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1. Introduction

The motivation behind this paper is the computation of Koszul–Vinberg cohomology,
which is closely related to information geometry through appropriate spectral sequences,
resulting in a powerful machinery successfully applied in various problems arising in dif-
ferential topologies and differential geometries. A Koszul connection [1] can be viewed
informally as means for taking the derivative of a section s of a vector bundle E → M, with
M being a smooth manifold, along a vector field X ∈ TM. The resulting section is denoted
by ∇Xs, with ∇ as the connection. It defines an R-bilinear product on sections by s.s′ = ∇ss′

whose commutator is the Lie bracket if ∇ is torsion-free. The associator of the product
(s, s′, s′′) = (s.s′).s′′ − s.(s′.s′′) can be easily computed as (s, s′, s′′) = ∇2

s,s′s
′′, meaning that

(s, s′, s′′)− (s, s′, s′′) = R(s, s′)s′′. When the connection ∇ is flat, (s, s′, s′′)− (s, s′, s′′) = 0,
turning the real vector space of sections into a Koszul–Vinberg algebra, also called a pre-Lie
algebra [2]. This fact is used in Section 3 to introduce a cohomology from which spectral
sequences of interest arise.

The second key ingredient is an important concept coming from the general theory
of Koszul connections is the gauge equation. If ∇ is a Koszul connection on the bundle E
and θ : E → E is a bundle isomorphism, then θ−1∇θ is a Koszul connection. This defines
an action of the gauge group on Koszul connections; when two connections ∇1,∇2 are
in the same conjugacy class, there exists θ in the gauge group such that θ−1∇1θ = ∇2,
or equivalently, ∇1θ = θ∇2. Relaxing the invertibility assumption on θ gives rise to the
so-called gauge equation: two connections ∇1,∇2 on a vector bundle E Mπ are
said to satisfy a gauge equation if there exists a bundle morphism θ : E → E such that
∇1θ = θ∇2. Without additional assumptions on ∇1,∇2, any global section θ of hom(E, E)
satisfies a gauge equation.

Thus, is thus necessary to place some constraints on the couple (∇1,∇2) in order to
obtain useful results. In this paper, we focus on dual connections as provided by statistical
manifolds.
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The concept of a statistical manifold comes from the field of information geometry. It
is defined as a quadruple (M, g,∇,∇+), where (M, g) is a smooth Riemannian manifold
and ∇,∇+ are torsion-free Koszul connections on TM that satisfy the metric relation [3]

∀X, Y, Z ∈ TM, Z(g(X, Y)) = g(∇ZX, Y) + g
(
X,∇+

Z Y
)
.

One connection ∇ or ∇+ entirely defines the other; however, the extra assumption
that these are both torsion-free is not automatically satisfied. In the present work, we focus
on the case where the gauge equation is satisfied by two connections ∇,∇+ coming from a
statistical manifold. In particular, two remarkable webs are defined that give rise to spectral
sequences of interest. To the best knowledge of the authors, the results presented here are
new.

The rest of this paper is organized as follows. In Section 2, basic facts about the gauge
equation in the general settings are briefly recapped, then some equivalent formulations are
provided and important parallel tensors are defined; these represent original contributions
of this article. In Section 3, the cohomology of Koszul–Vinberg algebras is introduced and
double complexes are defined. In Section 5, introductory material on spectral sequences is
provided. Finally, in Section 6 the special case of statistical manifolds is investigated. New
results about inclusion of the de Rham complex in a double complex are obtained. Finally, a
conclusion is drawn, highlighting relationships with K-theory and information geometry.

Notations and Writing Conventions

Throughout this document, the following conventions are applied: M is a smooth
connected manifold; for a vector bundle E Mπ , the notation Γ(U; E), with U ⊂ M
as an open subset of manifold M, stands for the C∞(M)-module of the smooth sections over
U. The functor U 7→ Γ(U; E) defines a sheaf denoted by ΓE. Finally, Γ(E) is a shorthand
notation for Γ(M; E). Lowercase letters are used for sections, while uppercase ones are
used for tangent vectors.

A reading diagram indicating dependencies between sections is provided in figure 1.

1

2

3

4 5 6

Figure 1. Reading diagram.

2. The Gauge Equation

Let E Mπ be a vector bundle. A Koszul connection ∇ is an R-linear map-
ping [4]

∇ : Γ(E) → Γ(T⋆M ⊗ E) (1)

such that ∇X f s = d f ⊗ s + f∇Xs for any f ∈ C∞(M). Let E⋆ Mπ⋆

be the bundle
obtained by dualizing E fiberwise. A section θ ∈ Γ(E∗ ⊗ E), that is, a (1, 1)-tensor, defines
two bundle morphisms:

E E

M

θ

π
π

E⋆ E⋆

M

θt

π⋆
π⋆ (2)
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where θt is such that X ∈ Tp M, ξ ∈ T⋆
p M for any p ∈ M:(

θt
pξ
)
(X) = ξ

(
θpX

)
. (3)

Definition 1. Let (∇1,∇2) be a couple of Koszul connections. A (1, 1)-tensor θ is said to be a
solution of the gauge equation if, for any s ∈ Γ(E),

∇2θs = θ∇1s, (4)

or equivalently if the next diagram commutes:

Γ(E) Γ(T⋆M ⊗ E)

Γ(E) Γ(T⋆M ⊗ E).

∇1

θ Id⊗θ

∇2

(5)

Definition 1 can be made local, giving rise to the following diagrams:

Γ(U; E) Γ(U; T⋆M ⊗ E)

Γ(U; E) Γ(U; T⋆M ⊗ E)

∇1

θU Id⊗θU

∇2

(6)

with U being an open subset of M and θU ∈ Γ(U; E⋆ ⊗ E). The above definitions can be
generalized to arbitrary vector bundles over M, giving rise to a category GC whose objects
are couples (E,∇), with E being a vector bundle on M, ∇ a Koszul connection on E, and
morphisms being bundle morphisms θ : E → F such that (E,∇1) → (F,∇2) if the diagram

Γ(E) Γ(T⋆M ⊗ E)

Γ(F) Γ(T⋆M ⊗ F)

∇1

θ Id⊗θ

∇2

(7)

commutes.

Definition 2. Let be ∇ be an affine connection. Its dual is the affine connection

∇⋆ : Γ(E⋆) → Γ(T⋆M ⊗ E⋆) (8)

defined by the relation
(∇⋆ξ)(s) = d(ξ(s))− ξ(∇s). (9)

Proposition 1. If θ is a solution of the gauge equation with connections (∇1,∇2), then θ⋆ is a
solution of the gauge equation with connections

(
∇⋆

2 ,∇⋆
1
)
.

Proof. For s ∈ Γ(E), ξ ∈ Γ(E⋆),

(∇⋆
2(θ

⋆ξ))(s) = (θ⋆ξ)(s)− (θ⋆ξ)∇2s = ξ(θs)− ξ(θ∇2s) (10)

= ξ(θs)− ξ(∇1θs) = (θ⋆∇⋆
1ξ)(s). (11)
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Given a couple of connections (∇1,∇2), the difference D1,2 = ∇1 −∇2 is a section of
Γ(TM⋆ ⊗ TM⋆ ⊗ E). Using this, the gauge equation in Definition (1) can rewritten as

∇2θ − θ∇2 + D1,2θ = 0. (12)

Considering θ as an O-form with values in E⋆ ⊗ E, Equation (12) may be rewritten as

d∇2 θ + D1,2θ = 0, (13)

where d∇2 is the exterior covariant derivative associated with the connection ∇2.
When ∇2 is flat, d∇2 d∇2 = 0. Thus,

d∇2(D1,2θ) = 0. (14)

Recalling that the Gauge group G(E) is the set of bundle isomorphisms

E E

M

U

U−1
(15)

then, given a connection ∇, U∇U−1 is also a connection.

Proposition 2. Let the triple (∇1,∇2, θ) be a solution of the gauge equation ∇1θ = θ∇2. For any
couple (U, V) in G(E), the triple(

U∇1U−1, UθV−1, V∇2V−1
)

is a solution of a gauge equation.

Proof. Starting with ∇1θ = θ∇2,

U−1U∇1U−1UθV−1V = U−1UθV−1V∇2V−1V. (16)

Composing by U to the left and V−1 to the right yields the result.

Proposition 2 indicates that the existence of a solution does not depend on a particular
choice of frame–coframe to represent it. Furthermore, locally, it is always possible to assume
a θ of the form

θ =

 Id 0

0 0

, (17)

as a pair U, V such that UθV−1 has the reduced form of Equation (17) exists by a standard linear
algebra argument. Global reduction is not possible, however, as transition functions generally do
not preserve the diagonal structure. Let Ẽ be the bundle E⊕ E⋆. The bilinear form

B : (X + α, Y + β) ∈ Ẽ2 → β(X) + α(Y) (18)

is non-degenerate, that is,

∀Y + β ∈ ẼB(X + α, Y + β) = 0 ⇒ X + α = 0. (19)

Proposition 3. A (1, 1)-tensor θ on E satisfies the gauge equation for a couple of connections
(∇1,∇2) if and only the bilinear form

Bθ : (X + α, Y + β) → B(X + α, θY + θ⋆Y) (20)
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is parallel with respect to the connection ∇̃ = ∇2 ⊕∇⋆
1 .

Proof. By definition,

B(X + α, θY + θ⋆Y) = α(θY) + θ⋆β(X). (21)

Taking the differential yields

d(α(θY)) = (∇⋆
1α)(θY) + α(∇1θY) = (θ⋆‘∇1 ⋆ α)(Y) + α(θ∇2Y) (22)

= (∇⋆
2θ⋆α)(Y) + α(∇1θY) (23)

and symmetrically

d((θ⋆β)(X)) = d(β)(θX)) (24)

= (∇⋆
2θ⋆β)(X) + β(∇1θX). (25)

Now,

B̃θ(X + α, Y + β) = (26)

dBθ(X + α, Y + β)− Bθ

(
∇̃(X + α), Y + β

)
− Bθ

(
X + α, ∇̃(Y + β)

)
= (27)

= dBθ(X + α, Y + β)− β(∇1θX) + (∇⋆
2θ⋆α)(Y)− α(∇1θX) + (∇⋆

2θ⋆)β(X) = 0. (28)

Conversely, if Bθ is ∇̃-parallel, then for any couple (X + α, Y + β),

α((∇1θ − θ∇2)Y) + β((∇1θ − θ∇2)X) = 0. (29)

Taking, α = 0 for example, with β being arbitrary, we have

(∇1θ − θ∇2)X = 0, (30)

proving that the couple (θ1, θ2) satisfies the gauge equation.

The corollary below then immediately follows.

Corollary 1. The kernel of θ̃ = θ ⊕ θ∗ is ∇̃-invariant; hence, the kernel of θ (resp. θ⋆) is ∇2 (resp.
∇⋆

1) invariant.

Proof. As the kernel of B is {0}, if

∀Y + β ∈ Ẽ, Bθ(X + α, Y + β) = B(θX + θ⋆α, Y + β) = 0, (31)

then θX + θ⋆α = 0 and X + α ∈ ker θ̃. Given a basis of ker θ̃ at a point p ∈ M and subjecting
it to parallel transport by ∇̃ yields another basis of ker θ̃ at an arbitrary point q ∈ M; hence,
the claim is sustained.

Remark 1. Corollary 1 implies by parallel transport that the dimension of the kernel of θ (resp. θ⋆)
is a constant; hence, the rank of θ (resp. θ⋆) is also a constant.

Remark 2. The kernel of θ⋆ is the set of differential forms vanishing on the image of θ. Thus, knowl-
edge of the kernel of Bθ completely characterizes ker θ and im θ. In particular, θ has constant rank.

When there exists a Riemannian metric on the manifold M, the gauge equation can be
specialized to pairs of connections on TM related by duality.
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Definition 3. Let ∇ be an affine connection. Its conjugate with respect to g (often referred to as the
dual connection) is the connection ∇+, defined by the relation

∀Z ∈ TM, ∀r, s ∈ Γ(TM), Z(g(r, s)) = g(∇Zr, s) + g
(
r,∇+

Z s
)
. (32)

Remark 3. The most common notation for the conjugate connection is ∇⋆. In the present text, we
adopt ∇+ to distinguish it from the connection on E⋆.

Definition 4. Let θ be a bundle morphism on TM. Its conjugate, denoted θ+, is the bundle
morphism defined by

∀X, Y ∈ TM, g(θX, Y) = g
(
X, θ+Y

)
. (33)

Proposition 4. If U : TM → TM is a unitary bundle isomorphism, that is, if

∀X, Y ∈ TM, g(UX, UY) = g(X, Y),

then U−1 = U+.

Proposition 5. Let ∇ be a connection and let U be a unitary bundle isomorphism. Then,(
U∇U+

)+
= U∇+U+. (34)

Proof. If U is unitary, so is U+. Let Z ∈ TM, r, sinΓ(TM); then,

Z(g(r, s)) = Z
(

g(U+r, U+s)
)

(35)

= g
(
∇ZU+r, u+s

)
+ g

(
U+r,∇+

Z s
)

(36)

= g
(
U∇ZU+r, s

)
+ g

(
r, U∇+

Z U+s
)

(37)

and the claim follows.

Proposition 6. If the triple (∇,∇+, θ) satisfies the gauge equation ∇θ = θ∇+, so does
(U∇, U+, U∇+U+, U+θU) for any unitary isomorphism U.

Remark 4. If θ is normal, that is, if [θ, θ+] = 0, and if the triple (∇,∇+, θ) satisfies the gauge
equation ∇θ = θ∇+, then locally there exists a unitary isomorphism U such that U+θU is diagonal
and (U∇, U+, U∇+U+, U+θU) satisfies a gauge equation. Again, this is a well known fact from
linear algebra, as θ is locally diagonalizable in an orthonormal frame. As in the case of Equation (17),
this is generally not true globally.

Proposition 7. Using the musical isomorphisms TM T⋆M
♭

♯
we have

∀X ∈ TM, α ∈ T⋆M
(
∇+

X α♯
)
= (∇Xα)♯.

Proof. For any X, Y, Z ∈ TM,

Z(g(X, Y)) = g(∇ZX, Y) + g
(
X,∇+

Z Y
)
.

Passing to forms, for any Z ∈ TM αinT⋆M, X ∈ TM,

Z
(

g(X, α♯)
)
= g

(
∇ZX, α♯

)
+ g

(
X,∇+

Z α♯
)

.
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Now,

Z
(

g(X, α♯)
)
= Z(α(X)) = (∇⋆α)(X) + α(∇ZX)

g
(

X, (∇⋆α)♯
)
+ g

(
∇ZX, α♯

)
and the claim follows from identification.

Proposition 8. Let the triple (∇,∇+, θ) satisfy the gauge equation ∇θ = θ∇+. Then, the tensor

gθ : (X, Y) 7→ g(θX, Y) (38)

is ∇ parallel.

Proof. Tensor Bθ in Proposition 3 can be written using the metric as follows:

Bθ(X + α, Y + β) = β(θX) + α(θY) (39)

= g
(

θX, β♯
)
+ g

(
α♯, θY

)
. (40)

Because Bθ is ∇̃-parallel, the proposition follows.

Remark 5. Defining a metric g⋆ on T⋆M by

∀α, β ∈ T⋆M, g⋆(α, β) = g
(

α♯, β♯
)

, (41)

the proof of Proposition 8 also shows that the tensor

g⋆θ : (α, β) 7→ g⋆(θ⋆α, β)

is ∇⋆-parallel.

Proposition 8 has the important consequence that TM can be split in two ways:

TM = ker θ ⊕ im θ, TM = ker θ+ ⊕ im θ+. (42)

It is clear from Proposition 8 that if θ is symmetric, that is, if θ = θ+, then the tensor

(X, Y) 7→ 1
2

g(θX, Y) + g(θX, Y) (43)

is ∇-parallel. When θ is skew-symmetric, i.e., θ = −θ+, the same is true for

(X, Y) 7→ 1
2

g(θX, Y)− g(θX, Y). (44)

As in Equation (7), there is a category such that morphisms represent gauge equation
solutions. The situation is nevertheless a little bit more complicated, as the dimension of
the vector bundle may not agree. We recall the following well-known definition.

Definition 5. Let E → M be a vector bundle. A pseudo-Riemannian metric on E is a smooth
bilinear C∞(M)-mapping gE : Γ(E)× Γ(E) → C∞(M) such that:

• ∀s, s′ ∈ Γ(E), gE(s, s′) = gE(s′, s);
• There exists an isomorphism ♭ : Γ(E) → Γ(E⋆) such that, for any s, s′ ∈ Γ(E),

s♭(s′) = gE(s, s′).

A pseudo-Riemannian metric is Riemannian if gE(s, s) > 0 for any s ̸= 0 in Γ(E).
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Definition 6. Let E, F be two vector bundles on M equipped with respective Riemannian metrics gE, gF.
A partial isometry from E to F is a bundle morphism U such that the following diagram commutes.

E E⋆

F F⋆

♭

U
♭

U⋆ (45)

Remark 6. Definition 6 is equivalent to the fact that, for any s, s′ ∈ Γ(E), we have

gF
(
Us, Us′

)
= gE

(
s, s′

)
.

Definition 7. Let U : E → F be a partial isometry and let ∇2 be a Koszul connection on F. Its
dual ∇+

2 is the connection on E defined by the relation

U∇+
2 = ∇2U. (46)

Definition 8. The category GU has objects (E,∇), with ∇ a Koszul connection on E and mor-
phisms (U, θ) : (E,∇1) → (F,∇2), where U : E → F is a partial isometry, θ : E → F is a bundle
morphism, and ∇1 = ∇+

2 ,∇2θ = θ∇1.

The next two examples illustrate the gauge equation in simple situations.

Example 1. Take M = R2 and consider the following symplectic 2-form:

ω : (x, y) 7→ exp xdx ∧ dy. (47)

Let ∇ be a Koszul connection such that ∇ω = 0, let g be an arbitrary Riemannian metric on R2,
and let ∇+ be the dual of ∇ with respect to g; finally, let θ be the unique (1, 1)-tensor such that, for
all vector fields X, Y,

ω(X, Y) = g(θX, Y). (48)

Then,
∇+

X θY = θ∇XY. (49)

Example 2. Take M = S3, with ∇ as a torsion-less connection and g as a Riemannian metric. Any
solution θ to the gauge equation

∇+
X θY = θ∇XY (50)

is either 0 or invertible.

3. KV Cohomology

The co-chain complex of Koszul–Vinbeg algebras may be introduced in any of the
following three ways [5,6]:

• 1: From the point of view of the tensor calculus, i.e., the raw formula.
• 2: From the point of view of the theory of categories, i.e., simplicial objects.
• 3: From the point of view of the anomalies, viz. the calculation rules.

In this work, we take into account forthcoming applications with interests in the
relationship between information geometry and differential topology.

3.1. Koszul–Vinberg Algebras

We first recall some useful basic definitions.

Definition 9. A real Koszul–Vinberg algebra is a real vector space A endowed with a product

A × A ∋ (a, b) → ab ∈ A
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subject the following identity:
(a, b, c) = (b, a, c) (51)

where
(a, b, c) = (ab)c − a(bc). (52)

Examples include:

(a) Associative algebras are Koszul–Vinberg algebras.
(b) The vector of vector fields on a smooth manifold M endowed with a symmetric flat

Koszul connection ∇.

3.2. KV Modules of Koszul–Vinberg Algebras

Definition 10. A real left module of a real Koszul–Vingerg algebra A is a real vector space V
endowed with a bilinear mapping

A × V ∋ (a, v) → a.v ∈ V

which satisfies the following identity:

(a, a′, v) = (a′, a, v) (53)

where
(a, a′, v) = (aa′).v − a.(a′.v). (54)

In this paper, we are dealing with Koszul–Vinberg algebra of vector fields X (M) on
a differentiable manifold M endowed with a Koszul connection ∇ for which both the
curvature tensor R∇ and the torsion tensor T∇ vanish identically. We write

A := (X (M),∇).

The product on A is defined as follows:

a.a′ = ∇aa′. (55)

Here, X (M) is obviously a left Koszul–Vinberg module of A.
Moreover, the space of smooth functions C∞(M) is a left Koszul–Vinberg module of A

under the left action

A × C∞(M) ∋ (a, f ) → d f (a) ∈ C∞(M). (56)

3.3. Vector Co-Chain Complexes

Given a Koszul–Vinberg algebra A, the following two cochain complexes of A with
coefficients in V are associated with any left module module V. One is denoted by CKV(A, V)
and is named the KV complex; the other is denoted Cτ(A, V), and is named the total KV
complex. We remind readers of the definition of these complexes, and point out some domains
of their efficiency.

3.3.1. CKV(A, V) Complex

We set
J(V) =

{
v ∈ V s.t. (a, a′, v) = 0 ∀(a, a′) ⊂ A

}
. (57)

Given
ξ = a1 ⊗ · · · ⊗ aq+1 ∈ A⊗q+1, (58)
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we set

∂iξ = · · · ⊗ âi ⊗ · · ·
a.ξ = Σi · · · ⊗ a.ai ⊗ · · ·

(59)

The vector space CKV(A, V) is Z-graded by the homogeneous subspaces Cq
KV , which

are defined as follows: 
Cq

KV = 0 if q < 0
C0

KV = J(V)

Cq
KV = Hom(A⊗q, V), q > 0.

(60)

The operator δ,
Cq

KV ∋ f → δ. f Cq+1
KV ,

is defined by the relation

δ.v(a) = a.v (a, v) ∈ A × J(V). (61)

Let f ∈ Cq
KV and ξ = a1 ⊗ · · · ⊗ aq+1; then,

δ. f (ξ) = Σq
1(−1)i−1[ai. f (∂iξ)− f (Xi.∂iξ)]. (62)

The q-th cohomology space is denoted by

Hq
KV(A, V) =

ker(δ : Cq
KV → Cq+1

KV )

δ(Cq−1
KV )

. (63)

Remark 7. The cohomology of Equation (63) is the solution to a conjecture of Gerstenhaber for the
deformations of hyperbolic structures in the sense of Koszul [7,8], claiming that “Every restricted
theory of deformation generates its proper theory of cohomology” [9].

This cohomology characterizes the equivalence between extensions of Koszul–Vinberg
algebras by Koszul–Vinberg modules. Let Ext(A, V) be the set of equivalence classes of
extensions of A by V; then,

Ext(A, V) = H2
KV(A, V). (64)

Remark 8. In the category of modules of associative algebras (resp. the category of modules of Lie
algebras), the second Hochschild space HH2(−,−) (resp. the second Chevalley–Eilbenberg space
H2

CE(−,−)) plays a similar role.

3.3.2. Total KV Complex Cτ(A, V)

The co-chain complex Cτ(A, V) is Z-graded by the homogeneous subspaces Cq
τ(A, V),

defined as follows: 
Cq

τ = 0 if q < 0
C0

τ = V
Cq

τ = Hom(A⊗q, V) if q > 0.

(65)

Keeping the notation from Section 3.3.1, the operator δτ is defined as follows:{
δτv(a) = a.v if v ∈ C0

δτ f (ξ) = Σq+1
1 (−1)i+1[ai. f (∂iξ)− f (ai.∂ξ)] if f ∈ Cq

τ .
(66)
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The q-th cohomology space of the total complex is then

Hq
τ(A, V) =

Ker(δτ : Cq
τ → Cq+1

τ )

δτ(C
q−1
τ )

. (67)

3.4. Scalar Complexes CKV(A, R) and Cτ(A, R).

Setting A = (X (M),∇), V = C∞(M), the scalar co-chain complex CKV(A, R) is
defined as follows:

Cq
KV(A, R) = 0 if q < 0

C0
KV(A, R) = J(C∞(M)), the space of affine functions

Cq
KV(A, R) = Hom(A⊗q, C∞(R)) if q > 0.

(68)

The total scalar cohomology Cτ(A, R) is defined by
Cq

τ(A, R) = 0 if q < 0
C0

τ(A, R) = C∞(M), if q > 0
Cq

τ(A, R) = Hom(A⊗q, C∞(M)) if q > 0.

(69)

3.5. Links with the de Rham Complex

In this section, we highlight an important inclusion relation of the de Rham complex
into the KV complex, yielding a long exact sequence in cohomology.

We consider the real de Rham complex which is

Ω(M) = ⊕Ωq(M, R), Ωq(A, R) = Hom(Λq A, C∞(M)). (70)

Its differential d : Ωq(M) → Ωq+1(M) is defined as follows:

dω(a0 ∧ · · · ∧ aq = Σq
0(−1)iai.ω(· · · ∧ âi ∧ · · · )+Σi<j(−1)i+jω([ai, aj]∧ · · · ∧ âi ∧ · · · âj ∧ · · · ).

(71)
The inclusion map Ωq(M) ⊂ Cq

τ(A, R) yields the following cochain complex injec-
tive morphism:

(Ω(M), d) → (Cτ(A, R), δτ). (72)

Denoting the quotient complex by

H(Q, d) =
(Cτ(A, R), δ)

(Ω(M), d)
, (73)

there is a short exact sequence of cochain complexes:

O (Ω(M), d) (Cτ(A, R), δτ) (Q, d) 0. (74)

Equation (74) gives rise to a long cohomology exact sequence:

. . . Hq
dR(M, R) Hq

τ(A, R) Hq(Q) Hq+1
dR (M, R) . . . (75)

3.6. Tensor Product of Two KV Complexes

In the category of statistical geometry, we are interested in spectral sequences which
arise from particular double complexes. We consider two Koszul–Vinberg algebras, A and
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A⋆. Let W be a left KV module of the both A and A⋆. From this situation, the following
four cochain complexes arise:

(I) : CKV(A, W),

(I I) : CKV(A⋆, W),

(I I I) : Cτ(A, W),

(IV) : Cτ(A⋆, W).

(76)

Let us consider the bi-graded vector space C(W):

Cq,p = Cq
τ(A, W)⊗ Cp

τ (A⋆, W). (77)

We set Cm = Σq+p=mCq,p. Given α ⊗ β ∈ Cq,p, we let

δ(α ⊗ β) = [δτα ⊗ β + (−1)qα ⊗ δτ β] ∈ Cq+1,p ⊕ Cq,p+1. (78)

It is clear that d is a differential δ ◦ δ = 0.
The cohomology space Hq,p is defined as follows:

Hq,p =
ker(δ : Cq,p → Cq+1,p ⊕ Cq,p+1)

im(δ) ∩ Cq,p . (79)

4. Statistical Manifolds

We recall that a statistical manifold is a quadruple (M, g,∇,∇) such that ∇ and ∇+ are
dual connections with respect to the metric g which are both torsion-free. These structures
are of the utmost importance in information geometry [10,11], and are named after their
appearance in statistical problems [12].

In Hessian statistical manifolds, solutions of gauge equations give rise to statistical 2-
webs, i.e., webs bearing the structure of a statistical manifold. These 2-webs are canonically
associated with tensor products of co-chain complexes, the cohomology of which can be
calculated with spectral sequences. Situations (I), (II), (III), and (IV) in Equation (76) arise
in any Hessian manifold (M, g,∇).

In this section, we retain the notation from Sections 2 and 3 and fix a statistical manifold
(M, g,∇,∇+).

Let θ be a solution of the gauge equation ∇+θ = θ∇. We define another pair of
solutions (Θ, Θ⋆) by the identities

2g(Θ(X), Y) = g(θ(X), Y) + g(X, θ(Y)),

2g(Θ⋆(X), Y) = g(θ(X), Y)− g(X, θ(Y)).
(80)

All of the four distributions {Ker(Θ), Im(Θ), Ker(Θ⋆), Im(Θ⋆)} are regular and are in
involution. Furthermore, we have the following 2-webs:

TM = K ⊕ I
TM = K⋆ ⊕ I⋆

K⋆ = ker(Θ⋆)

I⋆ = im(Θ⋆)

(81)

where K = ker(Θ), I = im(Θ).
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These distributions are parallel with respect to ∇, ∇+, as indicated by the identities

∇XK = K,

∇XK⋆ = K⋆,

∇+
X I = I,

∇+
X I⋆ = I⋆.

(82)

Here, the foliations K, I are Riemannian [13–15].

Remark 9. If either (M, g,∇) or (M, g,∇+) are Hessian manifolds, then K, K⋆, I, and I⋆ are
Hessian foliations. Thus, any of the pairs (K, I) and (K⋆, I⋆) gives rise to a double co-chain complex
as in Equation (79).

Any of the three distributions ker(θ), ker(Θ), and ker(Θ⋆) is of constant rank. The
three ranks may be different.

Remark 10. Note that a foliated manifold carries two other remarkable complexes in addition to its
total de Rham complex, namely, the complex of foliated forms, and the complex of basic forms.

Assuming that (M, g,∇,∇+) is a Hessian statistical manifold, we may construct two
Koszul–Vinberg algebras

A = (X ,∇), A⋆ = (X (M),∇+). (83)

The two associated KV-complexes CKV(A, R) and Cτ(A⋆,X (M) are of particular interest.

Proposition 9. On the Hessian manifold (M, g,∇), the Riemannian metric tensor g is a 1-cocycle
of the scalar KV complex (CKV(A, R).

Corollary 2. In order for (M, g,∇) to be hyperbolic, it is necessary that [g] = 0. It is also sufficient
if M is compact.

The next proposition makes use of the vector total KV complex to obtain a cohomolog-
ical obstruction for a section θ ∈ hom(TM, TM) to be a solution of the gauge equation.

Proposition 10. The gauge equation ∇+ϕ − ϕ∇ = 0 is equivalent to the cohomology equation

δτϕ = 0. (84)

Equation (84) is essentially Equation (14) rewritten; however, the vector KV complex
is more tractable than the complex of (TM⋆ ⊗ TM)-valued forms.

4.1. Tensor Products

For every non-negative integer q, the dual vector spaces Γ(K⊗q) and of Γ(ΛqK) are
denoted by Cq(K) and b Ωq

K(M), respectively, and we set

C(K) = ⊕qCq(K), ΩK(M) = ⊕qΩq
K(M). (85)

It makes sense to restrict the de Rham operation to ΩK(M) in order to define a
cochain complex

. . . Ωq−1
K (M) Ωq

K(M) Ωq+1
K (M) . . . (86)
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In any Hessian manifold, we may use Remark 9 and the operators δKV , δτ to write the
KV cochain complexes [C(K), δτ ] and [C(K), δτ ] as follows:

[C(K), δKV ] : 0 → J(C∞(M)) → · · · . → Cq−1(K) → Cq(K) → Cq+1(K) → (87)

and
[C(K), δτ ] : 0 → C∞(M) → · · · → Cq−1(K) → Cq(K) → Cq+1(K) → (88)

We note that the cochain Equation (88) is then nothing other than

→ Cq−1
KV (AK, R) → Cq

KV(AK, R) → Cq+1
KV (AK, R) → (89)

where AK = Γ(K = ker(Θ)).

Remark 11. Similar complexes are attached to the three other distributions (I, K⋆, and I⋆).

4.2. Double Complexes in a Hessian Manifold

Let (M, g,∇,∇+) be a Hessian statistical manifold. Two de Rham double complexes
derive from the following 2-webs: Ω(K, I), Ω(K⋆, I⋆).

To investigate the properties of (g,∇,∇+), we can use the two Koszul–Vinberg alge-
bras A = (Γ(TM),∇), A⋆ = (Γ(TM),∇+) and the complexes

CKV(A, R),

CKV(A⋆, R),

Cτ(A, R),

Cτ(A⋆, R).

(90)

Furthermore, we have the two double KV complexes

CKV(A, A⋆) = ⊕q,pCq
KV(A, R)⊗ Cp

KV(A⋆, R),

Cτ(A, A⋆) = ⊕Cq
τ(A, R)⊗ Cp

τ (A⋆, R).
(91)

These double complexes give rise to the total complexes (CKV(M), dKV), (Cτ(M), dτ),
with Cτ(M) = ⊕nCn

τ (M) and Cn
τ (M) = ⊕[q+p=n]Cqτ(A, R) ⊗ Cp

τ (A⋆, R). The operator
dτ : Cn

τ (M) → Cn+1
τ (M) is defined by the relation

dτ : u ⊗ v ∈ Cq
τ(A, R)⊗ Cp

τ (A⋆, R) 7→ δτ(u)⊗ v + (−1)qu ⊗ δτ(v). (92)

Mutatis mutandis, (CKV , dKV) is defined in the same way.
Let G be the group of symmetries of (M, g,∇,∇⋆); then, G is the following finite

dimensional Lie group:
G = Isom(M, g) ∩ A f f (M,∇). (93)

The cohomology spaces of the complexes which are introduced above are geometric
invariants of G.

4.3. Gauge Equation and Homology Persistence

Before proceeding with cohomology calculations, in this section we introduce useful
materials derived from persistent simplicial homologies which are related to the gauge
equation.

Let (M, g,∇,∇+) be a statistical manifold and let θ be a solution of the gauge equation
of (∇+,∇). According to the notation used in the preceding sections, θ gives rise to two
2-webs (K, I), (K⋆, I⋆). The foliation defined by I⋆ is denoted by Fθ .

Let r⋆(θ) be the rank of the distribution I⋆. We set

r⋆(M) = max
θ

{r⋆(θ)}. (94)
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Step 1.
We choose a θ1 such that r⋆(θ1) = r⋆(M) and fix a point x ∈ M. Let F1(x) be the leaf

of Fθ1 which contains x. The r⋆(M)-dimensional submanifold

(F1(x), g,∇+) ⊂ (M, g,∇+) (95)

inherits the statistical structure (i.e., g,∇,∇+) from M.
Step 2.
We use the gauge equation of Fx(g,∇+) to define r⋆(F1(x)), obtaining the statistical

submanifold
(F2(x), g,∇+) ⊂ (F1(x), g,∇+). (96)

Setting
(F0, g,∇+) = (M, g,∇+), (97)

we can inductively construct the next statistical filtration:

SP(M) : (Fq(x), g,∇+) ⊂ (Fq+1(x), g,∇+) ⊂ · · · ⊂ (M, g,∇+). (98)

In addition, we consider the real singular chain complex of M:

Sing(M) : → Cq+1(M) → Cq(M) → Cq−1(M) → (99)

The topology persistence (SP(M) yields the following homology persistence:

HP(M) : → Sing(Fq+1(x)) → Sing(Fq(x)) → Sing(Fq−1(x)) → (100)

5. Spectral Sequences

In this section, we briefly recall the definition of spectral sequences of co-chain com-
plexes. A good recent reference on this subject is [16].

Definition 11. A graded differential sheaf (S , d) denotes a graded sheaf (S p)p∈Z together with a
graded morphism d : S p → S p+1 satisfying d2 = 0.

Definition 12. The derived cohomology sheaf indicates the graded sheaf H():

Hp(S) = ker{dp : S p → S p+1}
im{dp−1 : S p−1 → S p}

. (101)

Remark 12. The derived cohomology sheaf is the sheafification of the local cohomology presheaf

U 7→ Hp(S(U)).

In the following, a ring R is fixed.

Definition 13. A bi-graded module E over R is a double-indexed collection of R-modules Ep,q, p, q ∈
Z.

Definition 14. Let E be a bi-graded module over R and let r ∈ N; a differential over E of bi-degree
(r, 1 − r) is a double-indexed collection of R-morphisms d : Ep,q → Ep+r,q+1−r such that d2 = 0.

Definition 15. A differential bi-graded R-module is a couple (E, d), with E being a bi-graded
module, d a differential of bi-degree (r, 1 − r), and r a fixed integer.

Definition 16. A cohomology spectral sequence is a sequence of bi-graded differential modules
(Er, dr), r = 1, 2, . . . , where dr has bi-degree (r, 1 − r) and Ep,q

r+1 ∼ Hp,q(Er, dr) for all p, q, r.
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Remark 13. A spectral sequence can be viewed as a successive approximation process; in most cases,
(E2, d2) is known and is the starting point of the sequence. Now, looking at stage n, that is, (En, dn),
the defining property of the spectral sequence indicates that if Zn = ker dn, Bn = im dn−1, then, as
a bi-graded module, En+1 ∼ Zn/Bn. Now, if Z̄n+1 = ker dn+1, B̄n+1 = im dn, there exist modules
Zn+1, Bn+1 such that Z̄n+1 = Zn+1/Bn, B̄n+1 = Bn+1/Bn. Thus, per Noether’s isomorphism,
Zn+1/Bn+1 = Z̄n+1/B̄n+1. Furthermore, because dn+1 is a differential, ¯Bn+1 ⊃ Bn, ¯zn+1 ⊂ Zn;
hence, Bn ⊂ Bn+1 ⊂ Zn+1 ⊂ Zn. Proceeding by recurrence, there exist limiting modules

B∞ = ∪nBn, Z∞ = ∩nZn,

and the purpose of the spectral sequence is to obtain Z∞/B∞.

Definition 17. A spectral sequence is said to converge if, for each couple of integers (p, q), there
exists an integer r(p, q) such that all differentials dr : Ep,q

r → Ep+r,q+1−r are 0 for r ≥ r(p, q).

Proposition 11. If a spectral sequence converges, then for any couple of integers p, q, the module
Ep,q

∞ is isomorphic to the direct limit of the following diagram.

Ep,q
r(p,q) Ep,q

r(p,q)+1 . . .

Ep,q
∞

(102)

Definition 18. An exact couple is a pair of modules M, E and morphisms i, j, k fitting in the
following exact diagram.

M M

E

i

jk
(103)

Proposition 12. Given an exact couple as in Definition 18, E is differential module with differential
d = j ◦ k.

The next proposition can be found in [16,17].

Proposition 13. Let (M, E, i, j, k) be an exact couple. The derived couple M1 = im(i), E1 = H(E)
is exact with morphisms

i1 = i|M1 , j1 = j ◦ i + dE, k1(e + dE) = k(e).

Passing to bi-graded modules and iterating the process defines a spectral sequence
(Er, dr), where Er is the r-th derived module of E and dr = jr ◦ kr.

Finally, still using [16], a filtered complex FpC ⊂ Fp+1C ⊂ . . . defines an exact couple
by passing to cohomology; that is, starting with the short exact sequence

0 FpC Fp+1C Fp+1C/FpC 0, (104)

we obtain a long homology sequence

. . . Hp+q(Fp+1C
)

Hp+q(FpC) Hp+q(Fp+1C/FpC
)

Hp+q+1(Fp+1C
)
.i j k (105)

Setting
Ep,q = Hp+q

(
Fp+1C/FpC

)
, Dp,q = Hp+q(FpC),
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we obtain an exact couple, that is, a spectral sequence. This construction is part of Section 6,
where our aim is to point out that relevant spectral sequences emerge from the methods of
information geometry.

6. Application to Statistical Manifolds

In a statistical manifold (M, g,∇,∇+), chain complexes and co-chain complexes
which are attached to solutions of the gauge equation of (∇+,∇) have been identified in
Section 3. The purpose of this section is to point out some spectral sequences which provide
approximations of their cohomology.

The Spectral Sequences of a Double Complex

In a Hessian statistical manifold (M, g,∇,∇+), we fix a solution θ of the gauge equa-
tion of (∇+,∇). We focus on the total KV complex

Cτ(M)n = ⊕[j+i=n]C
j
τ(A, R)⊗ Ci

τ(A⋆, R). (106)

Before proceeding, we define (d′τ , d”τ) as follows:

d′τ(u ⊗ v) = δτ(u)⊗ v,

d”τ(u ⊗ v) = (−1)ju ⊗ δτ(v),

u ⊗ v ∈ Cj
τ(A, R)⊗ Ci

τ(A⋆, R),

(107)

meaning that we have
dτ = d′τ + d”τ . (108)

To any couple (p ≤ n) of positive integers, we associate

Fp
A,n(Cτ(M)) = ⊕[j≤p]C

j
τ(A, R)⊗ Cn−j

τ (A⋆, R),

Fp
A⋆ ,n(Cτ(M)) = ⊕[j≤p]C

n−j
τ (A, R)⊗ Cj

τ(A⋆, R).
(109)

The next properties are easily checked:

Fp
A,n(Cτ(M)) ⊂ Fp+1

A,n (Cτ(M)),

d”τ(Fp
A,n(Cτ(M)) ⊂ Fp

A,n+1(Cτ(M)),

Fp
A⋆ ,n(Cτ(M)) ⊂ Fp+1

A⋆ ,n(Cτ(M)),

d′τ(Fp
A⋆ ,n)(Cτ(M)) ⊂ Fp

A⋆ ,n+1(Cτ(M)).

(110)

Each filtration yields a spectral sequence that we denote by Er(A, dr), Er(A⋆, dr).

Proposition 14 ([5]). Let the tensor product complex

Ωτ = Ω(M)⊗ Ω(M), (111)

where Ω(M) is the de Rham complex of M. Then, the inclusion mapping

Ωτ(M) → Cτ(M) (112)

is a complex morphism.

Let (M, g,∇,∇+) be a compact statistical manifold. Using Equation (100), the gauge
equation of (∇⋆,∇) to obtain a homology filtration on M is

⊂ Sing(Fp+1(x)) ⊂ Sing(Fp(x)) ⊂ Sing(Fp−1(x)) ⊂, (113)
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from which we can derive a short exact sequence

0 → Sing(Fp+1(x)) → Sing(Fp(x)) → Ep(x) → 0 (114)

with

Ep(x) =
Sing(Fp(x))

Sing(Fp+1(x))
. (115)

This short exact sequence yields the following long exact sequence of singular homol-
ogy spaces:

Hq+1(Fp+1(x)) Hq+1(Fp(x)) Hq+1(Ep(x)) Hq(Fp+1(x)). (116)

We can then use the persistence of the topology to construct a homologically exact
couple [18] with a spectral sequence that converges to the singular homology H(M);
following a theorem of de Rham, this approach leads to the de Rham algebra of M.

Indeed, by setting M = ⊕pH(Fp(x)), E = ⊕pH(Ep), the long exact homology in
Equation (116) yields the exact couple

i : M → M, j : M → E, k : E → M, (117)

and the derived couples can then be constructed using Proposition 13.
Another construction can be applied to the total complex of a Hessian manifold

(M, g,∇,∇⋆). We define the bi-graded space Cτ(M) by

Cq,p
τ (M) = Cq

τ(A, R)⊗ Cp
τ (A⋆). (118)

We have a filtration

Fp
A,n(Cτ(M)) = ⊕[j≤p]C

j
τ(A)⊗ Cn−j

τ (A⋆) (119)

that gives rise to an exact couple, which in turn yields a spectral sequence

E(A) =
{

Ej,i
r

}
. (120)

Now, using the operators d′τ and d”τ , we set

H”j,i(Cτ(M)) =
ker(d”τ : Cj,i

τ (M) → Cj,i+1
τ (M))

d”τ(Cj,i−1(M))
(121)

and

H′j H”i(Cτ(M)) =
ker(d′τ : H”j,i(Cτ(M)) → H”j+1,i(Cτ(M))

d′τ(H”j−1,i(Cτ(M))
. (122)

Applying classical results [16,19,20], we obtain:

Theorem 1. The term Ej,i
2 of the spectral sequence E(A) is isomorphic to H′j H′′i(Cτ(M))♣.

Theorem 2. The spectral sequence E(A) converges to the total cohomology of the total complex

(Cτ(M), dτ)♣.

This result provides a new approach for computing this cohomology.

7. Conclusions

This article has presented the general gauge equation and its restriction to dual con-
nections, introducing suitable categories the objects of which are gauge structures, that
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is, couples (E,∇) with E being a vector bundle on a base smooth manifold M and ∇ a
Koszul connection. Within this frame, a morphism exists between two gauge structure if
and only if a gauge equation is satisfied. This model will be investigated in a future work,
especially in terms of its relationship with K-theory. In the present paper, equivalent formu-
lations for the gauge equation are provided; moreover, two cohomological characterizations
are provided in the case of flat connections, one arising from the covariant derivative on
Γ(E⋆ ⊗ E)-valued forms and the other from the Koszul–Vinberg complex. Finally, when
considering statistical manifolds (M, g,∇,∇+) for which a gauge equation ∇+θ = θ∇ is
satisfied, a new inclusion of the de Rham complex into a double complex is obtained and
appropriate spectral sequences defined.

In a future publication, we will consider the extension of this work to complex manifolds.
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