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Abstract: The cubature Kalman filter (CKF) cannot accurately estimate the nonlinear model, and
these errors will have an impact on the accuracy. In order to improve the filtering performance of
the CKF, this paper proposes a new CKF method to improve the estimation accuracy by using the
statistical characteristics of rounding error, establishes a higher-order extended cubature Kalman filter
(RHCKF) for joint estimation of sigma sampling points and random variables of rounding error, and
gives a solution method considering the rounding error of multi-level approximation of the original
function in the undermeasured dimension. Finally, numerical simulations show that the RHCKF
has a better estimation effect than the CKF, and that the filtering accuracy is improved by using the
information of the higher-order rounding error, which also proves the effectiveness of the method.
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1. Introduction

Nonlinear state estimation is a popular research field, which is widely used in chem-
ical processes, target tracking, signal processing, macroeconomic forecasting, and other
engineering fields [1,2]. Nonlinear filtering is an important method to solve the nonlinear
state estimation, and there are many research results. Ito et al. proposed a Gaussian non-
linear filtering framework and gave the optimal solution of nonlinear filtering under the
Gaussian assumption [3]. Arellano-Valle et al. (2018) proposed the Kalman filter based
on the skew-normal distribution as a non-Gaussian assumption of innovations [4]. It is
difficult to get the optimal solution in practical processing; thus, only suboptimal approxi-
mation methods can be used instead. The commonly used nonlinear filtering algorithms
include the extended Kalman filter (EKF) [5], untraceable Kalman filter (UKF) [6], and
cubature Kalman filter (CKF) [7]. Among them, the EKF transforms the nonlinear state
and the measurement function into a linear problem through the first-order Taylor series
expansion [8]; the UKF overcomes the disadvantage of the EKF that the nonlinear function
must be continuously differentiable and needs to solve the Jacobi matrix, it approximates
the probability density function of the state by using a set of weighted sums of sampling
points passed through a nonlinear function, and its filtering effect is significantly improved
compared with that of the EKF [9]; however, when the dimensionality is too high, the UKF
can be used to filter the state of the nonlinear state, which is a very important factor to
improve the filtering effect. When the dimensionality is too high, the UKF filters poorly
and even diverges, and its filtering effect is easily affected by the parameter settings [10,11].
Similar to the UKF, the CKF approximates a specific class of nonlinear integrals by obtaining
a deterministic set of samples and weights through the spherical–radial Cubature law and
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moment matching [12]. The CKF has been widely studied and applied due to its advan-
tages of high accuracy, low complexity, and good convergence. Compared with the EKF,
the CKF does not need to calculate the Jacobi matrix and can eliminate the linearization
error, which solves the theoretical limitations of the EKF; and compared with the UKF, the
CKF has more stable performance and higher filtering accuracy when solving the filtering
problem of high-dimensional strong nonlinear systems [13–15]. Thus, it has been widely
used since proposed and has attracted many scholars who have attempted to improve it. Jia
et al. [16] utilized the arbitrary-order fully symmetric spherical interpolation criterion and
the moment matching method [17,18] to derive a higher-order spherical-phase-diameter
cubature rule that can obtain arbitrary-order estimation accuracy. Using this rule, the
high-order cubature Kalman filter (HCKF) [19] can be obtained, which improves the fil-
tering accuracy of the CKF. In order to further improve the filtering accuracy, this paper
proposes the high-order extended cubature Kalman filter considering rounding error, on
the traditional CKF algorithm. This paper considers the rounding error that exists in the
nonlinear approximation of the CKF. The algorithmic steps of the rounding error from the
first to the general order are derived in detail, and it is proven by the simulation results
that the new method improves the filtering accuracy.

The main contributions of this paper as follows: (1) proposing a new CKF method to
improve the estimation accuracy by using the statistical characteristics of rounding error;
and (2) adopting the idea of multi-level gradual approximation; the rounding error of
the multi-level approximation of the original function in the undermeasured dimension
is solved.

2. Problem Statement

Consider the following discrete-time nonlinear dynamic system:

x(k + 1) = f (x(k), k) + w(k)
y(k + 1) = h(x(k + 1), k + 1) + v(k + 1)

(1)

where k is the discrete time; x(k) ∈ Rn is the state vector; y(k + 1) ∈ Rm is the observation
vector; f (·) is the state transfer function; h(·) is the measurement function. System modeling
errors w(k) and v(k + 1) are uncorrelated white noise sequences.

The system satisfies the following assumptions:

E{w(k)} = 0, E{v(k)} = 0

E
{

w(k)wT(j)
}
= Q(k)δkj

E
{

v(k + 1)vT(j)
}
= R(k + 1)δ{k+1,j}

where Q(k) is the variance of noise w(k); R(k + 1) is the variance of noise v(k + 1); δkj is
the Kronecker product.

The cubature Kalman filtering algorithm converts nonlinear filtering into an integral
problem of solving the product of a nonlinear function and a Gaussian probability density,
and then approximates the state a posteriori probability density using a weighted sum
of 2n cubature points. For an arbitrary distribution function ρ(x), the integral problem
is solved using the cubature integration criterion [20], the basic cubature points, and the
corresponding weights obtained using the cubature criterion, as follows:

∫
Rn

ρ(x)N(x; µ, ∑)dx ≈
2n

∑
i=1

ωiρ(µ +
√

∑ζi) (2)

ζi =
√

nei, ωi =
1

2n
, i = 1, 2 · · · , 2n (3)
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where N(x; µ, ∑) denotes that the state variable x satisfying the mean µ is a Gaussian distri-
bution with variance–covariance matrix ∑; ζi represents the product points; ωi represents
the corresponding weights, ∑ is the covariance and satisfies ∑ =

√
∑
√

∑
T ,

√
∑

T denotes
the transpose of

√
∑; 2n is the number of all cubature points, n is the state dimension of the

system; ei denotes the i-th cubature point. When n = 2, the corresponding set of Cubature

points is e =
[

1 0 −1 0
0 1 0 −1

]
.

Assuming that the state estimates and covariances at the time of k+ 1 are x̂(k+ 1|k+ 1)
and P(k+ 1|k+ 1), respectively, and the posterior probability density function at this time is
P(x(k+ 1)) = N(x̂(k+ 1|k+ 1), P(k+ 1|k+ 1)), the standard CKF algorithm was originally
proposed in [21], and can be divided into temporal updating and measurement updating
as follows.

Time Update

(1) Initialize the state quantities and estimate the error covariance

x̂(0|0) = E{x(0)} (4)

P(0|0) = E
{
[x(0)− x̂(0|0)][x(0)− x̂(0|0)]T

}
(5)

(2) Construct a sigma point set under the nonlinear transformation f (·) to construct
the point set {xi(k)}2n

i=1, which contains a total of 2n points, where xi(k) are the sampling
points obtained by sampling.

(3) Perform the Cholesky decomposition on P(k|k) and compute the P(k|k) square
root matrix:

P(k|k) = S(k|k)S(k|k)T (6)

S(k|k) =
√

P(k|k) (7)

(4) Generate cubature points:

xi(k|k) = x̂(k|k) + S(k|k)ζi, i = 1, 2 . . . 2n (8)

where xi(k|k) is the cubature point of the state cubature at the time k and ζi is satisfied:

ζi =
√

nei, i = 1, 2, . . . , 2n (9)

where ei is the vector of the column of the matrix and n is the dimension of the state vector.
(5) Calculate the state cubature point of the sampling point:

x̂i(k + 1|k) = f (x̂i(k|k)) (10)

(6) Calculate the state prediction value:

x̂(k + 1|k) = 1
2n

2n

∑
i=1

x̂i(k + 1|k) (11)

(7) Calculate the estimation error covariance:

P(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(k)
(12)

Measurement Updates

(8) Construct the state cubature point set {x̂i(k + 1|k)}2n+1
i=1 , and calculate the measured

cubature point set {ŷi(k + 1|k)}2n+1
i=1 .
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(9) Calculate the P(k + 1|k) square root matrix:

S(k + 1|k) =
√

P(k + 1|k) (13)

(10) Calculate the state cubature point:

x̂i(k + 1|k) = x̂(k + 1|k) + S(k + 1|k)ζi (14)

where x̂i(k + 1|k) is the cubature point of the state quantity of the system at the time
k → k + 1 .

(11) Calculate the measured cubature points after the nonlinear transformation:

ŷi(k + 1|k) = h(x̂i(k + 1|k)) (15)

(12) Calculate the measured predicted value:

ŷ(k + 1|k) =
2n

∑
i=1

wc
i ŷi(k + 1|k) (16)

(13) Calculate the self-covariance:

Pyy(k + 1|k) =
2n
∑

i=1
wc

i [ŷi(k + 1|k)− ŷ(k + 1|k)][ŷi(k + 1|k)− ŷ(k + 1|k)]T

+R(k)
(17)

(14) Calculate the inter-covariance:

Pxy(k + 1|k) =
2n

∑
i=1

wc
i [x̂i(k + 1|k)− x̂(k + 1|k)][ŷi(k + 1|k)− ŷ(k + 1|k)]T (18)

(15) Calculate the gain array:

K(k + 1) = Pxy(k + 1|k)Pyy(k + 1|k)−1 (19)

(16) Calculate the updated covariance:

P(k + 1|k + 1) = P(k + 1|k)− K(k + 1)PyyKT(k + 1) (20)

(17) Calculate the updated state:

x̂(k + 1|k + 1) = x̂(k + 1|k) + K(k + 1) · [y(k + 1)− ŷ(k + 1|k)] (21)

3. Cubature Kalman Filtering Method Considering Rounding Error
Information (RHCKF)

In order to utilize the information of the nonlinear system state model and nonlinear
observation model to a greater extent, the RHCKF takes the error information discarded
in the process of CKF sampling approximation to the real value into account in the state
estimation process. Therefore, the RHCKF can obtain higher estimation accuracy. The
RHCKF algorithm can be divided into time updating and measurement updating, and the
specific steps are as follows:

Time Update

(1) Initialize the state quantities and estimate the error covariance:

x̂(0|0) = E{x(0)} (22)

P(0|0) = E
{
[x(0)− x̂(0|0)][x(0)− x̂(0|0)]T

}
(23)
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(2) Construct a sigma point set under the nonlinear transformation f (·) to construct the

point set
{

x(l)i (k)
}2n

i=1
; the point set contains a total of 2n points, where xi(k) is a sampling

point obtained by sampling.
(3) Perform the Cholesky decomposition on P(k|k) and compute the P(k|k) square

root matrix:
P(k|k) = S(k|k)S(k|k)T , S(k|k) =

√
P(k|k) (24)

(4) Generate cubature points with equal weights:

xi(k|k) = x̂(k|k) + S(k|k)ζi, i = 1, 2 . . . 2n (25)

where xi(k|k) is the cubature point of the state cubature at moment k and ξi is satisfied:

ζi =
√

nei, i = 1, 2, . . . , 2n (26)

where ei is the vector of the column of the matrix and n is the dimension of the state vector.
(5) Calculate the state Cubature point of the sampling point:

x̂i(k + 1|k) = f (x̂i(k|k)) (27)

(6) Weight each prediction in Equation (25) to obtain the weighted fusion prediction
estimate of x(k + 1), respectively:

x̂(k + 1|k) = 1
2n

2n

∑
i=1

x̂i(k + 1|k) (28)

3.1. Cubature Kalman Filter Considering First-Order Rounding Error

For the state prediction error, in the standard CKF algorithm uses the weighted average
of the state prediction value instead of the true value. In this process, there will inevitably
be rounding error; thus, the true value of the rounding error information needs to be taken
into account in the following equations to take into account the existence of the first-order
error information, to calculate the true value of the first-order RHCKF at the (k + 1) time:

x(1)(k + 1) = f (x(k)) + w(k)

= x̂(k + 1|k) + f (x(k))− x̂(k + 1|k) + w(k)

= 1
2n

2n
∑

i=1
x̂i(k + 1|k) + ξ(1)(k) + w(k)

(29)

where ξ(1)(k) is the first-order rounding error given by ξ(1)(k) = f (x(k))− x̂(k + 1|k), and
w(k) is zero-mean Gaussian noise.

Calculating the updated state prediction value, we have:

x̂(1)(k + 1) =
1

2n

2n

∑
i=1

x̂i(k + 1|k) + ξ̂(1)(k) (30)

The first-order rounding error ξ(1)(k) is identified by least squares (LS) by bringing
x(1)(k + 1) into the measurement equation:

y(1)(k + 1) = h(x(1)(k + 1)) + v(k + 1)

≈ H(k + 1) x(1)(k + 1) + v(k + 1)

= H(k + 1)[ 1
2n

2n
∑

i=1
x̂i(k + 1) + w(k) + ξ(1)(k)] + v(k + 1)

= H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1) + H(k + 1)w(k) + H(k + 1)ξ(1)(k) + v(k + 1)

(31)
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where H(k + 1) are first-order Jacobian matrices, H(k + 1) = ∂h(x(k+1))
∂x

∣∣∣
x(k+1)=x̂(k+1|k)

; and

v(k + 1) is zero-mean Gaussian noise.

y(1)(k + 1)− H(k + 1)
1

2n

2n

∑
i=1

xi
(0)(k + 1) = H(k + 1)ξ(1)(k) + H(k + 1)w(k) (32)

The left side of the equation is denoted by y(k + 1) and the right side of the equation
is denoted by v(k + 1), to get:

y(1)(k + 1) = y(1)(k + 1)− H(k + 1)
1

2n

2n

∑
i=1

x̂i(k + 1) (33)

v(1)(k + 1) = H(k + 1)w(k) + v(k + 1) (34)

Combining Equations (33) and (32), we can write (31) as:

y(1)(k + 1) = H(k + 1)(ξ(1)(k)) + v(1)(k + 1)

ξ(1)(k) ∼ N[ξ̂(1)(k), P(1,ξ)(k|k)]
(35)

Calculating from the LS formula ξ̂(1)(k), we get:

ξ̂(1)(k) = HT(k + 1)[H(k + 1)HT(k + 1)]
−1

y(k + 1) (36)

Update the state values by rounding error and find the state prediction error by the
updated state values P(1)(k + 1|k):

P(1)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x(1)(k + 1|k)][x̂i(k + 1|k)− x(1)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T + ξ̂(k)ξ̂(k)T

+Q(k)

(37)

3.2. Cubature Kalman Filter Considering Second-Order Rounding Error

When considering only the first-order rounding error, there is still unutilized error
information such that the estimation accuracy will definitely be inaccurate. Therefore, it
is necessary to consider the second-order error information ξ(2)(k), after identifying the
first-order error information, and it is necessary to update the information on the true value
of the x(2)(k + 1).

x(2)(k + 1) = f (x(k)) + w(k)

= x̂(k + 1|k) + f (x(k))− x̂(k + 1|k) + w(k)

= 1
2n

2n
∑

i=1
x̂i(k + 1) + ξ(1)(k) + w(k)

= 1
2n

2n
∑

i=1
x̂i(k + 1) + ξ̂(1)(k) + ξ̃(1)(k) + w(k)

= 1
2n

2n
∑

i=1
x̂i(k + 1) + ξ̂(1)(k) + f (x(k))− x̂(k + 1|k)− ξ̂(1)(k) + w(k)

= 1
2n

2n
∑

i=1
x̂i(k + 1) + ξ̂(1)(k) + ξ(2)(k) + w(k)

(38)

where ξ(2)(k) is the second-order rounding error, ξ(2)(k) = f (x(k))− x̂(k + 1|k)− ξ̂(1)(k).
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Similarly, x(2)(k + 1) is brought into the measurement equation to identify the second-
order rounding error ξ(2)(k) by LS, and the first-order Jacobian matrix H(k + 1) given by
the following:

y(2)(k + 1) = h(x(2)(k + 1)) + v(k + 1)

≈ H(k + 1) x(2)(k + 1) + v(k + 1)

= H(k + 1)[ 1
2n

2n
∑

i=1
x̂i(k + 1) + w(k) + ξ̂(1)(k) + ξ(2)(k)] + v(k + 1)

= H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1) + H(k + 1)w(k) + H(k + 1)ξ̂(1)(k)

+H(k + 1)ξ(2)(k) + v(k + 1)

(39)

y(2)(k + 1)− H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1)− H(k + 1)ξ̂(1)(k)

= H(k + 1)ξ(2)(k) + H(k + 1)w(k) + v(k + 1)
(40)

The left side of the equation is denoted by y(2)(k + 1) and the right side of the equation
is denoted by v(2)(k + 1), to get:

y(2)(k + 1) = y(2)(k + 1)− H(k + 1)
1

2n

2n

∑
i=1

x̂i(k + 1)− H(k + 1)ξ̂(1)(k) (41)

v(2)(k + 1) = H(k + 1)w(k) + v(k + 1) (42)

Combining Equations (41) and (40), one can write Equation (39) as:

y(2)(k + 1) = H(k + 1)ξ(2)(k) + v(2)(k + 1) (43)

Calculating from the undermeasurement LS formula ξ(2)(k), we have:

ξ̂(2)(k) = HT(k + 1)[H(k + 1)HT(k + 1)]
−1

y(2)(k + 1) (44)

Update the state values by rounding error and find the state prediction error by the
updated state values P(2)(k + 1|k):

P(2)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(κ + 1|k)− x(2)(k + 1|k)][x̂i(k + 1|k)− x(2)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(κ) + ξ̂(1)(k)ξ̂(1)T(k) + ξ̂(2)(k)ξ̂(2)T(k)

(45)

3.3. Cubature Kalman Filter Considering Rounding of the General Order l − 1

The (l − 1)-order rounding error ξ(l−1)(k) calculation steps can be found in the
Appendix A:

x(l−1)(k + 1) =
1

2n

2n

∑
i=1

x̂i(k + 1) + ξ̂(1)(k) + · · ·+ ξ̂(l−2)(k) + ξ(l−1)(k) + w(k) (46)

where ξ(l−1)(k) is the (l − 1)-order rounding error; w(k) is zero-mean Gaussian noise.
Update the state values using the rounding error and find the state prediction error

covariance matrix by the updated state values P(l−1)(k + 1|k):
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P(l−1)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x(l−1)(κ + 1|κ)][x̂i(κ + 1|κ)− x(l−1)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(κ) + ξ̂(1)(k)ξ̂(1)(k) + ξ̂(2)(k)ξ̂(2)(k) + · · ·+ ξ̂(l−1)(k)ξ̂(l−1)(k)

(47)

By mathematical induction, we know that when the rounding error is considered
to the l-th order, the equation of state for the l-th order rounding that we use instead of
considering the rounding error is satisfied:

x(l)(k + 1) =
1

2n

2n

∑
i=1

x̂i(k + 1) + w(k) + ξ̂(1)(k) + ξ̃(1)(k) + · · ·+ ξ(l)(k) (48)

Bringing x(l)(k + 1) into the observation equation, we have:

y(k + 1)− H(k + 1) 1
2n

2n
∑

i=1
[x̂i(k + 1|k) + ξ̂(1)(k) + · · ·+ ξ̂(l−1)(k)]

= H(k + 1)ξ(l)(k) + H(k + 1)w(k) + v(k + 1)
(49)

Using LS, we can find ξ(l)(k), P(l,ξ)(k|k):

ξ̂(l)(k) = HT(k + 1)[H(k + 1)HT(k + 1)]
−1

y(l)(k + 1) (50)

P(l,ξ)(k|k) = HT(k + 1)[H(k + 1)HT(k + 1)]−1R(l)
(k + 1)[H(k + 1)HT(k + 1)]−1

×H(k + 1)
(51)

When the rounding error of the system model is considered to the l-th order, is it
necessary to continue to consider the rounding error? We could set the threshold λ to
determine whether ||ξ̂(l)(k|k)|| < λ is valid, where λ is the discriminant parameter decided
by the system: if the inequality is valid, then it means that there is no need to consider
the higher order; if it is not valid, then it is also necessary to continue to consider the
rounding error.

Updating P(l)(k + 1|k) is accomplished due to the higher-order unconsidered error
information ξ̃(l)(k) in x(l)(k + 1) , corresponding to the error covariance matrix P(l,ξ)(k +
1|k) given by

P(l)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x(l−1)(κ + 1|κ)][x̂i(κ + 1|κ)− x(l−1)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T + Q(κ)

+ξ̂(1)(k)ξ̂(1)(k) + ξ̂(2)(k)ξ̂(2)(k) + · · ·+ ξ̂(l)(k)ξ̂(l)(k) + P(l,ξ)(k + 1|k)

(52)

Measurement Updates

(1) Construct the state cubature point set
{

x̂(l)i (k + 1|k)
}2n+1

i=1
and calculate the mea-

sured cubature point set ŷ(l)i (k + 1|k)}2n+1
i=1

(2) Calculate the P(k + 1|k) square root matrix:

S(k + 1|k) =
√

P(k + 1|k) (53)

(3) Calculate the state cubature point:

x̂i(k + 1|k) = x̂(k + 1|k) + S(k + 1|k)ζi (54)
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where x̂i(k + 1|k) is the cubature point of the state quantity of the system at the time
k → k + 1 .

(4) Calculate the measured cubature points after the nonlinear transformation:

ŷi(k + 1|k) = h(x̂i(k + 1|k)) (55)

(5) Calculate the measurement prediction:

ŷ(k + 1|k) =
2n

∑
i=1

wc
i ŷi(k + 1|k) (56)

(7) Calculate the self-covariance:

Pyy(k + 1|k) =
2n

∑
i=1

wc
i [ŷi(k + 1|k)− ŷ(k + 1|k)][ŷi(k + 1|k)− ŷ(k + 1|k)]T + R(k) (57)

(8) Calculate the inter-covariance:

Pxy(k + 1|k) =
2n

∑
i=1

wc
i [x̂i(k + 1|k)− x̂(k + 1|k)][ŷi(k + 1|k)− ŷ(k + 1|k)]T (58)

(9) Calculate the gain array:

K(k + 1) = Pxy(k + 1|k)Pyy(k + 1|k)−1 (59)

(10) Calculate the updated covariance:

P(k + 1|k + 1) = P(k + 1|k)− K(k + 1)PyyKT(k + 1) (60)

(11) Calculate the updated state:

x̂(l)(k + 1|k + 1) = x̂(l)(k + 1|k) + K(k + 1) · [y(k + 1)− ŷ(k + 1|k)] (61)

4. Performance Analysis of RHCKF and CKF
4.1. Performance Analysis in the Prediction Phase

Taking the state value considering the l-order rounding error as the true value:

x(l)(k + 1) =
1

2n

2n

∑
i=1

x̂i(k + 1) + ξ̂(1)(k) + · · ·+ ξ̂(l−1)(k) + ξ(l)(k) + w(k + 1) (62)

The prediction error covariance matrix P(0)(k + 1|k) · · · P(l)(k + 1|k) calculation pro-
cess can be found in the Appendix B.

Prediction error covariance matrix when considering (l − 1)-order rounding error
P(l−1)(k + 1|k):

P(l−1)(k + 1|k) = P(l)(k + 1|k) + ξ̂(l)(k)ξ̂(l)T(k) (63)

Prediction error covariance matrix when considering second-order rounding error
P(2)(k + 1|k):

P(2)(k + 1|k) = P(3)(k + 1|k) + ξ̂(3)(k)ξ̂(3)T(k) (64)

Prediction error covariance matrix when considering first-order rounding error P(1)(k+
1|k):

P(1)(k + 1|k) = P(2)(k + 1|k) + ξ̂(2)(k)ξ̂(2)T(k) (65)

Prediction difference covariance matrix without rounding errors P(0)(k + 1|k):

P(0)(k + 1|k) = P(1)(k + 1|k) + ξ̂(1)(k)ξ̂(1)T(k) (66)
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Compared to the traditional CKF, we have utilized more information in the RHCKF,
i.e., the error between the true value and the prediction estimate; therefore, in terms of
information utilization, the filter design utilizing more information should have higher
accuracy. Also, in terms of the prediction error covariance matrix that represents the
performance metrics of the filter prediction stage, combining Equations (63) and (66),
we have:

P(0)(k + 1|k)− P(l)(k + 1|k) = ξ̂(1)(k)ξ̂(1)T(k) + · · ·+ ξ̂(l)(k)ξ̂(l)T(k) ≥ 0 (67)

It can be found that, equivalent to the CKF, the RHCKF utilizes more information in
the prediction stage, which reduces the prediction error covariance matrix and increases
the model prediction reliability. Therefore, the RHCKF has better prediction performance
in the prediction stage compared to the traditional CKF.

4.2. Performance Analysis of the Update Phase

In order to facilitate the comparison of the size of the estimation error covariance
matrix of the two filtering methods, first of all, we can get the collapsing transformation
based on Equations (60) and (67):

P(l−1)(k + 1|k + 1)−1 = P(l−1)(k + 1|k)−1 + HT(k + 1)(R(l−1)(k + 1))
−1

H(k + 1) (68)

P(l)(k + 1|k + 1)−1 = P(l)(k + 1|k)−1 + HT(k + 1)(R(l)(k + 1))
−1

H(k + 1) (69)

From the above equation, it can be found that the state estimation performance of
the filter is mainly contributed by two aspects. One is the prediction error covariance that
contains the prediction information, and the other is the measurement error that contains
the measurement prediction information. It is clear that it is possible to obtain

P(l)(k + 1|k + 1)−1 − P(l−1)(k + 1|k + 1)−1

= P(l)(k + 1|k)−1 − P(l−1)(k + 1|k)−1 + HT(k + 1)[R(l)(k + 1)− R(l−1)(k + 1)]
−1

H(k + 1)
= P(l)(k + 1|k)−1 − P(l−1)(k + 1|k)−1

≤ 0

(70)

P(l)(k + 1|k + 1) ≥ P(l−1)(k + 1|k + 1) (71)

It can be shown that, equivalent to the CKF, the RHCKF utilizes more information
in the updating phase, and the extra information used improves the accuracy, i.e., more
accurate state prediction values and measurement prediction values are obtained. Therefore,
the RHCKF has better performance compared to traditional CKF filtering.

5. Numerical Simulation Verification
5.1. Experiment I

Consider the system where the equation of state is a two-dimensional nonlinear equation
and the measurement equation is the one-dimensional under-measured nonlinear equation[

x1(k + 1)
x2(k + 1)

]
=

[
0.85x1(k) + 0.5x2(k) + 0.5 sin(γx1(k))
−0.5x1(k) + 0.5 sin(µx2(k))

]
+

[
w1(k)
w2(k)

]
(72)

z(k + 1) = 2 sin(x1(k + 1)) + sin(x2(k + 1)) + v(k + 1) (73)

where the white noise is set to w(k) ∼ N[0, Q]; v(k + 1) ∼ N[0, R]; Q = diag{0.01, 0.01};
R = 0.01; and the initial values of the experimental parameters are x̂0 = [0.1, 0.1]T ,
P0 = 2 × diag(1, 1), and γ = 1, respectively.

From Figures 1 and 2, it can be seen that each component of the state estimation can
effectively follow the true state component, and Figures 3 and 4 show the results of the root
mean square error (RMSE) for 100 steps. Compared with the CKF, the RHCKF proposed in
this paper has a better estimation effect.
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From Figures 3 and 4 and Table 1, it can be seen that the average estimation errors of
the first-order RHCKF for the target state are 0.0854 and 0.1281, respectively; that those
of the second-order RHCKF for the target state are 0.0826 and 0.1272, respectively; that
the improvements in the first-order RHCKF in comparison with the CKF are 13.23% and
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7.33%; and that the improvements in the second-order RHCKF in comparison with the
CKF are 17.07% and 8.09%. Moreover, the first-order RHCKF is more effective than the
second-order RHCKF in improving the CKF because the first-order rounding error already
contains most of the error information, and the second-order rounding error contains very
little information, and the RHCKF is able to utilize more information of the model. The
RHCKF takes into account the rounding error information in the process of approximating
the nonlinear system of the sampled values, and it can utilize more information of the
model compared to the CKF, so the filtering performance is also higher.

Table 1. Comparison of estimation errors.

Methodologies x1 x2

CKF 0.0967 0.1375
First-order RHCKF 0.0854 0.1281

VS CKF 13.23% 7.33%
Second-order RHCKF 0.0826 0.1272

VS CKF 17.07% 8.09%

5.2. Experiment II

Consider a system with a nonlinear equation of state in two dimensions and a nonlinear
equation of measurement in two dimensions.[

x1(k + 1)
x2(k + 1)

]
=

[
0.85x1(k) + 0.5x2(k) + 0.5 sin(γx1(k))
−0.5x1(k) + 0.5 sin(µx2(k))

]
+

[
w1(k)
w2(k)

]
(74)

[
z1(k + 1)
z2(k + 1)

]
=

[
sin(x1(k + 1))
sin(x2(k + 1))

]
+

[
v1(k + 1)
v2(k + 1)

]
(75)

where the white noise is set to w(k) ∼ N[0, Q]; v(k + 1) ∼ N[0, R]; Q = diag{0.01, 0.01};
R = diag{0.01, 0.01}; and the initial values of the experimental parameters are x̂0 = [0.1, 0.1]T,
P0 = 2× diag(1, 1), and γ = 1, respectively.

For a two-dimensional nonlinear system, Figures 5 and 6 show the filtering effects of
several filtering methods, and Figures 7 and 8 show the results of the root mean square
error (RMSE) for 100 steps. Combining the data in Table 2, it can be seen that the estimation
accuracy of the algorithm in this paper has been significantly improved regardless of the
estimation of the state.
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Table 2. Performance comparison of different algorithms.

RMSE EKF UKF CKF RHCKF VS EKF VS UKF VSCKF

state
x1 0.0928 0.0874 0.0863 0.0821 13.03% 6.45% 5.11%
x2 0.0985 0.0942 0.0935 0.0910 8.24% 3.51% 2.74%

The dataa in Table 2 show that the estimated root mean square errors of the RHCKF
algorithm in this paper are 0.0821 and 0.0910, respectively, which are significantly improved
compared to the estimation accuracy of the EKF, UKF and CKF. Among them, the most
improved was the EKF: x1 = 13.03% and x2 = 8.24%.

There is a lower bound for the unbiased estimator of the minimum variance of the
state of the nonlinear filtering algorithm, which is commonly measured by the Cramer–
Rao lower bound limit in practice. The simulation results show that, compared with the
traditional CKF, the root mean square error of the state of the proposed RHCKF is closer to
that of the Cramer–Rao lower bound, and the filtering performance is also better than that
of the CKF, so the RHCKF is an effective new method for state estimation.
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6. Conclusions

Aiming at discrete-time nonlinear dynamic system, the traditional CKF cannot esti-
mate the nonlinear model accurately, and these errors will have an impact on the estimation
accuracy; for this reason, this paper firstly proposes a method to improve the estimation
accuracy of the CKF by using the statistical properties of the rounding error. As the number
of orders of the rounding error utilized increases, the more the approximation of the non-
linear function is enhanced, which means that there is less information about the rounding
error. At the same time, from the point of view of state estimation, the less the rounding
error, the more information can be utilized to design the filter, and the better the estimation
of the filter will be. Finally, a higher-order extended cubature Kalman filter, based on
the statistical characteristics of the system rounding error, was designed. The simulation
experiment shows that, compared with the typical nonlinear filtering of the EKF, UKF and
CKF, this method has achieved better estimation results, and the filtering accuracy has been
significantly improved, providing a new solution to the problem of state estimation.

Although the method in this paper has achieved good filtering results, there are still
areas for improvement. We have only analyzed the case where the observation equations
of the nonlinear model are linear, and not the case where both the equation of state and the
observation equations are nonlinear, both of which need to take advantage of the presence
of rounding errors, which needs to be investigated in the future. In addition, a Bayesian
approach (Idrovo-Aguirre & Contreras-Reyes, 2022) for an extended cubature Kalman filter
can be addressed in a further work [22]. These are the key points and difficulties of the next
step of research.
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Appendix A. The (l − 1)-Order Rounding Error ξ(l−1)(k) Calculation Steps

Using LS estimation, the rounding error ξ(l−1)(k) is identified, H(k + 1) is the mea-
surement matrix, and x(l−1)(k + 1) is brought into the measurement equation to obtain:

y(l−1)(k + 1) = h( x(l−1)(k + 1)) + v(k + 1)

≈ H(k + 1) x(l−1)(k + 1) + v(k + 1)

= H(k + 1)[ 1
2n

2n
∑

i=1
x̂i(k + 1) + w(k) + ξ̂(1)(k) + · · ·+ ξ̂(l−2)(k) + ξ(l−1)(k)] + v(k + 1)

= H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1) + H(k + 1)w(k) + H(k + 1)[ξ̂(1)(k) + · · ·+ ξ̂(l−2)(k)]

+H(k + 1)ξ(l−1)(k) + v(k + 1)

(A1)

y(l−1)(k + 1)− H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1)− H(k + 1)[ξ̂(1)(k) + · · ·+ ξ̂(l−2)(k)]

= H(k + 1)ξ(l−1)(k) + H(k + 1)w(k) + v(k + 1)
(A2)
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The left side of the equation is denoted by y(l−1)(k + 1) and the right side of the
equation is denoted by v(l−1)(k + 1), to get:

y(l−1)(k + 1) = y(l−1)(k + 1)

−H(k + 1) 1
2n

2n
∑

i=1
x̂i(k + 1)− H(k + 1)[ξ̂(1)(k) + · · ·+ ξ̂(l−2)(k)]

(A3)

v(l−1)(k + 1) = H(k + 1)w(k) + v(k + 1) (A4)

Combining Equations (A2) and (A3), we can write (A1) as:

y(l−1)(k + 1) = H(k + 1)ξ(l−1)(k) + v(l−1)(k + 1) (A5)

Using the under-measurement LS to compute the ξ(l−1)(k), we get:

ξ̂(l−1)(k) = HT(k + 1)[H(k + 1)HT(k + 1)]
−1

y(l−1)(k + 1) (A6)

Appendix B. The Prediction Error Covariance Matrix P(0)(k+1|k)· · ·P(l)(k+1|k)
Calculation Process

Prediction difference covariance matrix without rounding errors P(0)(k + 1|k):

P(0)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1)− x(0)(k + 1|k)][x̂i(k + 1|k)− x(0)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(k) + ξ̂(1)(k)ξ̂(1)T(k) + ξ̂(2)(k)ξ̂(2)T(k) + · · ·+ ξ̂(l)(k)ξ̂(l)T(k) + P(l,ξ)(k|k)

(A7)

Prediction error covariance matrix when considering first-order rounding error P(1)(k+
1|k):

P(1)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x(1)(k + 1|k)][x̂i(k + 1|k)− x(1)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(κ) + ξ̂(2)(k)ξ̂(2)T(k) + ξ̂(3)(k)ξ̂(3)T(k) + · · ·+ ξ̂(l)(k)ξ̂(l)T(k) + P(l,ξ)(k|k)

(A8)

Prediction error covariance matrix when considering second-order rounding error
P(2)(k + 1|k):

P(2)(k + 1|k) = 1
2n

2n
∑

i=1
[x̂i(k + 1)− x(2)(k + 1|k)][x̂i(k + 1|k)− x(2)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[x̂i(k + 1)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(κ) + ξ̂(3)(k)ξ̂(3)T(k) + · · ·+ ξ̂(l)(k)ξ̂(l)T(k) + P(l,ξ)(k|k)

(A9)

Prediction error covariance matrix when considering (l − 1)-order rounding error
P(l−1)(k + 1|k):

P(l−1)(k + 1|k) = 1
2n

2n
∑

i=1
[xi(k + 1|k)− x(l−1)(k + 1|k)][x̂i(k + 1|k)− x(l−1)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[xi(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T

+Q(k) + ξ̂(l)(k)ξ̂(l)T(k) + P(l,ξ)(k|k)

(A10)
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Prediction error covariance matrix when considering l-order rounding error P(l)(k +
1|k):

P(l)(k + 1|k) = 1
2n

2n
∑

i=1
[xi(k + 1|k)− x(l)(k + 1|k)][x̂i(k + 1|k)− x(l)(k + 1|k)]T

= 1
2n

2n
∑

i=1
[xi(k + 1|k)− x̂(k + 1|k)][x̂i(k + 1|k)− x̂(k + 1|k)]T + Q(k) + P(l,ξ)(k|k)

(A11)
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