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Abstract: The aim of this paper is to provide a dual representation of convex and coherent risk
measures in partially ordered linear spaces with respect to the algebraic dual space. An algebraic
robust representation is deduced by weak separation of convex sets by functionals, which are assumed
to be only linear; thus, our framework does not require any topological structure of the underlying
spaces, and our robust representations are found without any continuity requirement for the risk
measures. We also use such extensions to the representation of acceptability indices.
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1. Motivation of the Paper

In [1], it is showed that for convex and coherent risk measures defined on a rear-
rangement invariant and solid space, i.e. for every random variables X and Y with the
same distribution X ∈ X ⊂ L0(Ω, F ,P) implies Y ∈ X and |Y| ⩽ |X|, the domain must
actually be a subset of L1(Ω, F ,P), written L1, and the corresponding representation need
no completeness assumption, in contrast to the continuity requirement for positive linear
functionals employed in the Namioka-Klee theorem for ordered linear spaces. The motiva-
tion of [1] was inspired by the consideration of financial positions having an infinite mean,
such as those modeled by Pareto-distributed random variables whose density has a tail
index less than one (namely heavy-tailed random variables), which showed up in coping
with operational risk, see [2]. Motivated by the above, we provide standing-alone structure
theorems for convex and coherent risk measures that are not direct consequences of known
results using neither topological structure for the dual spaces nor continuity from above
for the risk measures involved.

In fact, another source of inspiration for using this approach stems from [3], where
in establishing a one-to-one correspondence among the partial ordering of X (interpreted,
from the decision theory perspective, as a preference relation), sets of acceptable positions,
valuation bounds (actually good-deal bounds), coherent risk measures, and price systems,
the authors assert that differently from typical works on arbitrage theory that use topo-
logical structures such as closeness and compactness with associated strong separation, it
is possible to restate the theory in a purely algebraic manner. In particular, they noticed
that a linear pricing functional should lie in the algebraic dual X ′ of X , so in the light of
their unified approach to valuation and risk measurement, it seems reasonable to attack the
representation problem for monetary risk measures by conceiving cones A ⊆ X containing
e ⩾ 0 as their internal point. The latter should be interpreted as a benchmark position that
can be different from the usual risk-free one given by a zero-coupon bond, and A also
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contains the nonnegative financial positions, and its convex structure typically induces the
partial ordering on X . Moreover, acceptability of a position X ∈ X can be understood as
the minimal amount of capital m e, for m ∈ R, such that X + m e ∈ A. We can also think
of e as a risk-free bank account in which a liquid amount of money m is reserved to make
the position acceptable; see [4,5] for the case of uncertainty affecting e, that can lead to
cash subadditivity). This leads us to propose an entirely algebraic dual representation of
both convex and coherent risk measures defined on ordered linear spaces, where, in the
spirit of [Th.2] in [3], we use a linear functional interpreted as a pricing functional without
worrying about its continuity. To obtain a dual representation in the general framework
of ordered linear spaces, we resort to Edelheit’s separation theorem, see [6]. We used it
in order to extend the Fenchel-Moreau theorem for conjugate representation of convex
functions ρ, namely its Fenchel-Legendre transform. It turns out that the notion of internal
points of cones is crucial for this hyperplane separation theorem to apply. Armed with
these algebraic tools, we obtain the dual representation of monetary risk measures with
respect to the algebraic dual space X ′ of all the financial positions in X , which is different
from the topological dual X ∗.

In our Theorems 2 and 3, the domain of ρ is indeed a general Riesz space X with a
partial order induced by some cone with a non-empty quasi-interior. On the other hand,
we are aware of the relevant special case X = L1. In [7], the authors showed that this
is the right ambient space for representing law-invariant convex risk measures provided
the underlying probability space is standard; see also [8] for the extension to atomless
probability spaces, which is actually a supplementary note to [9]. We must care that the
topological (or even norm) interior of the positive cone X+ ⊆ A is empty, and since
topological interior points are internal points, there is no sufficient condition to guarantee
the direct determination of such latter points. We solve this problem by using the notion
of quasi-interior points, since any of such points is also an internal point of the positive
cone L1

+, see [10]. Our contribution to the theory of financial risk measures is in the
direction of a convex duality theory without topology: we do not need the underlying
spaces to be topological; we do not require continuity of the linear functionals involved
in the dual-robust representation of convex/coherent risk measures; we do not impose
any axiom concerning continuity of the risk measures ourselves, in part to recover an
order-type continuity in the special case X = L1. This enables us to extend previous results
on partially ordered linear spaces towards weak separation of convex sets by functional
without further requiring any topological assumption. Since some recent literature has
investigated the relationship between risk measures and performance measures, we also
employ our algebraic framework to extend the notions of coherent acceptability indices and
quasi-concave acceptability indices of performance; see [4,11,12] and the references therein.

The paper is organized as follows: Section 2 sets out some definitions and preliminary
results to be used in the sequel. Section 3 contains our first result concerning the dual
representation of coherent risk measures on partially ordered linear spaces. Section 4 is on
our second result concerning the dual representation of convex (not necessarily coherent)
risk measures on partially ordered linear spaces. Section 5 provides an application of
our convex duality theory to the case of financial position with finite mean, discussing
some issues concerning interior and internal points and introduces the special ‘order
continuity’ of the corresponding convex risk measures. In Section 6, a further application
of our algebraic framework is presented: acceptability indices based on either coherent risk
measures or convex risk measures on partially ordered linear spaces are treated. Section 7
contains some concluding remarks.

2. Preliminaries

Given a vector space X containing financial positions, including the constant ones,
X ′ denote the algebraic dual of X , which is the vector space of all linear functionals
(real-valued) on X , then
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A◦ = { f ∈ X ′ | f (X) ⩾ 0, X ∈ A}

is called the polar wedge of A. For A ⊆ X , a vector A ∈ A is an internal point of A if
given some X ∈ X , there exists a real number δ > 0 such that A + λX ∈ A for any λ ∈ R
with |λ| ⩽ δ. Recall that, assuming convexity, the set of internal points is convex; see,
for example, [Th.1, Ch.4] in [13] or [Th.0.2.1] in [14]. In fact, internal and interior points
coincide for convex sets in topological vector spaces; see, for example, [Lemma 1.4] in
[15] in the case of normed spaces. It is worth noting that in finite-dimensional spaces (the
Euclidean ones), all locally convex topologies are equivalent, then internal and interior
points coincide; see [Th.5.60] in [16]. We let (X ,⩾) be partially ordered by

X ⩾ Y if and only if X − Y ∈ A,

i.e., the partial order is induced by a cone A ⊆ X . In the case A ̸= {0}, the partial ordering
is reflexive, antisymmetric, transitive, and compatible with the linear structure of X :

(i) X ⩾ X for any X ∈ L;
(ii) If X ⩾ Y and Y ⩾ X, then X = Y;
(iii) If X ⩾ Y and Y ⩾ Z, then X ⩾ Z;
(iv) If X ⩾ Y, then λX ⩾ λY for any λ ∈ R+;
(v) If X ⩾ Y, then X + Z ⩾ Y + Z, for any Z ∈ X .

The set X+ := {X ∈ X | X ⩾ 0} is a positive cone provided that (X ,⩾) satisfies
properties (i) together with (iii) to (v); by adding antisymmetry (ii), it is also pointed. The
following statement provides separation of convex sets in (ordered) linear spaces; see
[Th.0.2.4] in [14].

Theorem 1 (Eidelheit’s Separation Theorem). Suppose that A,B are convex subsets of X such
that int(A) ̸= ∅ and int(A) ∩ B = ∅. Then there is a non-zero functional f of X ′, such that

inf
X∈A

f (X) ⩾ sup
X∈B

f (X).

Theorem 1 was established in [6]. This is the separating hyperplane theorem we mainly
used in our representation results. Equivalently, there exists some z ∈ R such that f (X) ⩾ z
if X ∈ A and f (X) ⩽ z if X ∈ B, or in short A ⊆ { f ⩽ z} and B ⊆ { f ⩾ z}, which is
weak separation. Observe that the same statement is [Th.3.8] in [17]. Compare also with
[Th.5.6.1] in [16]. A convex subset C of a cone A is a base if for any X ∈ A \ {0} there exists
some real number t(X) > 0, depending on X, such that t(X)X ∈ C. If f ∈ X ′ \ {0}, the set
C f = {X ∈ A | f (X) = 1} is a base of A. The solid subspace generated by X ∈ X \ {0}
is defined as IX := ∪∞

n=1[−nX, nX], where n ∈ N. If X is a normed linear space and IX is
dense in X , then X is called quasi-interior point. For more details about partially ordered
linear spaces, see [14].

The properties of coherent/convex risk measures and acceptance sets are established
in [18] and [19] or [20], respectively, see also [Ch.4] in [21]. For the sake of completeness,
we list the relevant properties of risk measures. We interpret X ∈ X as profit and loss from
the holding of a portfolio over a fixed time horizon (negative values are losses). Then, a
mapping ρ : X → R is a monetary risk measure if:

• it is decreasing monotone, i.e., every X, Y ∈ X such that X ⩽ Y implies ρ(X) ⩾ ρ(Y);
• it is cash additive, i.e., for every m ∈ R we have ρ(X + m e) = ρ(X)− m, where e ̸= 0

is an internal point of the cone A := {X ∈ X | ρ(X) ⩽ 0} of acceptable positions.

The internal point e can be interpreted as a proxy for the riskless bond, or in the
terminology of [3] relatively secure cash stream. If, in addition, ρ is

• (first degree) positive homogeneous, ρ(λX) = λρ(X) for all λ ⩾ 0 and,
• subadditive, ρ(X + Y) ⩽ ρ(X) + ρ(Y), for all X, Y ∈ X ,
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then it is a coherent risk measure, which is also a convex mapping. On the other hand, ρ is
a convex risk measure if satisfies decreasing monotonicity, cash additivity, and

• convexity, ρ(λX + (1 − λ)Y) ⩽ λρ(X) + (1 − λ)ρ(Y), for any λ ∈ [0, 1] and for all
X, Y ∈ X .

Clearly, ρ convex is not necessarily coherent. Subadditivity becomes additivity for
comonotone X, Y; see [Sec.4.7] in [21].

3. Coherent Risk Measures on Ordered Linear Spaces

The dual representation of risk measures on a partially ordered linear space X of
financial positions can be traced back to [18] and then [22], in the case X = L0(Ω, F ,P).
The underlying probability space is assumed to be complete and atomless. We keep this
assumption for the rest of the paper. We start with a restatement of the classical construction
of a cash additive risk measure, given an acceptance set A ⊂ X of financial positions. Recall
that X is only assumed to be a partially ordered linear space, and X ′ is the algebraic dual
of X , and A◦ is the polar wedge of A.

Theorem 2. A coherent risk measure ρ : X → R, whose acceptance set is the cone A ⊆ X , such
that e ∈ A \ {0} and e is an internal point of A, admits the following dual representation:

ρ(X) = sup
π∈B

π(−X), (1)

where B := {π ∈ X ′ |π ∈ A◦, π(e) = 1}.

Proof. Let X ∈ A, i.e., X is acceptable. Thus, ρ(X + ρ(X)e) = 0 from cash additivity
with respect to e. Then π(X + ρ(X)e) ⩾ 0 for any π ∈ B. Hence, ρ(X) ⩾ π(−X) and
ρ(X) ⩾ supπ∈B π(−X). Applying again cash additivity with respect to e, ρ(X + (ρ(X)−
ε)e) = ε > 0 for any ε > 0. Since A and {X + (ρ(X)− ε)e} are both convex sets, from
Eidelheit’s separation theorem, we have A ∩ {X + (ρ(X)− ε)e} = ∅, hence there exists
some π ̸= 0 with π ∈ X ′ and infX∈A π(X) ⩾ π(X + (ρ(X)− ε)e) = π(X) + ρ(X)− ε ⩽ 0.
The latter inequality is especially true for any π ∈ B and ε > 0. Moreover, this is true for
any X ∈ X . This implies that ρ(X)− ε ⩽ supπ∈B π(−X), thus ρ(X) = supπ∈B π(−X).

Observe that, equivalently, ρ(X) = − infπ∈B π(X). In fact, we have that the mapping
ρA,e : X → R with respect to the cone A and the position e ∈ A \ {0} defined as

ρA,e(X) := inf{m ∈ R | X + m e ∈ A}, (2)

is a coherent risk measure. The proof can be easily deduced in the current algebraic setting
by using cash additivity; see [22] or [Ch.4] in [21] for the case X = L∞.

4. Convex Risk Measures on Ordered Linear Spaces

In this section, we characterize convex risk measures apart from the representation
of coherent risk measures provided in the last section. First, we assume that C is a cone
of X , such that C ⊆ A, where as usual A = {X ∈ X | ρ(X) ⩽ 0} is the acceptance set of a
convex risk measure ρ satisfying cash additivity with respect to e, which is supposed to be
an internal point of C.

Theorem 3. Given a cone C ⊆ A of acceptable positions, containing e as an internal point, a
convex risk measure ρ : X → R admits the following dual representation:

ρ(X) = sup
π∈B

{π(−X)− a(π)},

where B := {π ∈ X ′ | π ∈ C◦, π(e) = 1}, C◦ is the polar wedge of the acceptance cone C and
a(π) = supX∈X {π(−X)− ρ(X)}.
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We refer to the mapping a : B → R∪ {+∞} as a penalty function.

Proof. First, we have that

a(π) = sup
X∈X

{π(−X)− ρ(X)} ⩾ sup
X∈A

{π(−X)− ρ(X)}

⩾ â(π) = sup
X∈A

π(−X),

alike in [Th.5] in [19]. If X ∈ A, then a(π) ⩾ â(π) for any π ∈ B. To show the reverse
inequality, we consider X′ = X + ρ(X)e. Thus, X′ ∈ A and

â(π) ⩾ π(−X′) = π(−X)− ρ(X),

for every X ∈ X . This implies â(π) ⩾ a(π) for any π ∈ B. From the definition of the
penalty function a, we obtain that

ρ(Y) ⩾ sup
π∈B

{π(−Y)− a(π)},

for any Y ∈ X . To show that an equality holds for any Y ∈ X , we suppose that there exists
some Y0 ∈ X such that

ρ(Y0) > sup
π∈B

{π(−Y0)− a(π)}.

This inequality implies there exists some m ∈ R for which

ρ(Y0) > m > sup
π∈B

{π(−Y0)− a(π)}.

Hence, ρ(Y0 + m e) > 0, implying {Y0 + m e} is not a subset of A. Now, e is an internal
point of C, thus it is also an internal point of A, which is a convex subset of X . The singleton
{Y0 + m e} is also a convex subset of X . The Eidelheit’s separation theorem implies the
existence of some g ̸= 0, lying in the algebraic dual X ′ of X , such that g(Y0 + m e) ⩾ g(X),
for every X ∈ A. Hence g′(Y0 + m e) ⩽ g′(X), for any X ∈ A, where g′ := −g. Then:

g′(−Y0 − m e) ⩽ a(g′) = sup
X∈A

g′(−X).

The values of g′ are positive on A and consequently on C. Then, g′ ∈ C◦, and by normal-
ization, we get g′ ∈ B, provided that g′(e) = 1. Now, assuming that there exists some R
such that g′(R) < 0, where R ∈ A, we have that g′(tR) = tg′(R), for any t ∈ R, and if
t → +∞, the above separation inequality is violated. Hence, such an R does not exist. By
the separation argument with g′(e) = 1, we obtain

g(−Y0 − m e) = g′(−Y0)− m ⩽ a(g′) = sup
X∈A

g′(−X),

which is a contradiction since g′(−Y0)− a(g′) ⩽ m. Hence,

sup
π∈B

{π(−Y0)− a(π)} ⩽ m < m,

which is again a contradiction for any m ∈ R, as a consequence of the assumption on the
existence of Y0. Eventually, the dual representation is valid for any X ∈ X , and the proof
is complete.

Incidentally, applying Theorem 3, we get another interesting result. Recall that any real-
valued convex function f on a convex subset S of a linear space X may be defined on the
whole X by setting it to +∞ on X \ S . Thus, if the effective domain {X ∈ X | f (X) < +∞}
is nonempty and f nowhere takes the value −∞, then it is called proper.
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Theorem 4 (Fenchel-Moreau Type). Let X ̸= ∅ be a partially ordered linear space. Define a
mapping f : X → R ∪ {+∞} being proper convex, the level set A f := {X ∈ X | f (X) ⩽ 0}
being convex and containing a cone C, the vector e ∈ X being an internal point of C. Then f admits
the following representation:

f (X) = sup
π∈B

{π(−X)− a(π)},

where B and the penalty term a are defined as in Theorem 3.

Proof. Follows from Theorem 3.

Theorem 4 is an algebraic version of the classical Fenchel-Moreau theorem for the dual
representation of convex risk measures, where the above domain X should be turned into
a locally convex topological ordered linear space with topologically dual X ∗. Moreover,
in applying the classical Fenchel-Moreau Theorem to the dual representation of convex
risk measures, the well-known extended Namioka theorem is useful; see, for example,
[Th.2.2] in [23]. But in the present paper, we do not require that X be endowed with a
locally convex topology; hence, Theorem 4 above is sufficient for the dual characterization
of convex risk measures in our algebraic setting and, in addition, does not require any
assumption of monotonicity on ρ. We also notice that our result of the Fenchel-Moreau type
provides an extension of [Th.2.4] in [23] on Lp spaces without the assumption of ∥ · ∥p-lower
semicontinuity. We end this section by verifying the properties satisfied by the proposed
convex risk measure. For the converse of Theorem 3, we have the following proposition,
whose proof is omitted.

Proposition 1. A risk measure ρ : X → R that admits the representation

ρ(X) = sup
π∈B

{π(−X)− a(π)}, (3)

is a convex risk measure, where C ⊆ A is a cone of acceptable positions, containing e as an internal
point, B := {π ∈ X ′ | π ∈ C◦, π(e) = 1} C◦ is the polar wedge of the acceptance cone C, and the
penalty function a : B → R∪ {+∞} is given by a(π) = supX∈X {π(−X)− ρ(X)}.

As in the special cases X = Lp for p ∈ [1,+∞) developed in the literature, coherent
and convex risk measures on general ordered linear spaces differ by a penalty function.
The financial meaning of the penalty function is that an additional capital loading is
needed in order to secure some financial position X. Namely, the convex, non-coherent risk
measures correspond to more conservative economic capital requirements for any financial
position. Nevertheless, a monetary risk measure ρ defined on a more general ordered
linear space X , which is cash additive, decreasing monotone, and convex, is represented as
ρ(X) = supπ∈B{π(−X) − a(π)}. Hence, assuming a zero penalty function, a(π) = 0,
implies ρ becomes positively homogeneous and thus a coherent risk measure. To see
why this is true, observe that π(−λX) − a(π) = λπ(−X), for every λ ⩾ 0, so taking
the supremum over the linear functionals π ∈ B does the job. Moreover, as for the
classical Lebesgue spaces, we can show that the addition of positive homogeneity making ρ
coherent would imply a(π) = 0 or a(π) = +∞. First, we note that by the convexity and the
positive homogeneity of ρ, together with decreasing monotonicity, it follows normalization
ρ(0) = 0. Next, consider those linear functionals π ∈ B for which ρ(X) ⩾ π(−X), each
X ∈ X . Evaluating the penalty function over them yields

a(π) = sup
X∈X

{π(−X)− ρ(X)} ⩾ π(0)− ρ(0) = 0

if and only if a(π) = 0, since obviously 0 ⩽ π(−X)− ρ(X) ⩽ 0. On the other hand, pick
any linear functional π ∈ B such that ρ(X) ⩾̸ π(−X) for some X ∈ X . It follows from the
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positive homogeneity of ρ that the mapping X 7→ π(−X)− ρ(X) is positive homogeneous.
As a byproduct, for those strictly positive real numbers λ, we get:

a(π) ⩾ sup
λ>0

{π(−λX)− ρ(λX)} = sup
λ>0

λ{π(−X)− ρ(X)} = +∞.

This confirms how the penalty function equals the indicator ı of the convex subset

B′ ⊆ {π ∈ X ′ | ρ(X) ⩾ π(−X), for every X ∈ X},

where in the current algebraic setting no closeness is required, that is, ıB′(π) = 1 if π ∈ B′

and ıB′(π) = +∞ otherwise. It is worth noting that the penalty function is also convex and
proper, since dom(ρ) ̸= ∅ and also B is non-empty. The dual representation of coherent
risk measures given by Theorem 2 together with representation (2) clearly show that we
must restrict B′ to be a subset of B instead. This is due to cash additivity and decreasing
monotonicity. Explicitly, picking π ∈ B′ entails

−1 = ρ(e) ⩾ π(−e)

1 = ρ(−e) ⩾ π(e),

implying π(e) = 1, where we used the cash additivity of ρ. If X ⩾ 0 then by decreasing
monotonicity ρ(X) ⩽ 0, and again picking π ∈ B′ yields π(−X) ⩽ 0, leading to imposing
π ∈ C◦ over all the financial positions X ∈ X .

Example 1. Assume X = L1 with algebraic dual X ′ and let e = 1 := IΩ be the unit order
interpreted as a risk-free position. Then, let the set of linear functionals in Theorems 2 and 3
be given by B :=

{
π ∈ X ∗ ∣∣ π = dQ

dP , Q ∼ P
}

, where as usual Q are probability measures
equivalent to the original P, and consider the mapping X 7→ EP(XZ) for any fixed Radon-Nikodým
derivatives Z = dQ

dP where π(X) = E(XZ) together with π(1) ≡ EP(1Z) = 1. Next, remove the
∥ · ∥1-norm topology or the weak topology σ(L1, L∞) and instead assume the topology induced by
the Ky Fan metric

α(X, Y) := inf{ϵ ⩾ 0 | P(|X − Y| > ϵ) ⩽ ϵ}, for every X, Y ∈ L1.

Recall that this metric is not induced by a norm and that it metrizes convergence in probability in
the larger space L0. Recall also how convergence in probability does not imply ∥ · ∥1-convergence.
Hence, the dual representation ρ(X) = supZ{EP(−XZ)− a(Z)} for convex risk measures, or
coherent risk measures in the case a(Z) = 0, still holds thanks to our representation results even
if the Radon-Nikodým derivatives Z = dQ

dP in the dual set B no longer produce a continuous
linear functional π(−X) = EP(−XZ). In fact, XY ∈ L1, but the expectation functional is not
α-continuous, but Theorems 2 and 3 do not require any continuity.

Example 2. We call incomplete market a subspace M ⊆ X which is not {0} or the entire space of
financial positions, where M′ denotes its algebraic dual. We want to define coherent and convex risk
measures in incomplete markets. Thanks to Theorems 2 and 3 and supposing that e is an internal
point of the cone A, which is the acceptance set of a risk measure ρ : M → R, namely A ≡ Aρ,
and that C ⊆ A is a cone, we obtain the following:

• If ρ is coherent, then ρ(X) = supπ∈B π(−X), where B = {π ∈ M′ |π ∈ A◦, π(e) = 1}.
• If ρ is convex, then ρ(X) = supπ∈B̃{π(−X) − a(π)}, where B̃ = {π ∈ M′ |π ∈

C◦, π(e) = 1}, and a(π) = supX∈X {π(−X)− ρ(X)}.

Observe that C is a cone, either in the case where ρ is coherent or in the case where ρ is a convex
risk measure. In the case of a coherent risk measure, C = Aρ is the acceptance set of ρ. In the case of
a convex risk measure, C is a cone, which is a subset of the acceptance set Aρ. In both of the cases,
e ∈ X is an internal point of C.
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5. Financial Positions as Interior and Internal points

Referring to the case of financial positions X = L1 is mainly based on the insights in [7]
characterized by a one-to-one correspondence between law-invariant convex risk measures
on L∞ and L1; see also [8]. Furthermore, the choice X = L1 is also supported by empirical
evidence underlying the stylized fact that portfolio losses have a finite expectation. On
the other hand, there is well-understood empirical evidence that many traded positions
have a distribution with fat tails and statistical models for profits and losses such as stable
distributions with a suitable (typically greater than one) value of the stability index have a
finite mean; see [Ch.3, Sec.1a] in [24]. See in addition [Ch.3] in [25] for further details on
stylized facts about profits and losses.

Our algebraic approach calls for (L1,⩾) considered as a vector lattice or a Riesz space:
The real linear space L1 is equipped with the usual partial ordering Y(ω) ⩾ X(ω), for
pointwise P-a.s. every scenario ω ∈ Ω, which in addition has a supremum sup{X, Y} for
each pair of financial positions. Observe that the partial ordering (L1,⩾) is compatible
with the algebraic structure of L1. Moreover, sup{X, Y}(ω) := sup{X(ω), Y(ω)} for any
scenario ω ∈ Ω and similarly |X|(ω) := |X(ω)|. Eventually, inf{X, Y} = − sup{−X,−Y}.
The absolute value |X| is defined as X ∨ (−X) := max{−X, X}. Equivalently, the absolute
value in a vector lattice is defined as X+ − X−, where X+ = X ∨ 0 and X− = (−X) ∨ 0.
This algebraic structure is more general than that of a topological vector lattice, namely
L1 endowed with the norm ∥X∥1 := E(|X|), for every position X ∈ L1. In fact, we do
not use the Banach lattice feature of L1, where the ∥ · ∥1-norm is also complete. (This
norm is monotone with respect to |X| and entails L1 as a locally convex-solid space,
see [Ch.9] in [16]). The positive cone of the positions is L1

+ := {X ∈ L1 | X ⩾ 0}. The
following negative result is important.

Proposition 2. Assuming (Ω, F ,P) is a complete, atomless probability space, then the set of
∥ · ∥1-interior points of L1

+ is empty.

Proof. Since in this case L1(Ω, F ,P) is infinite-dimensional, the proof is a consequence of
[Th.4.4.4] in [14]. This is true since L1

+ is a well-based cone.

With the above negative result in mind, we next recall that the order interval
IX = ∪∞

n=1[−nX, nX] equals the solid subspace generated by X ∈ L1 \ {0}, which is
L1-dense, then yielding X as a quasi-interior point. We define the principal ideal

EX := {Y ∈ L1 | ∃ t > 0 such that |Y| ⩽ t|X|},

generated by X. The former definition requires topological arguments, while the latter is
purely algebraic and depends upon the vector lattice structure of L1 with respect to the
pointwise P-a.s. partial order. The following results are remedies to the issue given in
Proposition 2.

Proposition 3. Let the dual pair ⟨L1, L∞⟩ be given. Then, the set of quasi-interior points of L1
+

is nonempty.

Theorem 5. Any quasi-interior point X of L1
+ is an internal point of L1

+.

Remark 1. Any point in L1
+ valued strictly positively by a non-zero continuous linear functional

in L∞ (consider the weak topology σ(L1, L∞)) is a quasi-interior point in L1
+, and Proposition 3

yields that the order interval IX and the principal ideal EX do coincide for any non-zero X ∈ L1
+.

The two results above are proved in [10] and are reported here to highlight the
importance of using internal points in vector optimization problems as the ones underlying
our algebraic robust representation of coherent and convex risk measures.
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We close this section with a result on continuity of ρ when X = Lp for p ∈ [1,+∞),
which is different from the usual strong, weak, or weak∗ continuity requirements for convex
risk measures; see [Def.3.1] in [23] and [26]. Recall that a sequence (Xn)n∈N in a Riesz
space X is order convergent to a vector X ∈ X , written Xn

o→ X, if there exits another
sequence (Yn)n∈N ⊆ X that is decreasing to the zero vector Yn ⩾ Yn+1 for each n ∈ N, also
written Yn ↓, such that 0 = inf{Yn} :=

∨
n∈N Yn, written Yn ↓ 0, and with |Xn − X| ⩽ Yn

for all n ∈ N.

Theorem 6 (Order Continuity). Let ρ : Lp → R ∪ {+∞} be a convex risk measure, for
p ∈ [1,+∞), and let (Xn)n∈N ⊆ Lp be a sequence such that |Xn| ⩽ Y in the P-a.s. sense for every
n ∈ N, where Y ∈ Lp

+. If Xn
o→ X, then ρ(Xn) → ρ(X).

Proof. The sequence (Xn)n∈N is order-bounded with respect to the partial ordering, which
makes Lp a vector lattice. By [Lemma 8.17] in [16], we have Xn( f ) = f (Xn) → X( f ) =
f (X) for any f lying in the algebraic dual of (Lp)′. The convergence is valid for any
π ∈ B as defined in Theorem 3. Hence, π(−Xn) → π(−X) for any π ∈ B. From the
dual representation of a convex risk measure in Theorem 3, we get ρ(Xn) → ρ(X) since
π(−Xn)− a(π) → π(−X)− a(π) for any π ∈ B.

6. Acceptability Indices on Ordered Linear Spaces

In this section, we provide another representation of acceptability indices of perfor-
mance using our algebraic framework. First, we consider the following:

Definition 1. A mapping aι : X → R+ ∪ {+∞} is an acceptability index of performance if it
satisfies the following properties.

• Quasi-concavity: given a pair X, Y ∈ X and for every λ ∈ [0, 1] such that aι(X) ⩾ x and
aι(Y) ⩾ x one has

aι(λX + (1 − λ)Y) ⩾ x. (4)

• Monotonicity: for any X, Y ∈ X

X ⩽ Y P-a.s. =⇒ aι(X) ⩽ aι(Y). (5)

• Scale invariance: for every λ > 0 and X ∈ X

aι(λX) = aι(X). (6)

Differently from [11], we do not use a fourth axiom by calling for the upper semiconti-
nuity of aι in the appropriate topology because dom(aι) = X is only a partially ordered
linear space.

Remark 2. Acceptable positions at level x ∈ R+ form a convex superlevel set

Ax :=
{

X ∈ X
∣∣ aι(X) ⩾ x

}
, (7)

which is a natural requirement for any performance measure.

Quasi-concavity is equivalent to the convexity of Ax for each x ∈ R+: any diversified
position performs at least as well as its components. Moreover, aι is increasing monotone,
and Y is at least as acceptable as X, provided that the latter is dominated by the former. By
scale invariance, Ax is actually a cone for every x ∈ R+; the level of acceptance remains the
same whenever we scale positions.
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Now, with a little abuse of notation for each x ∈ R+, we let Ax = {X ∈ X | ρx(X) ⩽ 0}
be the cone of acceptability for the coherent risk measure ρx such that ρx(X) = inf

{
m ∈

R | X + m e ∈ Ax
}

, where e is an internal point of Ax. By Theorem 2 we have

ρx(X) = sup
π∈Bx

π(−X) = − inf
π∈Bx

π(X), (8)

with

Bx := {π ∈ X ′ |π ∈ A◦
x, π(e) = 1}, and A◦

x := {π ∈ X ′ |π(X) ⩾ 0, for all X ∈ X}

the latter being the polar wedge of Ax. Thus, by construction, we have a family of sets of
linear functionals (Bx)x∈R+ supporting the representation of each coherent risk measure
ρx, with corresponding acceptance set Ax. Observe that every acceptance set Ax in (7) is
clearly decreasing in x. Moreover, if ρx is increasing in x, then Bx is obviously increasing in
x too, by definition (8), as well as A◦

x. In fact, defining

ρx(X) := inf{m ∈ R | aι(X + m e) ⩾ x}, for every x ∈ R+, X ∈ X (9)

yields ρx increasing in x, since

{m ∈ R | aι(X + m e) ⩾ y} ⊂ {m ∈ R | aι(X + m e) ⩾ x}, for all 0 ⩽ x ⩽ y,

and as usual, e is an internal point of the cone Ax. The equivalence of the two definitions of
Ax, in terms of aι(X) and in terms of ρx, now follows from the lemma below, which shows
the equivalence aι(X) ⩾ x ⇐⇒ ρx(X) ⩽ 0.

Proposition 4. Let ρx be defined as in (9) through an acceptability index aι. Then, ρx is a coherent
risk measure on the ordered linear space X , for every x ∈ R+. Vice-versa, let (ρx)x∈R+ be a
family of coherent risk measures on the ordered linear space X , which is increasing in x. This is an
acceptability index of performance (we take sup∅ = 0) defined on the same space.

Proof. (First part) For the m ∈ R and x ∈ R+ conditions, aι(X + m e) ⩾ x is equivalent to
X + m e ∈ Ax ⊂ X , and X ⩽ Y P-a.s. together with X ∈ Ax do imply Y ∈ Ax. To check
decreasing monotonicity of ρx, take x ∈ R+ and pick X, Y ∈ X such that X ⩾ Y P-a.s. By
increasing monotonicity of aι, we have

aι(Y + m e) ⩽ aι(X + m e), for every m ∈ R.

Thus we deduce
{

m ∈ R
∣∣ aι(X + m e) ⩾ x

}
⊃

{
m ∈ R

∣∣ aι(Y + m e) ⩾ x
}

, and taking the
infimum of both sets, we get

ρx(X) := inf
{

m ∈ R
∣∣ aι(X + m e) ⩾ x

}
⩽

{
m ∈ R

∣∣ aι(Y + m e) ⩾ x
}

:= ρx(Y).

To show cash additivity, for every x ∈ R+ and X ∈ X , we note that

ρx(X + c e) := inf{m ∈ R | aι(X + c e + m e) ⩾ x}
= inf{m ∈ R | aι(X + (c + m) e) ⩾ x}
= inf{c + m ∈ R | aι(X + (c + m) e) ⩾ x} − c

= inf{r ∈ R | aι(X + r e) ⩾ x} − c

=: ρx(X)− c.

To show positive homogeneity, it suffices to call for the scale invariance of aι. To check for
subadditivity, pick m1, m2 ∈ R such that aι(X + m1 e) ⩾ x and aι(Y + m2 e) ⩾ x, for every
X, Y ∈ X and x ∈ R+. By the quasi-concavity of aι, for every λ ∈ [0, 1], we have
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aι(λX + λm1 e + (1 − λ)Y + (1 − λ)m2 e) ⩾ x,

at the same acceptability level x. Choosing λ = 1
2 and using the scale invariance of the

acceptability index again entails

aι(X + Y + (m1 + m2) e) ⩾ x.

Therefore, the scalar m1 + m2 belongs to the set
{

m ∈ R
∣∣ aι(X + Y + m e) ⩾ x

}
, and it is

greater than or equal to the infimum over the same set, which in turn is just ρx(X + Y).
This inequality holds true for all m1 and all m2 belonging to

{
m ∈ R

∣∣ aι(X + m e) ⩾ x
}

and to
{

m ∈ R
∣∣ aι(Y + m e) ⩾ x

}
, respectively. As a consequence, taking the infimum with

respect to m1 and then with respect to m2, we get ρx(X) + ρx(Y) ⩾ ρx(X + Y).
(Second part) Let x ⩾ 0, then by decreasing the monotonicity of ρx in x; we have

ρx(X) ⩽ ρx(Y), for all X, Y ∈ X such that X ⩾ Y, P-a.s.

For any x0 ∈
{

x ∈ R+

∣∣ ρx(X) ⩽ 0
}

, we also have ρx0(X) ⩽ 0,, which, together with the
monotonicity, entails ρx0(X) ⩽ ρx0(Y) ⩽ 0, for all X ⩾ Y P-a.s. As a consequence, we have
the set inclusion {

x ∈ R+

∣∣ ρx(X) ⩽ 0
}
⊃

{
x ∈ R+

∣∣ ρx(Y) ⩽ 0
}

,

and, taking the supremum of both sets, the increasing monotonicity of aι is proved. To check
quasi-concavity of aι, we first choose a pair X, Y ∈ X such that aι(X) ⩾ x0 and aι(Y) ⩾ x0
whenever x0 ∈ (0,+∞). By decreasing monotonicity of ρx, we have ρx(X) ⩽ ρx0(X) ⩽ 0
and ρx(Y) ⩽ ρx0(Y) ⩽ 0, for all x < x0. This combined with the positive homogeneity of
ρx entails

ρx(λX) = λρx(X) ⩽ 0, ρx((1 − λ)Y) = (1 − λ)ρx(Y) ⩽ 0,

for every λ ∈ [0, 1]. Moreover, by subadditivity of ρx and again for every x < x0, we
additionally have

ρx(λX + (1 − λ)Y) ⩽ 0,

which entails sup
{

x ∈ R+

∣∣ ρx(λX + (1 − λ)Y) ⩽ 0
}
⩾ x0. Eventually, this implies aι(λX +

(1 − λ)Y) ⩾ x0 and quasi-concavity easily follows. The scale invariance of aι follows
immediately from the positive homogeneity of ρx.

With all this in mind, we are ready to state:

Theorem 7. A mapping aι : X → R+ ∪ {+∞} is an acceptability index of performance if and
only if there exists a family (Bx)x∈R+ of subsets Bx ⊂ X ′ increasing in x with

aι(X) = sup
{

x ∈ R+ | X ∈ Ax
}

(10)

and Ax = {X ∈ X | infπ∈Bx π(X) ⩾ 0}, where inf∅ = +∞ and sup∅ = 0.

The proof of Theorem 7 does not present any serious difficulty with respect to that of
the original representation in [Th.1] in [11], but we provide it for the sake of comparison
with our algebraic setting. However, since the special choice X = L∞ in [Th 1] in [11] is
referred to as a Riesz space, Theorem 7 extends it to general partially ordered linear space.

Proof. (If part) Assuming the mapping aι is defined as in (10), checking it satisfies mono-
tonicity and scale invariance appearing in Definition 1 is trivial. To check for quasi-
concavity, pick X, Y ∈ X with aι(X), aι(Y) both ⩾ x. Assuming x0 < x in R+ we have
π(X), π(Y) both ⩾ 0, for every linear functional π ∈ Bx0 ⊂ Bx. Since also
π(λX + (1 − λ)Y) ⩾ 0, with λ ∈ [0, 1], then aι(λX + (1 − λ)Y) ⩾ x.
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(Only If part) Let the mapping aι be an acceptability index as in Definition 1, and fix
x ∈ R+ such that Ax is the convex superlevel set given by (7), which is decreasing in x.
Now, defining

ρx(X) = inf{m ∈ R | X + m e ∈ Ax},

is equivalent to having aι(X + m e) ⩾ x as in (9). Hence, the mapping ρx is a coherent
risk measure on X , each x ∈ R+. It remains to show the existence of a family (Bx)x∈R+ of
subsets Bx ⊂ X ′ increasing in x, such that the representation

aι(X) = sup
{

x ∈ R+

∣∣ inf
π∈Bx

π(X) ⩾ 0
}

holds. But as showed above, ρx is coherent, and thanks to Theorem 2, we can let Bx ⊂ X ′

be the set of linear functionals supporting the representation of ρx given by (1), for x ∈ R+.
If for such acceptability level x the superlevel set Ax given by (7) is equal to the entire
ordered linear space X , then Bx must be the empty set so that

inf{m ∈ R | X + m e ∈ Ax} = −∞ = − inf
π∈Bx

π(X) = − inf∅.

For the arbitrariness of x, we get ρx(X) = − infπ∈Bx π(X) for every x ∈ R+. Furthermore,
Ax decreases in x so that ρx(X) increases in x, which yields the sets of linear functionals Bx
increase in x as required. Since Proposition 4 gives aι(X) ⩾ x if and only if ρx(X) ⩽ 0, we
are done.

The proof of Theorem 7 can be easily extended to the case of quasi-concave acceptabil-
ity indices (see Definition 2 below) using an x-increasing family of convex risk measures
(ρx)x∈R+ by first recognizing that (10) can be written

aι(X) = sup
{

x ∈ R+ | ρx(X) ⩽ 0
}

, (11)

then requiring additionally that aι(0) = +∞ (meaning that a zero position is always
acceptable), aι(c) = 0 for any c < 0, and ρx(c) = −c for any c ∈ R, see [Prop.3] in [27] for
the case X = L∞ where additional continuity properties for both aι and ρx are imposed.

In the special case X = Lp, for p ∈ [1,+∞), the order-type continuity of coher-
ent risk measures as stated above, is sufficient to have acceptability indices of perfor-
mance as upper semicontinuous maps on these Lp spaces for order-bounded sequences of
financial positions.

Corollary 1. Let aι : Lp → R+ ∪ {+∞} be a mapping given by (10). Assume (ρx)x∈R+

is a family of coherent risk measures on Lp, increasing in x and continuous in the sense of
Theorem 6. Then, for an order-bounded sequence (Xn)n∈N ⊂ Lp such that Xn

o→ X. Then
aι(X) ⩾ lim supn→+∞ aι(Xn).

Proof. By Theorem 6 and its proof together with Theorem 7, since ρx(Xn) → ρ(X) by the
hypotheses Xn

o→ X, we have π(−Xn) → π(−X) if and only if π(Xn) → π(X) by linearity,
where π ∈ Bx for a fixed x ∈ R+. Assuming aι(Xn) ⩾ x, we may pick any real number
x0 < x and get π(Xn) ⩾ 0, for every n ∈ N and all linear functionals π ∈ Bx0 ⊆ Bx. This
entails π(X) ⩾ 0 and thus aι(X) ⩾ x, which is upper semicontinuity.

For coherent risk measures, Definition 1 and Theorem 7 are the adequate framework
for performance measurement in the sense of conic finance, see [28] and the reference
therein for a more detailed study of this topic.

When convex, non-coherent risk measures come into play, we need a slightly different
definition of an index of performance than Definition 1. Moreover, we need to drop the
scale invariance from the minimal properties an acceptability index of performance must
satisfy and try to represent it without the direct intervention of some monetary (actually
quasi-convex) risk measures, as we did using coherent risk measures in (10).
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Definition 2. A mapping aι : X → R+ ∪ {+∞} is a quasi-concave acceptability index of
performance if it satisfies quasi-concavity and increasing monotonicity.

For such indices of performance, we have the following:

Theorem 8. A quasi-concave acceptability index of performance aι : X → R+ ∪ {+∞} admits
the following ‘min-max’ representation:

aι(X) = inf
π∈B

sup
Y∈X

{
aι(Y) |π(Y) ⩽ π(X)

}
, (12)

for every X ∈ X , with B := {π ∈ X ′ | ∃ X ∈ X with π(X) ⩾ 0, π(e) = 1}, where the risk-free
position e is an internal point of the positive cone X+.

Observe that we do not need any acceptability system of positions in Theorem 8.

Proof. The reasoning is the same as in the proof of the topological-version borrowed from
[Th.40] in [12]. Define G(π, t) := supY∈X {aι(Y) | π(Y) ⩽ t}, for every t ∈ R and π ∈ X ′.
For a fixed position X ∈ X we obviously have X ∈ {Y ∈ X | π(Y) ⩽ π(X)}, and this
together with the definition of G(π, t) imply

inf
π∈X ′

G(π, π(X)) ⩾ aι(X).

It remains to show the reverse inequality and eventually that the infimum can be taken
over normalized positive linear functionals π ∈ B ⊆ X ′

+, where

X ′
+ := {π ∈ X ′ | ∃ X ∈ X with π(X) ⩾ 0}

is the positive cone of linear functionals. Beforehand, take ϵ > 0 and let

Cϵ := {Y ∈ X | aι(Y) ⩾ aι(X) + ϵ},

which is a convex superlevel set since aι is quasi-concave. Since Cϵ ∩ {X} = ∅, where
{X} ⊆ X is also convex, we can invoke Edelheit’s separation theorem and find some
non-zero linear functional π̃ ∈ X ′ such that

π̃(Y) ⩾ π̃(X), for all Y ∈ Cϵ.

Now, the complement of Cϵ, i.e., Cc
ϵ := {Y ∈ X | aι(Y) < aι(X) + ϵ}, includes the set

of those positions Y ∈ X for which π̃(Y) < π̃(X), for a fixed X ∈ X , due to the weak
separation above. As byproduct:

aι(X) ⩽ inf
π∈X ′

G(π, π(X)) ⩽ G(π̃, π̃(X))

⩽ sup
Y∈X

aι(Y)<aι(X)+ϵ

aι(Y) ⩽ aι(X) + ϵ.

The above inequalities show that aι(X) = infπ∈X ′ G(π, π(X)). Now the infimum can
be taken over X ′

+, because π̃ ∈ X ′
+ as in the proof of [Th.40] in [12], mainly because

G(π, π(X)) = G(λπ, π(λX)) for every linear functional π and λ ̸= 0. Eventually, since
infπ∈B G(π, π(X)) ⩾ infπ∈X ′

+
G(π, π(X)) we are done.

Note that Theorem 8 above and its proof are the algebraic version of [Th.40] in [12],
where originally the set X of financial positions is assumed to be a locally convex topological
linear space.
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Remark 3. The construction of a quasi-concave acceptability index of performance in Theorem 8
is mainly based on the insights of [4]. Relaxing the convexity property, the authors provide a
dual representation of quasi-convex risk measures based on acceptability systems, generalizing
those considered in [11]. Specifically, any acceptability set Ax posses additional features than
convexity and gives rise to a quasi-convex ρ via the association Ax := {X ∈ X | ρ(X) ⩽ x}
if and only if ρ(X) := inf{x ∈ R | X ∈ Ax}. A main difference with the acceptability families
in [11] is that now Ax is increasing in x. Further, any such set is monotone for a fixed x in
the sense of the membership relation and is right-continuous; see [Def 3] in [4]. Quasi-convex
risk measures were motivated by the concept of cash-subadditivity in [5] and, in general, by the
problem of finding a dual representation of quasi-convex and lower semicontinuous functions; see,
for example, [29]. Thus, when X is a locally convex topological linear space with dual X ∗ the
robust representation of a quasi-convex, monotone decreasing and a lower semicontinuous risk
measure is given (uniquely) by ρ(X) = supπ R(π, π(−X)), where R(π, t) := inf{m ∈ R |
gmin(π, m) ⩾ t} and gmin(π, m) := sup{π(−X) | ρ(X) ⩽ m}. The supremum is taken over all
the normalized nonnegative functionals π. It is worth noting that the function R possesses some
interesting properties; see [4].

As said before, Theorem 7 can be given for convex risk measures ρx, which are also
quasi-convex, in order to get the dual representation of quasi-concave acceptability indices
like that in Equation (11). On the other hand, consider the function

α(X) := π̂(X) +
1
λ

inf
π∈B

π(X), λ > 0,

where π̂ ∈ X ′ and B is the set of dual functionals in Theorem 2 for coherent risk measures
on partially ordered linear spaces. It is easily seen that α(X) is a monotone increasing and
concave (thus quasi-concave) acceptability index, which is by no means scale invariant,
and then it cannot be represented via Theorem 7. Observe that the equivalence α(X) ⩾ x if
and only if ρx(X) ⩽ 0 is violated in this case since the condition

π̂(X) +
1
λ

inf
π∈B

π(X)− x ⩾ 0

cannot be reduced to ρx(X) = infπ∈B§ π(X) ⩾ 0, neither if we take Bx := 1
1+x{π̂}+ x

1+xB,
for every x ∈ R+, where the indexed sets Bx of linear functionals are understood as
supporting the representation (10).

7. Conclusions

Convex duality theory is actively used in many financial problems. In this paper,
we focus on the measurement of market risk associated with traded financial positions
represented by a set of profit and loss random variables, considered only as a partially or-
dered linear space. By weak separation of convex sets properly characterized as acceptable
financial positions, we deduce robust representations of coherent and convex risk measures
without requiring neither any topological structure of the underlying space nor continuity
of the functionals used in the dual representation. A further application of these results to
acceptability indices of performance emphasizes the relevance of our algebraic approach
to risk and reward measurement. A further result establishing the equivalence between
the representation given in Theorem 8 and a representation like that in Theorem 7 is on
the agenda.
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