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Abstract: This paper considers the problem of the uniqueness of the solution to the coefficient inverse
problem for the system of equations of magneto-hydrodynamics, the solution to which allows more
accurately describing the processes of generating the magnetic field of planets with a magneto-
hydrodynamic dynamo. The conditions under which it is possible to determine three components of
the magnetic induction vector and the magnetic field diffusion coefficient are determined.
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1. Introduction

Every year, thanks to the work of various automatic interplanetary stations, the vol-
ume of information about the physical fields of the Earth and the planets of the solar
system increases many times over. Experimental observational data accumulated over time
make it possible to build increasingly accurate analytical models of the magnetic field of
planets with a magneto-hydrodynamic dynamo (hereinafter, dynamo). The problem of
creating such analytical models has remained relevant over the past three to four decades.
Increased computing performance helps to ease the task of researchers in comparing the
remote sensing data of the planets of the Solar System with modeling results obtained
on the basis of developing analytical dynamo models (or, which is essentially the same
thing, analytical models of the magnetic field). As a consequence, it becomes possible to
draw some conclusions about the adequacy of the proposed dynamo models. However,
without answering fundamental questions about the feasibility and effectiveness of using
this or that technique, it is still not possible to make progress in building a consistent theory
of the emergence and sustainable existence of dynamos.

Thanks to data from the automatic interplanetary station Mariner-10, researchers have
concluded about the internal origin of Mercury’s magnetic field [1–4]. In particular, it was
concluded that there is an active magnetic dynamo that generates a fairly strong magnetic
field; that is, the hypothesis that had existed until the 1970s about the presence of only a
solid phase in the core of Mercury was refuted. It was suggested that currents in the outer
liquid core create Mercury’s internal magnetic field.

The automatic interplanetary station MESSENGER made it possible to study the
surface of Mercury, the history of geological development, chemical composition, and,
most importantly in the framework of this work, the magnetosphere [4,5]. The role of this
interplanetary station in the research of Mercury is very large: data sent by MESSENGER
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to Earth confirmed the existence of the liquid part of the planet’s core [4]. This made it
possible to significantly refine the analytical models of Mercury’s magnetic fields.

When constructing analytical models of the magnetic fields of planets, it is important
to take into account various factors; namely, the values of the components of the magnetic
induction vector on certain reference manifolds (for example, on the surface of the planet
itself); take into account the physical processes occurring in the space surrounding the
planet; use all a priori information about the distribution of values of magnetic field
components at certain times, etc. However, many of these factors (parameters) cannot be
measured directly. Thus, there is a need to solve inverse problems that make it possible to
find the values of parameters necessary for the subsequent modeling of magnetic fields.
In particular, such a popular inverse problem is the problem of determining the diffusion
coefficient of the magnetic field induction vector, both inside the planet and in external
space. One of the main difficulties in solving such an inverse problem is that it is a nonlinear
inverse problem for partial differential equations.

Solutions to nonlinear inverse magnetometry problems are determined, as a rule, am-
biguously, because there is an uncountable set of magnetic mass distributions equivalent to
the external field. Of course, to restore the full picture, only three-dimensional distributions
of unknown sources of physical fields should be considered. Moreover, the function classes
to which these sources belong should be selected based on a priori information about the
field sources. In this regard, it is necessary to study the conditions for the unique solvability
of initial-boundary value problems, with the help of which it is possible to describe the
processes occurring inside the planet. Solving this problem is the goal of this work. It
should be noted that the question of the existence of a solution to systems of nonlinear
partial differential equations is not considered in this work. This is the topic of separate
rather voluminous and complex studies.

Until now, there have been no works devoted to the study of coefficient inverse
problems for the equations of magneto-hydrodynamics in either Cartesian or spherical
coordinates. It must be emphasized that our approaches to approximating the magnetic
fields of planets in Cartesian and spherical coordinates make it possible to exclude the com-
ponents of the magnetic induction vector from the complex nonlinear system of magnetic
hydrodynamics equations (or allow us to find some approximation to the true values of
these components based on experimental observations of automatic interplanetary stations).
The components of the velocity field of the charged fluid inside the planet are unknown.
Even the order of the values of these velocities is something “foggy”, according to planetary
experts. Thus, we can carry out a certain decomposition of the equations of magnetic
hydrodynamics, using the known first approximation of the magnetic induction vector,
and construct a velocity field; and vice versa, if the approximation of the velocity field is
known, find the next approximation of the field distribution. The magnetic field diffusion
coefficient is an important factor because it allows us to monitor the movement of a charged
liquid. If superconductivity occurs, then the so-called theorem about the frozen-in magnetic
field lines is true: particles of a charged liquid cannot cross the magnetic field lines, since
then an infinitely large current would arise. However, we can say that the magnetic field
diffusion coefficient is an important physical parameter of the model of hydrodynamic
equations. That is why this work is devoted to studying the question of the uniqueness
of the solution to the corresponding mathematical model, which is a nonlinear coefficient
inverse problem for determining the magnetic field diffusion coefficient in the equations
of magneto-hydrodynamics.

In connection with the above, this work has the following structure: Section 2 presents
the formulation of the inverse problem to determine the magnetic field diffusion coefficient
necessary for constructing advanced analytical models of Mercury’s magnetic field. A the-
orem on the uniqueness of the solution to the corresponding coefficient inverse problem
of magneto-hydrodynamics is formulated and proven. Separately, it should be noted that
the novelty of this work lies in the fact that we considered the question of the conditions
for the unique solvability of the inverse coefficient problem in the entire upper half-space,
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in contrast to our previously published work [6], in which this question was answered
only in the local case. Since the issues of a numerical solution of this coefficient-based
problem are beyond the scope of this theoretical work, in Section 3, as an example of
constructing an analytical model of the magnetic field of Mercury, the application of the
method of regional S-approximations for the stationary case is described. If the diffusion
coefficient is found using any numerical method for solving the corresponding inverse
problem, the model can be refined for the non-stationary case. Section 4 presents some
results of processing experimental data and demonstrates their qualitative agreement with
the results of modeling based on the proposed magnetic field model. It is expected that
taking into account the magnetic field diffusion coefficient in the model would give even
better results.

2. Problem Statement and Approaches to Its Solution

When solving nonlinear inverse problems of geophysics, we use the so-called regional
version of the method of linear integral representations [7]. Setting the key parameters of
this method in the regional version—radii of spheres on which field sources equivalent to
the external magnetic field are distributed, and the number of spheres (which are actually
carriers of field sources)—allows a fairly flexible approach to solving the problem of
constructing a regularizing an algorithm for solving an inverse problem, which is usually
ill-posed. With this magnetic field modeling, the planet is a ball of known average radius.
At the same time, we note that there are two options for modeling the surface of the planet:
in the form of a plane or in the form of a sphere. The first option corresponds to local
S-approximations, and the second, which is used in this work, corresponds to regional ones
(see works [7,8]).

The input data are magnetic field measurements obtained on a global scale using
satellite measurements (see, for example, the work of the authors [9]).

As is known [10], there is a theory of kinematic dynamo, according to which the
motion of an incompressible fluid in a magnetic field is described using the following
system of equations (in dimensionless form):

∂B
∂t

= rot(v× B) +κ∆B,

div B = 0.
(1)

Here, B(r, t)—magnetic induction in some region of three-dimensional Euclidean space,
v(r, t)—magnetic fluid velocity, κ(r)—magnetic field diffusion coefficient (small parame-
ter), ∆—Laplace operator (Laplacian).

In a more general formulation, the magnetic field B(r, t), the velocity field v(r, t), and
pressure p(r, t) of the incompressible fluid are determined from the complete system of
magneto-hydrodynamics equations (in dimensionless form):

∂B
∂t

= rot(v× B) +κ∆B,

∂v
∂t

= −(v,∇)v + (rot B)× B + ν∆v−∇p,

div B = 0, div v = 0,

(2)

where ∇—the operator “nabla”, ν—the viscosity constant of the magnetic fluid.
The analytical approximations of the magnetic field of Mercury proposed in this work

can be further considered as zero approximations to the solution of a nonlinear system
of partial differential Equation (2) when solving direct initial-boundary value problems
of magneto-hydrodynamics, and also serve as a guide in the construction of regularizing
operators for a wide spectrum of inverse problems in this field of science. Mathematical
models of the physical fields of the planets of the Solar System, in addition to purely
theoretical interest, also have some practical value—with their help, one can clarify the
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internal structure of celestial bodies, as well as study the movement of charged particles
near the planets.

Consider the system of Equation (1) in the upper half-space R+
3 :=

{
(x, y, z) : −∞ <

x, y < +∞, : 0 < z < +∞
}

, add boundary and initial conditions to it, and assume that
the components of the vector field v lie in the space C2(R+

3 × [0, T]
)
. Then, we obtain the

initial-boundary value problem of finding the vector function B(r, t) and the function κ(r):

∂B
∂t

= rot(v× B) +κ∆B, (x, y, z) ∈ R+
3 , t ∈ (0, T],

div B = 0, (x, y, z) ∈ R+
3 , t ∈ (0, T],

B(x, y, 0, t) = ϕ̄(x, y, t), (x, y) ∈ R2, t ∈ (0, T],

Bz(x, y, 0, t) = ϕ̄1(x, y, t), (x, y, ) ∈ R2, t ∈ (0, T],

B(x, y, z, 0) = ψ̄(x, y, z), (x, y, z) ∈ R+
3 .

(3)

We will look for a solution to this problem with components from the space
C2(R+

3 × (0, T)
)
. We will assume that the vector functions ϕ̄, ψ̄, ϕ̄1 are continuously

differentiable in the corresponding domains of change of variables.
In order to explain the formulation of the inverse problem, we will formulate “in

words“ the direct problem of magnetic hydrodynamics, to determine the values of the
components of the velocity vector of charged particles and the components of the magnetic
induction vector inside the planet (in the liquid part of its core), and then in the same style
we will formulate the formulation of the inverse problem under consideration in this work.

The direct problem (formulation in a simplified form for a half-space) is as follows.
Let rot(v×B) = 0 and let the following be known: (1) the values of the magnetic induction
vector components B on the plane z = 0; (2) the values of the first derivatives with respect
to the coordinates of these components; (3) the values of the components of the magnetic
induction vector at the initial moment of time, i.e., B(x, y, z, 0); (4) magnetic induction
diffusion coefficient κ (as a function of coordinates in three-dimensional space). It is
required to find the distribution of values of the components of the magnetic induction
vector B in the upper half-space z > 0 when the variable t changes from 0 to T from the
solution of a system of the partial differential Equation (3) (except for the last equation for
the value of B at time t = t1).

The inverse problem is as follows: Let a system of Equation (3) be given and the
following be known: (1) the values of the components of the magnetic induction vector
B on the plane z = 0; (2) the values of the first derivatives with respect to the coordinates
of these components on the plane z = 0; (3) the values of the components of the magnetic
induction vector at the initial moment of time, i.e., B(x, y, z, 0)), and at some moment
t1 ∈ [0, T], i.e., B(x, y, z, t1). It is required to find the distribution of values of the magnetic
induction vector components in the half-space z > 0 over the entire time interval and
the value of the magnetic field diffusion coefficient κ when changing coordinates in the
upper half-space.

To prove theorems for the uniqueness of solutions to coefficient inverse problems,
the so-called Carleman estimates turn out to be very useful (see, for example, the
works [11–14]). The indicated estimates for solutions of partial differential equations
of parabolic type are valid in quite specific areas. Therefore, we will make a reservation in
advance that the uniqueness of the solution to the coefficient inverse problem must first be
established precisely for such regions, and not for the entire half-space over the entire time
interval we are considering. But in the case when the initial and boundary values of the
components of the magnetic induction vector are sufficiently smooth (they are real-analytic
functions of three spatial coordinates and time), it can be shown that the inverse problem is
uniquely solvable in the entire upper half-space.
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According to the above works, it is known that if the function of spatial variables and
time u(r, t) ∈ C2(Ω1/2) ∩ C1(Ω̄1/2) satisfies in the open region

Ωχ =

{
x, y, z

∣∣∣ 0 < z <
1
2

(
2χ− x2

X2 −
y2

X2 −
t2

T2

)}
⊂ R3 × R+,

to the following inequality ∣∣∣∂u
∂t
−κ∆u

∣∣∣ 6 C|u|+ |∇u|,

where X ∈ (0, 1), T ∈ (0, 1), χ > 0, C > 0 are some constants and at the intersection of the
set Ω̄χ with plane z = 0 the Cauchy data u(x, t, 0, t), ut(x, y, 0, t) are known for the function
u(r, t), then u(r, t) in Ωχ is uniquely determined. It is assumed that κ(r) > κ0 = const > 0.

Similarly to [11], we use the following notations:

∂Ωχ = ω1
χ ∪ω2

χ,

ω1
χ =

{
(t, r)

∣∣∣z = 0,
1

2X2 (x2 + y2) +
t2

2T2 6 χ

}
,

ω2
χ =

{
(t, r)

∣∣∣z > 0, z = χ− 1
2X2 (x2 + y2)− t2

2T2

}
,

Ωχ,τ =

{
x, y, z

∣∣∣0 < X < 1, 0 < T < 1, 0 < z <
1
2

(
2χ− x2

X2 −
y2

X2 −
(t− τ)2

T2

)}
⊂ R3 × R+.

(4)

In [6], we proved the following theorem:

Theorem 1. Let κ(r) > κ0 > 0. Then, there is at most one solution (B,κ) of the system (3) with
components of the vector field B from the space C2(Ω̄1/2), the function κ from the space C2(D),
where D := Ω̄1/2 ∩

{
−∞ < x, y < +∞, z > 0

}
, such that ∆B 6= 0 in Ω̄1/2, rot(v× B) ≡ 0

in Ω̄1/2 and B(x, y, z, t1) = ψ̄1(x, y, z) in R+
3 for given functions v, ϕ̄, ψ̄, ϕ̄1, ψ̄1 and a fixed

t1 ∈ (0, T).

In the present paper, we want to develop ideas from the previous paper [6] and prove
the following:

Theorem 2. Let κ(r) > κ0 > 0. Then, there is at most one solution (B,κ) of the system (3)
with components of the vector field B from the space C2(R3

+ × [0, T]), the function κ from the
space C2(R3

+), such that ∆B 6= 0 in R+
3 and B(x, y, z, t1) = ψ̄1(x, y, z) in R+

3 for given functions
v, ϕ̄, ψ̄, ϕ̄1, ψ̄1 and a fixed t1 ∈ (0, T).

Proof. Consider any two solutions
(
B1(r, t),κ1(r)

)
,
(
B2(r, t),κ2(r)

)
of systems (3). Let us

compose the differences δB := B1(r, t)− B2(r, t), δκ := κ1(r)−κ2(r) . These differences
satisfy the following system of equations:

∂δB
∂t

= κ1∆δB + rot(v× δB) + δκ∆B2,

div δB = 0,

δB(x, y, 0, t) = 0, δBz(x, y, 0, t) = 0, δB(x, y, z, t1) = 0.

(5)

Let us make a change of variable: τ = t− t1.
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Similarly to [8], let us introduce vector functions

ḡ = δBτ − hδB; h =



(∆B2x)
′
τ

∆B2x
0 0

0
(∆B2y)

′
τ

∆B2y
0

0 0
(∆B2z)

′
τ

∆B2z

, q̄ ≡ δBτ . (6)

Then, from the first equation of the system (5):
∂δB
∂t

= κ1∆δB + rot(v× δB) + δκ∆B2

we can obtain the relation

∂δB
∂t
−κ∆δB + rot(v× δB) = δκ∆B2 (7)

From (7), it follows that the following expressions for variation in κ and its derivative
over τ are true:

δκ =
∂δBx

∂τ − (rot(v× δB))x

∆B2x
=

∂δBy
∂τ − (rot(v× δB))y

∆B2y
=

∂δBz
∂τ − (rot(v× δB))z

∆B2z
,

0 = δκ′τ =

(
∂δBx

∂τ − (rot(v× δB))x

∆B2x

)′
τ

=

( ∂δBy
∂τ − (rot(v× δB))y

∆B2y

)′
τ

(8)

=

(
∂δBz
∂τ − (rot(v× δB))z

∆B2z

)′
τ

.

The last expression in (8) is equal to zero as κ does not depend on τ. Now, we implement
the apparatus of Carleman estimates for vector-functions. In order to do this, we express the

vector-function ḡ as follows: ḡ = q̄ + h
τ∫
0

w̄dτ′. Then q̄ = ḡ +
τ∫
0

S(r, τ, τ′)ḡ(r, τ′)dτ′ is the

resolvent of the inhomogeneous Volterra integral equation of the second kind, S(r, τ, τ′) ∈
C1(Ω̄1/2,t1)× [−t1, T − t1]. From (8), we can obtain an estimate for the vector function ḡ:

∇ḡ =
{∂gx

∂x
,

∂gx

∂y
,

∂gx

∂z
,

∂gy

∂x
,

∂gy

∂y
,

∂gy

∂z
,

∂gz

∂x
,

∂gz

∂y
,

∂gz

∂z

}
,

∣∣∣∂ḡ
∂t
−κ1∆ḡ

∣∣∣ 6 C|ḡ|+ |∇ḡ|+ |
∫

dτ′(|ḡ|+ |∇ḡ|)|, (9)

where |∇ḡ| denotes the nine-vector of derivatives with respect to the coordinates of the
components of the vector function ḡ. According to [11], ḡ ≡ 0 in Ω̄1/2,t1 . Consequently,
q̄ ≡ 0 in the same region, and the identical equality δB ≡ 0 is also true since δB =
τ∫
0

ḡdτ′ +
τ∫
0

dτ′
τ′∫
0

S( r, τ′, τ′′)ḡ(r, τ′′)dτ′′.

Thus, we have shown that the vector fields of velocities and magnetic induction are
determined uniquely in Ω̄1/2,t1 . To prove the uniqueness of the solution to the inverse
problem in Ω̄1/2,t1 [15], it is sufficient that the functions describing the values of the
magnetic induction vector components and their coordinate derivatives are real analytic.
In this case, the initial values of the magnetic induction vector and velocity field turn out to
be unnecessary. In addition, we can conclude that the magnetic field diffusion coefficient is
also determined when the conditions of the theorem are met uniquely.

δκ =

∂δBx

∂t
−κ1∆δBx

∆B2x
=

∂δBy

∂t
−κ1∆δBy

∆B2y
=

∂∆δB z

∂t
−κ1∆δBz

∆B2z
= 0, (10)
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since δB ≡ 0 in Ω̄1/2,t1 .
The unique solvability of the initial boundary value problem for the magnetic induc-

tion vector over the entire time interval can be established as follows.
For a given diffusion coefficient, the increment of magnetic induction vector satisfies

the following system of equations:
∂δB
∂t

= κ∆δB,

div δB = 0,

δB(x, y, 0, t) = 0, δBz(x, y, z, 0) = 0, δBz(x, y, z, t1) = 0.

(11)

According to [16], if the function u(r, t) satisfies the inequality in some domain∣∣∣∂u
∂t
−κ∆u

∣∣∣ 6 C0u2 + C1|∇u|2, C0, C1 > 0,

and at the boundary of this space-time region it is equal to zero, then inside the region
u(r, t) ≡ 0. Therefore, setting the values of the velocity field and the magnetic induction
vector at the time moment t = t1 is redundant.

Now, in contrast to [6], we should come from the specific domain Ω̄1/2,t1 to the whole
upper space. To do so, consider some point in Ω̄1/2,t1 with coordinate z = 0 as a new origin
of coordinates and write the system (3) for a new closed domain Ω̄′1/2,t1

. We can choose
constants X and T such that Ω̄1/2,t1 ∩ Ω̄′1/2,t1

6= ∅. Continuing this process, in a similar
way, we define the magnetic field in the domain

Zh,T := {−∞ 6 x, y 6 +∞, 0 6 z 6 h, 0 6 t 6 T}.

Define the boundary conditions on the plane z = h and repeat the procedure. Finally, we
construct the magnetic field in the whole upper halfspace.

Remark 1. Differentiating the rotor of the vector product of v and B ((rot(v× δB))τ) contributes
to estimating (10) for each component of ḡ, whereas the second derivatives of ḡ do not appear.

Remark 2. Estimates similar to (9) will be valid for the inverse problem of finding the velocity
field and the viscosity coefficient of the charged liquid for the known magnetic induction (the second
equation in system (2)). But in this case we should replace the partial time derivative with the full
time derivative:

∂

∂t
+ (v,∇).

Doing so, we take into account the motion of the fluid in which the dynamo generation takes place.

3. Construction of a Mathematical Model of Mercury’s Magnetic Field

Mercury’s magnetic field was modeled using a regional version of modified
S-approximations, as well as using a new combined technique based on solving a system of
linear algebraic equations with a block matrix that has specific properties. The originality
of the new approach lies in the fact that one block of the matrix (“leading” or main) consists
of elements calculated in accordance with [13], and the other, “subordinate”, or auxiliary
block is formed from elements corresponding to a discrete analogue of the Laplace operator,
calculated at the points of the control sample. It was assumed that the planet has a spherical
shape; outside the surface of the ball of radius R0, the values of the function U(x), harmonic
outside this sphere, are specified on an arbitrary set x(i), i = 1, N:

Ui,δ = ui + δui, ui = U(x(i)), i = 1, N. (12)

For useful signal elements ui, the conditions of integral representability are satisfied
in the form of a sum of simple and double layer potentials distributed on the surface of
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one or several concentric spheres [13]. To restore the densities of simple and double layers,
a conditional variational problem was posed and solved using methods developed by
the authors for finding stable approximate solutions to ill-conditioned systems of linear
algebraic equations. In this case, special attention was paid to what relative approximation
accuracy was achieved at the points of the main and auxiliary samples corresponding to
the main and subordinate blocks of the system matrix.

4. Results of the Mathematical Experiment

Satellite data were approximated using a regional modification of the linear integral
representation method and discrete magnetic potential theory. There were from 7000 to
10,000 points in the main set. Auxiliary sets contained 3000 points. “Raw data” were
given for points with Cartesian coordinates in kilometers, with the origin of the coordinate
system placed at the center of mass of Mercury. When approximating the magnetic field,
the carriers of the simple and double layers were located in the crust of Mercury, i.e., at a
distance from 0.3 to 80 km from the surface of the planet, and the conducting medium—
at a distance of 480–550 km. It was assumed that the values of the field component Bz
were known.

For the specified field component, regional S-approximations were constructed: the
components of the magnetic induction vector were represented as the sum of simple and
double layers, distributed over two or more spheres. In this case, a structural-parametric
approach was used: for each of the carriers its own solution vector was determined [8]. In all
cases, systems of linear algebraic equations (SLAEs), to which the solution to the inverse
problem of restoring the magnetic field of Mercury was reduced, were solved using the
Cholesky regularization method and the improved block method for solving SLAEs (for
details, see [8]). At the same time, we assumed that Mercury is a ball of radius R0 = 2439 km.

The approximation results are presented in Table 1. In the table σ =
‖Ax− fδ‖E√

N
—standard

deviation, σmax =

√
δ2

max
N

, σmin =

√
δ2

min
N

, where δmin and deltamax—specified values of

the minimum and maximum residuals, ∆ =
‖Ax− fδ‖E
‖ fδ‖E

—indicator quality of solution,

σ0—standard deviation obtained as a result of solving the SLAE, t—time in minutes and
seconds, N—number of observation points, Bz—component of the magnetic induction
vector along the z axis.

Table 1. Modified S-approximations of the z-components of Mercury’s magnetic field according to
MESSENGER data.

No. B/N R0 Method for Solving SLAE σmin σmax σ0 ∆/t

1 Bz/10,000 2430 Cholesky method 0.012 0.024 0.016 1.01× 10−3/25:08

2 Bz/10,000 2430, 2390 block method 0.0001 0.0015 0.0012 2.76× 10−9/39:46

3 Bz/7000 2420 Cholesky method 0.0001 0.0015 0.0011 2.13× 10−9/31:23

4 Bz/7000 2420, 2410 Cholesky method 0.0001 0.0015 0.0012 1.53× 10−9/30:19

We carried out a number of experiments to build analytical models of the mag-
netic field of Mercury: in order to prove the effectiveness of the method of regional S-
approximations, it is necessary to find out how the depth of the carrier spheres of the
simple and double layers and the number of these spheres affect the solution quality indica-
tor for different dimensions of the solution systems of linear algebraic equations. The closer
the spheres are to the measurement points, the better the quality of the solution, but you
cannot get too close to the measurement points due to the singularity in the denominators
of the expressions for the elements of the system matrix (see [13]).
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In the work in [6], we only presented the results of calculations for a dataset of
10,000 points. The parameters of the carrier spheres in this article were changed. The accu-
racy of the magnetic field approximation remained high.

Figure 1 shows the values of the z-component of the magnetic induction vector ac-
cording to measurements from the MESSENGER station. Figure 2 shows the results of
regional S-approximations of the indicated component at the orbital points. The orbit
of the space mission at some points in time went quite far from the surface of Mercury
(at a distance of up to 0.6 of the average radius of the planet); thus, to isolate from the
“raw data” the components of magnetic induction generated by currents in the liquid core
and crust—the so-called Mercury’s internal magnetic field—one can use the “thin shell”
approximation [15]. With this approach, the observation points must be located within
the thin (compared to some parameters characterizing the topology of the planet) shell
surrounding Mercury. The poloidal and toroidal magnetic fields created by currents in the
plasma around Mercury “disappear” in this case. We carried out mathematical modeling
of Mercury’s magnetic field based on the above-mentioned principle of a “thin shell”: each
segment from a certain set of data obtained during the motion of the satellite does not
extend beyond the boundaries of a spherical shell, the thickness of which is approximately
0.1 of the radius of Mercury, i.e., 240 km. The approximation of Mercury’s magnetic field is
constructed as follows:

1. a mathematical model of the magnetic induction vector measured along the flight
paths of the MESSENGER station is constructed;

2. the measurement area of “raw data” is divided into spherical layers with a thickness
not exceeding 230–235 km, and in these layers the values of the components of the
magnetic induction vector are found using the distributions of equivalent sources
determined in the previous stage;

3. analytical models of the field at arbitrary points and distributions of equivalent sources
are determined from the data synthesized in the second stage.

Figure 1. Isoline map of Mercury’s magnetic field according to data from the MESSENGER mission
(Bz-component).
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Figure 2. Isoline map of Mercury’s magnetic field near the surface, constructed using regional
S-approximations.

In order to have 10,000 points remaining in the set for which the approximations were
performed, we synthesized, so to speak, additional intermediate nodes and “attributed” to
them some averaged values of the magnetic field elements. Using the found distributions
of equivalent sources, we found the spatial distribution of magnetic field elements, thus
continuing, or extrapolating, the approximated field to other points of the satellite orbits
under consideration.

Due to the fact that the process of approximating “raw data” about the magnetic
induction vector is divided into several stages, the proposed technique can be used when
performing analytical continuations of fields downward, towards the sources. If the data
sample does not satisfy the conditions of the “thin shell” principle, then we will obtain
distributions of equivalent magnetic masses in the crust that do not correspond to reality.

Important note. Adequate mathematical models of the planet’s magnetic field are
necessary to identify the conditions for the existence and unique solvability of the inverse
coefficient problem for the second part of the system (2), which describes the motion of a
charged fluid inside the planet (namely—finding the spatial distribution of fluid velocity
components and viscosity coefficient). In this case, as can be seen from the above equation,
the problem becomes more complicated, since a nonlinear inverse coefficient problem is
obtained with respect to speed.

5. Conclusions

The uniqueness theorem for the solution of the inverse problem of determining the
magnetic diffusion coefficient, as proven in the work, was formulated for the case of
restoring the desired parameters in the entire upper half-space. In this way, the results first
presented in the work [6] were generalized, in which a similar theorem was formulated
for the case of recovering the sought parameters only on a certain closed bounded set.
Thus, the result obtained in this work will make it possible to reduce the arbitrariness in
mathematical modeling of physical processes describing the magnetic field of planets with
a magneto-hydrodynamic dynamo.
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