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1. Introduction

It is well-known that the magnetism of matter can be divided into diamagnetism,
paramagnetism, ferromagnetism, antiferromagnetism, and ferrimagnetism. Among them,
ferromagnetism can be found in metals like iron, cobalt, and nickel, as well as in numerous
alloys comprising these elements. There exists spontaneous magnetization in ferromagnetic
materials [1]. The theory of spontaneous magnetization can be used to explain many
ferromagnetic properties, such as the effect of temperature on ferromagnetism. When the
temperature is below Curie temperature 6., the spin magnetic moments remain aligned,
even after the external magnetic field is removed. When the temperature rises above Curie
temperature 6., the spontaneous magnetization disappears, and the material reverts to the
paramagnetic phase [2].

There has recently been a lot of progress in the study and development of the theory
of the paramagnetic—ferromagnetic transition [3-8]. In [5,6], Berti proposes a model for the
dynamics of a magnetization vector in a ferromagnetic body. The model provides a de-
tailed depiction of the three-dimensional evolution of thermodynamic and electromagnetic
properties inherent in ferromagnetic materials, which can account for temperature-induced
transitions from the paramagnetic to the ferromagnetic regime. The model is applicable to
a wide range of temperatures [9], while the well-known Landau-Lifschitz equation can
only describe magnetization dynamics at low temperatures [10-13]. The evolution of the
ferromagnetic material is described by the phase transition equations referenced in [6],
which are formulated as follows:

YOM = 1AM — 6,(|M|> = 1)M — 6M + H, 1)
Clat(ll’l 9) + cp0:0 = koA(ln 9) + M- oM + kAB + 7, (2)

where M denotes the magnetization vector, H denotes the magnetic field, 0 is the absolute
temperature, y, 11, c1, €2, ko, k are strictly positive constants, and 6, is the Curie temperature.
# is a known function of x,t. The well-posedness and long-time behavior results are
proved first in [14] via energy methods for the above model with ¢; = kg = 0 without
the magnetic field H. Existence and uniqueness, continuous dependence on the data,
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and regularity results are proved for a more general model without the magnetic field H
in [15,16]. The existence and uniqueness of the global weak solution for the above equations
with Maxwell equations are proved in [6], some limit problems for this model are obtained
in [17], and the fractional version of the model is obtained in [18].

In this paper, we study the phase transition model incorporating polarization which
describes the thermodynamic, electromagnetic, and polarization properties of materials
but which has not been considered in the above references. Due to the laws k(6) = k6
and c(0) = %6 in [18], both heat conductivity and specific heat depend on the absolute
temperature; thus, we assume that c; = kg = 0. A great variety of assumptions about heat
conductivity and specific heat can be found in many references, for instance, [19].

The phase transition equations with polarization considered in this paper can be
written as follows:

YO:M = 1AM — 6.([M|?> = 1)M — 6M + H, (3)
030 = M- ;M + kAO + 7, (4)
V xH =0;(E+P)+0E, (5)
V x E= —9;H — M, (6)
0P + A%curl®P + ud;P = v(E — E(P)), (7)

where A > 0 represents the velocity of light within the internal field and ¢ > 0 denotes
the constant conductivity, while the constant S can be interpreted as the magnetic per-
meability of free space. y, v are positive constants which can be found in [20]; H(x,t) =
(Hy(x,t),Hy(x,t), H3(x,t)) denotes the magnetic field; E = (Eq(x,t), Ex(x,t), E3(x,t)) de-
notes the electric field; P(x,t) = (Py(x,t), P(x,t), P3(x,t)) represents the electric polar-
ization; and curl®P = curl(curlP) = V x V x P, E(P) = 2P®'(|P|?) is the equilibrium
electric field.
The periodic conditions are

M(x +2De;, t) = M(x,t), 0(x +2De;, t) = 6(x,t),
H(x +2De;, t) = H(x,t), E(x +2De;, t) = E(x,t),

8
P(x +2De;, t) = P(x,t), 0:P(x +2De;, t) = 9;P(x,1), ®
xeQeR3 t>0,i=1,23
and the initial values are
M(x,0) = My(x), 0(x,0) = 6p(x), H(x,0) = Hp(x), o)

E(x,0) = Eo(x), P(x,0) = Py(x), 9:P(x,0) = 3;Py(x), x € Q C R?,
where D > 0 is a constant, (e1, ez, e3) denotes the unit orthogonal basis of R3, and
Q= {x = (x1,x2,x3)| [x;| < D;(i=1,2,3)}.

Set Qr = {(x,t)[x € Q,0 <t < T}

When an electric field is applied to a medium composed of a large number of atoms
or molecules, such as a dielectric medium, under the action of the external electric field,
the electric charges appear on the dielectric’s surface as well as in its internal nonuniform
regions. This phenomenon is referred to as polarization. The polarization of the dielectric
causes the positive and negative charges of the molecules in the dielectric to shift or
change the orientation, and there are many electric dipoles arranged in the direction of the
external electric field in the dielectric, which changes the original electric field distribution
of the whole dielectric. Thus, the electric polarization P (the dipole polarized per unit
volume) not only determines the volume charge density but also dictates the charge density
on the surface of the polarized dielectric; one interested in polarization can refer to the
literature [21-23].
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All ferroelectric materials produce spontaneous polarization within a temperature
range. When a ferroelectric material is combined with a ferromagnetic material, a new
material called a multiferroic material is obtained. These multiferroic materials have ferro-
electric and ferromagnetic phases simultaneously inside and show both ferroelectric and
ferromagnetic properties outside. Moreover, the materials also show the magnetoelectric
effect, which is the induction of a magnetic field by an electric field [24,25]. This magnetic
field can also induce electric polarization. It is quite important to analyze thermodynamic,
electromagnetic, and polarization properties since the magnetoelectric conversion function
makes the materials widely used in microsensors [26], microelectromechanical systems
MEMS [27], high-density information storage [28], transducers [29], and other fields [30].

In fact, the coupling of the phase transition equations with polarization P can be
obtained from the full Maxwell system

d;B = —curl E, 9;D + ¢E = curl H. (10)

In the above system, the definitions of electric D and magnetic displacements B are given by
D =¢E+P, B=puy(H+M), (11)

where ¢( represents the permittivity of free space, while y denotes the magnetic permeabil-
ity of free space. From D = ¢gE + P = ¢yE + x.¢0E = ¢,¢0E = ¢E, we can also derive (4) by
the similar method in [6]. If we regard polarization P as an internal field, then we can derive
the electric polarization Equation (7), more details can be found in [20]. Substituting (11)
into (10), we obtain a couple system of M, 6, E, H, and P, that is, (3)-(7).

The earliest research of multiferroic materials can be traced back to the 1950s. In recent
years, with the development of material synthesis and technology, these materials are
applied to more areas, such as smart sensors, electron spin devices, and so on. The study
of partial differential equations arising in these materials has very important practical
significance. Greenberg considers the existence and asymptotic behavior of multiple
solutions for the so-called nonlinear Maxwell systems (5)—(7) for a simple case in [20],
which models the dynamics of electric field E, magnetic field H, and polarization P (without
M, 0) in ferroelectric materials. For a general case, Habib and Kamel establish the global
existence, uniqueness, and regularity of weak solutions in [31]. Jochmann considers the
asymptotic behavior of the solution for Maxwell equations with nonlinear polarization and
field-dependent currents in [32]. Ding and Guo obtain the global existence of a periodic
weak solution for the Landau-Lifshitz—-Maxwell system with electric polarization P in [33].

To the best of our knowledge, our work presented in this paper seems to be the
first rigorous treatment of a mathematical model for the dynamics of magnetization M,
absolute temperature 6, magnetic field H, electric field E, and electric polarization P arising
in ferromagnetic—ferroelectric materials. We establish the existence of the global weak
solution for the phase transition equations with polarization in (3)—(7). The results of this
paper can not only provide a theoretical basis for physicists but also develop the theoretical
study of strongly coupled partial differential equations.

In the process of obtaining the weak solution of the system, the main difficulty comes
from the fact that the system (3)-(7) is strongly coupled. It is difficult to obtain a weak
solution through the semigroup method as attempted by Habib and Kamel in [31], so we
employ the Galerkin method. Noticing that Equation (7) lacks compactness, we employ the
viscosity vanishing method to obtain the weak solution for the viscosity problem to over-
come this difficulty. Therefore, we replace (7) with the following viscosity approximation

0?P + A%curl®P + ud;P — eAP = v(E — 2P/ (|P|?)). (12)

Firstly, we consider the viscosity system (3)—(6), (12) with initial value conditions (8) and (9)
by the Galerkin method. Secondly, we consider a more regular class of weak solutions
because of the lack of compactness in the limit procedure and obtain the uniform estimation
in € of solutions to the viscosity problem. Finally, we let € tend to 0, and then we can obtain
the desired weak solution to the original problem (3)—(9).
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The rest of this paper is organized as follows. The subsequent section introduces the
preliminaries requisite for the forthcoming proof procedure, along with the definition of
a weak solution for the system and the main result, Theorem 1, whose proof is deferred
to Section 4. In Section 3, the Galerkin method is employed to establish the existence
of the weak solution for the viscosity problem (3)—(6), (8), (9), and (12). In Section 4, we
derive the uniform estimates in ¢ of the approximate solutions for the viscosity problem.
Then, taking the limit ¢ — 0, we establish the existence of the global weak solution for
the problem (3)—(9). In Section 5, we provide a concise recapitulation of the foremost
challenges encountered, the methodologies employed, novel contributions made, and the
main result associated with the phase transition model with polarization.

2. Preliminaries and Main Result

In this section, we first introduce some necessary assumptions and the definition of
the weak solution to phase transition equations with polarization. Then we present the
main theorem of our model.

Suppose that @ : Rt — R is a C? convex function ensuring that

[@'(r)] < Co, [r@"(r)] < C1,Vr 20, (13)

and the function ®(2) attains its unique minimum at some point r3. These assumptions
ensure that Vr > 0, |r®" (r?)| < C,, where we denote C, = Cy + 2C;. Thus, we derive

%@ (x[?) = y@'(Jy*)| < Calx —yl, Vx,y € R®. (14)

Much more about the equilibrium relation may be found in [22].
For simplicity, we introduce notation as follows:

I lry=11-llp, p=2, fi=0f= f , f is a function of (x,t).

Let us now define the weak solution to the problem (3)-(9).

Definition 1. A 2D-periodic vector function (M(x,t),0(x,t),E(x,t),H(x,t),P(x,t)) € (L®

(0, T; H'(€)), L*(0, T; L*(Q2)), L®(0, T; L*(€2)), L* (0, T; L*(Q)), W(0, T; 2(0)) L™
0, T; H'(Q))) is called a weak solution to (3)—(9) if for any test functions ¢(x, t), x(x,t) € C(Qr)
with ¢p(x,t) =1 = x(x,t)|t=1 = 0, the following equations hold:
7// M - grdxdt — 1, // VM - Vepdxdt — // (IM2 = 1)M - pdacdt (15)
f// 9M~q>dxdt+// H-gbdxdt+'y/ M, - ¢(x,0)dx = 0,
Qr Qr Q
c// G-Xtdxdt+// M-Mt-xdxdt—k// V0 - Vydxdt (16)
Qr Qr Qr
+// f’~)(dxdt+c/ o - x(x,0)dx =0,
Qr Q
// (E+P) - ¢p(x, t)e” dxdt + 0'// e7'P - pdxdt (17)
JJQOr JQr

+//Q 1Y x ¢-dedt+/Q(Eo +Po) - ¢(x,0)dx = 0,
/Q (H+ pM) ~<ptdxdt—//Q (V x ) ~dedt+/Q(Ho+,BMo) -¢(x,0)dx =0, (18)
/ /éT P, - grdxdt — A2 ./]QT curl P curl gdxdt — /LT P, - pdxdt

+v//Q E-¢dxdt—2u//Q <1>’(|P|2)P-q>dxdt+/QBtPo-q)(x,O)dx:0. (19)
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The main result is as follows:

Theorem 1. Assume that initial value data (Mg(x),0o(x), Eo(x), Ho(x), Po(x),0:Pp(x)) €
(HY(Q),L2(Q), L2(Q), L*(Q),H(Q), L2(Q)), #(x,t) € L*>(0, T; H(Q)) and (div(Hp), div
(Ep),div(Py), Vdiv(Py),div(d:Py)) € L*(Q). The constants vy, vy, ¢, k, o, B, A, u, v are positive.
Then the problem (3)—(9) has at least one global weak solution (M(x,t),60(x,t), E(x,t), H(x,t),

P(x,t)) satisfying
M(x,t) € L¥(0, T; H'(Q)) N L2(0, T; H*(Q)) N C(2) (0, T; L2(QY)),
0(x,t) € L®(0, T; L2(Q2)) N L2(0, T; H () n 2 (0, T; H1(Q)),
E(x,t) € L(0, T;L2(Q)) n CO2) (0, T; H-1(Q))),
H(x,t) € L®(0, T; L2(Q)) n c02) (0, T; H1(QQ)),
P(x,t) € L(0, T; H(Q2)) n C©2)(0, T; L2(QY)),
3P (x,t) € L®(0, T; L2(Q)) n c02) (0, T, H ().

> =
 —

(20)

We give the proof of Theorem 1 in Section 4, after deriving the weak solution to the
viscosity system (3)—(6), (12) and obtaining the uniform estimates in the following sections.

3. Solutions to the Viscosity Problem

In this section, we aim to demonstrate the existence of the global weak solution for
the viscosity problem (3)-(6), (12) with (8) and (9). Firstly, we construct the Galerkin
approximate solutions of the viscosity problem and establish a priori estimates of the
approximate solutions; then, we give the proof of the existence of the weak solutions for
the viscosity problem (3)—(6), (12) with (8) and (9).

Define wy(x),n =1,2,- - - as the unit eigenfunctions that satisfy the equations

Awy + Aywn =0, wy(x —De;) = wy(x + De;), i =1,2,3,

where A, n = 1,2, - - are the distinct eigenvalues associated with each eigenfunction.
Similarly, we consider ¢, (x),n = 1,2, - - the eigenfunctions for the eigenvalue problem
AY, + x40, = 0,n =1,2,. - under periodic boundary conditions with x,, n = 1,2, -
being the corresponding eigenvalues.

Denote the approximate solution of the problem (3)-(6), (12) with (8) and (9) by MY (x, t),
0% (x, t), EY (x, 1), Hy (x, t), Py (%, t) in the following form:

N N N
N(xt) = ;zst(t)ws(x), O (xt) = ZﬁsN(f)ﬂs(x)/ Ey(xt) = ;'YSN(t)ws x
N
t) = Z Isn(Hws(x), P Z Zsn(t)
s=1 s=1

where agn (1), Bsn(t), Ysn(t), Csn(t), Esn(f) (s = 1,2,--,N, N = 1,2,- - ) satisfy the fol-
lowing system of ordinary differential equations:

/Q'yMi,tws(x)dx:—/ 11 VME, Vs (x )dx—/ (1M 2 — 1) M5 ws (x)dx
- / 0%, ME s (%) dx + / HS, ws (x 1)

/Q 65, 8 (x)dx = /Q M, - M&,, 0 (x)dx + /Q KV 05,V 0, (x)dx + /(;?ﬁs(x)dx, 22)



Mathematics 2024, 12,1171

6 of 20
[ B+ PR (xdx o [ (B + PR)ws(x)dx = [ (V x Hyws(x)dx
+0’/Q Piyws(x)dx (23)
[ (5 BM s (x)dx = = [ (V% B e (1), (24)
/ Pﬁ\mws(x)dx—l—/\z/chrlzPifcus(x)dx—i—y/ Py, ws(x)dx
—s/ APy ws(x dx—l// Ejyws( )dx—21// PSP (|Py %) ws(x)dx (25)
with the initial conditions
asn(0) :/ My (x,0)ws (x)dx = /QMo(x)ws(x)dx = s,
Bsn (0 / 0% (x,0)0(x)dx = /QGO(x)é‘s(x)dx = Bos,
¥sn(0) :/ Ey x,O)ws(x)dx:/ Eo(x)ws(x)dx = yos,
? (26)
Zsn (0 / HY (v, 0)ws(x)dx = /QHO x)ws(x)dx = Cos,
&N (0 /Pe x,0)ws(x)dx :/OPO(x)ws(x)dx:Q)s,
gy (0 / P5;(x,0)ws(x)dx = /QPl(x)ws(x)dx = &s-
Obviously, there holds
[ M s = al (1), [ 05,8 (0)x = Bin(t), [ Byen(x)dx = v ()
(27)

[ s = gy (8), [ PRgws(x)dx = Eln().

According to the standard theory of nonlinear ordinary differential equations, it can be
inferred that the problem (21)—(26) admits a unique local solution. To establish the existence
of the solution of (21)—(26), we need the following estimates.

Lemma 1. Assume that (Mg(x),00(x), Eo(x), Ho(x), Po(x),d:Po(x)) € (H'(Q),L*(Q),
L2(Q),L2(Q), H(Q), L2(Q)), #(x,t) € L2(0, ; HY(QY)), then the following estimates can
be derived for the solutions to problem (21)—(26):

sup {IIMSN(-J)IIin + 108G 012+ 1BV (D113 + HR ()12
0<t<T
+||Pf\r(vf)||%+HM%t(vt)II%JrIIVGir(' BIIZ + 1B (-, 1)113

+llurl P, 013 + e TPAIE + [P, (018 | + [ IM5Cldr < 29

where C is a constant which is independent of N, D, and e.
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Proof. By multiplying Equation (21) by a,(¢) and then summing up the outcomes for all
s=1,2,.., N, we derive

1d
3 05| T3+ SIMS ] 1M 13 + [ oMM

6, /Q ME M5, dx — /Q HE, M, dx = 0. (29)

Multiplying (22) by Bsn(t) and then summing up the outcomes foralls =1,2,--- ,N,
we obtain

ANE _
© 2083 + Kl VO 3 - | oMMy — [ oy = 0. (30)

By taking the scalar product of ysn(f) with (23) and the scalar product of Jsn(#)
with (24), respectively, adding the two resulting equalities together, and subsequently
summing up the outcomes for all s = 1,2,..., N, we derive

1d

3 77 | S B + 15 3

ol ||2+/ P, i,dx—l—ﬁ/QMﬁw- Ldx=0.  (31)

Multiplying (23) by ¥sn(f) + &sn(t), summing up the results foralls =1,2,--- N,
and integrating by parts, we have

2 B, + B3+ o[BS+ PIB = [ (7 x H§) (B, + PR+ | P, (BS, + P ). (32)

It follows from (31) and (32) that

1d

3 27 | PVFEI + BRI+ 15 + Pl

+0|[Ex 3 + ol B + P13

+/P£-€dx+2/M£-€dx
o TN BN ﬁQNtN

:/Q(VXHSN). f\]dx—ka/QP‘;\,( € 4 PS,)dx. (33)
By the fact ||P§[|3 — 2||E% |13 < 2||E& + P&l13 < 3||ES + P& l13, we can rewrite (33)
as follows:
3 7 [V -+ IS5 + P13 + 3011513 + 3E5, -+ PR3
+3/QP§W~ f\]dx+65/QM§W- € dx
:3/0(V><H§\,)- %,dx+3a/QP§\,( &+ PS,)dx. (34)

From (29), (30), and (34), we obtain

1d

3 35 M+ S UM+ clleg 3+ GBI + VBRI + P13 + 3oEs 13

+30][ERy + Py I3+ MR 343 [ P, Eudx+ (66— 1) [ MY, - Hiydx

,96(/0M§V i,tdx+/0?9§\,dx+3/0(V><H§\]). i\]dx+3(7./QP§\]( P 5)
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To deal with the term [, M, - H§,dx, we can multiply (24) by (6 — 1)asn(t). Then,
summing up the results foralls = 1,2, -- , N, we obtain

-1)d
(66 1) [ 1Sy, Mix-+ EED L inig 4 (65 1) [ (V% BS) - M§ax =0, @6)

Adding (35) and (36), we obtain

1d

3 4 11T 5 DM+ clleil3-+ s I3 + B3+ [Pl
+ 301} + 30| B + Py 3 + 7IMR, 13 +3 || PR, - i

13(61371) d €
M

d

+(6ﬁ—1)a/QM§\,H§\,dx+ N2

fec'/nmg ijtdx+./0?9§\,dx+3o/ﬂ(V><H§\,)- i,dx+3(f'/QP§\]( &, -+ PS,)dx
—(6/3—1)./0(V><E§\,)- € dx. (37)

Multiplying (25) by &’y (), summing up the results foralls = 1,2,--- , N, and inte-
grating by parts, we derive

1d
Zdt[lP (I3 + A% eurl P (13 + € VPR (13 | + pl| P12
:u/QEfNPNtdx 21// PE,@ (|P5,[2)P5, (38)
Summing (37) with (38), we have
1d
3 35 |3 5 IV -+ e 3+ SR + BRI+ P53+ 15,13
+ A leurl Py |5 + €| VP |\2]+3UIIE 13+ 30 1[ESy + P 113 + 7[IMi 113 + ul| Py, 113

ep-1) g [ msmgar+ PO L2
zec/nMng dx+/ ?Gifdx+30/(VxH5)~P§\,dx+3a/ P, (ES, + PS,)dx
—(6ﬁ—1)/(VxES) MEdx + (v — 3 /Efvpgtdx 21// P,/ (|P5, P)PS ,dx.  (39)
By Holder inequality and Young inequality, we have
9c/QM§v indx+/ POjdx < %||Miu||§+c(|\MN||§+ 1on113 + 11713),
30’/0(V><H§\])- fdx < C(||V % PY|R + [HY [13),
30/01’%(Eiz+1’?v)dx—30||5§\1 VI3 < CUEYIZ + 1P 3), (40)
f<6ﬁf1>/0<vXE§V)~ o < C(ITM [ + BN 1B),
(V—3)/QE£ — 1P 113 < CUIPR I3+ IIESN13)
and

m/ 5, (P52 P dx < Cov([| Py, 113 + 1P 113),

where Cy is given by (13).
Thus, inserting the above estimates into inequality (39), we obtain
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1d
577 [MIVMy 3+ % 5 1M [+ |13 + 6l Hiy |13
+ BN 113 + PR3 + PRy, 13 + A%[leurl PR/ (13 + €l VP |15
d 6p — 0%
+(ep- 1) [ mgrgar+ PO g 24 T 13
< C(1+ IMyll; + VMY ||2+H9N||2+H I3 + 1B ||2
+ [HYIE + PR3 + VMY 13 + [P, [13)- (41)
Integrating the inequality (41) with the variant f, we have
3 A T3+ 0 M1+l + 6l 3 + 513
v [t
PR3 + [P 3-+ A2llcurl Py -+ VR B + F [ I, B
<C+C/ (1+ 1My 5 + [ VM]3 + [[On113 + [1EY (13 + [ H |3
+ P I3 + [IVMY |3 + [Py Hz)dT+|6ﬁ*1|/ [Miy|[Hiy|dx. (42)
Therefore, choosing éy big enough to make the coefficient 6 — |6ﬁzgl‘ we derive

681
VM + S I+ legl3+ (6 - B2 s+
IESI3 + P IB + B8, 3 + A2 curt B, I3 + e PR, 13+ [ I, B
< CotC [ (1 Ml + VM B+ owlE + 53
R + P + VM5 + ([P 3.

Then by Gronwall inequality, we can obtain the estimates (28). This completes the
proof of Lemma 1. O

Remark 1. In fact, by Equation (21) and estimates (28), we can obtain fot |AMy ||5dx < C easily.

Lemma 2. Subject to the conditions stated in Lemma 1, we can deduce the following estimates for
solutions (MY (x, t), 05, (x, t), By (x, t), HY ( x,t), Py, (x, 1)) of the initial value problem (21)—(26),

IMN el 1) + HN 1) + BN ela10) + PNl a10) < C (43)
16N el 20,7 1()) < C (44)

where C is independent of e, N, and D, and H~1(Q) denotes the dual space of H'(Q)).

Proof. V¢ € H?, we have

N 00
P =¢N T PN, ON = Zﬁsws(x), PN = 2 Bsws (x)

s=1 s=N+1
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Fors > N +1, fQ My, ws(x)dx = 0. Then by Lemma 1 and the Hélder inequality, we

obtain

| Mis] = | [ Mo
‘ /VMi,VgoNdx—ir / (IME, 2 — 1)ME ndx

+—/ GNM§\,¢Ndx+—/ Hi pndx
0 .

[HVM 211Vl + (1M 1§ + MK [13) o1z

+ My ll4llOll2ll pnlla + [[Hy HZH(PNHZ}
<Cllonlln(a) < Cliollm@a

Similarly, we obtain

‘/E (pdx| =

_‘/ V x HY goNdx—l—/Pth)Ndx+0/ Ejondx

< C(IHNll2 + [IVenllz + 1Py ll2 + [lonll2 + [Exl2) [[on |2

= ‘/ Eﬁ\]t(l)]\]dx

< Cllell gy
‘/ HE, pdx| = ‘/ HS, pndx| = ‘/ (V x ES) g + BMS;, ondx
< C(|Enll2IVenll2 + 9l g2 ()
< Gillollg1(a)
and
Phugdx| = | [ Phygnd
’/Q N pax ’ 0 NuPNdx

= Az/ curl? PN(deX+€/(2AP§\[(PNdx+V/QPilt(PNdx

+ [ V(EY — 2PR @/ (15 [) gndx

< C([leurl Py [l2[[Vonll2 + VP2 Vonll2 + [[Phll2ll¢ll2
+IEyll2llell2 + PN 2/l #ll2)
< Gilloll gy

Let ® € L2(0, T; H'(Q)); by (22) and Lemma 1, we have

‘ / eiwcpdxdt‘

1 1

c

< [l

/ MR [l [[MRy |2 ]| @4 + KI[VON 2|V Pl2 + [|7]]2]| |24t

where the constant C is independent of ¢, N, and D . The proof is completed. [
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Lemma 3. Subject to the conditions stated in Lemma 1, we obtain the following estimates for
solutions (M§,(x, t), 05, (x, t), B (x, 1), H(x, t), P§,(x,t)) of problem (21)—(26),

M3, (-, t1) = M (- £2) |11 ) + 185 (- 1) = 8%, (o t2) |1y < Clty — a2,
IS (-, t1) = B (o b2) 10y + 1B (1) = B G t2) g1y < Cll— a2,
IP% (1) — Py (- 02)[|2 < Clta — 1|2,

1PS (- t1) = PR, (o 22) 1) < Clt— 22, Wiy, 12 20,

where the constant C is independent of N, D, and «.

Proof. It follows from Lemma 2 that

t2 t2
IMS ot - M)l = | [ Mot < [ Mt
t H—I(Q) t

T }
<t =l (] IM Byt
<C|t, —f1|%~
Similarly, we obtain
165, (-, t1) — 8, £2) [l g1 < Clta — 112,
1B (- 1) — B (- b2)ll g1 < Clta — 12,
(-, 1) = By (- ) |1 < Cla — ]2,

1
[Py (- t1) — Py, (- t2) [g—1 < Clta — 1] 2.

At the same time, we have

ty
[P t) ~ Pt =| [ et
1 2

LT 3
<l|tp —t]2 /OHPNtH2dt
<Clty — t12.

This lemma is proved. O

Based on ordinary differential equation theory, Lemmas 1-3 obtained above, the fol-
lowing lemma can be easily established.

Lemma 4. Under the conditions stated in Lemma 1, there exists a unique global solution (asn(f),
Bsn(t), vsn(t), Csn(t),Esn(t)) (s = 1,2,..,N, t € [0,T], YT > 0) of the initial value
problem (21)—(26). Furthermore, this solution is continuously differentiable.

To establish the existence of the weak solution for the viscosity problem (3)—(6), (8),
(9), and (12), we require the lemmas in [12] stated below.

Lemma 5. If u, converges strongly to u in L2(Qr) and v, converges weakly to v in L?(Qr), then
Uy, converges to uv in LY (Qr) and in the distribution sense.
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Lemma 6. Suppose that X C E C Y are Banach spaces and X —— E. If1 < q < o0 or
1 <r < oo, then the following embeddings are compact:

(i) LI, T,X)N{g: %—f € LY(0,T;Y)} < L1(0, T, E), (45)
(i) L®(0,T,X)N{¢: aa—f € L'(0,T;Y)} << C(0,T,E). (46)

Similar to Definition 1, we can define the weak solution for the viscosity
problem (3)—(6), (8), (9), and (12); then, by the uniform estimates of the approximate solu-
tion, we prove the existence of the weak solution for the viscosity problem (3)-(6), (8), (9), and
(12).

It follows from the uniform estimates of the approximate solution {M(x,t),
0% (x, 1), B (x, t), Hy (x, t), Py (x,t)} in Lemmas 1 and 2, the Sobolev embedding theo-
rem, and the Lions—Aubin lemma that there exists a subsequence, which for simplicity we
continue to denote as {M},(x, t), 65, (x, t), E§;(x, t), HY (x, t), P§,(x, t) }, such that

M (x, t) — ME(x, t) weak * in L®(0, T; H'(Q)) N L2(0, T; H*(Q)), (47)
M (x, t) — ME(x, t) weak * in L°(Q7), (48)
M, (x, t) — ME(x, t) strongly in L°7¢(Qr),0 > 0, (49)
Sp(x, 1) = M (x,t) weak x in L*(0, T, H 1(Q)), (50)
05, (x, t) — 6°(x,t) weak * in L®(0,T;L2(Q)) N L2(0, T; H(Q)), (51)
(1) = 605 (x,t) weak = in L2(0, T; H 1(Q)), (52)
05, (x, t) — 6°(x,t) strongly in L2(0, T; L*(QQ)), (53)

ES(x,t) — Ef(x,t) weak * in L*(0,T; L2(Q))), (54)

)
)

HS, (x,t) — HE(x,t) weak * in L*(0,T; L2(Q)), (55)
Py (x,t) — P*(x,t) weak = in L=(0,T; Hl(Q)), (56)
P, (x,t) — Pi(x, t) weak + in L®(0, T; L*(QY)), (57)
curl P (x, t) — curl P¢(x, t) weak * in L®(0,T; L*(Q)). (58)

For any test function ¢(x, t), @(x,t) € C1(Qr) with ¢(x,t)|=1 = @(x,t)|;=1 = 0, we
introduce an approximate sequence as follows:

N .
Pnlnt) = Y as(Bwn(x), anlt) = [ 9lx (@),
s=1
N
on(x,t) = 5:21 be(F)cwn (%), bu(t) = /Q @ (x, )wn (x)dx,
then
YN — ¥, @n — @ in C}(Qr) and in LP(Qr), Vp > 1. (59)

By taking the scalar product of a,(t) with (21) and (23), respectively, the scalar product
of bs(t) with (22), and the scalar product of e”'as(t) with (24) and as(t) with (25), then
summing up the products with respect tos = 1,2,--- , N and integrating by parts, we
obtain
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<GPy -

7//Q ME, - ot — vy //Q VM‘;\,-Vszdxdt—//Q B (IME, |2 — 1)MS, - pdxdt
JJSQr . T JJQr

- // O M, - pndxdt + / / HS, - ydxdt
Qr Qr

+'y/QM§\,(x,0) P (x,0)dx = 0,
c// 65, -(DNtdxdt—i—// Mf\,Mﬁ\,t-dexdt—k// V65, - Veondxdt
Qr Qr Qr
¥ //Q P(x, 1) ~cDNdxdt+c/06§\,(x,0) - (x,0)dx = 0,
Loy .
// (B, + S, )e™ pyyddxdt + / / eV x gy - Hiyddt
Qr Qr
+(7// et PS, - pdxdt + /Q(Ef\,(x,O)—i—Pf\,(x,O))-1/JN(x,O)dx:O,
Qr .
// (HS, + BMS, ) - ppdxdt — / (V x ) - Bdocdt
Qr Qr
(5 (3,0) + BMS, (5,0)) - 9(x,0)dx =0,
// PS,, - Ydxdt — A2 // curlPy; - curlyydxdt — p // Py, - Yndxdt
Qr Qr Qr
—1—1/// Eﬁ\,-qJNdxdt—e// VP - Vipnix
—21/// @ (|P5,|2) P - ¢Ndxdt+/ P4, (x,0) - ¢(x,0)dx = 0.

Firstly, by Lemma 6, we obtain

P (x,t) — PE(x,t), stronglyin L*(0, T; L*(Q)).

Secondly, by (14) and (65), we have

’// ([P )Py, - l,lJNdxdt—// @ ([P )P - gbdxdt’

:' S, @ PP~ @ (PRP) - pr+ [ @RI (- tp)dxdt’

<C1 [ 1%~ Pllpwldxdt + CllPlerazi |, o = vllat
T

— 0, as N — oo.

Pl 20,722 19Nl 20, 7.22()) + C2llPE Nl 0,522 () /0 YN — 9|24t

(60)

(61)

(62)

(63)

(64)

In order to prove that {M5,(x, t), 05, (x, t), E (x, t), HY (x, t), P (x, t) } is a weak solution
of (3)—(6), (8), (9), and (12), we should set N — oo in (60)—(64). From Lemmas 5 and 6
and (47)—(59), it suffices to deal with the nonlinear terms in (60)—(64).

L®(0, T, H'(Q)) N {e: %—f € L®(0,T; L*(Q))} << C(0, T; L*(Q?)) C L*(0, T; L*(QY)).

Thus by (56) and (57), we know that there exists a subsequence of P{; which is still denoted
by Py, such that

(65)
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From (47) and (59), we have
/QT(VM§V VN — VME - Vip)ddt
- / [ (VM VM) Vi + UM (Vi — V)t
< /OT VMY — VM| Vi [|2dt + /OT [VME[l2[[Vpn = Vipll2dt — 0, as N — co.

Equations (49) and (59) imply that
(IM§|? — 1)MY, - pndxdt — M¢|? — 1)MF - pdxdt, as N — oco.
S (MR =M gt =[] (MEP 1My
Note that
V x - Edxdt — V x ) - Ef dxdt
S (% ) Bzt = [ (9 xy)
:// Vx(¢N—1p)~E§\,dxdt+// V><1,L7~E§\,dxdtf// (V x ) - E° dxdt
Qr JQr JQr
= — 'E‘€ t : EE _Ee d t
SV =) Bt [ (9 4) - (B — B

<// V(pn — ) |2dxdt> | Ey ||Lz (Qr) ’/ (Vxy)-(Ey— Es)dxdt‘

— 0, as N — oo.

Similarly, we can prove that as N — oo.

/ /Q HY -t / /Q HC
/ / ES - (ynie™)dxdt — / / E° - (e )duxdt,

//Q 7NV x pN) - Hydxdt — // NV x o) - Hdxdt,

/ / M, - psdxdt — / / ME - gydxdt,

// M MNt-a)Ndxdt—>/Q MEME, - @doxdt,
T
/ / 65, M5, - Ydxdt — / / 6°ME - xdt,
Qr Qr

// 65, - onsdxdt — // 0 - oydxdt,
Qr Qr

/ / V65, - Vondxdt — / / V6 - Vodxdt.
Qr Qr

Finally, taking N — oo in (60)~(64), we obtain the limit function (M®(x, t), 6°(x, t), E(x, t),
H¢(x,t), P*(x,t)), which is a global weak solution of the viscosity problem (3)—(6), (8), (9), and (12).
Therefore, we obtain the existence of the result of the global weak solution for the viscosity
problem (3)-(6), (8), (9), and (12).

Lemma 7. Assume that initial value data (Mo (x), 0o(x), Eo(
12

o(x ,Ho(x ) 0(x),9Po(x)) € (H'(QY),
L*(Q), L*(Q),L2(Q)HY(Q),L2(Q)),?(x,t) €

x) x
L%(0,T; HY(Q)). The constants 7,
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vy, ¢, k,0,B,A, u,v are positive. Then the problem (3)—(6), (8), (9), and (12) has at least one
global weak solution (M*(x,t),0%(x, t), E¢(x, t), H*(x, t), P*(x, t)) such that

Mt (x, ) € L®(0, T; HY(Q)) N L2(0, T; H2(Q2)) N ¢©2) (0, T; L2(2)),

0¢(x, 1) € L°(0, T; L2(Q)) mLZ(o T;H'(Q))nc02) (0, T; H1(Q)),

Ef(x,t) € L®(0,T; L2(Q)) N (0 T,H 1(Q)),

H(x,t) € L*°(0,T; L2(Q)) N C®2)(0, T; H~1(2)),

PE(x,t) € L®(0, T; H'(Q)) n c2) (0, T; L2(Q))),

AP (x, 1) € L(0, T; L2(Q2)) N ¢2) (0, T; H-1(Q))).

(66)

N_

)
)

4. Existence of Global Weak Solutions
The global weak solution for the viscosity problem (3)—(6), (8), (9), and (12) was

obtained for fixed € > 0 in the above section. In this section, our aim is to establish uniform
estimates in terms of € for the solutions of the viscosity problem. Then letting ¢ — 0, we
will obtain the global weak solution to the problem (3)-(9).
We now introduce the Sobolev space and state the lemmas that will be applied in
this section.
Definition 2 ([33]). Define the space Hy(curl, Q0) as follows:
Hy(curl, ) = {V ¢ L2(Q); V is 2D — periodic and curl V € L2(Q)},
equipped with the norm
1
1V curty = (V12 + lleur] V]2 )2,
Define the space Hy(div, Q)) by
H,(div, Q) = {V € L*(Q); V is 2D — periodic and div V € L*(Q)},
equipped with the norm
. 1
IVl (@iv) = (IVIF20) + lldiv VI )2
We set
Xp(Q) = Hp(curl, Q) N Hy(div, Q2),
with the norm

1
IVilx, ) = IVIIT2(q) + lleurl VI[Z2 ) + [|div V][2 )2

Lemma 8 ([33]). Suppose that Q = {x = (x1,x2,x3); |x;| < D,i =1,2,3} and Q € XP(Q),
then one has Q € X ) and the following identity holds:

1R 0y = 1QII%, () (67)

From the estimates and the convergence in Section 3, we easily obtain the following lemma.
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Lemma 9. Assume that (Mg(x),80(x), Eo(x), Ho(x), Po(x),9:Po(x)) € (H'(Q),L*(Q),
L2( ), L?(Q), HY(Q), L?>(Q)), #(x,t) € L?(0, T; H(QY)), then for the solutions of the vis-
cosity problem (3)—(6), (8), (9), and (12), we derive the estimates as follows:

OiltlgT{HMs(v ) lFn 1165 Co) 13+ IIESC, )13 + I[HE(, 1) 3+ [P(, 1) 3 + M5, 1)]13
VO )15 + IEC )13 + lleurl PE(-, 1) 13 + ‘|P§\1t('/t)||%} <C (68)
/ M5 (-, £)[3dT < C, (69)
where C is a constant which is independent of e and D .

Next, we need to prove that || VP[> remains uniformly bounded within L*(0, T;

L2(Q))). To achieve this, we study the compatibility conditions linked to the viscosity
problem, which is defined by the equations below.

or(ef + p°) + et =0, (70)
0(h* + BV - M*) =0, (71)
2 € e 3 3 ! €2 € e Pe aP;
o p + uosp® — eAp® — ve® + 20 (|PF|7)p* = = — 4y (|P >)P P]a (72)

where ef = div E¢, h® = div P, p? = div P?, P?; is the i-th component of P¢ and the relation

€
div (@' (|P?|?)P?) = @' (|P*|?)p° + 202 (|P|?)PE,PS; zT]'
To obtain the L?(Q)) estimate of VP¢(-, t), we shall suppose that
div(Hy), div(Eg), div(Py), Vdiv(Py), div(d;Py) € L>(Q)). (73)
Define wy(x),n = 1,2, - - as the unit eigenfunctions that satisfy the equations

Awy + Aywy =0, wy(x — De;) = wy(x+ De;), i =1,2,3,

where A, n = 1,2, are the distinct eigenvalues associated with each eigenfunction.
{wn(x)} consists of the orthogonal normal of L2(Q)). Assume that the approximate solution
of the problem (70)—(72) has the following form:

N N
x,t) = ;’)’gN(t)wS(x) =) Tin(t) , P 1) ZCsN

s=1

where 75y (1), 05 (1), &5y (H)(s = 1,2,---,N, N = 1,2,---) are determined by the
following equations:

@k + piv) + e )eos () = 0, 74)

A#&m%+ﬁV~M§ﬂw4@dx:O, (75)

@i+ poupiy — edp — vely + 200/ ([P [)pi s (x)dx

P
:_@/¢ m|P%MaJW@w, (76)
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with initial conditions
/QMi,(x,O)ws(x)dx:/QMO(x)ws(x)dx,/Qeﬁ\,(x,O)ws(x)dx:/Qeo(x)ws(x)dx,
/th,(x,o)ws(x)dx:/Qho(x)ws(x)dx,/Qpﬁ\,(x,o)ws(x)dx:/on(x)a)s(x)dx, (77)
/Qpi,t(x,O)ws(x)dx:/Qatpo(x)ws(x)dx.

Multiplying (74) by 375y (t) and 2(75y (t) + G5y (£)), respectively, then summing up

with respecttos = 1,2,--- , N, we obtain
d > el 3y B +3 [ efpftx = 78)
ek + 1B+ 20lek + pi I3 — 20 /Q(|€EC'V+P§V|)P§\J‘1X ~o. 79)

Multiplying (75) by £y (), then summing up foralls =1,2,-- -, N, we derive

1d
5 g ORI+ €I VpRIZ} + pllaepil3 — v | efdrpivax

9Pt
—|—21// @' (|P%| )pNatdex+41// D) ([P )P, Py =L dpiydx = 0. (80)

Nj a
From (78)-(80), we obtain

1d
Zdt{3||eN||2+||eN+PN||2+|atPN||2+€||VPN||2}

+ulloepilI3 + 20lefy + PR3
=(v— )/ eNatdex—Zv/ O (|P5|?) piyds piydx—

N
[ @ (B, i +20 [ (I + pi i + 3013
CUlleiy B+ 1pRl3 + Ipiel3) + Cill VB3 + Co. &)

Multiplying (75) by & (t), then summing up with respecttos =1,2,---, N, and by
Holder inequality, we obtain

h C||h3 2

Sl <l 3 )
By Lemma 1, we have ||MY ||H1(Q + 6% || ) < C, with which we obtain

OiltlgT{HMf\zH ) 11631172y + el 113 + 117513 + PR 13 + loepi 13 + HVPNH2} <C (83

from (81) and (82) and the Gronwall inequality.

Therefore, by the same method of the proof for Lemma 7, we can obtain the result
that (74)—(77) has at least one global weak solution.

Integrating the inequality (81) with respect to f, we have

3llefy (- )13 + 2l (1) + Py (O3 + 1p5 (L O115 + el Vi (- 1) |15
t t
<2C [ (eI + P13 + I phalB)dr +2C1 [ VP B+, (84)
where C} = 3||div(Eo)||3 + 2||div(Hp) + div(Pg) |13 + [|div(:Po) |13 + || Vdiv(Po)||3 + 2C,

is a congtant from hy}gothesis (73). Thus, by the inequality ||p§,(-t)[3 < 2||p& (- t) +
NG DIz +2[p (-, )5, we have
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ek (- D113 + PN G )2 + PR (- D112 + e VPR (- D13

t t
<2C [ (el + Il + el B)ar + 261 [ 19 Bae + 5, )
and by the Gronwall inequality, we find

lei (- DI + P8 C N2 + PR (- D112

t
g(zcl/ VP2t + Cb)(1 + 2CteXCh)
0
t
§C3+C4/ | VP ||3dT.
0

Therefore, we obtain the following estimate:

t
P D13 < Ca+Ca [ IVP 3. (56)
Using Lemma 8 for P*(-, t), we have
IVPE(, )13 SC(IV X PE(, D)3 + [|div P(, )5 + IPs(vf)I%)
t
§C5+C6/ | VP ||3dT.
0
By the Gronwall inequality, one obtains

IVPE(-,1)[5 < C, (87)

where C is independent of e. Combing (83) and (87), we obtain that {P*} is uniformly
bounded in L®(0, T; H'(Q)).

Proof of Theorem 1. By the above estimates, uniform in e of M?, 6%, E¢, H?, and P? for the
viscosity problem, letting ¢ — 0 in Equations (3)—(6), (8), (9), and (12), we can obtain the
global weak solution of problem (3)—(9). The proof of Theorem 1 is completed. [

5. Conclusions

In this paper, we established the global existence of a weak solution to a phase tran-
sition model with polarization. To the best of our knowledge, our work seems to be the
first rigorous treatment of a mathematical model for the dynamics of magnetization M,
absolute temperature 6, magnetic field H, electric field E, and electric polarization P arising
in ferromagnetic—ferroelectric materials. From a mathematical perspective, the main chal-
lenge arises because Equation (7) lacks the compactness necessary to derive the H!-norm
for P. In fact, from Equation (7), we can only obtain the L®(0, T; L>(Q))) estimates for
curlP but cannot have the L®(0, T; L?>(Q)) estimates for divP. To overcome this difficulty,
we apply the viscosity vanishing argument to obtain the weak solution for the following
viscosity problem:

YOM = 1AM — 6,(|M|> = 1)M — 6M + H,

0t = M - ;M + kAO + 7,

V xH =0/(E+P) +0E,

V XE = —atH — ,BatM,

0?P + A%curl®P + ud;P — eAP = v(E — 2P/ (|P|?)).
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Initially, we obtained a global weak solution for the viscosity problem with a fixed
e > 0. Subsequently, we derived additional a priori estimates for the div-component
using a more regular class of weak solutions. This allowed us to establish uniform a priori
estimates in ¢ for solutions to the viscosity problem, ensuring compactness in the limiting
process. Finally, by passing to the limit as ¢ — 0, we obtained the global weak solution to
the original problem.
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