conversion from the
canonical to Schrödinger form using Liouville’s transformation is well known in the literature, the
inverse transformation seems to be neglected. Our study attempts to fill this gap by investigating
the inverse of Liouville’s transformation, that is, given any SLP in the Schrödinger form with some
invariant function, we seek the SLP in its canonical form. By closely examining the second Paine–de
Hoog–Anderson (PdHA) problem, we argue that retrieving the SLP in its canonical form can be
notoriously difficult and can even be impossible to achieve in its exact form. Finding the inverse
relationship between the two independent variables seems to be the main obstacle. We confirm this
claim by considering four different scenarios, depending on the potential and density functions that
appear in the corresponding invariant function. In the second PdHA problem, this invariant function
takes a reciprocal quadratic binomial form. In some cases, the inverse Liouville transformation
produces an exact expression for the SLP in its canonical form. In other situations, however, while
an exact canonical form is not possible to obtain, we successfully derived the SLP in its canonical
form asymptotically.

Keywords: Sturm–Liouville boundary value problem; Liouville’s transformation; canonical form;
Liouville normal (Schrödinger) form; invariant function; PdHA (Paine) problem; asymptotic expansion
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1. Introduction

The Sturm–Liouville boundary value problem (SLBVP) stands as a venerable and
foundational topic in the realm of mathematical analysis and scientific inquiry. The SLBVP
is often referred to as the Sturm–Liouville problem (SLP) in the literature, and we will
follow this convention in this article. The SLP is a specific type of second-order linear
ordinary differential equation (ODE) problem that arises in various areas of mathematics
and physics, particularly in the study of partial differential equations (PDEs) and the
eigenvalue problems associated with them. It is named after the mathematicians who
pioneered the study, Jacques Charles François Sturm (1803–1855) and Joseph Liouville
(1809–1882).

The origin of the SLP traces its history back to the first half of the 19th century, when
both Sturm and Liouville published a sequence of papers on second-order linear ODEs
that included BVPs between 1836 and 1837. The study of ODEs before this period was
predominantly limited to searching for solutions in terms of analytic expressions. Sturm
and Liouville were among the first mathematicians who recognized the limitations of
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such an approach and discerned the advantage in investigating the properties of solutions
directly from the ODEs, even in the absence of closed forms for solutions [1–3].

Thanks to the advanced progress of computational tools, it was only during the second
half of the 20th century that the Sturm–Liouville theory and its applications attracted
significant attention. Even though the problem has become a classic, there are still dozens
of research papers on the topic published annually. The mathematical framework of the
SLP remains of paramount importance across various disciplines of mathematics, physics,
and engineering. The SLP serves as a versatile and elegant tool for understanding and
analyzing the behavior of second-order linear ODEs, with diverse applications in quantum
mechanics, heat transfer, structural dynamics, vibrations of mechanical systems, and many
more. Solving these problems provides the eigenvalues and eigenfunctions associated with
these systems, with important physical and mathematical interpretations [4–14].

Unless otherwise mentioned, we will focus on the classical SLP in this article, which
refers to the original and foundational formulation of the problem with specific properties
and assumptions. The term classical distinguishes this foundational formulation from more
generalized or extended versions of the SLP. The classical SLP serves as a fundamental
model, and its properties and solutions have also been extensively studied and applied
in various areas of mathematics and physics. Some key characteristics of the classical
SLP include second-order linear ODEs, self-adjoint (Hermitian) differential operators, real-
valued eigenvalues, and specific (e.g., Dirichlet, Neumann, Robin) boundary conditions.
The generalizations of the SLP may encompass fractional differential equations [15–17],
non-self-adjoint operators [18–24], complex-valued eigenvalues [25–27], or different (e.g.,
time-dependent, eigenparameter-dependent, nonlocal, etc.) boundary conditions [28–30].

Our study investigates the transformation from the Sturm–Liouville problem (SLP)
in its canonical form to the Liouville normal (Schrödinger) form. This conversion, known
as Liouville’s transformation/reduction, involves transforming both the dependent and
independent variables [4,31–33]. While the transformation itself is established, the inverse
Liouville’s transformation, which retrieves the SLP from its Schrödinger form, remains
largely unexplored. This lack of attention might be explained by the assumption that
reversing the steps of the transformation would be trivial. However, as we will see in the
case of the generalized second Paine–de Hoog–Anderson (PdHA) problem, inverting the
SLP to its canonical form can be notoriously difficult, even after solving the associated ODE
for the invariant function.

This work fills a gap in the understanding of the SLP transformation between its two
forms. We elucidate the process of conversion by considering the second PdHA problem,
also known in the literature as the second Paine problem. We focus on a generalized version
of the invariant function, focusing on the reciprocal quadratic power of the binomial
term as originally presented in their 1981 paper [34]. Interestingly, depending on the
combinations of potential and density functions, the inversion process can range from
relatively straightforward to extremely difficult. As a consequence, the SLP can be retrieved
to its canonical form in either case: with an exact expression of the so-called p-function
for the former case or as an asymptotic approximation for the latter, where we propose
a novel technique using asymptotic expansion. Therefore, we are able to obtain the SLP
in its canonical form in either case, either with an exact expression or as an asymptotic
approximation. This constitutes our primary contribution.

In her PhD thesis, Ledoux discussed a new class of numerical methods in detail for
solving the SLP in both its canonical and Schrödinger forms. Using the constant and line
perturbation methods, which fall under the category of piecewise perturbation methods,
these techniques demonstrated efficiency, accuracy, and stability [35]. She briefly touched
on Liouville’s transformation, and in the appendix, she provided some functions associated
with the second Paine problem in the canonical form, referring to [36]. However, no
derivation was provided on how to obtain these functions. Therefore, we will delve deeper
into this issue and provide the missing derivation at the end of Section 3. Interestingly,
despite Everitt providing a catalog of nearly 60 examples of the SLP in both its canonical
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or Liouville normal forms, both the first and second Paine problems were conspicuously
absent from the list [37].

Buterin and his collaborators established necessary and sufficient conditions for a
self-adjoint SLP in the canonical form to be converted to another one in its Liouville normal
form [38]. By concentrating on open questions in the inverse problem for transmission
eigenvalues for the spherically symmetric variable-speed wave equation [39], the authors
demonstrated constructively that eigenvalues, together with their multiplicities, do not
uniquely determine the potential function in the Schrödinger form BVP or the density
function in another SLP in its canonical form. In particular, by considering a special case
of the canonical SLP with some particular values at one of the boundaries, the necessary
and sufficient conditions for the convertibility between both forms of the SLP are related
to the positive definiteness of the associated canonical Sturm–Liouville operator and a
relationship with the solution of a particular initial value problem (IVP).

Transforming the SLP from its Liouville normal form to the canonical form has been
studied in the context of perturbed potential temperature fields in atmospheric boundary
layers. While close convergence was observed between asymptotic solutions using the
WKB method and numerical simulations, the study only focused on a simplified case
with constant density and zero potential [40]. Another study investigated the lowest-
order eigenvalue under both Dirichlet and Neumann boundary conditions to further
understand the second generalized Paine problem [41]. Using a method for estimating the
lowest eigenvalue that incorporates the localized landscape and potential functions [42,43],
the study found that the estimates tend to overshoot the actual values but exhibit excellent
qualitative agreement for the second Paine problem with Dirichlet boundary conditions.
However, discrepancies were observed for Neumann boundary conditions with specific
combinations of small constants in the binomial term and higher values of the denominator.

This article is organized as follows. Section 2 discusses the transformation of the
SLP from its canonical form to the Schrödinger form and its inverse. The so-called Li-
ouville’s transformation involves both the independent and dependent variables of the
SLP. Section 3 focuses on the second PdHA problem, which generalizes the corresponding
invariant function to include arbitrary positive constants while maintaining its reciprocal
quadratic power. We consider four different scenarios, each of which is discussed in its
own subsection. The first case examines a combination of a nonzero constant density
function and a vanishing potential function. The second case explains the combination of a
nonzero constant potential and quadratic density functions. The third case delves into the
situation where both the potential and density functions are nonzero constants. The final
case discusses when the transformation function depends reciprocally and linearly on the
Schrödinger variable. Finally, Section 4 concludes our discussion and provides further
remarks and future directions.

2. Sturm–Liouville Boundary Value Problem

In this section, we reconfigure the SLP in the canonical form to the one in the
Schrödinger form using a transformation that involves both the independent and de-
pendent variables, the so-called Liouville’s transformation. We also verify that, using the
inverse transformation, the SLP in the canonical form can be recovered from the SLP in the
Liouville normal form.

Consider the general form of the classical Sturm–Liouville eigenvalue problem written
in the canonical form or self-adjoint form with eigenvalue λ and the corresponding eigenfunc-
tion u(x):

− d
dx

(
p(x)

du
dx

)
+ q(x)u = λ r(x)u, a < x < b. (1)

The regular boundary conditions are imposed at the endpoints:

δ0 u(a)− δ1 p(a)
du
dx

(a) = 0, and γ0 u(b)− γ1 p(b)
du
dx

(b) = 0,
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where δ0 and δ1 are real and not both zero, and similarly, γ0, γ1 ∈ R, γ2
0 + γ2

1 > 0.
The SLP (1) is regular if both a and b are finite and the functions p, q, and r are piece-
wise continuous on [a, b], usually not zero, in particular, p, r > 0, but they may take
constant values. The function r = r(x) is called the weight or density function, whereas
q = q(x) is often referred to as the potential function by physicists and chemists.

The following lemma considers a special case when both p and r are nonzero constants.
The proof of Lemma 1 can be found in Appendix A.

Lemma 1. When both p and r are constants but nonzero, the ODE (1) can be expressed in the
Liouville normal form using the change of variable t = ηx, where η =

√
r/p ̸= 0:

−d2u
dt2 + Q(t) u = λu, α < t < β, where Q(t) =

pq
w2 . (2)

Remark 1. In the context of quantum mechanics, the ODE (2) represents the time-dependent
Schrödinger equation, where Q(t) denotes the potential function that depends on the time variable t
and the eigenvalue λ corresponds to the energy level. However, in this article, we will deviate from
common physics terminology and instead use the term “potential” to refer to the function q(x) in (1)
but not Q(t) in (2). In what follows, it is important to note that, in this context, the independent
variables x and t are not necessarily attached to particular dimension variables, that is, spatial and
temporal, respectively. We can certainly interpret them as temporal variables if the involved ODE
represents an evolution equation.

The following lemma demonstrates that a transformation of the dependent variable u
could yield a nonlinear ODE. The proof of Lemma 2 can be found in Appendix B.

Lemma 2. For p(x), r(x), and u(x) > 0, the ODE (1) can be transformed to either one of the
following Riccati equations:

dU
dx

+
U2(x)
p(x)

= q(x)− λ r(x),

dV
dx

+
1
p

dp
dx

V(x) + V2(x) =
1
p
(q − λr),

using the following change of variables in u(x):

U(x) =
p
u

du
dx

or V(x) =
U
p

,

respectively.

The following lemma shows what happens to the SLP (1) when we transform its
independent variable. The proof of Lemma 3 can be found in Appendix C.

Lemma 3. The eigenvalue problem (1) can be converted to another ODE in the following form by
transforming the independent variable x to t, where x = x(t):

− d
dt

(
p
ẋ

du
dt

)
+ qẋ u = λ rẋ u, (3)

where the dot represents the derivative with respect to t, that is, ẋ = dx/dt, and is assumed to take
one sign on the open interval α < t < β that corresponds to a < x < b in the original variable
through a transformation. Furthermore, u = u(x(t)) and u/ẋ = u(x(t))/ẋ(t). Other functions
also follow a similar convention.
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The following lemma demonstrates how eigenvalue problem (1) transforms into
another ODE when we introduce a new dependent variable. The proof of Lemma 4 can be
found in Appendix D.

Lemma 4. The eigenvalue problem (1) can be converted to another ODE in the following form
by transforming the dependent variable u of the form u(x) = w(x) v(x), where w(x) is a given
function:

− d
dx

(
pw2 dv

dx

)
+

[
qw2 − w

d
dx

(
p

dw
dx

)]
v = λ rw2 v. (4)

Lemma 5 combines both Lemma 3 and Lemma 4 and reveals what kind of eigenvalue
problem will be obtained when both independent and dependent variables are transformed
simultaneously.

Lemma 5. By combining both the transformations for independent and dependent variables, that
is, x = x(t) and u(x) = w(x) v(x), we obtain another transformed Sturm–Liouville ODE:

− d
dt

(
P(t)

dv
dt

)
+ Q(t) v = λ R(t)v, (5)

where

P(t) =
pw2

ẋ
,

Q(t) =
[

qw − 1
ẋ

d
dt

(
p
ẋ

dw
dt

)]
wẋ, and

R(t) = rw2 ẋ.

Proof. Using the results from Lemma 3 and Lemma 4, we can write ODE (1) as follows:

− 1
ẋ

d
dt

(
pw2

ẋ
dv
dt

)
+

[
qw − 1

ẋ
d
dt

(
p
ẋ

dw
dt

)]
w v = λ rw2 v. (6)

Multiplying (6) with ẋ, we obtain the desired result (5). This completes the proof.

The following theorem describes how Liouville’s transformation converts the SLP (1)
in the canonical form to another SLP in the Liouville normal form. The proof of Theorem 1
can be found in Appendix E.

Theorem 1 (Liouville’s transformation [44]). The Sturm–Liouville problem in the canonical
form with eigenvalue λ and the corresponding eigenfunction u(x), with regular boundary conditions:

− d
dx

[
p(x)

du
dx

]
+ q(x) u = λ r(x) u, a < x < b,

δ0 u(a)− δ1 p(a)
du
dx

(a) = 0, γ0 u(b)− γ1 p(b)
du
dx

(b) = 0,

where δ0 and δ1 are real and not both zero, γ0 and γ1 are also similarly conditioned and can be con-
verted into the Liouville normal (Schrödinger) form by performing Liouville’s transformation

−d2v
dt2 + I(t) v = λ v, α < t < β,

δ2 v(α)− δ1 P(α)
dv
dt

(α) = 0, γ2 v(β)− γ1 P(β)
dv
dt

(β) = 0,
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where both P(α) and P(β) refer to the same function P(t) introduced in Lemma 5,

δ2 =

(
δ0w2 − δ1 pw

dw
dx

)∣∣∣∣
x=a

, and γ2 =

(
γ0w2 − γ1 pw

dw
dx

)∣∣∣∣
x=b

.

Here, I is the corresponding invariant function of the SLP (1):

I(t) =
q
r
+ w

d2

dt2

(
1
w

)
, (7)

and the Liouville transformation is given by

t =
∫ √ r

p
dx, w = (pr)−1/4, and u(x) = w(x) v(x). (8)

Moreover, ∫ b

a
r(x) u2(x) dx =

∫ β

α
v2(t) dt. (9)

The following corollary discusses the opposite process, that is, given the SLP in the
Liouville normal form, we can invert it back to the SLP in the canonical form. The proof of
Corollary 1 can be found in Appendix F.

Corollary 1 (Inverse Liouville’s transformation). The SLP expressed in its Schödinger form

−d2v
dt2 + I(t) v = λ v, α < t < β, (10)

δ2 v(α)− δ̂1
dv
dt

(α) = 0, γ2 v(β)− γ̂1
dv
dt

(β) = 0, (11)

can be inverted back to the same eigenvalue problem in its canonical form

− d
dx

[
p(x)

du
dx

]
+ q(x) u = λr(x) u, a < x < b, (12)

δ0 u(a)− δ1 p(a)
du
dx

(a) = 0, γ0 u(b)− γ1 p(b)
du
dx

(b) = 0, (13)

using the identical Liouville’s transformation, where q, r, and w satisfy the following second-order
differential equations:

q
r
+ w

d2

dt2

(
1
w

)
= I(t),

p =
1

rw4 , and x =
∫ √ p

r
dt,

and the coefficients δ0, δ1, γ0, and γ1 are given as follows:

δ0 =

(
δ2

w2 + δ1
p
w

dw
dx

)∣∣∣∣
x=a

, γ0 =

(
γ2

w2 + γ1
p
w

dw
dx

)∣∣∣∣
x=b

,

δ1 =
δ̂1

P(α)
, and γ1 =

γ̂1

P(β)
.

3. Reciprocal Quadratic Invariant Function

In this section, we attempt to generalize the second Paine–de Hoog–Anderson (PdHA)
problem, which is simply known in the literature as the second Paine problem [34]. It is an
SLP expressed in Schrödinger form with Dirichlet boundary conditions. The corresponding
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generalized invariant function I is given by a reciprocal binomial term with positive integer
power, given as follows:

I(t) =
k

(t + m)n , where k, m > 0, and n ∈ N.

In particular, we only focus on the case n = 2 but treat both the positive constants
k and m as free parameters. A discussion on other values of n > 2 will be presented in
a separate work. This choice still yields the generalized second Paine problem with a
reciprocal quadratic invariant function I, and leads to the following SLP in the Liouville
normal form with Dirichlet boundary conditions:

−d2v
dt2 +

k

(t + m)2 v = λ v, v(0) = 0 = v(π). (14)

In their original paper, Paine et al. took a special case of k = 1, m = 0.1, n = 2, α = 0,
and β = π [34]. In what follows, we are interested in expressing the SLP (14) in the
canonical form.

3.1. Vanishing Potential and Constant Density Functions

For this particular case, we have the following theorem.

Theorem 2. Let the potential function q vanish and the density function take a constant value, that
is, q = 0 and r = r0 ̸= 0, respectively. Then, using the following change of variables,

t = −m + [r0(2ρ + 1)(x + x0)]
1/(2ρ+1), and

v(x) = [r0(2ρ + 1)(x + x0)]
ρ/(2ρ+1) u(x), x0 ∈ R,

the canonical form of ODE (14) for k ̸= 3/4 is given as follows:

− d
dx

{
◦r0[(2ρ + 1)(x + x0)]

4ρ/(2ρ+1) du
dx

}
= λ r0 u, a < x < b, (15)

where

◦r0 = r(2ρ−1)/(2ρ+1)
0 ,

2ρ + 1 = 2 ±
√

1 + 4k,

2ρ − 1
2ρ + 1

=
−(1 + 4k)± 2

√
1 + 4k

3 − 4k
, and

4ρ

2ρ + 1
=

2
(

1 − 4k ±
√

1 + 4k
)

3 − 4k
.

For k = 3/4, ODE (14) may take one of the following two distinct canonical forms:

− d
dx

{
8
√

r0(x + x̂0)
3/2 du

dx

}
= λ r0 u, a < x < b, (16)

for the following change of variables:

t = −m ± 4
√

4r0(x + x̂0), and

v(x) = [4r0(x + x̂0)]
3/8 u(x), r0 > 0, x̂0 ∈ R such that x + x̂0 ≥ 0,
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or

− d
dx

{
1
r0

e−2r0(x+x̃0)
du
dx

}
= λ r0 u, a < x < b, (17)

for the following change of variables:

t = −m ± er0(x+x̃0), and

v(x) = e−r0(x+x̃0)/2 u(x), x̃0 ∈ R.

All ODEs (15)–(17) satisfy Dirichlet boundary conditions u(a) = 0 = u(b).

Proof. For the case of vanishing potential function q = 0 and nonzero constant density
function r = r0 ̸= 0, we seek a function w that satisfies the following ODE, which deduces
from comparing the invariant functions (7) and (14)

w
d2

dt2

(
1
w

)
=

k

(t + m)2 . (18)

Introducing a new dependent variable ω = 1/w, ODE (18) can be written as follows, which
turns out to be a special case of the Cauchy–Euler equation:

(t + m)2 d2ω

dt2 − kω = 0. (19)

Introducing a new independent variable τ = t + m, and because dτ = dt and d2τ/dt2 = 0,
we observe that the transformed ODE takes a similar form to ODE (19), that is, τ2ω̈ − kω = 0,
where double dots represent the second derivative with respect to τ. Seeking an ansatz in
the form ω(τ) = τρ, where τ = t + m, we obtain ρ2 − ρ − k = 0 as the indicial equation,
which is solved as

ρ = ρ1,2 =
1
2

(
1 ±

√
1 + 4k

)
. (20)

Observe that because k > 0 > −1/4, the indicial roots ρ are always real valued. The linearly
independent solutions of ODE (18) are thus given by

w(τ) = w1,2(τ) = τ−ρ1,2 . (21)

From the Liouville transformation (8), we can express the function p and dx/dt as follows:

p(τ) =
1

r0 w4(τ)
=

ω4(τ)

r0
=

τ4ρ

r0
, (22)

and
dx
dτ

=

√
p
r0

=
1

r0 w2(τ)
=

ω2(τ)

r0
=

τ2ρ

r0
, (23)

because dx/dt = dx/dτ. Integrating (23) with respect to τ, we obtain a relationship
between the two independent variables x and t:

x + x0 =
τ2ρ+1

r0(2ρ + 1)
, x0 ∈ R. (24)

The Schrödinger variable t, or τ, can be expressed explicitly in terms of the canonical
variable x using (24):

t = −m + [r0(2ρ + 1)(x + x0)]
1/(2ρ+1).
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Using indicial roots ρ in (20), that is, 2ρ + 1 = 2 ±
√

1 + 4k, the function p in (22) can also
be expressed in terms of the canonical variable x:

p(x) =
1
r0
[r0(2ρ + 1)(x + x0)]

4ρ/(2ρ+1),

=
1
r0
[r0(2ρ + 1)(x + x0)]

2(1−4k±
√

1+4k)/(3−4k), k ̸= 3
4

.

Observe that the constant r0 can be pulled out to form ◦r0:

◦r0 = r 4ρ/(2ρ+1)−1
0 = r (2ρ−1)/(2ρ+1)

0 ,

= r {−(1+4k)±2
√

1+4k}/(3−4k)
0 , k ̸= 3

4
.

To find the left and right endpoints of the variable x, we use (24), in which they correspond
to α = 0 and β = π, respectively. Thus,

a = −x0 +
m2ρ+1

r0(2ρ + 1)
, and

b = −x0 +
(π + m)2ρ+1

r0(2ρ + 1)
.

By expressing the function w (and ω) in terms of the canonical variable x, we can investigate
the boundary conditions. Using (21) and (24), we have the following expression for w:

w(x) = [r0(2ρ + 1)(x + x0)]
−ρ/(2ρ+1),

which gives rise to the relationship between u and v:

v(x) = [r0(2ρ + 1)(x + x0)]
ρ/(2ρ+1) u(x).

We also know that δ1 = 0 = γ1, whereas δ2 = 1 = γ2. Hence, we can calculate the
values of δ0 and γ0 by evaluating w2(x) at x = a and x = b, respectively, which gives the
following values:

δ0 =
1

w2(a)
= ω2(a) = m2ρ = m1±

√
1+4k, and

γ0 =
1

w2(b)
= ω2(b) = (π + m)2ρ = (π + m)1±

√
1+4k.

However, because δ1 = 0 = γ1, these quantities are irrelevant as we can always divide
with each of them, and the right-hand sides of the boundary conditions remain identical
and are Dirichlet-type. Thus, u(a) = 0 = u(b). We have completed the proof for the first
part of the theorem, that is, for the case k ̸= 3/4.

To prove the second part of the theorem, we take k = 3/4, and the indicial roots are
given by

ρ1 =
3
2

, and ρ2 = −1
2

.

For the former, we have 2ρ1 + 1 = 4, 4ρ1/(2ρ1 + 1) = 3/2 and (2ρ1 − 1)/(2ρ1 + 1) = 1/2.
Separating the variables and integrating each side of the equation

dx
dτ

=
τ3

r0
,
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we attain τ4 = 4r0(x + x̂0). By assuming r0 > 0 and the integration constant x̂0 such that
x + x̂0 ≥ 0, we establish the relationship between the Liouville normal form variable t and
the canonical variable x:

t = −m ± 4
√

4r0(x + x̂0).

Using (21), we acquire w(x) = [4r0(x + x̂0)]
−3/8, and this provides the relationship be-

tween the canonical function u and the Schrödinger function v:

v(x) = [4r0(x + x̂0)]
3/8 u(x).

Consequently, the SLP (14) admits the following canonical form:

− d
dx

{
8
√

r0[(x + x̂0)]
3/2 du

dx

}
= λ r0 u, a < x < b.

The values of the boundary points a and b are given as follows:

a = −x̂0 +
1
4

m4

r0
, and

b = −x̂0 +
1
4
(π + m)4

r0
.

The irrelevant constant values are δ0 = m3 and γ0 = (π + m)3.
For the latter, that is, for ρ2 = −1/2, we acquire

dx
dτ

=
1

r0 τ
,

and upon separation of variables and integration, we obtain

τ = ±er0(x+x̃0), x̃0 ∈ R.

Hence, the relationship between the normal form variable t and the canonical variable x is
given by

t = −m ± er0(x+x̃0), x̃0 ∈ R.

Using (21), we acquire w(x) = er0(x+x̃0)/2, and this gives the relationship between u(x) and
v(x), that is,

v(x) = e−r0(x+x̃0)/2 u(x).

Moreover, because

p(τ) =
1

r0 τ2 ,

we obtain
p(x) =

1
r0

e−2r0(x+x̃0).

Substituting this function p in the SLP in the canonical form, we obtain the desired result,
and the boundary points a and b are given as follows:

a = −x̃0 +
1
r0

ln m, and

b = −x̃0 +
1
r0

ln(π + m).

The irrelevant constant values are δ0 = 1/m and γ0 = 1/(π + m). Both ODEs (16) and (17)
also admit Dirichlet boundary conditions u(a) = 0 = u(b). Thus, the proof is complete.
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3.2. Constant Potential and Quadratic Density Functions

For the case of constant potential function q = q0 ̸= 0 and quadratic density function
r(τ) = τ2, we have three distinct subcases, depending on whether the indicial equation
admits equal roots, distinct real roots, or complex conjugate roots. Each of these cases
corresponds to the following relationships between k and q0, respectively:

• Case A: 1 + 4k = 4q0;
• Case B: 1 + 4k > 4q0;
• Case C: 1 + 4k < 4q0.

Following a similar derivation as in Section 3.1, the function ω = 1/w satisfies the
following ODE:

τ2 d2ω

dτ2 + (q0 − k)ω = 0, (25)

with the indicial equation ρ2 − ρ − (k − q0) = 0 and its roots given by

ρ = ρ̂1,2 =
1 ±

√
1 + 4(k − q0)

2
.

Observe that for q0 = 0, ρ̂1,2 reduce to ρ1,2 in (20). For Case A, ρ̂1 = ρ̂2 = 1/2. The corre-
sponding linear independent solutions to ODE (25) are given as follows:

ω1(τ) =
√

τ, and ω2(τ) =
√

τ ln τ, τ > 0.

We have the following theorem.

Theorem 3 (Equal roots A1, part 1 of Case A). By implementing the change of variables
t = −m + ex+x0 and v(x) = e(x+x0)/2 u(x), x0 ∈ R, the SLP (14) admits the following canonical
form with Dirichlet boundary conditions:

−d2u
dx2 + q0 u = λ e2(x+x0) u, a < x < b, u(a) = 0 = u(b),

where

a = −x0 + ln m, b = −x0 + ln(π + m),

δ0 = m, γ0 = π + m.

Proof. For Case A1, using ω1(τ) =
√

τ, τ > 0, we observe that

p(τ) =
ω4

1
r

=
τ2

τ2 = 1,

and
dx
dτ

=

√
p
r
=

√
1
τ2 =

1
τ

.

Upon integration, we obtain

x + x0 = ln τ, or τ = ex+x0 , x0 ∈ R. (26)

The functions p, r, and w expressed in terms of the canonical variable x are given as follows:

p(x) = 1, r(x) = e2(x+x0), and w(x) = e−
1
2 (x+x0).
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To find the values of a and b, we substitute t = α = 0 and t = β = π in (26):

a + x0 = ln(0 + m) =⇒ a = −x0 + ln m,

b + x0 = ln(π + m) =⇒ b = −x0 + ln(π + m).

Finally, Dirichlet boundary conditions are confirmed if we can show that both δ0 and γ0
are nonzero constants:

δ0 = ω2
1(a) = m ̸= 0, and γ0 = ω2

1(b) = π + m ̸= 0.

The proof is complete.

We have the following theorem for Case A2.

Theorem 4 (Equal roots A2, part 2 of Case A). By performing the change of variables

t = −m + e
3
√

[3(x+x0)] and v(x) = 3
√
[3(x + x0)] e

3
√

[3(x+x0)]/2, x0 ∈ R, the SLP (14) admits
the following canonical form:

− d
dx

{
[3(x + x0)]

4/3 du
dx

}
+ q0 u = λ e2 [3(x+x0)]

1/3
u, a < x < b,

with Dirichlet boundary conditions u(a) = 0 = u(b), where

a = −x0 +
1
3

ln3 m, b = −x0 +
1
3

ln3(π + m),

δ0 = m ln2 m, γ0 = (π + m) ln(π + m).

Proof. For Case A2, we utilize ω2(τ) =
√

τ ln τ, τ > 0. We obtain

p(τ) =
ω4

2
r

= ln4 τ,

and
dx
dτ

=

√
p
r
=

ln2 τ

τ
. (27)

We acquire an explicit expression for x in terms of τ upon integrating (27):

x + x0 =
∫ ln2 τ

τ
dτ =

1
3

ln3 τ, x0 ∈ R, (28)

or an expression for τ in terms of x, that is,

τ = e[3(x+x0)]
1/3

.

The functions p, r, and w in terms of the canonical variable x are given as follows:

p(x) = [3(x + x0)]
4
3 ,

r(x) = e2[3(x+x0)]
1
3 , and

w(x) = [3(x + x0)]
− 1

3 e−
1
2 [3(x+x0)]

1
3 .
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The values of the endpoints x = a and x = b can be calculated using (28) by substituting
t = α = 0 and t = β = π, respectively:

a + x0 =
1
3

ln3(0 + m) =⇒ a = −x0 +
1
3

ln3 m,

b + x0 =
1
3

ln3(π + m) =⇒ b = −x0 +
1
3

ln3(π + m).

Finally, Dirichlet boundary conditions are guaranteed when both coefficients δ0 and γ0
are nonvanishing:

δ0 = ω2
2(a) = m ln2 m ̸= 0,

γ0 = ω2
2(b) = (π + m) ln2(π + m) ̸= 0.

The proof is complete.

For Case B, we have the following theorem.

Theorem 5 (Case B). For 1 + 4k > 4q0, the SLP (14) satisfies the following canonical form:

− d
dx

[
(2ρ − 1)2(x + x0)

2 du
dx

]
+ q0 u = λ[(2ρ − 1)(x + x0)]

2/(2ρ−1) u, a < x < b, (29)

upon administering the following change of variables:

t = −m + [(2ρ − 1)(x + x0)]
1/(2ρ−1), and

v(x) = [(2ρ − 1)(x + x0)]
ρ/(2ρ−1) u(x), x0 ∈ R,

where

a = −x0 +
1

2ρ − 1
m(2ρ−1), b = −x0 +

1
2ρ − 1

(π + m)(2ρ−1),

δ0 = m2ρ, γ0 = (π + m)2ρ.

ODE (29) satisfies Dirichlet boundary conditions u(a) = 0 = u(b).

The proof for this theorem follows a similar argument as the proof of Theorem 2
presented in Section 3.1. We only outline the main points.

Proof. Using ω = τρ, we have p = τ4ρ−2 and dx/dτ = τ(2ρ−2). After separating the
variables and integrating with respect to each variable, we obtain

x + x0 =
1

2ρ − 1
τ2ρ−1, or τ = [(2ρ − 1)(x + x0)]

1/(2ρ−1).

Observe that since 1+ 4k > 4q0, ρ ̸= 1/2, and hence the denominator 2ρ− 1 never vanishes.
The functions p, r, and w expressed in terms of the canonical variable x are given by

p(x) = (2ρ − 1)2(x + x0)
2,

r(x) = [(2ρ − 1)(x + x0)]
2/(2ρ−1),

w(x) = [(2ρ − 1)(x + x0)]
−ρ/(2ρ−1).

The values of a and b can be calculated by substituting α = 0 and β = π for the relationship
between x and t, respectively. Similarly, the constants δ0 and γ0 can be found by calculating
ω at x = a and x = b, respectively. This completes the proof.
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For Case C, the two roots of the indicial equation are complex conjugate, that is,
ρ = 1

2 ± iµ, where µ = 1
2

√
4(q0 − k)− 1. The two linearly independent solutions to

ODE (25) are given by

ω1(τ) =
√

τ cos(µ ln τ), and ω2(τ) =
√

τ sin(µ ln τ), τ > 0.

We have the following theorem for the case corresponding to ω1. The terminology “in
an asymptotic manner” mentioned in Theorems 6 and 7 refers to the fact that both the
p- and density functions are not exact expressions. They only approach the exact values
asymptotically in a specific order, in this case, up to the linear order. This limitation arises
because it is simply impossible to find an exact analytical expression for the associated
inverse function of the Schrödinger variable t in terms of the canonical variable x.

Theorem 6 (Complex roots C1, the first part of Case C). For 1 + 4k < 4q0 and 0 < ε ≪ 1,
the SLP (14) could satisfy the following SLP with Dirichlet boundary conditions in the canonical
form in an asymptotic manner:

− d
dx

[
cos4

(
µ ln

{
τε

[
1 +

1
ν+
(

x + x+0
)]})du

dx

]
+ q0 u = λτ2

ε

[
1 +

1
ν+
(

x + x+0
)]2

u, a < x < b,

by changing the variables using

t = −m + τε

[
1 +

1
ν+
(

x + x+0
)]

, and

v(x) =

√
τε

[
1 +

1
ν+
(

x + x+0
)]

cos
(

µ ln
{

τε

[
1 +

1
ν+
(

x + x+0
)]})

u(x),

where x0 ∈ R, such that these transformation are defined with

τε =
1
2
(π + m + ε),

x+0 = x0 −
1
2

ln τε −
1

4µ
sin(2µ ln τε),

ν+ =
1
2
[1 + cos(2µ ln τε)],

a = −x+0 + ν+
(

m
τε

− 1
)
= −x+0 + ν+

(
2

1 + (π + ε)/m
− 1
)

,

b = −x+0 + ν+
(

π + m
τε

− 1
)
= −x+0 + ν+

(
2

1 + ε/(π + m)
− 1
)

,

δ0 = m cos2(µ ln m), µ ln m ̸= π

(
n +

1
2

)
, and

γ0 = (π + m) cos2[µ ln(π + m)], µ ln(π + m) ̸= π

(
n +

1
2

)
, n ∈ Z.

Proof. For case C1, we acquire the following information:

p(τ) =
ω4

1
r

= cos4(µ ln τ),

dx
dτ

=

√
p
r
=

cos2(µ ln τ)

τ
. (30)

Separating the variables in (30) and integrating each side of the equation, we obtain

x + x0 =
1
2

ln τ +
1

4µ
sin(2µ ln τ), x0 ∈ R. (31)
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Because m ≤ τ ≤ π + m, we Taylor-expand the right-hand side of (31) about τ = τε =
(π + m + ε)/2, 0 < ε ≪ 1, to obtain the following expressions:

ln τ = ln τε +
∞

∑
n=1

(−1)n+1

n

(
τ

τε
− 1
)n

,
∣∣∣∣ τ

τε
− 1
∣∣∣∣ < 1,

= ln τε +

(
τ

τε
− 1
)
− 1

2

(
τ

τε
− 1
)2

+
1
3

(
τ

τε
− 1
)3

+ · · · , 0 < τ < 2τε,

sin(2µ ln τ) =
∞

∑
n=0

i
2

(
τ

τε
− 1
)n[

τ
−2iµ
ε

(
−2iµ

n

)
− τ

2iµ
ε

(
2iµ
n

)]
= sin(2µ ln τε) + 2µ cos(2µ ln τε)

(
τ

τε
− 1
)

− µ[cos(2µ ln τε) + 2µ sin(2µ ln τε)]

(
τ

τε
− 1
)2

+O
(

τ

τε
− 1
)3

.

Although the Taylor series expansion for sin(2µ ln τ) converges for τ > 0, observe that
by selecting the center point as τε = (π + m + ε)/2, the value of τ falls nicely in the
admissible interval, that is, 0 < m ≤ τ ≤ π + m < π + m + ε, for a small positive number
ε. By defining the following constant quantities:

x+0 = x0 −
1
2

ln τε −
1

4µ
sin(2µ ln τε),

ν+ =
1
2
[1 + cos(2µ ln τε)], and

ν+2 = −1
2
[
ν+ + µ sin(2µ ln τε)

]
,

we can express (31) as

x + x+0 = ν+
(

τ

τε
− 1
)
+ ν+2

(
τ

τε
− 1
)2

+O
(

τ

τε
− 1
)3

.

By considering the asymptotic expansion only up to the linear term, we can express τ
explicitly in terms of the canonical variable x, which is given as follows:

τ = τε

[
1 +

1
ν+
(
x + x+0

)]
.

The functions p, r, and w can now be expressed in terms of x, where they are asymptotically
correct up to the linear order and are given by

p(x) = cos4
(

µ ln
{

τε

[
1 +

1
ν+
(

x + x+0
)]})

,

r(x) = τ2
ε

[
1 +

1
ν+
(
x + x+0

)]2
,

w(x) =
sec
(

µ ln
{

τε

[
1 + 1

ν+

(
x + x+0

)]})√
τε

[
1 + 1

ν+

(
x + x+0

)] ,

where the constant x0 ∈ R should be chosen such that τ > 0, and thus the denominator
of w(x) is well defined. The transformation from the Schrödinger function v(x) to the
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canonical function u(x) utilizes the auxiliary function w(x). This relationship is expressed
as follows:

v(x) =

√
τε

[
1 +

1
ν+
(

x + x+0
)]

cos
(

µ ln
{

τε

[
1 +

1
ν+
(

x + x+0
)]})

u(x).

The values of x = a and x = b can be calculated using

x + x+0 = ν+
(

t + m
τε

− 1
)

by substituting t = 0 and t = π, respectively:

a = −x+0 + ν+
(

m
τε

− 1
)
= −x+0 + ν+

(
2

1 + (π + ε)/m
− 1
)

, and

b = −x+0 + ν+
(

π + m
τε

− 1
)
= −x+0 + ν+

(
2

1 + ε/(π + m)
− 1
)

.

Furthermore, by restricting µ ln m ̸= π(n + 1/2) and µ ln(π + m) ̸= π(n + 1/2), n ∈ Z, it
follows that both δ0 and γ0 are nonzero, which guarantees that the associated ODE satisfies
Dirichlet boundary conditions. These constants can be easily calculated and are given by

δ0 = ω2
1(a) = m cos2(µ ln m), and

γ0 = ω2
1(b) = (π + m) cos2[µ ln(π + m)].

This completes the proof.

We have the following theorem for the case corresponding to ω2.

Theorem 7 (Complex roots C2, the second part of Case C). For 1 + 4k < 4q0 and 0 < ε ≪ 1,
the SLP (14) may satisfy the following SLP in the canonical form in an asymptotic manner:

− d
dx

[
sin4

(
µ ln

{
τε

[
1 +

1
ν−
(

x + x−0
)]})du

dx

]
+ q0 u = λ τ2

ε

[
1 +

1
ν−
(

x + x−0
) ]2

u, a < x < b,

using the following change of variables:

t = −m + τε

[
1 +

1
ν−
(
x + x−0

)]
, and

v(x) =

√
τε

[
1 +

1
ν−
(
x + x−0

)]
sin
(

µ ln
{

τε

[
1 +

1
ν−
(

x + x−0
) ]})

u(x),

where x0 ∈ R, such that these transformations are defined and the ODE satisfies Dirichlet boundary
conditions with

τε =
1
2
(π + m + ε),

x−0 = x0 −
1
2

ln τε +
1

4µ
sin(2µ ln τε),

ν− =
1
2
[1 − cos(2µ ln τε)],

a = −x−0 + ν−
(

m
τε

− 1
)

,

b = −x−0 + ν−
(

π + m
τε

− 1
)

,
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δ0 = m sin2(µ ln m), µ ln m ̸= nπ, and

γ0 = (π + m) sin2[µ ln(π + m)], µ ln(π + m) ̸= nπ, n ∈ Z.

Proof. The proof of Theorem 7 follows a similar argument as the proof of Theorem 6.
For case C2, we obtain the following information:

p(τ) =
ω4

2
r

= sin4(µ ln τ),

dx
dτ

=

√
p
r
=

sin2(µ ln τ)

τ
. (32)

Separating the variables in (32) and integrating each side of the equation, we acquire

x + x0 =
1
2

ln τ − 1
4µ

sin(2µ ln τ), x0 ∈ R. (33)

Because m ≤ τ ≤ π + m, we consider a Taylor-series expansion of each term on the
right-hand side of (33) about τ = τε =

1
2 (π + m + ε) for a small positive number ε, that is,

0 < ε ≪ 1:

ln τ = ln τε +

(
τ

τε
− 1
)
− 1

2

(
τ

τε
− 1
)2

+ · · · , 0 < τ < 2τε,

sin(2µ ln τ) = sin(2µ ln τε) + 2µ cos(2µ ln τε)

(
τ

τε
− 1
)

− µ[cos(2µ ln τε) + 2µ sin(2µ ln τε)]

(
τ

τε
− 1
)2

+O
(

τ

τε
− 1
)3

.

It follows that the right-hand side of (33) can be expressed as follows:

x + x−0 = ν−
(

τ

τε
− 1
)
+ ν−2

(
τ

τε
− 1
)2

+O
(

τ

τε
− 1
)3

,

where

x−0 = x0 −
1
2

ln τε +
1

4µ
sin(2µ ln τε),

ν− =
1
2
[1 − cos(2µ ln τε)],

ν−2 = −1
2
[
ν− − µ sin(2µ ln τε)

]
.

By considering the asymptotic expansion only up to the linear term, we can express τ
explicitly in terms of x, which is given by

τ = τε

[
1 +

1
ν−
(
x + x−0

)]
.

The functions p, r, and w expressed in terms of x are correct asymptotically up to the linear
order and are given as follows:

p(x) = sin4
(

µ ln
{

τε

[
1 +

1
ν−
(
x + x−0

) ]})
,

r(x) = τ2
ε

[
1 +

1
ν−
(

x + x−0
) ]2

,
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w(x) =
csc
(

µ ln
{

τε

[
1 + 1

ν−
(
x + x−0

) ]})√
τε

[
1 + 1

ν−
(

x + x−0
)] .

From the expression for w, it should be obvious by now that x0 ∈ R should be chosen such
that τ > 0. The Schrödinger function v can be transformed into the canonical function u by
introducing the auxiliary function w, according to the following relationship:

v(x) =

√
τε

[
1 +

1
ν−
(
x + x−0

)]
sin
(

µ ln
{

τε

[
1 +

1
ν−
(

x + x−0
) ]})

u(x).

The values of x = a and x = b can be calculated using the relationship between the two
independent variables by substituting t = 0 and t = π, respectively. It follows that

a = −x−0 + ν−
(

m
τε

− 1
)

, and

b = −x−0 + ν−
(

π + m
τε

− 1
)

.

Finally, the constants δ0 and γ0 can be calculated by substituting x = a and x = b for the
square of ω2, respectively. They are given as follows:

δ0 = ω2
2(a) = m sin2(µ ln m) and

γ0 = ω2
2(b) = (π + m) sin2[µ ln(π + m)].

By imposing the restrictions µ ln m ̸= nπ and µ ln(π + m) ̸= nπ, n ∈ Z, these constants
are nonzero, and thus the associated ODE admits Dirichlet boundary conditions. This
completes the proof.

3.3. Both Nonzero Constant Potential and Density Functions

We consider the case where both potential and density functions are nonzero constants,
that is, q = q0 ̸= 0 and r = r0 ̸= 0. Consequently, the function ω = 1/w satisfies a
transformed version of the Bessel differential equation, where the first derivative of ω with
respect to the Schrödinger variable τ is absent.

τ2 d2ω

dτ2 +
(

τ2 − k
)

ω = 0, where τ =

√
|q0|
|r0|

τ. (34)

Before we seek linearly independent solutions of ODE (34), we state the following theorem
on a transformation of the Bessel ODE, which we will need and use later.

Theorem 8 (Bowman’s transformation [45]). Bowman (1958) gave a transformed version of the
Bessel differential equation, which is given as follows:

τ2 d2ω

dτ2 + (2p + 1)
dω

dτ
+
(

α2τ2r + β
2
)

ω = 0. (35)

This transformed Bessel ODE (35) possesses the following solution:

ω(τ) =
1

τp

[
C1 Jq/r

(
α

r
τr
)
+ C2 Yq/r

(
α

r
τr
)]

, C1, C2 ∈ R,

where q =

√
p2 − β

2, Jn(τ), and Yn(τ), n ∈ R, are the Bessel functions of the first and second
kinds, respectively [46–51].
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Comparing ODEs (34) and (35), we observe that α2 = 1, β
2
= −k, p = −1/2, q =

1
2

√
4k + 1, and r = 1. Hence, the associated linearly independent solutions of Bessel

ODE (34) are given by

ω1(τ) =
√

τ J 1
2
√

4k+1(τ), and ω2(τ) =
√

τ Y1
2
√

4k+1(τ).

Before discussing a theorem of the SLP in connection to the Bessel function of the first
kind Jn with order n, n ≥ 0, we have the following lemma.

Lemma 6. A combination of Bessel functions of the first kind admits the following series expansion
for 0 < m < τ0 < π + m:[

τ Jρ1− 1
2
(τ)
]2

−
[
τ Jρ1− 3

2
(τ)
][

τ Jρ1+
1
2
(τ)
]
= τ0 J0(τ0) + (τ − τ0)J1(τ0) +O(τ − τ0)

2, (36)

where

ρ1 =
1
2

(
1 +

√
1 + 4k

)
, [ see (20)],

J0(τ0) = τ0

(
J2
ρ1− 1

2
− Jρ1− 3

2
Jρ1+

1
2

)
(τ0),

J1(τ0) = (2ρ1 + 1)J0(τ0) + J−1(τ0), and

J−1(τ0) = τ2
0

(
Jρ1− 3

2
Jρ1+

3
2
− Jρ1− 1

2
Jρ1+

1
2

)
(τ0).

Proof. Let us begin with the first term on the left-hand side of (36). A series expansion of
the term inside the square bracket is given by

τ Jρ1− 1
2
(τ) = τ0 Jρ1− 1

2
(τ0) + (τ − τ0)

[(
ρ1 +

1
2

)
Jρ1− 1

2
(τ0)− τ0 Jρ1+

1
2
(τ0)

]
+O(τ − τ0)

2.

Squaring this expression yields[
τ Jρ1− 1

2
(τ)
]2

= τ2
0 J2

ρ1− 1
2
(τ0) + (τ − τ0)

[
τ0(2ρ1 + 1)J2

ρ1− 1
2
(τ0)− 2τ2

0 Jρ1− 1
2
(τ0)Jρ1+

1
2
(τ0)

]
+O(τ − τ0)

2. (37)

Each function of the product term on the left-hand side of (36) admits the following series
expansion:

τ Jρ1− 3
2
(τ) = τ0 Jρ1− 3

2
(τ0) + (τ − τ0)

[(
ρ1 −

1
2

)
Jρ1− 3

2
(τ0)− τ0 Jρ1− 1

2
(τ0)

]
+O(τ − τ0)

2,

τ Jρ1+
1
2
(τ) = τ0 Jρ1+

1
2
(τ0) + (τ − τ0)

[(
ρ1 +

3
2

)
Jρ1+

1
2
(τ0)− τ0 Jρ1+

3
2
(τ0)

]
+O(τ − τ0)

2.

Taking the product of these two terms yields the following series expansion:[
τ Jρ1− 3

2
(τ)
][

τ Jρ1+
1
2
(τ)
]
= τ2

0 Jρ1− 3
2
(τ0) Jρ1+

1
2
(τ0) + (τ − τ0)

{
τ0(2ρ1 + 1)Jρ1− 3

2
(τ0) Jρ1+

1
2
(τ0)

− τ2
0

[
Jρ1− 3

2
(τ0) Jρ1+

3
2
(τ0) + Jρ1− 1

2
(τ0) Jρ1+

1
2
(τ0)

]}
+O(τ − τ0)

2. (38)

Subtracting (38) from (37), we obtain a series expansion for the left-hand side of (36):[
τ Jρ1− 1

2
(τ)
]2

−
[
τ Jρ1− 3

2
(τ)
][

τ Jρ1+
1
2
(τ)
]
= τ2

0

[
J2
ρ1− 1

2
(τ0)− Jρ1− 3

2
(τ0) Jρ1+

1
2
(τ0)

]
+ (τ − τ0)

{
τ0(2ρ1 + 1)

[
J2
ρ1− 1

2
(τ0)− Jρ1− 3

2
(τ0) Jρ1+

1
2
(τ0)

]
+ τ2

0

[
Jρ1− 3

2
(τ0) Jρ1+

3
2
(τ0)− Jρ1− 1

2
(τ0) Jρ1+

1
2
(τ0)

]}
+O(τ − τ0)

2.
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By defining the following quantities,

J0(τ0) = τ0

[
J2
ρ1− 1

2
(τ0)− Jρ1− 3

2
(τ0) Jρ1+

1
2
(τ0)

]
, and

J−1(τ0) = τ2
0

[
Jρ1− 3

2
(τ0) Jρ1+

3
2
(τ0)− Jρ1− 1

2
(τ0) Jρ1+

1
2
(τ0)

]
,

the right-hand side of (36) can be expressed as[
τ Jρ1− 1

2
(τ)
]2

−
[
τ Jρ1− 3

2
(τ)
][

τ Jρ1+
1
2
(τ)
]
= τ0J0(τ0) + (τ − τ0)[(2ρ1 + 1)J0(τ0)

+ J−1(τ0)] +O(τ − τ0)
2.

By further defining J1(τ0) = (2ρ1 + 1)J0(τ0) + J−1(τ0), we obtain (36). This completes
our proof.

We now have the following theorem in connection with this Bessel function of the
first kind Jn. Similar to the terminology “in an asymptotic manner”, which appears in
Theorems 6 and 7, the wording “satisfy . . . asymptotically” in Theorems 9 and 10 refers
to the p-function not being an exact expression. Due to the challenge of finding exact
analytical expressions when inverting the expression for the Schrödinger variable t in terms
of the canonical variable x, we only use its asymptotic expression up to a specified order.
Consequently, the associated p-function also becomes asymptotically accurate, which, in
this case, is up to the linear order.

Theorem 9. The SLP (14) may satisfy the following canonical form asymptotically:

− d
dx

(
1
r0
(τ0 + x)4 J4

1
2
√

4k+1(τ0 + x)
du
dx

)
+ q0 u = λr0 u, a < x < b,

by implementing the following change of variables:

t = −m + τ0 + x, and

v(x) =
√

τ0 + x J 1
2
√

4k+1(τ0 + x) u(x),

where J 1
2
√

4k+1 denotes the Bessel function of the first kind with order 1
2

√
4k + 1,

τ =

√∣∣∣∣ q0

r0

∣∣∣∣τ, 0 < m ≤ τ ≤ π + m, τ0 ∈

√∣∣∣∣ q0

r0

∣∣∣∣(m, π + m),

x =
2
√
|q0r0|(x + x0)− τ0J0(τ0)

J1(τ0)
, x0 ∈ R,

a = −x0 +
1

2r0
[τ0J0(τ0) + (m − τ0)J1(τ0)],

b = −x0 +
1

2r0
[τ0J0(τ0) + (π + m − τ0)J1(τ0)],

J0(τ0) = τ0

[
J2

1
2
√

4k+1(τ0)− J−1+ 1
2
√

4k+1(τ0) J1+ 1
2
√

4k+1(τ0)
]
,

J1(τ0) = (2ρ1 + 1)J0(τ0) + J−1(τ0),

J−1(τ0) = τ2
0

[
J−1+ 1

2
√

4k+1(τ0) J2+ 1
2
√

4k+1(τ0)− J 1
2
√

4k+1(τ0) J1+ 1
2
√

4k+1(τ0)
]
,
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δ0 =

√∣∣∣∣ q0

r0

∣∣∣∣m J2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣m
)

,

γ0 =

√∣∣∣∣ q0

r0

∣∣∣∣(π + m) J2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣(π + m)

)
,

and the terms
√
|q0/r0|m and

√
|q0/r0|(π + m) should not satisfy the zeros of J 1

2
√

4k+1.

Proof. Let us consider the case of ω1, where the function p is given by the Bessel function
of the first kind J 1

2
√

4k+1:

p(τ) =
ω4

1
r0

=
τ2

r0
J4

1
2
√

4k+1(τ).

The relationship between the canonical variable x and Schrödinger variable t is given by√∣∣∣∣ q0

r0

∣∣∣∣ dx
dτ

=

√
p
r
=

τ

r0
J2

1
2
√

4k+1(τ).

It follows that

x + x0 =
∫

dx =

√∣∣∣∣ q0

r0

∣∣∣∣ ∫ τ

r0
J2

1
2
√

4k+1(τ) dτ, x0 ∈ R,

=
τ2

2r0

√∣∣∣∣ q0

r0

∣∣∣∣[J2
1
2
√

4k+1(τ)− J 1
2
√

4k+1−1(τ) J 1
2
√

4k+1+1(τ)
]
. (39)

Using ρ1 = 1
2

(
1 +

√
1 + 4k

)
from (20), we can express (39) as follows:

x + x0 =
1

2r0

√∣∣∣∣ q0

r0

∣∣∣∣{[τ Jρ1− 1
2
(τ)
]2

−
[
τ Jρ1− 3

2
(τ)
][

τ Jρ1+
1
2
(τ)
]}

. (40)

For 0 <

√∣∣∣ q0
r0

∣∣∣m < τ0 <

√∣∣∣ q0
r0

∣∣∣(π + m), the right-hand side of (40) can be expressed

asymptotically using Lemma 6:

x + x0 =
1

2r0

√∣∣∣∣ q0

r0

∣∣∣∣[τ0J0(τ0) + (τ − τ0)J1(τ0) +O(τ − τ0)
2
]
,

where J0 and J1 are the same quantities defined in Lemma 6, that is,

J0(τ0) = τ0

[
J2

1
2
√

4k+1(τ0)− J−1+ 1
2
√

4k+1(τ0) J1+ 1
2
√

4k+1(τ0)
]
,

J1(τ0) = (2ρ1 + 1)J0(τ0) + J−1(τ0), and

J−1(τ0) = τ2
0

[
J−1+ 1

2
√

4k+1(τ0) J2+ 1
2
√

4k+1(τ0)− J 1
2
√

4k+1(τ0) J1+ 1
2
√

4k+1(τ0)
]
.

By taking the asymptotic term up to the linear term in τ, we can now express the Schrödinger
variable t in terms of the canonical variable x:

t = −m + τ0 + x,

where

x =
2
√
|q0r0|(x + x0)− τ0J0(τ0)

J1(τ0)
.
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The functions p and w can now be expressed in terms of the canonical variable x and are
accurate asymptotically at the linear order. They are given as follows, respectively:

p(x) =
1
r0
(τ0 + x)4 J4

1
2
√

4k+1(τ0 + x),

w(x) =
1√

τ0 + x
J−1

1
2
√

4k+1
(τ0 + x).

We define a transformation between the two dependent variables, that is, the canonical u
and Schrödinger v, via the auxiliary function w. The relationship is given by

v(x) =
√

τ0 + x J 1
2
√

4k+1(τ0 + x) u(x).

The left canonical boundaries x = a and x = b correspond to t = 0 and t = π, respectively.
Their explicit expressions are given by:

a = −x0 +
1

2r0
[τ0J0(τ0) + (m − τ0)J1(τ0)],

b = −x0 +
1

2r0
[τ0J0(τ0) + (π + m − τ0)J1(τ0)].

Finally, to ensure Dirichlet boundary conditions, we must ascertain that the terms
√
|q0/r0|m

and
√
|q0/r0| (π + m) do not satisfy as one of the zeros of J 1

2
√

4k+1. This verifies that both
δ0 and γ0 are nonzero:

δ0 = ω2
1(x = a) =

√∣∣∣∣ q0

r0

∣∣∣∣m J2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣m
)

̸= 0,

γ0 = ω2
1(x = b) =

√∣∣∣∣ q0

r0

∣∣∣∣(π + m) J2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣(π + m)

)
̸= 0.

The proof is complete.

We have the following theorem in connection to the Bessel function of the second kind
Yn of order n, n ≥ 0.

Theorem 10. The SLP (14) could satisfy another canonical form asymptotically in connection
to the Bessel function of the second kind Y1

2
√

4k+1 of order 1
2

√
4k + 1 by enacting the change of

variables t = −m + τ0 + x̂ and v(x) =
√

τ0 + x̂ Y1
2
√

4k+1(τ0 + x̂) u(x):

− d
dx

[
1
r0
(τ0 + x̂)4Y4

1
2
√

4k+1(τ0 + x̂)
du
dx

]
+ q0 u = λr0 u, a < x < b,

where

τ =

√∣∣∣∣ q0

r0

∣∣∣∣τ, 0 < m ≤ τ ≤ π + m, τ0 ∈

√∣∣∣∣ q0

r0

∣∣∣∣(m, π + m),

x =
2
√
|q0r0|(x + x1)− τ0Y0(τ0)

Y1(τ0)
, x1 ∈ R,

a = −x1 +
1

2r0
[τ0Y0(τ0) + (m − τ0)Y1(τ0)],

b = −x1 +
1

2r0
[τ0Y0(τ0) + (π + m − τ0)Y1(τ0)],

Y0(τ0) = τ0

[
Y2

1
2
√

4k+1(τ0)− Y−1+ 1
2
√

4k+1(τ0)Y1+ 1
2
√

4k+1(τ0)
]
,
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Y1(τ0) = (2ρ1 + 1)Y0(τ0) + Y−1(τ0),

Y−1(τ0) = τ2
0

[
Y−1+ 1

2
√

4k+1(τ0)Y2+ 1
2
√

4k+1(τ0)− Y1
2
√

4k+1(τ0)Y1+ 1
2
√

4k+1(τ0)
]
,

δ0 =

√∣∣∣∣ q0

r0

∣∣∣∣m Y2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣m
)

,

γ0 =

√∣∣∣∣ q0

r0

∣∣∣∣(π + m)Y2
1
2
√

4k+1

(√∣∣∣∣ q0

r0

∣∣∣∣(π + m)

)
,

and the terms
√
|q0/r0|m and

√
|q0/r0|(π + m) must not satisfy the zeros of Y1

2
√

4k+1.

Proof. The proof of Theorem 10 follows a similar argument to the proof of Theorem 9,
which basically replaces J 1

2
√

4k+1 with Y1
2
√

4k+1. We consider the case of ω2, where the
function p is now expressible in terms of Y1

2
√

4k+1:

p(τ) =
ω4

2
r0

=
τ2

r0
Y4

1
2
√

4k+1(τ).

We have the following relationship between x and τ√∣∣∣∣ q0

r0

∣∣∣∣ dx
dτ

=

√
p
r
=

τ

r0
Y2

1
2
√

4k+1(τ).

After separating the variables and integrating both sides of the equation, it follows that

x + x1 =
∫

dx =

√∣∣∣∣ r0

q0

∣∣∣∣ ∫ τ

r0
Y2

1
2
√

4k+1(τ) dτ, x1 ∈ R,

=
1

2r0

√∣∣∣∣ r0

q0

∣∣∣∣{[τ Y1
2
√

4k+1(τ)
]2

−
[
τ Y1

2
√

4k+1−1(τ)
][

τ Y1
2
√

4k+1+1(τ)
]}

. (41)

A series expansion about τ = τ0 where 0 <
√
|q0/r0|m < τ0 <

√
|q0/r0|(π + m) for the

right-hand side of (41) yields

x + x1 =
1

2r0

√∣∣∣∣ r0

q0

∣∣∣∣[τ0Y0(τ0) + (τ − τ0)Y1(τ0) +O(τ − τ0)
2
]
,

where Y0 and Y1 are similar quantities to J0 and J1 introduced earlier in Lemma 6. They
are given as follows:

Y0(τ0) = τ0

[
Y2

1
2
√

4k+1(τ0)− Y−1+ 1
2
√

4k+1(τ0)Y1+ 1
2
√

4k+1(τ0)
]
,

Y1(τ0) = (2ρ1 + 1)Y0(τ0) + Y−1(τ0), and

Y−1(τ0) = τ2
0

[
Y−1+ 1

2
√

4k+1(τ0)Y2+ 1
2
√

4k+1(τ0)− Y1
2
√

4k+1(τ0)Y1+ 1
2
√

4k+1(τ0)
]
.

By considering the series expansion only up to the linear term in τ, we can express the
Schrödinger variable t in terms of the canonical variable x, which is asymptotically accurate
up to the linear order:

t = −m + τ0 + x̂,

where

x̂ =
2
√
|q0r0|(x + x1)− τ0Y0(τ0)

Y1(τ0)
.
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Using this, we can now express both the p- and w-functions as functions of x, which will
also be accurate up to the linear order. They are given as follows, respectively:

p(x) =
1
r0
(τ0 + x̂)4Y4

1
2
√

4k+1(τ0 + x̂),

w(x) =
1√

τ0 + x̂
Y−1

1
2
√

4k+1
(τ0 + x̂).

Using the auxiliary function w, we can transform the Schrödinger dependent variable v
into the canonical function u by the following relationship:

v(x) =
√

τ0 + x̂ Y1
2
√

4k+1(τ0 + x̂) u(x).

The left and right canonical boundaries x = a and x = b can be calculated straightforwardly
by substituting t = 0 and t = π to x̂ + τ0 = t + m, respectively:

a = −x1 +
1

2r0
[τ0Y0(τ0) + (m − τ0)Y1(τ0)],

b = −x1 +
1

2r0
[τ0Y0(τ0) + (π + m − τ0)Y1(τ0)].

To guarantee that the ODE admits Dirichlet boundary conditions, we need to ensure that
the terms

√
|q0/r0|m and

√
|q0/r0|(π + m) must not satisfy as one of the zeros of Y1

2
√

4k+1,
thus verifying that both δ0 and γ0 are nonzero:

δ0 = ω2
2(x = a) =

√∣∣∣∣ q0

r0

∣∣∣∣m Y2
n
2

(√∣∣∣∣ q0

r0

∣∣∣∣m
)

̸= 0,

γ0 = ω2
2(x = b) =

√∣∣∣∣ q0

r0

∣∣∣∣(π + m)Y2
n
2

(√∣∣∣∣ q0

r0

∣∣∣∣(π + m)

)
̸= 0.

The proof is complete.

3.4. Reciprocal Linear Function for w(t)
In this subsection, we consider the case where the transformation function w that

appears in Lemma 4, Lemma 5, and Equations (7)–(8) is a reciprocal linear function in the
independent variable t. In other words, because ω = 1/w, this also means that the function
ω is assumed to be linear in t. As a consequence of this special case, the second term of
the invariant function (7) vanishes, and thus its first term, the quotient q/r, takes the form
of the reciprocal binomial quadratic function in t. This special case of the second Paine
problem was considered briefly by Ledoux and Ixaru et al. [35,36], but the derivation was
notably absent in both works. As mentioned earlier in the introduction, we attempt to
generalize this particular case and demonstrate the derivation for obtaining the p-, density,
and potential functions. We also note that the title of this subsection could also be written
as “Reciprocal quadratic function for w(x)” because the Schrödinger variable t is expressed
as a quadratic function in the canonical variable x.

We have the following theorem.

Theorem 11. For the particular case when the transformation function for the dependent variables
takes the form of a reciprocal linear function, that is, w(t) = 1/(C0 + C1t), with C0 and C1 > 0,
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the SLP (14) in the Liouville normal form can be transformed to the canonical form by preserving
the type of the boundary conditions, that is, Dirichlet. Using the following variable transformations:

t = −m +
C1

4
(x + x0)

2, and

v(x) =
1
4

C2
1(x + x0)

2 u(x), C1 > 0 and x0 ∈ R,

the associated SLP in the canonical form is given as follows:

− d
dx

[
1
8

C3
1(x + x0)

3 du
dx

]
+

k
2

C3
1(x + x0) u = λ

[
1
2

C1(x + x0)

]5
u, a < x < b,

where

a = −x0 + 2
√

m
C1

, b = −x0 + 2
√

π + m
C1

,

δ0 = (C1 m)2, γ0 = C2
1(π + m)2.

Proof. Let w(t) = 1/(C0 + C1t), where C0 and C1 are both positive constants; then, it
can be calculated straightforwardly that w d2

dt2 (1/w) = 0. Thus, the invariant function
reduces to

q
r
=

k

(t + m)2 . (42)

Furthermore, from

pr =
1

w4 = (C0 + C1t)4, (43)

we encounter an underdetermined system where we need to seek three unknown func-
tions, that is, p, q, and r, but we only possess two equations. Although we have another
relationship dx/dt =

√
p/r, it does not really resolve the issue unless we impose further

restrictions on the relationship between the canonical variable x and the Schrödinger vari-
able t, which would help in making an educated guess for the three functions p, q, and r.
Now, let us assume that t is a function of x quadratically, and let also the potential and
density functions admit similar form, that is, linear in t, but with distinct rational powers,
given as follows:

q(t) = Q0(C0 + C1t)1/2, Q0 > 0,

r(t) = (C0 + C1t)5/2.

The quotient q/r becomes
q
r
=

Q0/C2
1

(t + C0/C1)
2 . (44)

Comparing (42) and (44), we obtain the following relationships:

Q0 = C2
1 k, and C0 = C1 m.

Now, because r is known, that is, r(t) = [C1(t + m)]5/2, from the product (43), we obtain
an expression for p:

p(t) = [C1(t + m)]3/2.

We obtain the following relationship between the two independent variables:

dx
dt

=
1√

C1(t + m)
=⇒ x + x0 =

∫ dt√
C1(t + m)

= 2
√

t + m
C1

, (45)
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where x0 ∈ R is an integration constant. Because 1/w(t) = C1(t + m) = [C1(x + x0)/2]2 =
1/w(x), it follows that

v(x) =
1
4

C2
1(x + x0)

2 u(x),

p(x) =
[

1
2

C1(x + x0)

]3
=

1
8

C3
1(x + x0)

3,

q(x) = C2
1k
[

1
2

C1(x + x0)

]
=

1
2

kC3
1(x + x0), and

r(x) =
[

1
2

C1(x + x0)

]5
=

1
32

C5
1(x + x0)

5.

The canonical boundaries can be found by substituting t = 0 and t = π in (45), respectively,
and they are given as follows:

a = −x0 + 2
√

m
C1

, and b = −x0 + 2
√

π + m
C1

.

Finally, Dirichlet boundary conditions can be confirmed by nonzero δ0 and γ0:

δ0 =
1

w2(a)
=

[
1
2

C1(a + x0)

]4
= C2

1 m2,

γ0 =
1

w2(b)
=

[
1
2

C1(b + x0)

]4
= C2

1 (π + m)2.

This completes the proof.

Remark 2. It is often practical to set the left endpoint boundary a = 0, and thus, x0 = 2
√

m/C1,
as it was performed in [35,36]. For this particular case, the right endpoint boundary becomes

b =
2√
C1

(√
π + m −

√
m
)
> 0.

The classical Paine problem takes k = 1 and m = 0.1, and by taking a special case C1 = 2, we arrive
to what Ledoux and Ixaru et al. [35,36] stated, namely

x0 =
√

0.2, b =
√

2π + 0.2 −
√

0.2,

p(x) =
(

x +
√

0.2
)3

, q(x) = 4
(

x +
√

0.2
)

, and r(x) =
(

x +
√

0.2
)5

.

Remark 3. We can also generalize the powers of q and r to arbitrary positive numbers, let us say,
instead of 1/2 and 5/2, they become nq and nr, respectively, where nr = nq + 2. It follows that

p(t) = [C1(t + m)]4−nr ,

and
dx
dt

= [C1(t + m)]2−nr ,

whereby, upon integration, we obtain

x + x0 =
C2−nr

1
3 − nr

(t + m)3−nr , nr ̸= 3.

Meanwhile, to avoid potential singularities for p, q, and r in the canonical variable x, we impose a
further restriction: because nq is positive, nr must be greater than 2. A similar argument applied to
the relationship between x and t yields nr < 3. This narrows the range for nr down to 2 < nr < 3.
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However, choosing nr values other than 5/2 results in non-polynomial expressions for p, q, and r.
While the case considered in this section is a special one, Ledoux and Ixaru et al. [35,36] made a
clever choice by taking nq = 1/2 and nr = 5/2, resulting in polynomial functions for p, q, and r
in the canonical variable.

4. Conclusions

We have considered the transformation of the Sturm–Liouville boundary value prob-
lem, often known as the SLP, from its canonical form to the Schrödinger (Liouville normal)
form and vice versa. Although it is theoretically possible to retrieve the SLP in its canonical
form from any given SLP in the Schrödinger form, in practice, such an attempt is not always
feasible. Implementing inverse Liouville transformations can even be nearly impossible
in several, or even many, cases.

For a particular case study, we investigated the second Paine–de Hoog–Anderson
(PdHA) problem in a generalized manner. Also known in the literature as the Paine problem,
the associated SLP with Dirichlet boundary conditions is given in its Liouville normal
form instead of in its canonical form. The classical second Paine problem considered the
corresponding invariant function in the form of a reciprocal binomial term with quadratic
power and specific constants in the numerator and denominator, which are 1 and 0.1,
respectively. We generalized these numbers to any positive constants while keeping the
binomial power reciprocal quadratic.

Our study revealed that the difficulty of retrieving the SLP in the canonical form
depends on the combinations between the potential and density functions. In the four
special cases that we considered, inverting the SLP to the canonical form was relatively
straightforward in some, while in others, such a process was impossible without adopting
the technique of asymptotic expansion. One immediate consequence of the mentioned
combinations is the relationship between the independent variables, that is, whether we
can easily find an exact expression for the Schrödinger variable in terms of the canonical
variable by simply inverting the latter from the former. Whenever this fails, we simply
proceed by finding its inverse asymptotically.

The exact SLP in its canonical form occurs in three cases, that is, when the potential
function vanishes but the density function is nonzero constant, when the potential function
is a nonzero constant and the density function is quadratic, and when the transformation
function w is reciprocal linear in t (or quadratic in x). For the second case, it occurs only
in two special subcategories: when the roots of the indicial equations are either equal or
real distinct. When these roots are complex conjugate, the SLP in the canonical form is
only accurate asymptotically. A similar case occurs when both the potential and density
functions are nonzero constants. The p-functions appear in relatively elementary forms,
depending on the various cases and subcases. However, when both potential and density
functions are nonzero constants, the p-function takes the form of the first and second kind
Bessel functions. In all considered cases, Dirichlet boundary conditions follow accordingly.

A natural extension of this work would be to consider higher-order powers of the
invariant function of the second Paine problem, such as reciprocal quartic, sextic, and even
higher powers. This generalization, along with extending the reciprocal power to any
positive real number, remains an open question. Further investigation could also explore
other types of invariant functions found in various Liouville normal forms.
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Appendix A. Proof of Lemma 1

Proof. Because p is constant and p ̸= 0, we can pull it out from the derivative sign and
divide ODE (1) by p:

−d2u
dx2 +

q
p

u = λ
r
p

u. (A1)

Using the transformation t = ηx, we have

du
dx

= η
du
dt

, and
d2u
dx2 = η2 d2u

dt2 .

ODE (A1) becomes

−η2 d2u
dt2 +

q
p

u = λ η2 u.

By dividing with η2 ̸= 0, we obtain the desired form (2), where

Q(t) =
q

η2 p
=

pq
r2 .

All expressions for the functions p, q, and r are to be understood as f (x) = f (t/η), where
f = p, q, or r. This completes the proof.

Appendix B. Proof of Lemma 2

Proof. We show the Riccati equation in U by substituting p(x)du/dx = u(x)U(x) in
ODE (1). We observe that

− d
dx

[u(x)U(x)] + q(x) u(x) = λ r(x)u(x),

−du
dx

U(x)− u(x)
dU
dx

+ qu = λru,

−u
dU
dx

− u
p

U2(x) + qu = λru,

dU
dx

+
U2(x)
p(x)

= q(x)− λ r(x),

where we have divided by u(x) to obtain the final expression. To obtain the Riccati equation
in V, the following expressions are useful:

V(x) =
U
p
=

1
u

du
dx

,

dV
dx

=
1
u

d2u
dx2 −

(
1
u

du
dx

)2
=

1
u

d2u
dx2 − V2, and
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1
u

d2u
dx2 =

dV
dx

+ V2.

Dividing ODE (1) by u(x), we observe that

− p
u

d2u
dx2 − dp

dx

(
1
u

du
dx

)
+ q = λr.

Dividing this expression by −1/p and employing the new variable V, we obtain the Riccati
equation in V:

dV
dx

+
1
p

dp
dx

V + V2 =
1
p
(q − λr).

The proof is complete.

Appendix C. Proof of Lemma 3

Proof. It can be easily worked out using the fact that the differential operator d/dx =
(dt/dx) d/dt = (1/ẋ) d/dt, and thus du/dx = (1/ẋ) du/dt. Substituting these expressions
in ODE (1), we obtain

− 1
ẋ

d
dt

(
p
ẋ

du
dt

)
+ q u = λ r u. (A2)

Multiplying both sides of (A2) with ẋ yields the desired expression (3):

− d
dt

(
p
ẋ

du
dt

)
+ qẋ u = λ rẋ u.

The proof is complete.

Appendix D. Proof of Lemma 4

Proof. By applying the product rule to u, we have

du
dx

=
dw
dx

v + w
dv
dx

,

p
du
dx

= pv
dw
dx

+ pw
dv
dx

,

− d
dx

(
p

du
dx

)
= − d

dx

(
pv

dw
dx

)
− d

dx

(
pw

dv
dx

)
.

Substituting these expressions in ODE (1) yields

− d
dx

(
pw

dv
dx

)
+ qw v − d

dx

(
pv

dw
dx

)
= λ rw v. (A3)

Multiplying (A3) with the function w results

−w
d

dx

(
pw

dv
dx

)
+ qw2 v − w

d
dx

(
pv

dw
dx

)
= λ rw2 v. (A4)

Expanding the third term on the left-hand side of (A4), we obtain (color online)

−w
d

dx

(
pw

dv
dx

)
+ qw2 v − wv

d
dx

(
p

dw
dx

)
−wp

dv
dx

dw
dx

= λ rw2 v.

Because
d

dx

(
pw2 dv

dx

)
= w

d
dx

(
pw

dv
dx

)
+ pw

dw
dx

dv
dx

,
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we observe that two terms (blue and red) cancel each other:

− d
dx

(
pw2 dv

dx

)
+ pw

dw
dx

dv
dx

+ qw2 v − wv
d

dx

(
p

dw
dx

)
−wp

dv
dx

dw
dx

= λ rw2 v. (A5)

Rearranging the remaining terms of (A5), we obtain the desired ODE (4):

− d
dx

(
pw2 dv

dx

)
+

[
qw2 − w

d
dx

(
p

dw
dx

)]
v = λ rw2 v.

This completes the proof.

Appendix E. Proof of Theorem 1

Proof. Using the independent variable transformation (x ↔ t), we have

dt
dx

=
1

dx/dt
=

1
ẋ
=

√
r
p

, or ẋ =

√
p
r

.

Because w2 = 1/
√

pr or 1/w2 =
√

pr, we also have

p
ẋ

dw
dt

= p
√

r
p

dw
dt

=
√

rp
dw
dt

=
1

w2
dw
dt

.

Using Lemma 5, we observe that

P(t) =
pw2

ẋ
=

p
√

pr

√
r
p
= 1,

Q(t) = qw2 ẋ − w
d
dt

(
p
ẋ

dw
dt

)
=

q
√

pr

√
p
r
+ w

d
dt

(
− 1

w2
dw
dt

)
=

q
r
+ w

d
dt

[
d
dt

(
1
w

)]
=

q
r
+ w

d2

dt2

(
1
w

)
= I(t)

R(t) = rw2 ẋ =
r

√
pr

√
p
r
= 1.

Hence, the ODE (5) becomes

−d2v
dt2 + I(t) v = λ v, α < t < β.

For the boundary conditions, we multiply both of them with w and use the fact that

du
dx

=
dw
dx

v + w
dv
dx

=
dw
dx

v +
w
ẋ

dv
dt

.

By substituting the relevant boundaries, that is, x = a or t = α, we obtain

δ0 w2v − δ1 pw
(

dw
dx

v +
w
ẋ

dv
dt

)
= 0,(

δ0 w2 − δ1 pw
dw
dx

)
v − δ1

pw2

ẋ
dv
dt

= 0.

By taking

δ2 =

(
δ0w2 − δ1 pw

dw
dx

)∣∣∣∣
x=a

and P(α) =
pw2

ẋ

∣∣∣∣∣
t=α
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we obtain the boundary condition at t = α. A similar argument can be reached for the
boundary conditions at t = β. To show the identity of the definite integrals (9), we use
dx =

√
p/r dt, u2 = w2 v2, and w2 = (pr)−1/2 to arrive at

∫ b

a
r(x) u2(x) dx =

∫ β

α
r(t)w2(t) v2(t)

√
p(t)
r(t)

dt

=
∫ β

α

√
p(t) r(t)w2(t) v2(t) dt

=
∫ β

α
v2(t) dt,

because
√

p(t) r(t)w2(t) = 1. This completes the proof.

Appendix F. Proof of Corollary 1

Proof. We use the following relationships for the first-order and second-order derivative
operators, respectively:

d
dt

= ẋ
d

dx
=

dx
dt

d
dx

and
d2

dt2 = ẍ
d

dx
+ ẋ2 d2

dx2 =
d2x
dt2

d
dx

+

(
dx
dt

)2 d2

dx2 .

Substituting these expressions in ODE (10) yields

−d2x
dt2

dv
dx

−
(

dx
dt

)2 d2v
dx2 + I(x) v = λ v. (A6)

Because v(x) = u(x)/w(x), the first and second derivatives of v can be expressed as
follows, respectively:

d
dx

( u
w

)
=

1
w

du
dx

− u
w2

dw
dx

d2

dx2

( u
w

)
=

d
dx

(
1
w

du
dx

)
− d

dx

(
u

w2
dw
dx

)
=

1
w

d2u
dx2 − 1

w2
dw
dx

du
dx

− 1
w2

dw
dx

du
dx

+
2

w3

(
dw
dx

)2
u − 1

w2
d2w
dx2 u

=
1
w

d2u
dx2 − 2

w2
dw
dx

du
dx

+
2

w3

(
dw
dx

)2
u − 1

w2
d2w
dx2 u.

Substituting these expressions in ODE (A6) and multiplying it with w, we obtain

−
(

dx
dt

)2 d2u
dx2 +

[
2
w

dw
dx

(
dx
dt

)2
− d2x

dt2

]
du
dx

+

{
I(x)−

[
2

w2

(
dw
dx

)2
− 1

w
d2w
dx2

](
dx
dt

)2
+

1
w

dw
dx

d2x
dt2

}
u = λ u.

(A7)

Consider again ODE (12) from the SLP in the canonical form, where we have now divided
it by r:

− p
r

d2u
dx2 − 1

r
dp
dx

du
dx

+
q
r

u = λu. (A8)

We compare these two ODEs, which are Equations (A7) and (A8). Because they should be
identical, we obtain the following relationship:(

dx
dt

)2
=

p
r

or
dx
dt

= ±
√

p
r

,
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Equating the coefficient for du/dx, we observe that

2
w

dw
dx

r
(

dx
dt

)2
− r

d2x
dt2 = −dp

dx
,

2
w

dw
dx

p − 1
2

r
d

dx

( p
r

)
= −dp

dx
,

2p
w

dw
dx

+
dp
dx

− 1
2

r
(

1
r

dp
dx

− p
r2

dr
dx

)
= 0,

2p
w

dw
dx

+
1
2

dp
dx

+
1
2

p
r

dr
dx

= 0, (multiply with w)

2pr
w

dw
dx

+
1
2

(
r

dp
dx

+ p
dr
dx

)
= 0, (divide with pr)

2
w

dw
dx

+
1
2

1
pr

d
dx

(pr) = 0,

1
w

dw
dx

= −1
4

1
pr

d
dx

(pr),

d
dx

ln w =
d

dx
ln(pr)−1/4,

w = (pr)−1/4.

Before establishing the third relationship that involves the invariant function I, we need
the following first-order and second-order derivative operators. These are similar to what
we used at the beginning of the proof, albeit the roles of x and t are reversed:

d
dx

=
1
ẋ

d
dt

, and

d2

dx2 =
d

dx

(
1
ẋ

)
d
dt

+
1
ẋ

d
dx

(
d
dt

)
=

1
ẋ

d
dt

(
1
ẋ

)
d
dt

+
1

(ẋ)2
d2

dt2 =
1

(ẋ)2
d2

dt2 − ẍ

(ẋ)3
d
dt

.

Transforming the invariant function I with an independent variable x to the one that
depends on t gives the following:

I(x) =
q
r
+

[
2

w2

(
dw
dx

)2
− 1

w
d2w
dx2

](
dx
dt

)2
− 1

w
dw
dx

d2x
dt2

I(t) =
q
r
+

[
1

(ẋ)2
2

w2

(
dw
dt

)2
− 1

(ẋ)2
1
w

d2w
dt2 +

ẍ

(ẋ)3
1
w

dw
dt

](
dx
dt

)2
− ẍ

ẋ
1
w

dw
dt

=
q
r
+

2
w2

(
dw
dt

)2
− 1

w
d2w
dt2 =

q
r
+ w

[
2

w3

(
dw
dt

)2
− 1

w2
d2w
dt2

]

=
q
r
+ w

d
dt

(
− 1

w2
dw
dt

)
=

q
r
+ w

d
dt

[
d
dt

(
1
w

)]
=

q
r
+ w

d2

dt2

(
1
w

)
.

To verify the boundary conditions, we utilize the following facts:

dv
dt

= ẋ
dv
dx

and
dv
dt

(α) =

(
ẋ
w

du
dx

− ẋ
w2

dw
dx

u
)∣∣∣∣

x=a
.

It follows that

δ2v(α)− δ̂1
dv
dt

(α) = 0,(
δ2

w
+ δ̂1

ẋ
w2

dw
dx

)∣∣∣∣
x=a

u(a)− δ̂1
ẋ

w2

∣∣∣∣
x=a

du
dx

(a) = 0,
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(
δ2

w
+ δ̂1

ẋ
pw2 p

dw
dx

)∣∣∣∣
x=a

u(a)− δ̂1
ẋ

pw2

∣∣∣∣
x=a

p(a)
du
dx

(a) = 0. (A9)

Because P(α) = pw2/ẋ
∣∣
t=α

= pw2/ẋ
∣∣
x=a, we can simplify an identical expression that

appears on the second and third terms of the boundary condition (A9):

δ̂1
ẋ

pw2

∣∣∣∣
x=a

=
δ̂1

P(a)
= δ1.

By further dividing the first two terms inside the brackets in the boundary condition (A9)
by w, we obtain the desired boundary condition in the canonical form:

δ0u(a)− δ1 p(a)
du
dx

(a) = 0,

where

δ0 =

(
δ2

w2 + δ1
p
w

dw
dx

)∣∣∣∣
x=a

.

The second boundary condition can be derived using a similar argument, by simply replac-
ing a, α, δ0, δ̂1, and δ2, with b, β, γ0, γ̂1, and γ2, respectively. This completes the proof.
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