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Abstract: No reference image quality assessment is a technique that uses computers to simulate
the human visual system and automatically evaluate the perceived quality of images. In recent
years, with the widespread success of deep learning in the field of computer vision, many end-to-
end image quality assessment algorithms based on deep learning have emerged. However, unlike
other computer vision tasks that focus on image content, an excellent image quality assessment
model should simultaneously consider distortions in the image and comprehensively evaluate their
relationships. Motivated by this, we propose a Multi-module Collaborative Model for Image Quality
Assessment (McmIQA). The image quality assessment is divided into three subtasks: distortion
perception, content recognition, and correlation mapping. And specific modules are constructed for
each subtask: the distortion perception module, the content recognition module, and the correlation
mapping module. Specifically, we apply two contrastive learning frameworks on two constructed
datasets to train the distortion perception module and the content recognition module to extract two
types of features from the image. Subsequently, using these extracted features as input, we employ
a ranking loss to train the correlation mapping module to predict image quality on image quality
assessment datasets. Extensive experiments conducted on seven relevant datasets demonstrated that
the proposed method achieves state-of-the-art performance in both synthetic distortion and natural
distortion image quality assessment tasks.

Keywords: NR-IQA; self-supervised learning; contrastive learning; rank learning

MSC: 68T07

1. Introduction

As a fundamental research direction in the field of computer vision, image quality
assessment is widespread applicated in both scientific research and daily life. With the
advent of the mobile internet era, various online platforms such as TikTok, Instagram,
and YouTube witness the daily upload of billions of user-generated images and videos.
For these platforms, assessing the image quality in a manner closely related to human
visual perception and using it as a reference for content recommendation is crucial for
enhancing user experience. Simultaneously, as a core technology for these platforms, image
quality assessment is extensively employed in information recommendation, data filtering,
compression, and storage, etc. In the realm of scientific research, image quality assessment
algorithms can also assist in evaluating other tasks’ approaches within the field of computer
vision, contributing to the optimization and improvement of various image processing
techniques. Consequently, accurately predicting the perceptual quality of diverse images
using automated methods remains a pressing challenge—one that significantly impacts
various aspects of both daily life and scientific inquiry.

Image quality assessment can be divided into three categories: full-reference image
quality assessment (FR-IQA), reduced-reference image quality assessment (RR-IQA), and
no-reference image quality assessment (NR-IQA). Full-reference image quality assessment
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algorithms such as SSIM [1], FSIM [2], and LPIPS [3] require both the original and the
distorted versions of an image for evaluation. This requirement prevents them from
predicting the quality of real-world images where no reference image is available, greatly
limiting their applications. On the other hand, no-reference image quality assessment
algorithms such as BRISQUE [4], PaQ-2-PiQ [5], and CONTRIQUE [6] do not require the
original reference image or any information related to image distortions when assessing
the visual quality of an image, directly quantifying the target image’s perceived quality.
This makes them the only solution for field image quality evaluation problems holding a
broad prospect of application.

Over the past decade, NR-IQA has always been a popular research topic in the field of
computer vision, leading to the development of numerous excellent evaluation models and
image quality assessment datasets. Traditional image quality assessment datasets, such
as TID-2013 [7], LIVE [8], and CSIQ [9], consist of synthetically distorted images, which
are created by artificially adding common distortions (Gaussian blur, JPEG compression,
white noise, etc.) to originally high-quality images. The emergence of these datasets has
played a crucial role in advancing the field of image quality assessment, and scholars
still use the model performance on these datasets as an important metric for evaluating
model capabilities. However, in real life, images can be affected by various factors during
different stages, including generation, transmission, and compression storage, which cause
all kinds of distortions. Moreover, these distortions might concentrate or even overlap in
certain parts of the image, which is difficult to simulate with traditional synthetic distortion
images. To address this issue, some new datasets composed of real images, such as KONIQ-
10K [10], CLIVE [11], and SPAQ [12], have been introduced recently. Model performance
on these datasets will largely demonstrate the predictive capabilities of the models in
practical applications.

As semiconductor technology, parallel computing techniques, and deep neural net-
work models continue to evolve, deep models with a large number of tunable parameters
have achieved widespread success in the field of computer vision. This has led to the
development of numerous no-reference image quality assessment algorithms based on
deep models. Compared to traditional algorithms that rely on natural scene statistics, these
deep model-based approaches have significantly improved performance. However, deep
model algorithms still fall short of simulating human visual perception due to various
factors. Currently, the application of deep models in image quality assessment faces two
main limitations: (1) Training deep models requires a substantial amount of labeled data.
However, annotating datasets specifically for image quality assessment is expensive and
challenging to ensure availability. Existing labeled datasets are insufficient to support
comprehensive deep model training. (2) Most deep models built for computer vision tasks
focus solely on image content. However, in image quality assessment, perceived image
quality depends on various factors, including image content, introduced distortions, and
their intricate relationships. Designing an end-to-end quality assessment solution with a
deep model that considers all these factors simultaneously remains challenging. To address
these issues, we propose a framework that leverages contrastive learning to train Multiple
Collaborative Modules for Image Quality Assessment (McmIQA), corresponding modules
are trained on multiple large-scale datasets for subtasks. The proposed approach consists
of three parts, as follows:

(a) We further divided the image quality assessment task and used three modules: the
content recognition, the distortion perception, and the correlation mapping modules.
These modules are responsible for extracting content features, extracting distortion
features, and ultimately evaluating quality.

(b) Based on contrastive learning, we have designed two distinct self-supervised training
frameworks for the content recognition module and the distortion perception module.
Training these modules on large datasets for their respective customized tasks ensures
accurate feature recognition in both cases.
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(c) When training the correlation mapping module on image quality assessment datasets,
we froze the parameters of the content recognition module and the distortion percep-
tion module. We used a larger batch size to train the correlation mapping module
independently. Additionally, during this stage, we employed a composite loss based
on ranking and mean squared error (MSE). This approach not only helps the mod-
ule fit real quality scores but also enables the model to recognize relative quality
differences between different images.

2. Related Work

In the past decade, significant efforts have been devoted to the development of no-
reference image quality assessment algorithms. Traditionally, before the rise of deep
learning, constructing image quality assessment models based on Natural Scene Statistics
(NSS) theory was the mainstream approach. NSS assumes that the composition of original
natural images follows certain statistical distributions, and the presence of various distor-
tions disrupts these statistical regularities [13]. Based on this assumption, researchers have
built distortion feature extractors for different spatial domains within images, including the
spatial domain [14,15], frequency domain [16,17], and gradient-based methods [18]. Meth-
ods like CORNIA [19] and HOSA [20], which utilize local patches to construct dictionaries
for obtaining quality-aware features, also rely on NSS. In practice, NSS-based methods
generally yield acceptable results when evaluating synthetic distorted images. However,
their evaluation performance significantly deteriorates when faced with real-world images.
These methods primarily focus on modeling various distortions in images as statistical
deviations from natural distributions, but they overlook the combined effects of multiple
distortions and the influence of image content on perceived quality.

In recent years, the emergence of deep learning has provided a new solution for
computer vision tasks. Various computer vision algorithms built upon deep learning have
achieved unprecedented breakthroughs and successes. Among these, several deep neural
networks have been proposed for image quality assessments. Most no-reference image
quality assessment approaches based on deep learning follow a pre-training–finetuning
paradigm to mitigate the issue of small dataset sizes. In the RAPIQUE [21] authors proposed
a two-step approach: pre-training on the ImageNet dataset followed by fine-tuning for
image quality assessment tasks, resulting in improved performance for quality evaluation
using a ResNet-50 [22] model. In the PQR [23] approach, an innovative strategy involves
using statistical distributions of subjective opinion scores as auxiliary labels during model
training, leading to additional gains. The BIECON [24] method introduces a pretext task
that involves fitting FR-IQA prediction scores during pre-training. Additionally, there are
image quality assessment algorithms based on multi-module perception. For instance,
in DBCNN [25], the authors employed dual-path technology to separate the perception
of distortion features and content features, which are then combined during prediction.
Another approach [26] introduced an adaptive hypernetwork architecture that considers
content understanding during perceptual quality prediction.

In recent years, there have been many image quality assessment algorithms based on
self-supervised learning. As an essential approach to address the issue of small datasets, self-
supervised learning is often used to construct upstream pretext tasks, which, in turn, pro-
vide better data representations for downstream tasks [27]. In simple terms, self-supervised
learning directly trains the model on tasks that do not require manual annotations, such
as reconstructing input pixels [28] or predicting predefined image categories [29,30], etc.
Inspired by the success of masked language modeling in natural language processing,
masked image modeling has become a hot trend in the field of computer vision [31,32].
Another form of self-supervised learning is contrastive learning, which aims to train models
to create a mapping. Through this mapping, similar data points are pulled together, while
dissimilar samples are pushed apart [33]. CONTRIQUE [6] proposed a contrastive learning
scheme to pre-train image quality assessment models by predicting distortion types and
severity. In [34], researchers introduced a method that generates synthetic distorted images
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by randomly overlaying various distortions. They used contrastive learning to train models
to perceive approximate quality features on this dataset. Re-IQA [35] trained a hybrid
perceptual model for image quality assessment with contrastive learning. This work is quite
similar to our approach, with two different pre-training methods, contrastive learning and
ImageNet image classification, they separately trained extraction modules for distortion
and content features. Finally, they fine-tuned the regression layers and predicted image
quality on image quality assessment datasets. In contrast, focusing on distortion perception
and content recognition, we designed two distinct schemes for image cropping and con-
trastive learning to train our distortion perception module and content recognition module.
Additionally, by incorporating a ranking-based approach during prediction training for the
correlation mapping module, we trained the model to judge relative quality differences
between different images, achieving more stable and accurate quality assessment results.

3. McmIQA: Multi-Module Collaborative Model for NR-IQA

Our approach can be specifically divided into three components: (1) Distortion per-
ception module training based on intelligent cropping and MOCO-V2 [36,37] contrastive
learning. (2) Content recognition module training based on global cropping and MOCO-
V3 [38] contrastive learning. (3) Correlation mapping module training with an approach
based on rank learning on image quality assessment datasets. The overall framework is
shown in Figure 1.
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Figure 1. Overall framework of McmIQA.

3.1. Distortion Perception Module Training

Figure 2 illustrates the contrastive learning training framework for the distortion per-
ception module based on MOCO-V2. We utilized the distortion image dataset construction
method from reference [34], with images in the Waterloo [39] dataset, and the COCO [40]
dataset generated our image set for module training. The proposed training framework
primarily consists of patch generation and contrastive learning training with momentum
updates. For a detailed algorithm flow, please refer to Algorithm 1.
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Algorithm 1: Distortion perception module training based on contrastive learning

# f_q, f_k: encoder networks for query and key
# queue: dictionary as a queue of 64*64 keys
# m: momentum
# t: temperature

f_k.params = f_q.params # initialize
for epoch = 1,2,3. . .150 do:
for batch = 1,2,3. . . do:
x_q, x_k = smart_aug(x) # Smart cropping
q = f_q.forward(x_q)
k+, k− = f_k.forward(x_k), f_k.forward(queue)
positive_m, negative_m = q* k+, q*k-

similarily_m = concat(positive_m, negative_m)

InfoNCE_LOSS = InfoNCE(similarily_m, target_m)
InfoNCE_LOSS.backward()
update(f_q.params) # Gradient updates
f_k.params = m * f_k.params + (1-m) * f_q.params

# Update the momentum dictionary
Dequeue(queue)
Enqueue(queue, k_batch)

The diversity of distortion types, the variability in distortion severity, and the uneven
distribution of distortions within an image lead to the complexity and difficulty of distor-
tion perception. Given this, we made the following assumptions regarding the internal
characteristics of distortions during training for the distortion perception module: (1) Due
to the inherent diversity of individual images, image enhancement processes applied to
different images will generate patches containing different types of distortions. (2) When
applying different image enhancement techniques to the same image, the resulting patches
will contain different types of distortions based on the specific distortions introduced. (3)
Due to the uneven distribution of distortions within an image, when applying the same
type of image enhancement to the same image, the resulting patch will only contain the
same type of distortion if the overlap area reaches at least 30%. Based on these assumptions,
during training, sample pairs containing the same type of distortion are labeled as positive
pairs, while the rest are considered as negative pairs. In the training process, we directly
perform random cropping on the dataset images to obtain query batches. Subsequently,
based on the previously cropped center points, we apply intelligent overlay cropping to
the same image, resulting in corresponding positive pairs with overlap areas between 30%
and 70%. We utilize the MOCO-V2 contrastive learning framework with two ResNet-50
models, one as the encoder and the other as the momentum encoder. The encoder module
is updated based on the gradients of InfoNCE [41], which is defined as follows:

InfoNCE loss = − log
exp(q × k+/τ)

∑K
i=0 exp(q × ki/τ)

(1)

k+ represents the positive sample corresponding to the current query q, and τ denotes the
temperature coefficient. The momentum encoder will be updated based on momentum
after the encoder completes one round of updates:

θ′ = m × θ + (1 − m)× φ (2)

In the formula, θ represents the internal parameters of the momentum encoder model,
while φ denotes the internal parameters of the encoder. m is the momentum parameter
used for updating the momentum encoder’s parameters.
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Figure 2. Distortion perception module training framework based on contrastive learning. n indicates
the batch size. The training framework mainly consists of two parts: data processing and contrastive
learning training based on MOCO-V2. Using random cropping and intelligent overlay cropping,
query samples and their corresponding positive samples are generated separately. Subsequently,
they are organized into q_batches and corresponding k_batches as inputs for the contrastive learning
framework. The encoder handles the q_batch, while the momentum encoder processes the corre-
sponding k_batch and the dictionary queue. Subsequently, the obtained feature matrix is used to
compute a similarity matrix through dot product, which is then combined with the target similarity
matrix to calculate the InfoNCE [41] loss.

3.2. Content Recognition Module Training

During the content recognition training, we trained the content recognition module to
extract the overall framework of image content and generate corresponding feature vectors.
Figure 3 illustrates the contrastive learning training framework for the content recognition
module based on MOCO-V3. The training of the content recognition module is performed
using a dataset from ImageNet [42], which contains 1.28 million images across 1000 classes.
For detailed algorithm flow, refer to Algorithm 2.

In daily life, image content is the key factor that determines whether an image captures
attention and brings pleasure. However, unlike the diverse types of distortions introduced
by random overlays and random distributions in natural image distortions in real-life
images are generated based on people’s subjective ideas. The content of these images
is guided by human thoughts, often resulting in many similar or even identical images.
Therefore, in the contrastive learning training of the content recognition module, when
constructing a negative sample queue based on the MOCO-V2 framework, it is common
to encounter negative sample pairs that contain similar content, leading to optimization
mistakes. To address this, we train the content recognition module with a MOCO-V3
framework. Furthermore, to help the model gain a more comprehensive and complete
understanding of image content, during the training of the content recognition module,
for each image in batch, we select two out of the sixteen image enhancement methods (as
shown in Figure 4) that do not affect the image content to process the image and generate
positive sample pairs. Additionally, we apply full cropping and pixel scaling to create
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image patches. After two sets of images are formed, they will be served as dictionary
collections to each other.

Algorithm 2: Content aware module training based on contrastive learning

# f_q, f_k: encoder networks for query and key
# m: momentum
# t: temperature

f_k.params = f_q.params # initialize
for epoch = 1,2,3. . .150 do:
for batch = 1,2,3. . . do:
x1_batch, x2_batch = aug(x_batch) # Smart cropping
q1, q2 = f_q.forward(x1_batch), f_q.forward(x2_batch)
k1, k2 = f_k.forward(x2_batch), f_k.forward(x1_batch)
mtx_1, mtx_2 = q1 * k1, q2 *k2

end for
end for

loss = InfoNCE(mtx_1, target) + InfoNCE(mtx_2, target)
loss.backward()
update(f_q.params) # Gradient updates
f_k.params = m * f_k.params + (1 − m) * f_q.params
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Figure 3. Content recognition module training framework based on contrastive learning. n indicates
the batch size. The training framework mainly consists of two parts: data processing and contrastive
learning training based on MOCO-V3. For a raw image from the dataset, we will use full cropping to
obtain a square image, and then apply two different image enhancement methods to create a pair of
positive samples containing the same content. Subsequently, the two images containing the same
content, generated from the raw image, will be organized into separate batches. The encoder and
momentum encoder will perform relevant feature extraction to obtain feature matrices. Later, the
similarity matrix will be computed between these feature matrices using dot product and combined
with the target similarity matrix to calculate the InfoNCE [41] loss.
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Figure 4. The summary of image enhancement methods. (1—Gaussian blur, 2—Non-eccentricity pat-
tern noise, 3—Image denoising, 4—Gaussian noise in color components, 5—Impulse noise, 6—Local
block-wise distortions of different intensity, 7—JPEG compression, 8—Mean shift, 9—Multiplicative
Gaussian noise, 10—Color aberrations, 11—Color quantization dither, 12—Quantization noise,
13—Color saturation, 14—High frequency noise, 15—Gaussian noise, 16—Contrast change).

3.3. Correlation Mapping Module Training

Firstly, regarding the construction of the correlation mapping module, drawing inspi-
ration from relevant research in [35], we will employ a three-layer regression approach to
construct the correlation mapping module. This module aims to map a 2024-dimensional
feature vector to a quality score. During the training process, by freezing the parameters
of the distortion perception module and the content recognition module, we will utilize
a larger batch size. Additionally, we will independently train the correlation mapping
module using a composite loss that combines rank loss and mean squared error (MSE).
Benefiting from the larger batch size, training the correlation mapping module with frozen
module weights will lead to improved fitting performance. By employing the composite
loss during training, the model will not only fit image perceptual quality but also discrimi-
nate relative quality among different images, better simulating the human visual system to
assess the image quality. The rank loss is defined as follows:

rank
(
y, y′

)
=

N

∑
i=1

N

∑
j=1

{
0, i f yj < yi or i == j

Max
(

0, y′ i − y′ j +
(
yj − yi

))
, otherwise

(3)

In the formula, y represents the label vector for the current batch, and y’ represents
the model’s predicted score vector. Using the above formula, we will compare the relative
quality of all (N × (N − 1)/2) image pairs in one batch, resulting in an accumulated loss
value. During the actual implementation, to fully leverage the GPU’s parallel computing
capabilities and enhance computational efficiency, we will utilize matrix operations to
compute the loss values. The composite loss that combines the rank and the MSE losses is
defined as follows:

L
(
y; y′;

)
=

1
N

M

∑
t=1

(
yt − y′t

)2
+ ε × rank (4)

In the formula, N represents the batch size, and ε will be set as a balancing weight of 0.5.

4. Experiments
4.1. Datasets and Evaluation Criteria

In this work, we primarily utilized three types of datasets: (1) The dataset constructed
with the method proposed in [34]; this dataset was used for training the distortion per-
ception module. (2) The ImageNet dataset for the content perception module training. (3)
Image quality assessment datasets to train the correlation mapping module and evaluate
the model’s performance.
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Using the distortion image generation method proposed in [34], we applied random
image enhancement methods to images from the Waterloo-4744 [39] dataset and the COCO-
330K [40] dataset. Eventually, we generated approximately 1 million images for training
the distortion perception module. To train the associated mapping module and evaluate
the model’s performance under various conditions, we selected four synthetic distortion
datasets, LIVE [8], CSIQ [9], KADID-10K [43], and TID-2013 [7], and three real-world
distortion datasets, KonIQ-10K [10], CLIVE [11], and SPAQ [12], in our experiments. The
KonIQ-10K dataset comprises 10 k images selected from the publicly available YFCC100M
database. CLIVE contains 1162 real distorted images captured using various mobile devices,
while SPAQ consists of 11 k images captured using 66 different mobile devices. The sum-
marized information about the image quality evaluation datasets used in our experiments
is presented in Table 1.

Table 1. The summary of IQA datasets used in our experiments.

Datasets Distortion Types Size Score Range

LIVE [8] 4 808 [0, 100]
CSIQ [9] 6 866 [0, 1]

TID2013 [7] 24 3000 [0, 9]
KADID10K [43] 25 10,125 [1, 5]

LIVEC [11] --- 1162 [0, 100]
SPAQ [12] --- 11,125 [0, 100]

Koniq10K [10] --- 10,073 [0, 100]

Evaluation criteria: We choose the Pearson correlation coefficient (PLCC) and the
Spearman rank correlation coefficient (SRCC) to monitor the model’s evaluation perfor-
mance. A higher PLCC indicates that the model’s scores better fit the image’s Mean Opinion
Score (MOS) annotations. Similarly, a larger SRCC signifies that the model more accurately
ranks the quality of images within the dataset.

4.2. Experiment Details

Our experiments are based on the Pytorch [44] deep learning framework on a Geforce
RTX 3080 LapTop GPU-16GB. The detailed configuration for each step is as follows:

Training for the distortion perception module: This training process inherits most
of the settings from MoCo-V2 while modifying the pretext task and the decay process to
achieve quality perception. Specifically, we used ResNet-50 [22] as the encoder and trained
it on the generated dataset. Using the Adam [45] optimizer, an initial learning rate of
3 × 10−2 is employed. Following the approach in [46], we performed a two-epoch warm-
up for the learning rate and applied cosine annealing. The momentum for updating is set
to 0.99, and the batch size is 64. The hyperparameter τ in InfoNCE is empirically set to 0.2.
Due to time constraints, we trained ResNet-50 for approximately 10 days, corresponding to
100 epochs, to obtain the distortion perception module.

Training for the content recognition module: In the process of training ResNet-50 for
content recognition using the MOCO-V3 framework on the ImageNet dataset, most of the
configurations remained consistent with the distortion perception training. However, due to
GPU memory limitations, the batch size was set to 32. We trained ResNet-50 for approximately
12 days, corresponding to 75 epochs, to obtain the content recognition module.

Training for the correlation mapping module: We trained the correlation mapping
module, composed of three layers of linear regression (2024→512→64→1), on various
image quality assessment datasets using the Adam optimizer with an initial learning rate
of 5 × 10−3 and weight decay of 3 × 10−4. The batch size during training was set to 128.
And the image quality assessment datasets were randomly split into an 80% support set
and a 20% test set. We conducted the training for 100 epochs on each dataset and selected
the version as the correlation mapping module that achieved the highest sum of SRCC and
PLCC on the test set.
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4.3. Comparative Experiments
4.3.1. Models Selected for Comparative Experiments

To evaluate the specific performance of the McmIQA model in image quality as-
sessment tasks, we conducted experiments comparing it with 16 state-of-the-art (SOTA)
models. These models can be roughly categorized into five groups: (1) Traditional Hand-
crafted Features: BRISQUE [4], NIQE [15]. (2) Codebook-based Features: CORNIA [19],
HOSA [20]. (3) CNN-Based Models with Supervised Pre-training: PQR [24], DBCNN [23],
BIECON [25], PaQ-2-PiQ [5], HyperIQA [26]. (4) Attention Mechanism-Based Models:
TIQA [47], TRES [48], MUSIQ [49]. (5) Contrastive Learning Pre-trained Models: CON-
TRIQUE [6], Re-IQA [35], QPT-ResNet50 [34]. Additionally, to validate the effectiveness
of the proposed contrastive learning approach, we also included the Resnet-50 [22] model
pre-trained on ImageNet for comparison.

4.3.2. Performance Comparison Experiments

In Tables 2 and 3, we present the validation results of various models, including the
proposed McmIQA method, on both synthetic distortion datasets and natural distortion
datasets. The performance of the proposed model surpasses that of four quality assessment
algorithms based on traditional feature extraction followed by SVR (support vector regres-
sor): BRISQUE [4], NIQE [15], CORNIA [19], and HOSA [20]. Compared to supervised
pre-trained CNN schemes, such as PQR [24], DBCNN [23], BIECON [25], PaQ-2-PiQ [5],
and HyperIQA [26], McmIQA also achieved superior predictive performance, benefiting
from the feature extraction capabilities obtained during the pre-training phase on large-scale
datasets. Additionally, when compared to models that perform feature extraction based on
attention mechanisms, such as TIQA [47], TRES [48], and MUSIQ [49], our model similarly
exhibits superior performance due to the large-scale contrastive learning pre-training and
collaborative mechanism. Finally, in comparison with recently proposed contrastive learn-
ing models, such as CONTRIQUE [6], Re-IQA [35], and QPT-ResNet50 [34], the McmIQA
model trained on 16GB-3080 still achieves highly competitive results. This indicates that the
novel contrastive learning framework proposed in this paper and the rank training process
for the correlation mapping module further enhanced the predictive performance of the
resulting model. Figure 5 illustrates the model’s predictive results on various datasets.

Table 2. Performance comparison with different nr models on IQA databases containing synthetic
distortions; some data are sourced from [6]. In each column, the first and the second-best models
are boldfaced.

Methods
LIVE [8] CSIQ [9] TID-2013 [7] KADID-10K [43]

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [4] 0.939 0.935 0.746 0.829 0.604 0.694 0.528 0.567
NIQE [15] 0.907 0.901 0.627 0.712 0.315 0.393 0.347 0.428

CORNIA [19] 0.947 0.950 0.678 0.776 0.678 0.768 0.516 0.558
HOSA [20] 0.946 0.950 0.741 0.823 0.735 0.815 0.618 0.653

DBCNN [23] 0.968 0.971 0.946 0.959 0.816 0.865 0.851 0.856
PQR [24] 0.965 0.971 0.872 0.901 0.740 0.798 - -

BIECON [25] 0.961 0.962 0.815 0.823 0.717 0.762 - -
PaQ-2-PiQ [5] 0.959 0.958 0.899 0.902 0.862 0.856 0.840 0.849

HyperIQA [26] 0.962 0.966 0.923 0.942 0.840 0.858 0.852 0.845
TIQA [47] 0.949 0.965 0.825 0.838 0.846 0.858 0.850 0.855
TRES [48] 0.969 0.968 0.922 0.942 0.863 0.883 0.915 0.858

CONTRIQUE [6] 0.960 0.961 0.942 0.955 0.843 0.857 0.934 0.937
Re-IQA [35] 0.970 0.971 0.947 0.960 0.804 0.861 0.872 0.885

Resnet-50(ImageNet
pre-trained) 0.925 0.931 0.840 0.848 0.679 0.729 0.701 0.677

McmIQA (Resnet-50) 0.974 0.968 0.955 0.959 0.883 0.882 0.866 0.871
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Table 3. Performance comparison with different nr models on IQA databases containing authentic
distortions; some data are sourced from [6]. In each column, the first and the second-best models
are boldfaced.

Method
KonIQ-10K [10] CLIVE [11] SPAQ [12]

SRCC PLCC SRCC PLCC SRCC PLCC

BRISQUE [4] 0.665 0.681 0.608 0.629 0.809 0.817
NIQE [15] 0.531 0.538 0.455 0.483 0.700 0.709

CORNIA [19] 0..780 0.795 0.629 0.671 0.709 0.725
HOSA [20] 0.805 0.813 0.640 0.678 0.846 0.852

DBCNN [23] 0.875 0.884 0.851 0.869 0.911 0.915
PQR [24] 0.880 0.884 0.857 0.882 - -

PaQ-2-PiQ [5] 0.870 0.880 0.840 0.850 - -
HyperIQA [26] 0.906 0.917 0.859 0.882 0.916 0.919

MUSIQ [49] 0.916 0.928 - - 0.917 0.921
TRES [48] 0.915 0.928 0.846 0.877

CONTRIQUE [6] 0.894 0.906 0.845 0.857 0.914 0.919
Re-IQA [35] 0.914 0.923 0.840 0.854 0.918 0.925

QPT-Resnet50 [34] 0.927 0.941 0.893 0.914 0.925 0.928

Resnet-50(ImageNet
pre-trained) 0.888 0.904 0.781 0.809 0.904 0.909

McmIQA (Resnet-50) 0.929 0.927 0.879 0.880 0.922 0.920
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4.3.3. SRCC Evaluations on Cross Datasets

To validate the generalization performance of the proposed image quality assessment
algorithm, we conducted cross-dataset evaluation experiments on two synthetic distortion
datasets and two real distortion datasets, including the proposed model and three other
quality assessment models. As shown in Table 4, McmIQA exhibits a superior performance
on the real distortion datasets and achieves highly competitive results on the synthetic
distortion datasets. During the experiments, we kept the parameters of the distortion
perception module and content recognition module frozen while optimizing the correlation
mapping module independently.
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Table 4. Cross databases SRCC comparison. In each row, the top performing model is highlighted.
The best models are boldfaced.

Training Testing DBCNN TRES CONTRIQUE McmIQA

Koniq10k CLIVE 0.755 0.812 0.731 0.833
CLIVE Koniq10k 0.754 0.766 0.676 0.785
LIVE CSIQ 0.758 0.820 0.823 0.822
CSIQ LIVE 0.877 0.926 0.925 0.919

4.3.4. Efficiency Comparison

In this section, to validate the practical application efficiency of the multi-module
collaborative model, we selected three existing image quality assessment models, MetaIQA,
MANIQA, and TRES, and compared their inference speeds with our model. All models
evaluated the quality of test images on an RTX-3080 Laptop GPU. In Table 5, we recorded
the processing time for 10,000 images (including cropping, scaling, and inference). As
shown in Table 5, the MetaIQA model, which utilizes ResNet-50 as its backbone network,
has fewer parameters and completes the relevant image processing first. Our model’s
processing speed is comparable to that of the TRES model, and its image processing
efficiency is significantly higher than that of MANIQA.

Table 5. Time consumption comparison for processing 10,000 images.

Model MetaIQA MANIQA TRES McmIQA

Time used 56.35 113.60 81.22 83.25

4.4. Ablation Study

In this section, we present relevant ablation experiment results by comparing the
performance of various model versions on three datasets: TID-2013, Koniq-10k, and SPAQ.
This comparison aims to validate the effectiveness of the individual modules included in
the proposed model.

4.4.1. Ablation Experiments on the Distortion Perception Module Training

Table 6 presents the ablation experiment results on the distortion perception training
contrastive learning frameworks. Compared with three scenarios: (1) Removing the distor-
tion perception module. (2) Supervised training of the ResNet-50 on ImageNet to obtain
the distortion perception module. (3) Training ResNet-50 as a distortion perception model
with full-reference method scores. Remarkably, training the distortion perception module
using the proposed approach leads to the best SRCC performance across all datasets.

Table 6. Ablation experiment results on the distortion perception module training. The best models
are boldfaced.

Training Method TID2013 Koniq-10k SPAQ

With no model 0.772 0.883 0.890
ImageNet-supervised 0.792 0.909 0.903

MDSI signed 0.847 0.890 0.892
Ours 0.883 0.929 0.922

4.4.2. Ablation Experiments for the Content Recognition Module Training

Table 7 presents the results of ablation experiments on the training framework for
the content recognition module. We compared our framework with three other versions:
(1) Removing the content recognition module. (2) Supervised training of the content
recognition module. (3) Training the content recognition module using a colorization
strategy proposed in [50].
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Table 7. Ablation experiment results for the content recognition module training. The best models
are boldfaced.

Training Method TID2013 Koniq-10k SPAQ

With no model 0.884 0.861 0.900
ImageNet-supervised 0.852 0.905 0.903
Colorization training 0.876 0.927 0.923

Ours 0.883 0.929 0.922

4.4.3. Ablation Experiments for the Correlation Mapping Module Training

Table 8 presents the results of ablation experiments on the training framework for the
correlation mapping module. In our experiments, we started with the original method,
which neither employed ranking loss nor froze the parameters of other modules. Instead,
we directly fine-tuned the entire model. Subsequently, we incrementally introduced various
mechanisms for comparison.

Table 8. Ablation experiment results for the correlation mapping module training. The best models
are boldfaced.

Training Method TID2013 Koniq-10k SPAQ

Origin 0.841 0.907 0.906
Rank 0.863 0.913 0.911

Freeze content aware model 0.887 0.915 0.910
Freeze distortion model 0.860 0.918 0.918

Freeze both 0.870 0.924 0.923
Rank + freeze both 0.883 0.929 0.922

As shown in Table 8, the introduction of both the ranking and the weight freezing
mechanism during the training of the correlation mapping module positively impacted the
model’s final performance to varying degrees. The ranking mechanism allows the model
to assess the relative quality between different images, enhancing its overall perception of
image quality. And the weight freezing enables us to significantly increase the batch size,
reducing the impact of certain noise during model training.

5. Conclusions

In this paper, we further divide the image quality assessment task into three compo-
nents, distortion perception, content recognition, and associated mapping, to address the
challenge of real image quality assessment. By enhancing and utilizing the MOCO-V2 and
MOCO-V3 contrastive learning frameworks, improving the image patch generation process
for different modules, and introducing training mechanisms such as ranking and parameter
freezing, our McmIQA method achieves state-of-the-art predictive performance across
seven image quality evaluation datasets, including both synthetic and real distortions.
This indicates that in this study, the distortion perception module and content recognition
module trained with two contrastive learning schemes effectively extracted image distor-
tion features and image content features related to image quality. With the extracted two
image quality-related features, the correlation mapping module accurately predicted the
perceptual quality of the corresponding image. Moreover, our approach is not restricted
to a specific model; in scenarios where memory constraints are not an issue, it can easily
switch to other networks for feature extraction, including those based on transformations,
potentially yielding even more advanced performance.
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