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Abstract: In this paper, we consider the numerical solution of large-scale discrete-time projected
Lyapunov equations. We provide some reasonable extensions of the most frequently used low-rank
iterative methods for linear matrix equations, such as the low-rank Smith method and the low-rank
alternating-direction implicit (ADI) method. We also consider how to reduce complex arithmetic
operations and storage when shift parameters are complex and propose a partially real version of
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1. Introduction

Solving linear matrix equations is a very important topic in control theory. Such
equations include Lyapunov equations and Sylvester equations. Let E, A ∈ Rn×n, where
E is singular. Assume that the pencil λE − A is d-stable. That is, the moduli of all finite
eigenvalues of the pencil λE − A are less than 1. According to [1], there exist nonsingular
n × n matrices W, T that transform E, A into a Weierstrass canonical form, i.e.,

E = W
[

I 0
0 N

]
T, A = W

[
J 0
0 I

]
T (1)

with J ∈ Rn f ×n f and N ∈ Rn∞×n∞ . Define the left and right spectral projection matrices Pl ,
Pr by

Pl = W
[

I 0
0 0

]
W−1, Pr = T−1

[
I 0
0 0

]
T. (2)

In this paper, we focus on the numerical solution of the discrete-time projected Lyapunov
equation

EXET − AXAT = Pl BBT PT
l , X = PrXPT

r , (3)

where X ∈ Rn×n is the solution, B ∈ Rn×m, m ≪ n. Here and in the following, the super-
script T denotes the transpose of a vector or a matrix. Since λE − A is d-stable, (3) has
a symmetric positive semi-definite solution; see, for example, ref. [2]. The discrete-time
Lyapunov equation is also called the Stein equation in the literature. By using the Kro-
necker product [3], the first equation in (3) can be formulated as (E ⊗ E − A ⊗ A)vec(X) =
vec(Pl BBT PT

l ), where vec(X) = [xT
1 , xT

2 , · · · , xT
n ]

T , and xi is the i-th column of X.
The Stein equation with nonsingular E plays an essential role in discrete-time dynami-

cal systems, including stability analysis and control [4–6], model reduction [7–12], solutions
of discrete-time algebraic Riccati equations (by Newton’s method) in optimal control [13],
and the restoration of images [14]. In contrast, the projected Stein equation arises in the
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balanced truncation model reduction [2] of discrete-time descriptor systems. In the positive
real and bounded real balanced truncation model reduction of discrete-time descriptor
systems, we also need to solve a projected Stein equation at each iteration step of Newton’s
method for projected Riccati equations.

In the past few decades, many researchers have focused on constructing numerically
robust algorithms for the standard Stein equation, i.e., with E being the identity matrix.
For example, a standard direct method was provided in [15], which is a direct extension of
the well-known Bartels–Stewart algorithm [16] for continuous-time Lyapunov equations
AX + XAT = Q to the standard Stein equation. Hammarling [17] proposed a variant
of the Bartels–Stewart algorithm for both the continuous-time and discrete-time cases.
This variant is named the Hammarling method in the literature and aims to compute the
Cholesky factor of the solution, which is desired in the balanced truncation model order
reduction of discrete-time systems. The Hammarling algorithm was further improved
in [18,19] by using a rank-2 updating formula. These approaches are based on the real
Schur decomposition, require a computational complexity of O(n3) flops, and thus are only
suitable for small to moderately sized problems.

It is known that the solution matrix of a continuous-time Lyapunov equation has a
low numerical rank in cases where it has a low-rank right-hand side; see, e.g., ref. [20].
Specifically, the low numerical rank means that the singular values of the solution X decay
very rapidly. Penzl [21] showed theoretically that the singular values of the solution decay
exponentially for the continuous-time Lyapunov equation with a symmetric coefficient
matrix and a low-rank right-hand side. Baker, Embree, and Sabino [22] considered the
nonsymmetric case, and they explained that a larger departure from normality probably
means a faster decay of singular values. The fact that the solution has a rapid decay of
singular values and can be well approximated by its low-rank factorization now enables
the use of numerous iterative methods that seek accurate low-rank approximations to
the solution. These iterative methods include the low-rank Smith method [23,24], the
Cholesky factor alternating-direction implicit (ADI) method [25], the (generalized) matrix
sign function method [26], and the extended Krylov subspace method [27], to name a few.
For the continuous-time projected Lyapunov equation, Stykel [28] extended the low-rank
ADI method and the low-rank Smith method to compute low-rank approximations to the
solution. In [13], the ADI method was extended to discrete-time Lyapunov equations and
was further improved to compute the real factors in [29] by utilizing the technique that was
proposed in [30] for continuous-time Lyapunov equations.

In recent years, numerical methods for continuous-time Lyapunov equations have
been further considered. In [31], a class of low-rank iterative methods is proposed by
using Runge–Kutta integration methods. It is shown that a special instance of this class
of methods is equivalent to the low-rank ADI method. In [32], Benner, Palitta, and Saak
further improved the low-rank ADI. They used the extended Krylov subspace method to
solve the shifted linear system at each iteration. It is shown that by using only a single
subspace, all the shifted linear systems can be solved to achieve a prescribed accuracy.
In [33], the authors considered the inexact rational Krylov subspace method and low-rank
iteration, in which a shifted linear system of equations is solved inexactly. In [34,35], the
choice of shift parameters is considered, and some selection techniques are proposed to
achieve a fast convergence for the low-rank ADI method.

In this paper, we first transform the projected generalized Stein Lyapunov
Equation (3) to an equivalent projected standard Stein equation and then extend the low-
rank Smith method to the projected standard equation. After this, we extend the low-rank
ADI method to (3) and propose how to compute the real low-rank factor by following the
idea in [29,30]. We also consider the choice of ADI shift parameters. Finally, through two
standard numerical examples from discrete-time descriptor systems, we show the efficiency
of the proposed low-rank ADI method.

The main contributions of this paper include the following:
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• The low-rank ADI method is extended to solve the discrete-time projected Lyapunov
equation.

• A partially real low-rank ADI algorithm is proposed.
• Two numerical examples are presented to demonstrate the good convergence of the

low-rank ADI method.

The low-rank ADI method is one of the most commonly used iterative methods
for solving linear matrix equations. It has a good convergence curve, although the shift
parameters are not optimal. Moreover, it always produces a low-rank positive semi-definite
approximate solution for Lyapunov equations, which is desired for some applications, such
as the balanced truncation model order reduction. In contrast, the Krylov subspace method
cannot guarantee the generation of the positive semi-definite solution. The main drawback
of the low-rank ADI method is that it requires selecting shifts and solving one linear system
of equations for each iteration.

The rest of the paper proceeds as follows. In Section 2, we reformulate (3) and propose
the low-rank Smith method. In Section 3, we extend the real version of the low-rank ADI
method for the projected Stein equation. Section 4 is devoted to two numerical examples.
Finally, conclusions are given in Section 5.

2. Low-Rank Smith Method

The Smith method [36] was originally proposed for solving the continuous-time
Sylvester equation AX + XÃ = C. First, the continuous-time equation is equivalently
transformed to a discrete-time equation via a Cayley transform. Then, the Smith iteration is
derived from the series representation of the solution. For the projected Stein Equation (3),
the Smith method can be applied directly without the Cayley transform.

Due to the singularity of E, its inverse does not exist. We use the {2}-inverse E− of E,
which is defined by

E− = Pr(EPr + A(I − Pr))
−1 = (PlE + (I − Pl)A)−1Pl = T−1

[
I 0
0 0

]
W−1,

see, e.g., ref. [37]. For the generalized inverse of a singular matrix, the interested reader is
referred to [38].

Multiplying the first equation in (3) from the left and right by E− and (E−)T and using
E−E = Pr, E−Pl = E−, and X = PrXPT

r , we obtain

X − (E−A)X(E−A)T = E−B(E−B)T , X = PrXPT
r . (4)

The unique solution of (4) can be formulated as

X =
∞

∑
j=0

(E−A)jE−B((E−A)jE−B)T . (5)

Since the pencil λE − A is d-stable, the spectrum radius ρ(E−A) of E−A, which is defined
by ρ(E−A) = maxλ∈Λ(E−A) |λ|, satisfies ρ(E−A) < 1. So, the series converges, and the
solution X is symmetric positive semi-definite, i.e., X ≥ 0. This series representation of
the solution implies that the numerical rank of X is much smaller than its dimension n if
the norm of the powers of E−A decreases rapidly. In [39], Benner, Khoury, and Sadkane
considered the solution of the Stein equation with E = In and obtained an inequality that
explicitly describes the decay of the singular values of the solution. For the projected Stein
Equation (4), by following [39], we can obtain

σjm+1

σ1
≤ ∥(E−A)j∥2,
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where σ1 ≥ σ2 ≥ · · · ≥ σn denote the singular values of the solution X. This result
explicitly shows that the solution has a low numerical rank if the norm of the powers of
E−A decreases rapidly.

We can now apply the Smith method [24,28] to (4). It is a fixed-point iteration and is
expressed as

Xj+1 = (E−A)Xj(E−A)T + E−B(E−B)T , X0 = 0.

This iteration converges since ρ(E−A) < 0, and the iterations can be written as the par-
tial sum

Xj =
j−1

∑
i=0

(E−A)iE−B((E−A)iE−B)T , j = 1, 2, · · · . (6)

We see from (6) that the iterations can be reformulated by a low-rank representation of
Cholesky factors, i.e.,

Xj = ZjZT
j

with Zj = [E−B, (E−A)E−B, · · · , (E−A)j−1E−B]. It follows from (5) and (6) that the error
matrix X − Xj can be expressed as

X − Xj =
∞

∑
i=j

(E−A)iE−B((E−A)iE−B)T

= (E−A)j

(
∞

∑
i=0

(E−A)iE−B((E−A)iE−B)T

)
((E−A)j)T

= (E−A)jX((E−A)j)T .

Consequently, we can obtain the relative error bound

∥X − Xj∥
∥X∥ ≤ ∥(E−A)j∥2.

This shows that Xj converges linearly to the solution if the spectrum radius ρ(E−A) < 1,
and X can be accurately approximately by the low-rank iteration Xj = ZjZT

j if the norm
of the powers of E−A decreases rapidly. Note that the norm of the error matrix is not
computable since the solution X is unknown. For large-scale problems, it is also difficult to
accurately estimate the relative error bound ∥(E−A)j∥2.

For the residual matrix Rj defined by

Rj = AXj AT + Pl BBT PT
l − EXjET , (7)

we have

Rj = A

(
j−1

∑
i=0

(E−A)iE−B((E−A)iE−B)T

)
AT + Pl BBT PT

l

−E

(
j−1

∑
i=0

(E−A)iE−B((E−A)iE−B)T

)
ET

= E

(
j

∑
i=1

(E−A)iE−B((E−A)iE−B)T

)
ET + E(E−Pl B(E−Pl B)T)ET

−E

(
j−1

∑
i=0

(E−A)iE−B((E−A)iE−B)T

)
ET

= E((E−A)jE−B((E−A)jE−B)T)ET .

So, the Frobenius matrix norm of Rj can be easily computed.
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The dimension of the low-rank factor Zj will increase by m in each iteration step.
Hence, if the Smith iteration converges slowly, the number of columns of Zj will easily
reach unmanageable levels of memory requirements. To reduce the dimension of Zj, we
will approximate it by using the rank-revealing QR decomposition (RRQR) [40]. Assume
that Zj has the low numerical rank rj with a prescribed tolerance τ. Consider the RRQR
decomposition of Zj with column pivoting:

ZT
j Πj = QjΩj, Qj = [Q(1)

j , Q(2)
j ], Ωj =

 Ω(1)
j Ω(2)

j

0 Ω(3)
j

,

where Ωj is an upper triangular matrix with Ω(1)
j ∈ Rrj×rj and ∥Ω(3)

j ∥ < τ, Qj is orthogonal,

Πj is a permutation matrix, and Q(1)
j has rj columns. Then, ZjZT

j can be approximated by

ZjZT
j ≈ Πj

[
Ω(1)

j Ω(2)
j

]T
(Q(1)

j )TQ(1)
j

[
Ω(1)

j Ω(2)
j

]
Πj = Z̃jZ̃T

j ,

where

Z̃j = ΠjΩT
j

[
Irj

0

]
.

The low-rank Smith method for solving the projected Stein Equation (3) is presented
in Algorithm 1.

Algorithm 1 Low-rank Smith method

Input: E, A, B, ε, τ.

Output: Z such that ZZT is the approximate solution of (3)

1. Set j = 1, V1 = E−B, Z1 = V1;
2. Compute the rank-revealing QR decomposition

[Q1, Π1, Ω1, r1] = RRQR(ZT
1 , τ).

3. Update Z1 by

Z1 = Π1ΩT
1

[
Ir1
0

]
.

4. While ∥(EVj)
T(EVj)∥F > ε do

• j = j + 1.
• Vj = E−AVj−1.
• Zj = [Zj−1, Vj].
• Compute the rank-revealing QR decomposition

[Qj, Πj, Ωj, rj] = RRQR(ZT
j , τ).

• Update Zj by

Zj = ΠjΩT
j

[
Irj

0

]
.

End While

The main advantage of the Smith iteration (6) is that it is very simple and can be easily
implemented. However, we should note that the iterations converge very slowly if the
spectrum radius ρ(E−A) ≈ 1. This is a significant motivation for further improvement of
the Smith method.
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3. Low-Rank ADI Method

The ADI method was first introduced in [41] and then applied to solve continuous-
time Lyapunov matrix equations in [42]. Recently, this method was extended to the Stein
Equation (3) by Benner and Faßbender [13] and further improved in [29]; see also [43].

For the projected Stein Equation (3), by generalizing the ADI method, we iteratively
compute approximations Xj, j ≥ 1, of the solution X by following the iteration scheme

(µj A − E)Xj−1/2 AT = EXj−1(µjE
T − AT)− µjPl BBT PT

l , (8)

EXj(ET − µj AT) = (A − µjE)Xj−1/2 AT + Pl BBT PT
l , (9)

where 0 < |µj| < 1 denotes suitable shift parameters. Note that, although the iteration can
work with any initial guess X0, we use only X0 = 0 in the sequel.

Since the pencil λE − A is d-stable and 0 < |µj| < 1, the matrices µj A − E and
ET − µj AT are nonsingular. From (8), we obtain

Xj−1/2 AT = (µj A − E)−1EXj−1(µjE
T − AT)− µj(µj A − E)−1Pl BBT PT

l , (10)

Then, these half steps in the ADI iteration are rewritten into single steps by substituting
Xj−1/2 AT into (9) by the expression (10) for Xj−1/2 AT ; i.e., we arrive at the single-step
iteration

EXj = (A − µjE)Xj−1/2 AT(E − µj A)−T + Pl BBT PT
l (E − µj A)−T

= (A − µjE)(µj A − E)−1EXj−1(µjE
T − AT)(E − µj A)−T

−µj(A − µjE)(µj A − E)−1Pl BBT PT
l (E − µj A)−T

+Pl BBT PT
l (E − µj A)−T . (11)

Observe that

−µj(A − µjE)(µj A − E)−1Pl BBT PT
l (E − µj A)−T + Pl BBT PT

l (E − µj A)−T

=
(
−µj(A − µjE)(µj A − E)−1 + I

)
Pl BBT PT

l (E − µj A)−T

=
(
−µj(A − µjE) + (µj A − E)

)
(µj A − E)−1Pl BBT PT

l (E − µj A)−T

=
(

1 − |µj|2
)

E(µj A − E)−1Pl BBT PT
l (µj A − E)−T . (12)

Hence, we obtain

EXj = (A − µjE)(µj A − E)−1EXj−1(AT − µjE
T)(µj A − E)−T

+
(

1 − |µj|2
)

E(µj A − E)−1Pl BBT PT
l (µj A − E)−T . (13)

Multiplying (13) from the left by E− and using Xj = PrXjPT
r ,

Pr(µA − E)−1 = (µA − E)−1Pl ,

Pl(A − µE) = (A − µE)Pr

for any µ, we obtain

Xj = (µj A − E)−1(A − µjE)Xj−1(AT − µjE
T)(µj A − E)−T

+
(

1 − |µj|2
)
(µj A − E)−1Pl BBT PT

l (µj A − E)−T . (14)
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One can easily verify that the solution X of the projected Stein Equation (3) is a fixed point
of the single-step iteration (14). That is to say,

X = (µj A − E)−1(A − µjE)X(AT − µjE
T)(µj A − E)−T

+
(

1 − |µj|2
)
(µj A − E)−1Pl BBT PT

l (µj A − E)−T . (15)

Consequently, from (14) and (15), we obtain the following recursive formulation for the
error matrix between the solution X and the approximation Xj:

X − Xj = (µj A − E)−1(A − µjE)(X − Xj−1)(AT − µjE
T)(µj A − E)−T , j ≥ 1. (16)

We see from (16) and X0 = 0 that the error matrix X − Xj can be written as

X − Xj =

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)
X

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)H

. (17)

3.1. Low-Rank Version of ADI Method

For continuous-time Lyapunov equations with a low-rank right-hand side, Li and
White [25] proposed the state-of-the-art Cholesky factor ADI algorithm, which generates
a low-rank approximation to the solution. This method is a significant improvement of
the ADI method [42] and is very appropriate for large-scale continuous-time Lyapunov
equations. The Cholesky factor ADI method is developed by exploiting the low-rank
structure of the iterations and reordering the shifts; see [25] for the details. The low-rank
ADI method is generalized to the Stein equation in [29].

In this section, we follow these ideas to deduce the low-rank ADI method for the
projected Stein Equation (3). Suppose now that Xj and Xj−1 are written in their factored
forms: Xj = ZjZH

j and Xj−1 = Zj−1ZH
j−1. Then, from (14), we obtain the following recursive

relation for Zj and Zj−1:

Zj =
[ √

1 − |µj|2(µj A − E)−1Pl B (µj A − E)−1(A − µjE)Zj−1

]
(18)

with Z0 = 0.
From (18), we easily see that the dimension of Zj would increase by m at each iteration

step. Therefore, the factor Zj of Xj has mj columns. Since the number of columns increases
by m at each iteration, the number of systems of linear equations with matrices µA − E,
which need to be solved at each iteration in the low-rank ADI method (18), increases by m.
So, this iteration (18) for the factors is not suitable for practical implementation. By making
use of the trick in [25], Zj can be reformulated as

Zj =

[√
1 − |µ1|2T1Pl B,

√
1 − |µ2|2T2S1T1Pl B,

· · · ,
√

1 − |µj|2TjSj−1Tj−1 · · · S2T2S1T1Pl B
]
,

where
Tj = (µj A − E)−1, Sj = (A − µjE).

This directly leads to an efficient low-rank ADI iteration scheme: Let V1 = (µ1 A − E)−1Pl B,
and Z1 =

√
1 − |µ1|2V1. Then, for j ≥ 1,

Ṽj = (A − µjE)Vj, (19)

Vj+1 = (µj+1 A − E)−1Ṽj, (20)

Zj+1 = [Zj,
√

1 − |µj+1|2Vj+1]. (21)
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We now investigate the residual matrix Rj corresponding to the j-th approximate
solution Xj. In the following theorem, we show that Rj has a low-rank factorization of rank
at most m.

Theorem 1. Let Xj = ZjZH
j , where Zj is the j-th iteration generated by the low-rank ADI for the

projected Stein Equation (3), and let the n × m matrix Ṽj be defined by (19). Then, the residual
matrix Rj, defined by (7), can be formulated as

Rj = ṼjṼH
j .

Proof. From (3), Pl BBT PT
l = EXET − AXAT . Thus,

Rj = E(X − Xj)ET − A(X − Xj)AT . (22)

By inserting (17) into (22), we obtain

Rj = E

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)
X

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)H

ET

−A

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)
X

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)H

AT

=

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)
Pl BBT PT

l

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)H

.

From (19) and (20), and V1 = (µ1 A − E)−1Pl B, it follows that

Ṽj =

(
j

∏
i=1

(µi A − E)−1(A − µiE)

)
Pl B.

Thus, Rj = ṼjṼH
j .

The following theorem states that Vj+1 and Ṽj+1 can be obtained without solving
systems of linear equations once Vj has been computed.

Theorem 2. Assume that a proper set of shift parameters is used in the low-rank ADI iteration.
For the two subsequent blocks Vj+1 and Ṽj+1 related to the pair of complex shifts {µj, µj+1} with
µj+1 = µj, it holds that

Vj+1 = µjRe(Vj) +
1
µj

(
(1 − |µj|2)

Re(µj)

Im(µj)
− ȷ

)
Im(Vj), (23)

Ṽj+1 =
1

|µj|2

(
Ṽj−1 + (1 − |µj|4)ERe(Vj) + (1 − |µj|2)2 Re(µj)

Im(µj)
EIm(Vj)

)
. (24)

Moreover, after applying a pair of complex shifts {µj, µj+1}, the generated Ṽj+1 is real.

Proof. Although the proof is similar to that of Theorem 1 in [30], we include the proof
for completeness. In [30], the proof is split into three cases concerning different possible
(sub)sequences of shift parameters.

Here, we only consider the first case in [30] for illustration. Assume that µ1, · · · , µj−1
are real, µj has a nonzero imaginary part, and µj+1 = µj. In this case, obviously, from (19)
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and (20), V1, · · · , Vj−1, Ṽ1, · · · , Ṽj−1 are real, and Vj is the first complex iteration. From (20),
it follows that

(µj A − E)Vj = Ṽj−1.

Now, splitting µj and Vj into their real and imaginary parts reveals

Ṽj−1 = (Re(µj)A − E)Re(Vj) + Im(µj)AIm(Vj)

+ȷ [(Re(µj)A − E)Im(Vj)− Im(µj)ARe(Vj)].

Since Ṽj−1 is real, then

(Re(µj)A − E)Im(Vj)− Im(µj)ARe(Vj) = 0,

which leads to

ARe(Vj) =
1

Im(µj)
(Re(µj)A − E)Im(Vj), (25)

EVj = ERe(Vj) + ȷEIm(Vj)

= (E − ȷIm(µj)A)Re(Vj) + ȷRe(µj)AIm(Vj). (26)

From (19) and (20), it follows that

Ṽj = (A − µjE)Vj = (A − µjE)(µj A − E)−1Ṽj−1

=
1
µj
(µj A − E + E − |µj|2E)(µj A − E)−1Ṽj−1

=
1
µj

Ṽj−1 +
1 − |µj|2

µj
E(µj A − E)−1Ṽj−1

=
1
µj

Ṽj−1 +
1 − |µj|2

µj
EVj. (27)

From (20), we obtain

µjVj+1 = µj(µj+1 A − E)−1Ṽj

= (µj A − E)−1
(

Ṽj−1 + (1 − |µj|2)EVj

)
= V j + (1 − |µj|2)(µj A − E)−1EVj

= |µj|2Re(Vj)− ȷIm(Vj)

+(1 − |µj|2)(µj A − E)−1((µj A − E)Re(Vj) + EVj). (28)

From (25) and (26), we obtain

(µj A − E)Re(Vj) + EVj

= (µj A − E)Re(Vj) + (E − ȷIm(µj)A)Re(Vj) + ȷRe(µj)AIm(Vj)

= Re(µj)ARe(Vj) + ȷRe(µj)AIm(Vj)

=
Re(µj)

Im(µj)
(Re(µj)A − E)Im(Vj) + ȷRe(µj)AIm(Vj)

=
Re(µj)

Im(µj)
(µj A − E)Im(Vj).
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By inserting (29) into (28), we obtain

µjVj+1 = |µj|2Re(Vj) +

(
(1 − |µj|2)

Re(µj)

Im(µj)
− ȷ

)
Im(Vj),

which leads to (23).
From (27) and µj+1 = µj, it follows that

Ṽj+1 =
1
µj

Ṽj +
1 − |µj|2

µj
EVj+1

=
1
µj

(
1
µj

Ṽj−1 +
1 − |µj|2

µj
EVj

)

+
1 − |µj|2

µj
E

(
µjRe(Vj) +

1
µj

(
(1 − |µj|2)

Re(µj)

Im(µj)
− ȷ

)
Im(Vj)

)
.

=
1

|µj|2
Ṽj−1 +

1 − |µj|2

|µj|2
EVj + (1 − |µj|2)ERe(Vj)

−ȷ
1 − |µj|2

|µj|2
EIm(Vj) +

(1 − |µj|2)2

|µj|2
Re(µj)

Im(µj)
EIm(Vj)

=
1

|µj|2

(
Ṽj−1 + (1 − |µj|4)ERe(Vj) + (1 − |µj|2)2 Re(µj)

Im(µj)
EIm(Vj)

)
.

Obviously, Ṽj+1 is real.

3.2. Dealing with Complex Shifts

From Vj = (µj A − E)−1Ṽj−1, it follows that if µj is a complex shift, then the complex
Vj will be added to the low-rank factor Zj. In this case, complex arithmetic operations and
storage are introduced into the process such that a complex low-rank factor Zj is generated
in the end. From the numerical point of view, it is undesirable to use complex arithmetic
operations in the iteration since operations and storage will increase.

Recently, some research has focused on how to deal with complex shift parameters in the
Cholesky factor ADI method for continuous-time Lyapunov equations. In [24,25,44], a com-
pletely real formulation of the Cholesky factor ADI method is presented by concatenating
steps associated with a pair of complex conjugate shift parameters into one step. Although
this reformulation has the advantage that complex arithmetic operations and storage are
avoided, systems of linear equations with matrices of the form A2 + 2Re(µj)A + |µj|2 In
need to be solved in every two steps of the ADI method. This is a major drawback for the
completely real formulation. Firstly, for large-scale problems, A2 + 2Re(µj)A + |µj|2 In may
not preserve the original sparsity of A, and thus, sparse direct solvers cannot be applied to
linear systems with such coefficient matrices. Secondly, from the perspective of numerical
stability, it is undesirable to solve such linear equations since the condition number can
be increased due to squaring. Iterative solvers such as Krylov subspace methods [45,46]
can still be applied to linear systems with such coefficient matrices since they work with
matrix–vector products only. However, it is known that the large condition number will
deteriorate the efficiency of iterative solvers. In order to overcome these disadvantages in
the completely real formulation and to avoid complex arithmetic and the storage of complex
matrices as much as possible, Benner, Kürschner, and Saak [30] introduced a partially real
reformulation of the Cholesky factor ADI method for continuous-time Lyapunov equations.
They exploit the fact that the ADI shifts need to occur as a real number or as a pair of
complex conjugate numbers. As a result, the resulting low-rank ADI method works with
real low-rank factors Zj; see also [47]. This idea is extended to the Stein equation in [29].
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We now consider the generalization to obtain a partially real version of the low-rank
ADI method for the projected Stein Equation (3) by investigating the blocks Vj, Vj+1, which
are generated in the low-rank ADI with a pair of complex conjugate shifts µj, µj+1 = µj.

Define

Ẑ =
[ √

1 − |µj|2Vj

√
1 − |µj+1|2Vj+1

]
,

Z̃ =
[

Re(Vj) Im(Vj)
]
.

From (19) and (23), with the help of the Kronecker product and µj+1 = µj, we obtain

Ẑ = Z̃(Ξ ⊗ Im), (29)

where

Ξ =
√

1 − |µj|2
[

1 µj

ȷ 1
µj

(
(1 − |µj|2)

Re(µj)

Im(µj)
− ȷ
) ].

Direct calculation reveals

ΞΞH = (1 − |µj|2)

 1 + |µj|2 (1 − |µj|2)
Re(µj)

Im(µj)

(1 − |µj|2)
Re(µj)

Im(µj)
1 + 1

|µj |2

(
(1 − |µj|2)2 (Re(µj))

2

(Im(µj))2 + 1
)
.

The real symmetric positive definite matrix ΞΞH has a unique Cholesky factorization
given by

ΞΞH = LLT , L =

[
l1 0
l2 l3

]
, (30)

where

l1 =
√

1 − |µj|4,

l2 = l−1
1 (1 − |µj|2)2 Re(µj)

Im(µj)
, (31)

l3 =

√√√√(1 − |µj|2)
(

1 +
1

|µj|2

(
(1 − |µj|2)2

(Re(µj))2

(Im(µj))2 + 1

))
− l2

2 .

From (29) and the Cholesky factorization (30) of ΠΠH , we obtain a real low-rank
expression for ẐẐH :

ẐẐH = Z̆Z̆T

with
Z̆ =

[
l1Re(Vj) + l2Im(Vj) l3Im(Vj)

]
.

In summary, we can propose a partially real low-rank ADI method for solving the
projected Stein Equation (3), which is presented in Algorithm 2.
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Algorithm 2 Real low-rank ADI method

Input: E, A, B, ε, µj with 0 < |µj| < 1.

Output: Z such that ZZT is the approximate solution of (3)

1. Set j = 1, Ṽ0 = Pl B, Z = [];
2. While ∥ṼT

j−1Ṽj−1∥F > ε do

• Solve Vj = (µj A − E)−1Ṽj−1 for Vj.
• If Im(µj) = 0 then

– Z = [Z,
√

1 − |µj|2Vj].

– Ṽj =
1
µj

(
Ṽj−1 + (1 − |µj|2)EVj

)
.

• else
– Compute l1, l2, l3 according to (31).
– Set Z = [Z, l1Re(Vj) + l2Im(Vj), l3Im(Vj)].

– Ṽj+1 = 1
|µj |2

(
Ṽj−1 + (1 − |µj|4)ERe(Vj) + (1 − |µj|2)2 Re(µj)

Im(µj)
EIm(Vj)

)
.

– j = j + 1.
• End If
• j = j + 1.

End While

3.3. Choosing the ADI Shift Parameters

We now consider how to compute appropriate shift parameters. These shifts are vitally
important to the convergence rate of the ADI iteration.

For the ADI method for the projected Stein equation, the parameters {µj}k
j=1 should

be chosen according to the minimax problem

min
0 < |µj| < 1,
j = 1, 2, . . . , k

max
t ∈ Λ f

k

∏
j=1

∣∣∣∣∣ t − µj

µjt − 1

∣∣∣∣∣, (32)

where Λ f denotes the set of finite eigenvalues of the pencil λE − A. In practice, since
the eigenvalues of the pencil λE − A are unknown and computationally expensive, Λ f is
usually replaced by a domain containing a finite set of eigenvalues of λE − A.

A heuristic algorithm [21,48] can calculate the suboptimal ADI shift parameters for
standard Lyapunov or Sylvester equations. It selects suboptimal ADI parameters from a
set Ω, which is taken as the union of Ritz values of A and the reciprocals of the Ritz values
of A−1, obtained by two Arnoldi processes, with A and A−1.

The heuristic algorithm can also be naturally extended to the minimax problem (32).
Since E is assumed to be singular, the inverse of E does not exist. However, it is clear
that E−A has the same nonzero finite eigenvalues as the pencil λE − A. Moreover, the
reciprocals of the largest nonzero eigenvalues of A−1E are the smallest eigenvalues of
E−A. Thus, we can run one Arnoldi process with the matrix A−E to compute the smallest
nonzero eigenvalues of E−A.

The algorithm for computing {µj}k
j=1 is summarized in Algorithm 3. For more details

about the implementation of this algorithm, the interested reader is referred to [24,28,48].
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Algorithm 3 Choose ADI parameters

Input: E, A ∈ Rn×n with λE − A being d-stable, b ∈ Rn, k+, k−.

Output: ADI parameters P.

1. Run k+ steps of the Arnoldi process with respect to E−A on b to obtain the set Ω+ of
Ritz values.

2. Run k− steps of the Arnoldi process with respect to A−1E on b to obtain the set Ω− of
Ritz values.

3. Set Ω = Ω+ ∪ (1/Ω−).
4. Set

µ1 = arg min
µ ∈ Ω

max
t ∈ Ω

∣∣∣∣ t − µ

µt − 1

∣∣∣∣.
5. If Im(µ1) = 0, P = P∪ {µ1}, j = 1; else P = P∪ {µ1, µ2 = µ1}, j = 2.
6. While j < k do

• Set

µj+1 = arg min
µ ∈ Ω′

max
t ∈ Ω

∣∣∣∣ t − µ

µt − 1

∣∣∣∣ j

∏
i=1

∣∣∣∣ t − µi
µit − 1

∣∣∣∣,
where Ω′ is Ω with P deleted.

• If Im(µj+1) = 0, P = P ∪ {µj+1}, j = j + 1; else P = P ∪ {µj+1, µj+2 = µj+1},
j = j + 2.

End While

4. Numerical Examples

We provide two numerical examples to demonstrate the convergence performance of
the LR-ADI method and the LR-Smith method for (3) in this section. Define the relative
residual (RRes) as

RRes ≡
∥AXj AT + Pl BBT PT

l − EXjET∥F

∥Pl BBT PT
l ∥F

,

where Xj is generated by LR-Smith or LR-ADI.
For LR-ADI, we first compute k = 20 shift parameters by making use of Algorithm 3

and then reuse these parameters in a circular manner if the number of shift parameters is
less than the number of iterations required to achieve the specified tolerance. In LR-ADI,
we solve the shift linear systems by the LU factorization of the corresponding coefficient
matrices.

All the numerical results are obtained by performing calculations on an Intel Core
i7-8650U with CPU 1.90 GHz and RAM 16 GB.

4.1. Example 1

In this example, the differential algebraic equation (DAE) is{
Ê11 ẋ(t) = Â11x(t) + Â12 p(t) + B̂1u(t),

0 = Â21x(t) + B̂2u(t)
(33)

with Ê11 = I, Â11 = ÂT
11, and Â21 = ÂT

12. It comes from the spatial discretization of the 2D
instationary Stokes equation [37].
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In order to obtain discrete-time equations, we first use a semi-explicit Euler and a semi-
implicit Euler method [49] with a timestep size ∆t to discretize the differential equation
of (33). This leads to two difference equations:

Ê11xk+1 = (Ê11 + ∆tÂ11)xk + ∆tÂ12 pk + ∆tB̂1uk, (34)

(Ê11 − ∆tÂ11)xk+1 = Ê11xk + ∆tÂ12 pk + ∆tB̂1uk. (35)

Then, by averaging (34) and (35) and also discretizing the algebraic equation of (33), we
obtain the final difference-algebraic equations[

E11 0
0 0

]
︸ ︷︷ ︸

E

[
xk+1
pk+1

]
=

[
A11 A12
A21 0

]
︸ ︷︷ ︸

A

[
xk
pk

]
+ Buk, (36)

where E11 = Ê11 − ∆t
2 Â11, A11 = Ê11 +

∆t
2 Â11, A12 = AT

21 = ∆tÂ12, and B = ∆t[B̂T
1 , B̂T

2 ]
T .

Note that E, A in (36) are sparse and have special block structures. Using these
structures, the projectors Pl and Pr can be formulated as

Pl =

[
Πl −Πl A11Ψ
0 0

]
, (37)

Pr =

[
Πr 0

−ΦA11Πr 0

]
, (38)

where

Πl = I − A12(A21E−1
11 A12)

−1 A21E−1
11

Πr = I − E−1
11 A12(A21E−1

11 A12)
−1 A21 = E−1

11 ΠlE11,

Φ = (A21E−1
11 A12)

−1 A21E−1
11 ,

Ψ = E−1
11 A12(A21E−1

11 A12)
−1.

Moreover,

E− = (PlE + (I − Pl)A)−1Pl =

[
ΠrE−1

11 −ΠrE−1
11 A11Ψ

−ΦA11ΠrE−1
11 ΦA11ΠrE−1

11 A11Ψ

]
,

E−A =

[
ΠrE−1

11 A11Πr 0
−ΦA11ΠrE−1

11 A11Πr 0

]
,

see, for example, refs. [28,37] for details.
In this example, the timestep size ∆t is taken to be 0.05, and [B̂T

1 , B̂T
2 ]

T ∈ Rn×2 is a
matrix with each element being 1, except the (1, 2)-th element, which is 0.

We first test a medium-size problem of order n = 1280. Figure 1 illustrates the
sparsity structure of the matrix A21E−1

11 A12. This may show that for larger problems, it
is expensive to compute the LU factorization of A21E−1

11 A12. For this experiment, as well
as for the larger problems later, the final relative residual accuracy for both the LR-ADI
method and the LR-Smith method was set to 10−8. The convergence curves of LR-ADI
and LR-Smith are depicted in Figure 2. The ADI method reaches a relative residual of
6.2472 × 10−9 after 13 steps of iteration, while the Smith method has a relative residual
of 9.1324 × 10−9 after 75 steps. From Figure 2, it is clear that LR-Smith is much slower
than LR-ADI with respect to the number of iterations. From Section 2, we know that the
convergence factor of LR-Smith is the spectrum radius ρ(E−A). If the spectrum radius
ρ(E−A) ≈ 1, LR-Smith will converge very slowly. Note that the spectrum radius ρ(E−A)
is the absolute value of the largest finite eigenvalues (in modulus) of the pencil λE − A.
For this medium-size problem, the largest finite eigenvalue is 0.9554, which verifies the
slow convergence of LR-Smith. However, from Table 1, we can see that LR-Smith is only
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slightly more expensive, with respect to execution time, than LR-ADI. The reason is that
linear systems with coefficient matrices A and µA − E must be solved in the latter method.
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Figure 1. Example 1. Sparsity structure of the matrix A21E−1
11 A12.
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Figure 2. Example 1 with n = 1280.

We also tested problems with larger dimensions, namely, n = 3604, n = 7700, and
n = 14,559. All the numerical results are reported in Table 1. As expected, the execution
time becomes increasingly larger for both LR-Smith and LR-ADI as the problem dimension
expands. Moreover, it is clear that both the number of iterations and the cpu time of LR-ADI
are better than those of LR-Smith. However, it is interesting that the number of iterations
for LR-Smith increases much more dramatically than for LR-ADI. This is the reason that
LR-ADI is more favorable with respect to the cpu time for problems with larger dimensions.
For illustration, we also present the convergence curves of the two methods for dimensions
n = 7700 and n = 14,559, respectively, in Figures 3 and 4.
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Figure 3. Example 1 with n = 7700.
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Figure 4. Example 1 with n = 14,559.

Table 1. Numerical results for Example 1.

n Method Iter Cpu Time RRes

1280 LR-ADI 13 0.27 6.2472 × 10−9

LR-Smith 75 0.34 9.1324 × 10−9

3604 LR-ADI 13 2.1 5.8859 × 10−9

LR-Smith 179 5.0 9.6261 × 10−9

7700 LR-ADI 16 14.8 6.8133 × 10−9

LR-Smith 335 40.8 9.9569 × 10−9

14,559 LR-ADI 22 86.8 2.6304 × 10−9

LR-Smith 564 227.9 9.9038 × 10−9
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4.2. Example 2

In the second example, the DAE (33) is used to describe a holonomically constrained
damped mass–spring system with g masses [28,37]. The system matrices have the following
structures:

Ê11 =

[
I 0
0 M

]
, Â11 =

[
0 I
K D

]
,

Â12 =

[
0

−NT

]
, Â21 =

[
N 0

]
.

Similarly, we discretize the DAE by the same method as in the first example to obtain
difference-algebraic equations, in which the matrices E, A have the same block structures
as in the first example.

By setting g = 2000, 6000, 10,000, we obtain three DAEs of order n = 2g + 1 = 4001,
12,001, 200,001. The timestep size ∆t is taken to be 0.1. All the elements of [B̂T

1 , B̂T
2 ]

T ∈ Rn×1

are set to 0, except the (g + 1)-th element, which is 1.
In Figure 5, we first illustrate the convergence curves of LR-Smith and LR-ADI for

the problem with the dimension n = 4001. Oddly enough, we can obviously see that the
relative residual of LR-Smith does not monotonously decrease. This is due to the rounding
error, which can make the relative residual strangely increase if the convergence factor is
almost equal to 1. LR-Smith did not converge even if it had run 1000 steps, which cost
45.6 s. However, LR-ADI, with 21 steps of iteration, had a relative residual of 1.2886 × 10−9

and a cpu time of 1.8 s.
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Figure 5. Example 2 with n = 4001.

Since LR-Smith does not converge for this example, we only report our numerical
results of LR-ADI for all problems of different dimensions (n = 4001, 12,001, 20,001) in
Table 2. We observe that LR-ADI is very fast for this example and, in particular, that the
number of iterations does not increase considerably with the expansion of the problem
dimension. Moreover, we also notice that the execution time for this example is much less
than that for the first example. The reason is that, in the second example, A21E−1

11 A12 is a
number, and E, A are sparser than those in the first one, which makes it cheaper to compute
the LU factorization of A21E−1

11 A12, A, and µA − E in this example. Finally, we show the
convergence curve of LR-ADI for the problem with the dimension n = 20,001 in Figure 6.
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Table 2. Numerical results for Example 2.

n Method Iter Cpu Time RRes

4001 LR-ADI 21 1.8 1.2886 × 10−9

12,001 LR-ADI 22 5.3 3.0284 × 10−9

20,001 LR-ADI 26 9.1 2.3404 × 10−9
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Figure 6. Example 2 with n = 20,001.

5. Conclusions

We have proposed a low-rank Smith method and a low-rank ADI method for the
solutions of large-scale projected Stein equations. Although the Smith iteration and ADI
iteration are very common in the field of efficient numerical solutions of linear matrix
equations such as Lyapunov equations and Sylvester equations, this is the first time that
they are adapted to numerically solve large-scale projected Stein equations, which arise
in the balanced truncation model reduction of discrete-time descriptor systems. We also
present a partially real version of the low-rank ADI method, as some of the shift parameters
are imaginary. Our numerical experiments seem to show that the low-rank ADI method is
more competitive than the low-rank Smith method with respect to the execution time and
the number of iterations for large-scale problems if the convergence factor of the low-rank
Smith method is large.
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