
Citation: Cherednichenko, K.D.;

Ershova, Y.Y.; Kiselev, A.V.

Norm-Resolvent Convergence for

Neumann Laplacians on Manifold

Thinning to Graphs. Mathematics 2024,

12, 1161. https://doi.org/10.3390/

math12081161

Academic Editor: Luís Castro

Received: 18 March 2024

Revised: 4 April 2024

Accepted: 6 April 2024

Published: 12 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Norm-Resolvent Convergence for Neumann Laplacians on
Manifold Thinning to Graphs
Kirill D. Cherednichenko 1 , Yulia Yu. Ershova 2 and Alexander V. Kiselev 1,*

1 Department of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK;
k.cherednichenko@bath.ac.uk

2 Department of Mathematics, Texas A&M University, College Station, TX 77843-3368, USA;
yuershova@tamu.edu

* Correspondence: alexander.v.kiselev@gmail.com or ak2084@bath.ac.uk

Abstract: Norm-resolvent convergence with an order-sharp error estimate is established for Neumann
Laplacians on thin domains in Rd, d ≥ 2, converging to metric graphs in the limit of vanishing
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graph are revealed as being closely related to those of the δ′ type.
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1. Introduction

In the book [1] (see also references therein, in particular [2–4]), Neumann Laplacians
Aε on thin manifolds, converging to metric graphs as ε → 0, were studied; see, e.g., Figure 1.
Here, ε represents the “thickness” of the manifolds in those parts where they converge to
the graph edges. The named works attacked the question of spectral (and, in the case of [1],
norm-resolvent) convergence of such partial differential operators to a graph Laplacian with
certain matching conditions at the graph vertices. This latter ordinary differential operator
is introduced as follows. Denoting by E the set of edges e of the limiting graph G, each
e ∈ E can be identified with the interval [0, le], where le is the length of e. We use notation
L2(e) for the associated Hilbert space L2(0, le). Similarly, we denote L2(G) := ⊕eL2(e).
The graph Laplacian AG is generated by the differential expression −u”, u ∈ H2(e) on each
edge e ∈ E separately (see [5] for details), subject to the vertex conditions discussed below.
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Figure 1. An example of a thin network in the case of a resonant scaling of the edge thickness and
vertex diameter. The (non-dimensional) parameter ε is the ratio of the actual size to the wavelength.
As ε → 0, the structure converges to a graph; the related notation is introduced at the start of Section 2.
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It was proved in [2–4] that, within any compact K ∈ C, the spectra of Aε converge in
the Hausdorff sense to the spectrum of a graph Laplacian AG. In the book [1], the claimed
convergence was enhanced to the norm-resolvent type, with an explicit control of the
error as O(εγ), where γ > 0 depends on whether the ambient space is two-dimensional.
The matching conditions at the vertices of the limiting graph turn out to be any one of
the following:

(i) Kirchhoff (i.e., standard) if the vertex volumes are decaying, as ε → 0, faster than the
edge volumes;

(ii) “Resonant”, which can be equivalently described in terms of δ-type matching condi-
tions with coupling constants proportional to the spectral parameter z, see [2,3], if the
vertex and edge volumes are of the same order;

(iii) “Dirichlet-decoupled” (i.e., the graph Laplacian becomes completely decoupled) if the
vertex volumes vanish slower than the edge ones.

We also refer the reader to the frequently overlooked papers [6,7], where an alternative
approach to the asymptotic analysis of thin networks, aimed at capturing the resonant and
scattering features, is developed; see also the references therein. In the present paper we
consider the case of scalar PDEs, although our approach can be immediately generalised
to the case of PDE systems, in particular, in the context of thin elastic structures with
applications to, e.g., pentamodes (see [8,9]) by utilising the results of [10].

In the present paper, we are primarily interested in the most non-trivial resonant
case (ii). We provide a straightforward, alternative to [1], proof of the fact that the Neumann
Laplacians Aε in this case converge in a norm-resolvent sense to a linear operator acting in
the Hilbert space L2(G)⊕CN , where N is the number of vertices. The mentioned limiting
operator is in fact the one first pointed out in [4] as a self-adjoint operator whose spectrum
coincides with the Hausdorff limit of spectra for the family Aε.

On the technical side, our approach can be seen as a modification of the one developed
by us in [10,11]; see also [12–14]. We specifically point out that the framework originally
developed for high-contrast homogenisation admits a natural generalisation to setups
where the “contrast” is achieved by purely geometric means, including (but not limited
to) thin networks, as in the present paper. This seems to widen significantly the range
of dimension-reduction-type models that are amenable to this kind of analysis and thus
to establish a transparent connection between previously unrelated physical contexts,
providing for a possibility to develop new types of media in materials science.

We obtain a better error bound than [1] (Section 6.7) (and skip a visit to the “plumber’s
shop” of [1,15]). Our estimate in the planar case is O(ε| log ε|) and in the case of Rd, d ≥ 3,
it is O(ε). Unlike that of [1], our method does not allow us to study the full set of asymptotic
regimes in (iii). This is due to the fact that the argument of our paper [11] is based on the
Dirichlet-to-Neumann (DN) machinery. There is a possibility to modify the approach by
invoking Neumann-to-Dirichlet maps instead, which would have two advantages: one
could consider all rates of vertex volume decay in (iii), and certain geometric smoothness
requirements could be somewhat relaxed. Nevertheless, in this paper we stick with the DN
version of the approach in order to align the exposition with that of [11]. The alternative
strategy will be followed up elsewhere, both in the present context and in the setting of [11].

The above results of course imply the Hausdorff spectral convergence, at the same
time yielding a sharp estimate on its rate. Moreover, in contrast to [1], our approach
allows one to consider “high-frequency” regimes, i.e., setups where the spectral parameter
(which in the wave propagation context may represent the square of the frequency) is
no longer constrained to a compact set but is still constrained by some negative power
of the small parameter ε. (In non-dimensional terms this corresponds to the wavelength
being of the order of some positive power of ε). This leads to a sequence of “effective”,
dimensionally reduced, models of the thin structure, which are sequentially applicable
for a set of (asymptotic) frequency intervals. The complexity of the dimension reduction
process for these models increases along the sequence. While an initial result regarding the
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high-frequency situation is presented below (which suffices to reveal a metamaterial in a
periodic thin network of [16]), we postpone the full analysis to a future publication.

Alongside the high-frequency analysis, yet another sequence of models will be re-
vealed by a version of the same argument. This corresponds to the transition from the
resonant regime to the Dirichet-decoupled one and will allow us to reconcile the asymptotic
analysis of [1] with that of [7] by introducing “transitional” models of increasing complexity.
In these transitional regimes, from the point of view of [1], one gets arbitrarily close to
the Dirichlet-decoupled situation, see (iii) above, whereas from the point of view of [7]
(where the vertex volumes do not decay at all), one faces a highly non-trivial picture of
resonant scattering.

Aiming at better clarity, in the present paper we restrict ourselves to the case where
(without much loss of generality) the edge subdomains are assumed straight and uniformly
thin, whereas the vertex subdomains are smooth with, possibly, the exception of the points
where they meet the edges (see Section 2 for further details). These assumptions appear
very natural in view of the possible examples shown in Figures 1 and 2.

Γε
ev QeQv

Figure 2. An example of a vertex subdomain Qv and an edge subdomain Qe separated by a contact
plate Γε

ev of linear size ε. The volumes of Qv and Qe are assumed to be of the same order εd−1, which
is also the area of the contact plate. As in Figure 1, the (non-dimensional) parameter ε is the ratio of
the actual size to the wavelength.

The ultimate section of the paper is dedicated to the spectral analysis of the effective
graph Laplacian. We show that effective matching conditions at graph vertices, having
been commonly treated as impedance type (namely, linear in the spectral parameter), are
in fact of δ′ type after an application of a unitary gauge. This latter, however, introduces
constant magnetic potentials on the edges of the limit graph. It is notable that the presence
of such a magnetic field leads to a phase transition to a medium exhibiting double-negative
metamaterial properties; see [16]. This observation will permit us to construct thin periodic
networks with negative group velocity without the need for an external magnetic field,
by relying instead on the resonant geometric properties of the network.

2. Problem Setup and Preliminaries

In what follows, we consider a prototypical setup only, which already presents all the
challenges appearing in the general case. We also refer the reader to [1], where the most
general setup is meticulously introduced.

For the limiting graph, the following notation will be used: the metric graph G will
be identified with the set of edges E, so each individual edge is denoted by e ∈ E and
is associated with an interval [0, le]. We denote by V the set of graph vertices and treat
each v ∈ V as the set of edge endpoints meeting at v. The graph G is assumed to be
oriented throughout.

Proceeding to the setup for the Neumann Laplacian on a thin-graph-convergent
structure, let a connected (open) domain Q be the union of the “vertex” part QV , the “edge”
part QE, and the interface boundary Γε

v between the two, where QE will be assumed to be a
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finite collection of ε-thin cylinders (for d = 2, rectangular boxes), QE = ∪eQe of lengths le.
For each e, the domain Qe is assumed to be, up to a linear spatial transform (i.e., shift and
rotation), defined by (for d = 2)

Qe =
{

x ∈ R2 : x1 ∈ (0, le), x2 ∈ (0, ε)
}
= (0, le)× (0, ε).

In dimensions d ≥ 3, the set Qe is defined as the direct product of the interval (0, le)
and a smooth cross-section Qc

e of volume εd−1.
It is further assumed that QV = ∪vQv, where each of the disjoint domains Qv

is connected and has piecewise smooth boundary ∂Qv, which can be decomposed as
∂Qv = Γ̃ε

v ∪ Γε
v, where Γε

v is the interface between the vertex and edge domains and Γ̃ε
v is the

remaining part of ∂Qv. Henceforth, we often drop the dependence on ε in the notation for
those geometric elements where it can be removed by a rescaling or is otherwise irrelevant
in the analysis to follow.

The contact part Γε
v is further decomposed into a union of flat plates (for d = 2, straight

segments): Γε
v = ∪Γε

ev. Here, the union is taken over all edge domains Qe connected to Qv
so that Qe ∩ Qv = Γε

ev. In what follows, we will refer to the segments Γε
ev as contact plates.

Since operators of Zaremba (or mixed) boundary value problem [17] will be used below, we
further require that the contact plates Γε

ev meet Γ̃ε
v at angles strictly less than π; see [18,19]

for further details. We will further assume that the curves Γ̃ε
v are smooth.

Furthermore, we assume that for all vertices v the domains Qv have volumes of
order εd−1 and are obtained by suitable transformations of an ε-independent domain Q0

v
containing the origin. More precisely, we assume that for all v and ε > 0 one has

Qv = ε
d−1

d T ε
v (Q

0
v) + bε

v, (1)

where bε
v ∈ Rd, and the domain T ε

v (Q0
v) is obtained from Q0

v by a suitable homeomorphism
T ε

v that (a) preserves volume and (b) maintains the angles between the contact plates and
the adjacent parts of the boundary to be uniformly less than π, cf. [17,18].

For example, if Qv is star-shaped with respect to the origin (recall that a domain Qv is
said to be star-shaped with respect to xv ∈ Qv if for all x ∈ Qv one has
{xv + t(x − xv), t ∈ [0, 1]} ⊂ Qv), the deformation T ε

v can be constructed by “cut-and-
glue surgery” applied to Q0

v followed by a suitable “radial” scaling, as follows. The domain
Q0

v is first split into several conical (sectorial for d = 2) subdomains by making cuts along-
side the cone “generatrices” (“radii” for d = 2) from the origin to the boundary points
(endpoints for d = 2) of all subsets of ∂Q0

v pertaining to the contact plates of Qv. Each cone
is then transformed by a suitable change of variable so that (A) the images of the cone
bases pertaining to the contact plates of Qv have linear size ε1/d and (B) the image of the
complementary part of Q0

v is reattached to the lateral boundaries of the cones in A. Note
that this procedure in general changes the domain volume by a small quantity. In order to
restore the volume, a suitable “radial” scaling (centred at the origin) is applied, ensuring
that it does not affect any of the mentioned conical subsets.

We remark that the representation (1) guarantees that we are in the “resonant” (or
“borderline”) case of [2,3], i.e., that the volumes of the contact plates are proportional to the
volumes of vertex domains.

The requirement that the homeomorphism T ε
v in (1) be volume preserving is not

essential and can be removed, as long as the ratios of the volumes of the vertex domains to
the volumes of the contact plates are bounded below. In this case, the corresponding final
convergence estimates, similar to those we derive below (see Theorem 3), will in general
depend on the said ratios, as is evident from the formula (14).

On the domain Q, we consider a family of self-adjoint operators Aε defined by their
sesquilinear forms and corresponding to the differential expression −∆ subject to Neumann
boundary conditions. Other types of boundary conditions can be considered as well,
including those of Robin and Dirichlet [6,20], in which case the lower edge of the spectrum
is ε-dependent, which in the context of homogenisation corresponds to the so-called high-
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frequency regime or, using the terminology of M. S. Birman, to “the neighbourhood of the
edge of a gap” [21,22].

Consider σ > 0 and an arbitrary non-negative function R = R(ε), ε ∈ (0, 1) such that
R(ε)ε1/2| log ε|γ → 0 as ε → 0, where γ = 1 for d = 2 and γ = 0 otherwise. In what follows,
we will deal with the family of resolvents (Aε − z)−1. We shall always assume that z ∈ C is
separated from the spectrum of the original operator family. In particular cases, we will
assume that either z is constrained to the ε-growing compact set

Kε
σ := BR(ε)(0) \

{
z ∈ C| dist(z,R) ≥ σ},

where BR(ε)(0) denotes the ball of radius R(ε) centered at the origin, or

z ∈ Kσ :=
{

z ∈ C| z ∈ K a compact set in C, dist(z,R) ≥ σ
}

.

In particular, for all ε small enough, one has Kσ ⊂ Kε
σ. After we have established the

operator-norm asymptotics of (Aε − z)−1 for z ∈ Kσ, the result is extended by analyticity to
a compact set Kext

σ whose distance to the spectrum of the leading order of the asymptotics
is bounded below by σ, and the same statement holds in the case of Kε

σ.
Proceeding similarly to, e.g., [23] in the related area of critical-contrast homogenisation

and facilitated by the abstract framework of [24], we consider Aε as operators of transmis-
sion problems (see [25] and references therein) relative to the internal boundary Γε := ∪e,vΓε

ev.
The transmission problem is formulated as, given a function f ∈ L2(Q), finding the weak
solution u ∈ L2(Q) of the boundary value problem

−∆u(x)− zu(x) = f (x), x ∈ QV or x ∈ QE,

uv(x) = ue(x),
∂uv

∂n
− ∂ue

∂n
= 0 on Γε

ev,

∂u
∂n

= 0 on ∂Q.

(2)

Here, uv := u|Qv , ue := u|Qe for all admissible e and v (i.e. when Γε
ev ̸= ∅), and n

represents the exterior normal on ∂Q and the “edge-inward" normal (i.e., directed from
Qv to Qe) on any of contact plates Γε

ev. By a classical argument, the solution of the above
problem is shown to be equal to (Aε − z)−1 f . Note that the boundary value problem for
the Neumann Laplacian on Q is given by the first and third lines in (2). While the second
line is, strictly speaking, redundant, it proves important in order to view the problem as a
transmission one relative to Γε.

It remains to be seen that the linear operator of the transmission problem (2) defined
via the technique in [24], which we briefly recall below, is the same operator Aε; the proof
of this fact follows easily by combining [24] and the main estimate of [25].

Following the approach of [24] (cf. [26,27] and references therein for alternative ap-
proaches), which is based on the ideas of the classical Birman–Kreı̆n–Višik theory (see [28–30]),
the linear operator of the transmission boundary value problem is introduced as follows.
Let H := L2(Γε) = ⊕e,vL2(Γε

ev), and consider the harmonic lift operators ΠV and ΠE
defined on ϕ ∈ H via

ΠVϕ := uϕ, where

{
∆uϕ = 0, uϕ ∈ L2(QV),
uϕ|Γε = ϕ,

ΠEϕ := uϕ, where

{
∆uϕ = 0, uϕ ∈ L2(QE),
uϕ|Γε = ϕ,

subject to Neumann boundary conditions on ∂Q. These operators are first defined on
ϕ ∈ C2

0(Γ
ε), in which case the corresponding solutions uϕ can be seen as classical [17].

The results of [18] allow one to extend both harmonic lifts to bounded (in fact, compact) op-
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erators on H, in which case uϕ are to be treated as distributional solutions of the respective
boundary value problems. The solution operator Π : H 7→ L2(Q) = L2(QV)⊕ L2(QE) is
defined as follows:

Πϕ := ΠVϕ ⊕ ΠEϕ.

Consider the self-adjoint operator family A0 (choosing not to reflect the ε-dependence
in the notation) to be the Dirichlet decoupling of the operator family Aε, i.e., the operator of
the boundary value problem on both QV and QE, where the Dirichlet boundary conditions
are imposed on Γε together with Neumann boundary conditions on ∂Q. The operator A0
is generated by the same differential expression as Aε. Clearly, one has A0 = AV

0 ⊕ AE
0

relative to the orthogonal decomposition L2(Q) = L2(QV)⊕ L2(QE); all three operators
A0, AV

0 and AE
0 are self-adjoint and positive-definite. Moreover, by [18,31] there exists a

bounded inverse A−1
0 . Note that dom A0 ∩ ran Π = ∅; see [24].

Furthermore, denoting by Γ̃V
0 and Γ̃E

0 the left inverse of ΠV and ΠE, respectively, one
introduces the trace operator ΓV

0 (respectively, ΓE
0 ) as the null extension of Γ̃V

0 (respectively,
Γ̃E

0 ) to the domain dom AV
0 ∔ ran ΠV (respectively, dom AE

0 ∔ ran ΠE). In the same way, we
introduce the operator Γ̃0 and its null extension Γ0 to the domain dom A0 ∔ ran Π.

The solution operators SV
z , SE

z of the boundary value problems{
−∆uϕ − zuϕ = 0, uϕ ∈ dom AV

0 ∔ ran ΠV ,

ΓV
0 uϕ = ϕ,{

−∆uϕ − zuϕ = 0, uϕ ∈ dom AE
0 ∔ ran ΠE,

ΓE
0 uϕ = ϕ

are defined as linear mappings from ϕ to uϕ, respectively. These operators are bounded
from L2(Γε) to L2(QV) and L2(QE), respectively, and admit the following representations:

SE
z = (1 − z(AE

0 )
−1)−1ΠE, SV

z = (1 − z(AV
0 )

−1)−1ΠV .

The solution operator Sz from L2(Γε) to L2(QV) ⊕ L2(QE) is now defined as
Sz = SV

z ⊕ SE
z ; it admits the representation Sz = (1 − z(A0)

−1)−1Π and is bounded.
Having introduced orthogonal projections PV and PE from L2(Q) onto L2(QV) and

L2(QE), respectively, one has the obvious identities

SV
z = PVSz, SE

z = PESz, ΠV = PVΠ, ΠE = PEΠ.

Fix self-adjoint (and, in general, unbounded) operators ΛE, ΛV defined on domains
dom ΛE, dom ΛV ⊂ L2(Γε) (in what follows these operators will be chosen as DN maps of
Zaremba problems on QE and QV , respectively, and well-defined on H1(Γε), where H1(Γε)
is the standard Sobolev space pertaining to the internal boundary Γε). Still following [24],
we define the “second boundary operators” ΓE

1 and ΓV
1 to be linear operators on the domains

dom ΓE
1 := dom AE

0 ∔ ΠE dom ΛE, dom ΓV
1 := dom AV

0 ∔ ΠV dom ΛV .

The action of ΓE(V)
1 is set by:

ΓE
1 : (AE

0 )
−1 f ∔ ΠEϕ 7→ Π∗

E f + ΛEϕ, ΓV
1 : (AV

0 )
−1 f ∔ ΠVϕ 7→ Π∗

V f + ΛVϕ

for all f ∈ L2(QE), ϕ ∈ dom ΛE and f ∈ L2(QV), ϕ ∈ dom ΛV , respectively.
Alongside ΓE(V)

1 , introduce a self-adjoint operator Λ on dom Λ ⊂ H and then the
following “boundary” operator Γ1 :

dom Γ1 := dom A−1
0 ∔ Π dom Λ,
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Γ1 : A−1
0 f ∔ Πϕ 7→ Π∗ f + Λϕ ∀ f ∈ L2(Q), ϕ ∈ dom Λ.

We remark that the operators Γ1, ΓE(V)
1 thus defined are assumed to be neither closed

nor indeed closable.
In our setup, we make the following concrete choice of the operators ΛE(V): in what

follows, they are the DN maps pertaining to the components QE and QV , respectively.
More precisely, for the problem

∆uϕ = 0, uϕ ∈ L2(QE),

uϕ|Γε = ϕ, ∂nuϕ|∂Q = 0,

the operator ΛE maps the boundary values ϕ of uϕ to the negative traces of its normal derivative

∂nuϕ|Γε := ∇u · n|Γε ,

where n = −nE is as above the “edge-inward” normal. This operator is well defined by its
sesquilinear form as a self-adjoint operator on L2(Γε) (see, e.g., [32,33]), and
dom ΛE ⊃ H1(Γε) by [18]. The above definition is inspired by [24]. Note that the op-
erator thus defined is negative the classical DN map of, e.g., [23].

On the vertex part QV , we consider the problem

∆uϕ = 0, uϕ ∈ L2(QV),

uϕ|Γε = ϕ, ∂nuϕ|∂Q = 0,

and define ΛV as the operator mapping the boundary values ϕ of uϕ to the negative
traces of its normal derivative −∂nuϕ|Γε , where n = nV is again the “edge-inward” normal.
The self-adjointness of ΛV on dom ΛV ⊃ H1(Γε) follows by an unchanged argument.

Finally we introduce the operator Λ which on ϕ ∈ H1(Γε) is the sum Λϕ = ΛVϕ + ΛEϕ.
It is also a self-adjoint operator on dom Λ ⊃ H1(Γε). This can be ascertained either by
the argument of [25], in which case it is defined as the inverse of a compact self-adjoint
operator on the orthogonal complement to constants L2(Γε)⊖ {c111}, extended to {c111} by
zero or, alternatively, from its definition by a closed sesquilinear form.

The choice of ΛE(V) made above allows us to consider Γ1 on the domain
dom A0 ∔ Π dom Λ. One then writes [24] the second Green identity in the following form:

⟨Au, v⟩L2(Q) − ⟨u, Av⟩L2(Q) = ⟨Γ1u, Γ0v⟩L2(Γε) − ⟨Γ0u, Γ1v⟩L2(Γε)

for all u, v ∈ dom Γ1 = dom A0 ∔ Π dom Λ, where the operator A is the null extension
(see [34]) of the operator A0 onto dom Γ1. Thus the triple (H, Γ0, Γ1) is closely related to
a boundary quasi-triple of [26] (see also [35]) for the transmission problem considered;
cf. [27] for an alternative approach.

The calculation of Π∗ in [24] shows that Π∗ = Γ1 A−1
0 and therefore Γ1 as introduced

above acts as follows:

Γ1 : u = PEu + PVu 7→ ∂nPeu|Γε − ∂nPVu|Γε ,

where PE and PV are the orthogonal projections of L2(Q) onto L2(QE), L2(QV), respectively.
Therefore, transmission problem at hand (at least, formally so far) corresponds to the
interface (or “matching”) condition Γ1u = 0.

Definition 1 ([24]). The operator-valued function M(z) defined on the domain dom Λ for
z ∈ ρ(A0) (and in particular, for z ∈ Kε

σ) by the formula

M(z)ϕ = Γ1Szϕ = Γ1(1 − zA−1
0 )−1Πϕ (3)

is referred to as the M-function of the problem (2).
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The following result of [24] summarises the properties of the M−function which we
will need in what follows.

Proposition 1 ([24], Theorem 3.3). 1. One has the following representation:

M(z) = Λ + zΠ∗(1 − zA−1
0 )−1Π, z ∈ ρ(A0). (4)

2. M(z) is an analytic operator-function with values in the set of closed operators in L2(Γε)
densely defined on the z-independent domain dom Λ.

3. For z, ζ ∈ ρ(A0) the operator M(z)− M(ζ) is bounded and

M(z)− M(ζ) = (z − ζ)S∗
z̄ Sζ

In particular, ℑM(z) = (ℑz)S∗
z̄ Sz̄ and (M(z))∗ = M(z̄).

4. For uz ∈ ker(A − zI) ∩ {dom A0 ∔ Π dom Λ}, the following formula holds:

M(z)Γ0uz = Γ1uz.

Alongside M(z), we define MV(z) and ME(z), which pertain to the vertex QV and
edge QE parts of the domain Q, respectively, by the formulae

MV(z)ϕ = ΓV
1 SV

z ϕ = ΓV
1
(
1 − z(AV

0 )
−1)−1ΠVϕ,

ME(z)ϕ = ΓE
1 SE

z ϕ = ΓE
1
(
1 − z(AE

0 )
−1)−1ΠEϕ.

(5)

As before, in the notation we suppress the dependence on the parameter ε for brevity.
The value of the fact that for ϕ ∈ H1(Γε) one has M(z)ϕ = ME(z)ϕ + MV(z)ϕ is

clear: in contrast to Aε, which cannot be additively decomposed into “independent" terms
pertaining to the vertex and edge parts of the medium Q owing to the transmission
interface conditions on Γε, the M-function is additive (see, e.g., [11,36], where this property
was observed and exploited in the related settings of homogenisation and scattering,
respectively). In what follows, we will observe that the resolvent (Aε − z)−1 can be
expressed in terms of M(z) via a version of the celebrated Kreı̆n formula, thus reducing
the asymptotic analysis of the resolvent to that of the corresponding M-function (see,
e.g., [26,37] for alternative approaches to derivation of the Kreı̆n formula in our setting).

Alongside the transmission problem (2), the boundary conditions of which can be
now (so far, formally) represented as u ∈ dom A0 ∔ ΠL2(Γε), Γ1u = 0, in what follows
we will require a wider class of problems of this type. This class is formally given by the
transmission conditions

u ∈ dom A ≡ dom A0 ∔ ΠL2(Γε), β0Γ0u + β1Γ1u = 0,

where β1 is a bounded operator on L2(Γε) and β0 is a linear operator defined on the domain
dom β0 ⊃ dom Λ.

In general, the operator β0Γ0 + β1Γ1 is not defined on the domain dom A. This problem
is being taken care of by the following assumption, which will be satisfied throughout:

β0 + β1Λ defined on dom Λ is closable in H.

We remark that by Proposition 1 the operators β0 + β1M(z) are then closable for all
z ∈ ρ(A0), and the domains of their closures coincide with dom β0 + β1Λ.

For any f ∈ H, ϕ ∈ dom Λ, the equality

(β0Γ0 + β1Γ1)(A−1
0 f + Πϕ) = β1Π∗ f + (β0 + β1Λ)ϕ
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shows that the operator β0Γ0 + β1Γ1 is correctly defined on A−1
0 H ∔ Π dom Λ ⊂ dom A.

Denoting B := β0 + β1Λ with the domain domB ⊃ dom Λ, one checks that
HB := A−1

0 H ∔ Π domB is a Hilbert space with respect to the norm

∥u∥2
B := ∥ f ∥2

H + ∥ϕ∥2
H + ∥Bϕ∥2

H, u = A−1
0 f + Πϕ.

It is then proved [24] (Lemma 4.1) that β0Γ0 + β1Γ1 extends to a bounded operator
from HB to H. For the sake of convenience, same notation β0Γ0 + β1Γ1 is preserved for
this extension.

We will make use of the following version of the celebrated Kreı̆n formula.

Proposition 2 ([24], Theorem 5.1). Let z ∈ ρ(A0) be such that the operator β0 + β1M(z) defined
on domB is boundedly invertible. Then

Rβ0,β1(z) := (A0 − z)−1 + SzQβ0,β1(z)S
∗
z̄ , where Qβ0,β1 := −(β0 + β1M(z))−1β1, (6)

is the resolvent of a closed densely defined operator Aβ0,β1 with the domain

dom Aβ0,β1 = {u ∈ HB |(β0Γ0 + β1Γ1)u = 0} = ker(β0Γ0 + β1Γ1).

In particular, the (self-adjoint) operator of the transmission problem (2), which cor-
responds to the choice β0 = 0, β1 = I, admits the following characterisation in terms of
its resolvent:

R0,I(z) = (A0 − z)−1 − Sz M−1(z)S∗
z̄ . (7)

In this case, one clearly has HB = A−1
0 H∔Π dom Λ and dom A0,I = {u ∈ HB|Γ1u = 0},

which, together with the discussion at the beginning of this section, yields A0,I = Aε.
We remark that the operators β0 and β1 above can be assumed z-dependent, as this

change does not impact the corresponding proofs of [24]. In this case, however, the cor-
responding operator-function Rβ0,β1(z) is shown to be the resolvent of a z-dependent
operator family. Within the self-adjoint setup of the present paper, Rβ0,β1(z) is guaranteed
to represent a generalised resolvent in the sense of [38–40].

3. Auxiliary Estimates

In this section, we collect a number of auxiliary statements required in our proof of
the main result.

We start with the analysis of the operators ΠV and SV
z introduced in Section 2. First,

we note that each of these operators admits a decomposition into an orthogonal sum over N
vertex domains {Qv} of Q. It therefore suffices to consider a single vertex domain Qv (we
recall for readers’ convenience that the volume of this domain is assumed to be decaying
with ε → 0). Its boundary ∂Qv contains a disjoint set of straight segments belonging to the
internal boundary Γε, which are, in line with what has been said above, denoted as Γε

ev; the
union of the latter is Γε

v.
The decoupled operator A0 has L2(Qv) as its invariant subspace. We will denote

by A(v)
0 its self-adjoint restriction, A(v)

0 := A0|L2(Qv)
. By construction, the operator A(v)

0
is the Laplacian with the so-called Zaremba, or mixed Neumann–Dirichlet, boundary
condition [17,41]. More precisely, it is subject to the Dirichlet boundary condition on Γε

v and
to Neumann boundary condition on its complement Γ̃ε

v. Clearly, this operator is boundedly
invertible; moreover, the following statement holds.

Proposition 3 (see [31,42]). There exists a constant C > 0 such that for all ε one has

∥∥(A(v)
0 )−1∥∥ ≤ C|Qv|

{
| log ε|, d = 2,

ε2−d, d ≥ 3
≍ ε| log ε|γ,
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where, as before, γ = 1 for d = 2 and γ = 0 otherwise.

Remark 1. The above proposition holds under more general conditions than those we impose.
Namely, the domain Qv is only required to be Lipschitz and no conditions whatsoever are imposed
on the geometry of the set Γε

v.

Next, we turn our attention to the solution operator S(v)
z := SV

z |Γε
v and the correspond-

ing harmonic lift Π(v) := ΠV |Γε
v . The two are clearly related by the formula

S(v)
z =

(
1 − z(A(v)

0 )−1)−1Π(v).

In order to bound the norm of Π(v), we can follow, e.g., the following approach. First,
consider the corresponding Zaremba problem on Q0

v. We proceed by relating the norm
of the corresponding Poisson operator to the least Steklov eigenvalue of the bi-Laplacian,
following the blueprint of [43], based in turn on Fichera’s duality principle; see [44]. Since
the boundary of Q0

v is non-smooth, in doing so we follow the generalisations developed
in [45,46], with obvious modifications required when passing from the Dirichlet to Zaremba
setup. The estimate for the said Steklov eigenvalue is then taken from the norm of the
compact embedding of H2(Q0

v) to the traces of normal derivatives on the contact plates;
see, e.g., [47]. Rescaling back to Qv, we obtain the following auxiliary result.

Lemma 1. There exists C > 0 such that ∥Π(v)∥ ≤ C for all ε.

By Proposition 3, the above lemma yields the following estimate for the solution
operator S(v)

z .

Lemma 2. For ε ∈ (0, 1), uniformly in z ∈ Kε
σ (and, in particular, for z ∈ Kσ) one has

S(v)
z =

(
1 + O(|z|ε| log ε|γ)

)
Π(v) = Π(v) + O(|z|ε| log ε|γ),

where the error bounds are understood in the uniform operator norm topology.

Our next step is the analysis of the “part” of the DN map ΛV pertaining to the vertex
domain Qv. We will denote by ΛV

v its self-adjoint restriction ΛV |L2(Γε
v)
=: ΛV

v .
First, we note that the spectrum of ΛV

v (which can be termed as the Steklov spectrum
of the sloshing problem pertaining to A(v)

0 ; see [48]) is discrete and accumulates to neg-
ative infinity. The point λ1 = 0 is the least (by absolute value) Steklov eigenvalue with
ψv = |Γε

v|−1/2111|Γε
v being the corresponding eigenvector. For the second eigenvalue λ2, one

has the following estimate; see, e.g., [32] and references therein.

Lemma 3. There exists C > 0 such that |λ2| ≥ Cε−1.

Introduce the N-dimensional orthogonal projection

P := ∑
v
⟨·, ψv⟩ψv,

define P⊥ := 1 − P and consider the operator P⊥M(z)P⊥, which is well defined since
P dom Λ ⊂ dom Λ. By a straightforward estimate for sesquilinear forms, see [11] (Section 3.2),
and taking into account (4) applied to MV(z) and combined with Proposition 3 as well as
Lemmata 1, 3, one has the following statement.

Lemma 4. There exists C > 0 such that for all ε ∈ (0, 1) one has∥∥(P⊥M(z)P⊥)
−1∥∥ ≤ Cε, z ∈ Kε

σ,
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where the operator P⊥M(z)P⊥ is considered as a linear (unbounded) operator in P⊥H.

We conclude this section by noting that, alternatively, one can derive the bound on
the Poisson operator Π(v) claimed in Lemma 1 by employing the scaling property of the
Dirichlet-to-Neumann map ΛV

v , similar to the argument of [32] referenced above, combined
with a standard estimate on the solutions to the classical Neumann problem.

4. Norm-Resolvent Asymptotics

We will make use of the Kreı̆n formula (7) to obtain a norm-resolvent asymptotics of
the family Aε. In doing so, we will compute the asymptotics of M−1(z) based on a Schur–
Frobenius-type inversion formula, having first rewritten M(z) as a 2 × 2 operator matrix
relative to the orthogonal decomposition of the Hilbert space H = PH ⊕ P⊥H. In the
study of operator matrices, we rely upon the material of [49]; see also references therein.

The operator M(z) admits the block matrix representation

M(z) =
(
A B
E D

)
with A,B,E bounded.

For the inversion of M(z), we then use the Schur–Frobenius inversion formula [49]
(Theorem 2.3.3)

(
A B
E D

)−1

=

(
A−1 +A−1BS−1EA−1 −A−1BS−1

−S−1EA−1 S−1

)
with S := D−EA−1B. (8)

Note that by Proposition 1, one has ℑM(z) = (ℑz)S∗
z̄ Sz̄. Moreover, since

Sz = (1 − zA−1
0 )−1Π, one has

S∗
z̄ Sz̄ = Π∗(1 − zA−1

0 )−1(1 − z̄A−1
0 )−1Π,

and therefore, for some constants c1, c2 > 0,

⟨S∗
z̄ Sz̄Pϕ,Pϕ⟩H =

∥∥(1 − z̄A−1
0 )−1ΠPϕ

∥∥2 ≥ c1∥ΠPϕ∥2 ≥ c1∥ΠVPϕ∥2 ≥ c2∥Pϕ∥2
H

for all ϕ ∈ H, z ∈ Kε
σ, where we have used the fact that the operator A0 is bounded below

by a positive constant. It follows that A−1 = (PM(z)P)−1 is bounded.
Proceeding exactly as in [11] based on the estimate provided by Lemma 4 which

now reads ∥∥D−1∥∥ ≤ Cε,

we use S−1 = (I −D−1EA−1B)−1D−1 to obtain S−1 = O(ε).
Returning to (8), one obtains

M(z)−1 =

(
A B
E D

)−1

=

(
A−1 0

0 0

)
+ O(ε) (9)

with a uniform estimate for the remainder term. Comparing our result with (6) of
Proposition 2 with β0 := P⊥ and β1 := P , one arrives at the following.

Theorem 1. There exists C > 0 such that for all ε ∈ (0, 1) and z ∈ Kε
σ (in partucular, for all

z ∈ Kσ) one has the estimate∥∥(Aε − z)−1 − (Aβ0,β1 − z)−1∥∥ ≤ C|z|2ε

for a universal constant C and β0 = P⊥, β1 = P , where the operator Aβ0,β1 is defined in
Proposition 2.
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Proof. The proof is identical to that of [11] (Theorem 3.1); we include it here for the sake
of completeness. For the resolvent (Aε − z)−1, the formula (7) is applicable, in which
for M(z)−1 we use (9). As for the resolvent

(
AP⊥ ,P − z

)−1, Proposition 2 with β0 = P⊥,
β1 = P is clearly applicable. Moreover, for this choice of β0, β1, the operator

QP⊥ ,P (z) = −
(
P⊥ + PM(z)

)−1P

in (6) is easily computable (e.g., by the Schur–Frobenius inversion formula of [49], see (8)).
The mentioned computation is facilitated by the fact that P⊥ + PM(z) is triangular
(A = PM(z)P , B = PM(z)P⊥, E = 0, D = I in (8)) with respect to the decomposi-
tion H = PH⊕P⊥H, yielding

QP⊥ ,P (z) = −P
(
PM(z)P

)−1P , (10)

and the claim follows.

Already the estimate of Theorem 1 establishes norm-resolvent convergence of the
family Aε to an operator which by (10) is a relative (i.e., with respect to the difference of
resolvents) finite-rank perturbation of the decoupled operator A0. However, in the case
z ∈ Kσ, which we will assume henceforth, it is possible to obtain a further simplification
of this answer, relating the leading-order asymptotic term to a self-adjoint operator on
the limiting metric graph. This procedure follows the blueprint of our paper [11]. We
next briefly outline the related argument. For the case of z not constrained to a compact,
a similar argument yields a sequence of dimensionally reduced models, as mentioned in
the Introduction.

Note first that (A0 − z)−1 = (AV
0 − z)−1 ⊕ (AE

0 − z)−1 is easily analysed. Indeed,
by Proposition 3 one has

(AV
0 − z)−1 = O

(
ε| log ε|γ

)
. (11)

Furthermore, the operator (AE
0 − z)−1, by separation of variables, is O(ε2)-close to the

Dirichlet Laplacian on the space

HG := ⊕vL2([0, le]× 111ε),

where 111e := ε−(d−1)/2111 is the normalised constant function in the variable transverse to the
edge e.

We remark that this is the only place where we use the assumption about the geometric
shape of the edge parts Qe of the thin structure. This can be generalised to the setup of [1],
allowing for curvature and non-uniform thickness, leading to Laplace–Beltrami operators
on the edges of the limiting graph.

The operator (A0 − z)−1 is therefore close, uniformly in z ∈ Kσ, to an operator that
is unitary equivalent to the resolvent of AG

0 , where AG
0 is the Dirichlet-decoupled graph

Laplacian pertaining to the graph G. The related error estimates are the same as in (11).
The finite-dimensional second term on the right-hand side of (10) is therefore expected to
encode the matching conditions at the vertices of the limiting graph G. In order to see this,
one passes over to the generalised resolvent Rε(z) := PE(Aε − z)−1PE, which is shown to
admit the following asymptotics.

Theorem 2. The operator family Rε(z) admits the following asymptotics in the operator-norm
topology for z ∈ Kσ:

Rε(z)− Reff(z) = O(ε),

where Reff(z) is the solution operator for the following spectral BVP on the edge domain QE:

−∆u − zu = f , f ∈ L2(QE),

β0(z)ΓE
0 u + β1ΓE

1 u = 0,
(12)
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with β0(z) = P⊥ −PB(z)P , B(z) := −MV(z) and β1 = P .
The boundary condition in (12) can be written in the more conventional form

P⊥u|Γε = 0, P∂nu = PB(z)Pu
∣∣
Γε .

Equivalently,
Rε(z)−

(
AE
P⊥−PB(z)P ,P − z

)−1
= O(ε),

where AE
P⊥−PB(z)P ,P , for any fixed z, is the operator in L2(QE) defined by Proposition 2 relative to

the triple (H, ΠE, ΛE), where the term “triple" is understood in the sense of [24]. This operator is
maximal anti-dissipative for z ∈ C+ and maximal dissipative for z ∈ C−; see [40].

The proof of the theorem follows immediately from Theorem 1; see [11] (Theorem 3.6),
together with the observation that

PM(z)P = PME(z)P + PMV(z)P .

The next step of our argument is to introduce the truncated (reduced) boundary space
H̆ in order to make all the ingredients finite-dimensional. In view of clarity, in what
follows we consistently supply the (finite-dimensional) “truncated” spaces and operators
pertaining to them by the breve overscript.

We put H̆ := PH (noting that in our setup H̆ is N-dimensional, where N is the number
of vertices; see Section 2). Introduce the truncated Poisson operator on H̆ by Π̆E := ΠE|H̆
and the truncated DN map Λ̆E := PΛE|H̆. Then, the following statement holds.

Proposition 4 ([11], Theorem 3.7). 1. The formula

Reff(z) =
(

AE
0 − z

)−1 − S̆E
z
(

M̆E(z)−PB(z)P
)−1

(S̆E
z̄ )

∗ (13)

holds, where S̆E
z is the solution operator of the problem

−∆uϕ − zuϕ = 0, uϕ ∈ dom AE
0 ∔ ran Π̆E,

ΓE
0 uϕ = ϕ, ϕ ∈ H̆,

and M̆E is the M-operator defined in accordance with (3), (5) relative to the triple (H̆, Π̆E, Λ̆E).
2. The “effective” generalised resolvent Reff(z) is represented as the generalised resolvent of

the problem
−∆u − zu = f , f ∈ L2(QE), u ∈ dom AE

0 ∔ ran Π̆E,

P∂nu
∣∣
Γε = PB(z)Pu

∣∣
Γε .

3. The triple (H̆, Γ̆εE
0 , Γ̆εE

1 ) is the classical boundary triple [50,51] for the operator Amax defined
by the differential expression −∆ on the domain dom Amax = dom AE

0 ∔ ran Π̆E. Here, Γ̆εE
0 and

Γ̆εE
1 are defined on dom Amax as the operator of the boundary trace on Γ and P∂nu, respectively.

We now consider the operator PB(z)P in (13); since B = −MV by definition, we
invoke the estimates derived in Section 3 to obtain

PBP = −PΛVP − zPΠ∗
VΠVP + O(ε| log ε|γ) = −zΠ̆∗

VΠ̆V + O(ε| log ε|γ),

with a uniform estimate for the remainder term. Here, the truncated Poisson operator Π̆V
is introduced as Π̆V := ΠV |H̆ relative to the same truncated boundary space as above,
H̆ = PH. As a result, we obtain

Reff(z)− Rhom(z) = O
(
ε| log ε|γ

)
,
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with
Rhom(z) := (AE

0 − z)−1 − S̆E
z
(

M̆E(z) + zΠ̆∗
VΠ̆V

)−1
(S̆E

z̄ )
∗. (14)

By a classical result of [40] (see also [38,39]), the operator Reff(z) is a generalised
resolvent, so it defines a z-dependent family of closed densely defined operators in L2(QE),
which are maximal anti-dissipative for z ∈ C+ and maximal dissipative for z ∈ C−. Writing
the resolvent (Aε − z)−1 in the matrix form relative to the orthogonal decomposition
L2(Q) = PEL2(Q)⊕ PV L2(Q) = L2(QE)⊕ L2(QV) then yields the following result.

Theorem 3. The resolvent (Aε − z)−1 admits the following asymptotics in the uniform operator-
norm topology: (

Aε − z
)−1

= Reff(z) + O
(
ε| log ε|γ

)
,

where the operator Reff(z) has the following representation relative to the decomposition L2(QE)⊕
L2(QV):

Reff(z) =

 Reff(z)
(
Kz̄
[
Reff(z̄)− (AE

0 − z̄)−1])∗Π̆∗
V

Π̆VKz
[
Reff(z)− (AE

0 − z)−1] Π̆VKz

(
Kz̄
[
Reff(z̄)− (AE

0 − z̄)−1])∗Π̆∗
V

. (15)

Here, Kz := ΓE
0 |Nz with Nz := ran SE

z P , z ∈ C±, and the generalised resolvent Reff(z) is
defined by (14).

The above theorem provides us with the simplest possible leading-order term Reff(z)
of the asymptotic expansion for (Aε − z)−1. However, it is not yet obvious whether it is the
resolvent of some self-adjoint operator in the space L2(QE)⊕ Π̆VH̆ ⊂ L2(Q). It turns out
that this is indeed so, which is seen via the following explicit construction.

Put L2(G) := ⊕eL2(0, le), H2(G) := ⊕e H2(0, le). For all u ∈ H2(G), denote by uev the
limit of ue(x) := u|e(x) at the vertex v. Let Heff := L2(G)⊕CN , and set

domAhom =
{
(u, β)⊤ ∈ Heff : u ∈ H2(G), uev = ue′v =: uv for any v

and e, e′ incident to v, and β = κuV
}

,
(16)

where uV is the N-dimensional vector of {uv}v∈V and κ is the diagonal matrix

κ := diag
{
|Q0

v|1/2}. (17)

The action of the operator is set by

Ahom

(
u
β

)
=

(
−u”

−κ−1∂nu|V

)
,

(
u
β

)
∈ domAhom, (18)

where ∂nu|V is the N-dimensional vector {∑e∼v ∂nue|v}v∈V , i.e., the vector for which each
element is represented by the sum of edge-inward normal derivatives of the function u over
all the edges incident to the vertex v. We write e ∼ v if and only if the edge e is incident to
the vertex v.

The main result of the present work, which is obtained by computing explicitly the
resolvent of (16)–(18) and comparing it with (15) (see details of a similar computation
in [13]), is formulated next.

Theorem 4. The resolvent (Aε − z)−1 admits the following estimate in the uniform operator norm
topology, uniform in z ∈ Kσ:(

Aε − z
)−1 − Θ

(
Ahom − z

)−1Θ∗ = O
(
ε| log ε|γ

)
,

where Θ is a partial isometry from Heff onto L2(Q), acting as follows:
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• For every edge e ∈ G, e = [0, le], it embeds u ∈ H2(e) into L2(Qe) as u(x)× ε−(d−1)/2111(y),
where y is the variable in the direction transverse to that of x;

• For every vertex v ∈ G, it embeds the value uv, i.e., the common value of u ∈ H2(G) at the
vertex v, into L2(Qv) as ε−(d−1)/2uv111.

5. Analysis of Vertex Matching Conditions

In the present section, we continue our study of the operator (16)–(18) associated with
an arbitrary metric graph G, with a view to analyse its spectral structure. We will show
that the matching conditions at graph vertices associated with the spectral problem for the
mentioned operator, albeit closely resembling δ-type conditions with coupling constants
linear in the spectral parameter z, can be in fact represented (up to a unitary gauge) by
δ′-type matching conditions for all z ̸= 0 (while for z = 0 they coincide with the classical
Kirchhoff condition). We will assume throughout that this graph contains no loops, in line
with the assumptions imposed on the thin network studied above. We will further assume
without loss of generality that the graph G is connected and that the matrix κ is invertible.

Since the operator Ahom can be viewed as a self-adjoint out-of-space extension (see,
e.g., [52] and references therein) of a symmetric differential operator on the metric graph
G, it is amenable to the classical boundary triples theory; see [53,54]. We recall that for a
closed and densely defined symmetric operator A on a separable Hilbert space H with
domain domA, a boundary triple is defined as follows.

Definition 2 ([55]). A triple (K, Γ0, Γ1) consisting of an auxiliary Hilbert space K and linear
mappings Γ0, Γ1 defined everywhere on domA∗ is called a boundary triple for A∗ if the following
conditions are satisfied:

(1) The abstract Green’s formula is valid

(A∗u⃗, v⃗)H − (u⃗,A∗v⃗)H = (Γ1u⃗, Γ0v⃗)K − (Γ0u⃗, Γ1v⃗)K, u⃗, v⃗ ∈ domA∗ (19)

(2) For any Y0, Y1 ∈ K there exist u⃗ ∈ domA∗, such that Γ0u⃗ = Y0, Γ1u⃗ = Y1. In other words,
the mapping u⃗ 7→ Γ0u⃗ ⊕ Γ1u⃗ from domA∗ to K⊕K is surjective.

It can be shown (see [55]) that a boundary triple for A∗ exists, although it is not unique.

Definition 3. Let T = (K, Γ0, Γ1) be a boundary triple of A∗. The Weyl function of A∗

corresponding to T and denoted by M(z), z ∈ C \ R, is an analytic operator-function with a
positive imaginary part for z ∈ C+ (i.e., an operator R-function) with values in the algebra of
bounded operators on K such that

M(z)Γ0u⃗ = Γ1u⃗ ∀u⃗ ∈ ker(A∗ − zI).

For z ∈ C \R one has (M(z))∗ = (M(z̄)) and ℑ(z)ℑ(M(z)) > 0.

A comparison with the assertion 4 of Proposition 1 shows that the Weyl function M(z)
in the context of the boundary triples theory is intimately related to the object introduced
in Definition 1. The overall setup leading to its construction is, however, different and is
based on the explicit choice of the boundary operators Γ0 and Γ1.

Definition 4. An extension A of a closed densely defined symmetric operator A is called almost
solvable and is denoted by A = AB, if there exist a boundary triple (K, Γ0, Γ1) for A∗ and a
bounded operator B : K → K defined everywhere in K such that

u⃗ ∈ dom AB ⇐⇒ Γ1u⃗ = BΓ0u⃗.

This definition implies that dom AB ⊂ domA∗ and AB is a restriction of A∗ to the
linear set dom AB := {u⃗ ∈ domA∗ : Γ1u⃗ = BΓ0u⃗}. In this context, the operator B plays
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the rôle of a parameter for the family of extensions {AB | B : K → K}. It can be shown
(see [36] for references) that the resolvent set of AB is non-empty (i.e., AB is maximal), both
AB and (AB)

∗ = AB∗ are restrictions of A∗ to their domains, and AB and B are self-adjont
or dissipative simultaneously.

Under the additional assumption that A is simple (or, in other words, completely non-
self-adjoint), that is, it has no reducing self-adjoint “parts”, the spectrum of AB coincides,
counting multiplicities, with the set of points z0 ∈ C into which (M(z0)− B)−1 does not
admit analytic continuation. In the general case, however, the spectrum is a union of the
“zeroes” of the operator-valued function M(z)− B introduced above and the spectrum of
the self-adjoint “part” of the symmetric operator A in its Wold decomposition [56].

Our immediate aim is to construct a convenient boundary triple for the operator Aeff.
In doing so, we rely upon the framework (in a particular case of a loop-graph with exactly
one vertex) of the paper [57].

We define the symmetric operator A as follows (cf. (16)):

domA =
{
(u, β)⊤ ∈ Heff : u ∈ H2(G), uev = ue′v =: uv for any v

and e, e′ incident to v, ∂nu|V = 0, and β = κuV

}
,

where uV is, as above, the N-dimensional vector of {uv}v∈V , κ is the diagonal matrix (17),
and ∂nu|V is the N-dimensional vector of {∑e∼v ∂nue|v}v∈V . The action of the operator A
is set by (18). The operator thus defined is clearly symmetric in L2(G)⊕CN ; its adjoint A∗

is defined by the same expression (18) on the domain

domA∗ =
{
(u, β)⊤ ∈ Heff : u ∈ H2(G), uev = ue′v =: uv for any v

and e, e′ incident to v
}

.

We have the following lemma.

Lemma 5. Let K = CN , Γ0(u, β)⊤ := ∂nu|V , and Γ1(u, β)⊤ := κ−1β − uV . The triple
(K, Γ0, Γ1) is a boundary triple for the operator A∗. The operator Aeff is a self-adjoint almost
solvable extension of A, corresponding to the matrix B = 0 with respect to this boundary triple.

The proof of the above lemma is obtained via integration by parts; for details, see [57].
We shall further require two ordinary differential operators on the metric graph G

together with their boundary triples. Consider Aδ
max to be the operator generated by the

negative Laplacian −∆ on L2(G), defined on the domain

dom Aδ
max = {u ∈ H2(G) : uv := uev = ue′v for any v and e, e′ incident to v}.

In the paper [58], it is shown that this is a natural choice of a maximal operator
if one seeks to consider the so-called δ-type matching conditions at the graph vertices,
i.e., matching conditions of the type

u continuous at every vertex v and ∂nu|V = η2uV , (20)

where η is a diagonal matrix. The conditions (20) reduce to Kirchhoff, or standard, matching
conditions under the choice η = 0. The natural boundary triple for Aδ

max is (K, Γδ
0, Γδ

1),
where K = CN , Γδ

0u = uV , and Γδ
1u = ∂nu|V . The corresponding Weyl function (“M-

matrix”) admits the form [58] Mδ(z) := {mδ
vv′}v,v′∈V , where

mδ
vv′(k) =

{
−k ∑e∼v cot kle, v = v′,

k ∑e∼v,e∼v′(sin kle)−1, v ̸= v′.
(21)
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Here, k :=
√

z is such that ℑk ≥ 0.
Next, we consider the magnetic Laplacian on the graph G subject to δ′-type matching at

the vertices. Namely, we assume that for all edges e the action of the operator is described as

−
(

d
dx

+ iτe

)2

, (22)

where τe is an edgewise-constant magnetic potential. In order to introduce δ′-type matching,
consider the co-normal derivatives

∂τ
nue|v =

{
u′

e|v + iτeue|v if v is the left endpoint of e,

−(u′
e|v + iτeue|v) otherwise.

We say that the magnetic Laplacian on G is subject to δ′-type matching at the vertices if

∂τ
nu|v := ∂τ

nue|v = ∂τ
nue′ |v for any e, e′ ∼ v, and Σu|V = η2∂τ

nu|V ∀ v ∈ V, (23)

where ∂τ
nu|V and Σu|V denote the vectors {∂τ

nu|v}v∈V and {∑e∼v ue|v}v∈V , respectively.
By an argument similar to that of [58], see also [13], one easily checks that (K, Γ̂0, Γ̂1)

is a boundary triple for the magnetic Laplacian Aδ′
max defined on

dom Aδ′
max = {u ∈ H2(G) : ∂τ

nu|v := ∂τ
nue|v = ∂τ

nue′ |v for any v and e, e′ incident to v},

if K = CN , Γ̂0u := {∂τ
nu|v}v∈V , and, finally, Γ̂1u := −{∑e∼v ue|v}v∈V . The corresponding

M-matrix M̂(z) := {m̂vv′}v,v′∈V admits the form [58]

m̂vv′(k) =

{
−k−1 ∑e∼v cot kle, v = v′,
−k−1 ∑e∼v,e∼v′ exp(iσe(v, v′)τele)(sin kle)−1, v ̸= v′.

Here k =
√

z such that ℑk ≥ 0 and σe(v, v′) = 1 if e is directed from v to v′,
σe(v, v′) = −1 otherwise.

We will now fix the values of the magnetic potential as follows: τe := π/le. The opera-
tor Aδ′

max corresponding to this choice will be henceforth denoted by Âmax. Its M-matrix M̂
relative to the triple (K, Γ̂0, Γ̂1) admits the form

m̂vv′(k) =

{
−k−1 ∑e∼v cot kle, v = v′,
k−1 ∑e∼v,e∼v′(sin kle)−1, v ̸= v′,

which coincides with (21) up to the factor z−1. We remark that the operator Âmax and any
of its self-adjoint restrictions can be unitary transformed into a regular (non-magnetic)
Laplacian on the same graph G by a standard gauge transform; this will, however, be
reflected in the corresponding change of matching conditions at the vertices. Motivated by
applications to electromagnetic wave propagation [16], here we prefer to proceed with the
magnetic setup.

Returning to the analysis of the operator Aeff, we now have the following lemma.

Lemma 6. Relative to the boundary triple of Lemma 5, the Weyl M-matrix of the operator Aeff
admits the form

M(z) = −M−1
δ (z)− 1

z
κ−2 = −1

z
(M̂−1(z) + κ−2).

Proof. In view of Lemma 5, consider the vector (u, β)⊤ ∈ domA∗ such that

A∗
(

u
β

)
= z
(

u
β

)
.
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By the definition of A∗, one equivalently has −u” = zu on G and − κ−1∂nu|V = zβ. Ab-
breviating Γ0(u, β)⊤ =: α, one therefore has, in view of the definition of Γ0 (see Lemma 5):

β = −1
z

κ−1α.

Furthermore, taking now into account the definition of the second boundary operator
Γ1, one has

Γ1(u, β)⊤ = κ−1β − uV = −1
z

κ−2α − uV .

Note that the function u, by the definition of A∗, must be continuous at every v ∈ V
and therefore belongs to the domain of the operator Aδ

max. Therefore, u ∈ ker(Aδ
max − z)

and thus one has Γδ
1u = Mδ(z)Γδ

0u. By construction, one has Γδ
0u = u|V and Γδ

1u = ∂nu|V ,
whence uV = M−1

δ (z)α. Ultimately,

M(z)α = Γ1(u, β)⊤ = −1
z

κ−2α − M−1
δ (z)α,

as claimed.

Let E(·) denote the orthogonal operator spectral measure of the self-adjoint operator
Aeff and E(·) the orthogonal spectral measure of the self-adjoint operator Â−κ2 , where
the latter is defined as the almost solvable extension of (Aδ′

max)
∗ corresponding to the

parameterising operator B = −κ2. In other words, it is the magnetic Laplacian on the graph
G subject to the condition τe = π/le for all e ∈ E and δ′-type matching conditions (23) at
the graph vertices with η = κ. We have the following statement.

Theorem 5. For any c0 > 0, the operators AeffE(c0, ∞) and Â−κ2 E(c0, ∞) are unitary equivalent.

Proof. In the generic case when A is simple (in particular when all le are rationally inde-
pendent), the claim follows immediately from Lemma 6. Indeed, in this case no positive
z can be an eigenvalue of the operator A and the same applies to the operator (Aδ′

max)
∗.

Therefore, any reducing self-adjoint “part” of either symmetric operator can only be zero.
In the general case, if z0 > 0 is an eigenvalue of A, then the corresponding eigenfunction
solves −u” = z0u on G subject to −κ−1∂nu|V = z0β, uV = κ−1β, ∂nu|V = 0 and therefore
uV = ∂nu|V = 0. Thus, any eigenfunction must be of the form ce sin

√
z0x on each e; more-

over, one must also have sin
√

z0le = 0 for all e such that ce ̸= 0 and ∂nu|V = 0. For each of
these, the function that is edgewise transformed as ce sin

√
z0x 7→ ce exp(−iτex) cos

√
z0x

is shown to be an eigenfunction of (Aδ′
max)

∗ corresponding to the eigenvalue z0. The same
argument applied in the opposite direction completes the proof.

Remark 2. The analysis of the unitary equivalence linking AeffE(c0, ∞) and Â−κ2 E(c0, ∞) is
an exciting possible development from the point of view of classical functional analysis, since it
appears to be a natural graph-based generalisation of the classical Hilbert transform. This can be
seen, in particular, from the explicit calculation in the case of an infinite chain graph [14].

The above theorem shows that the spectral analysis of the operator Aeff in relation to
its non-zero spectrum reduces to that of the magnetic graph Laplacian with (non-trivial)
δ′-type matching condition at the graph vertices, which could come as a surprise given that
the eigenvalue problem for Aeff yields, for the first component of the eigenvector (u, β)⊤,
the equation −u” = zu on G subject to ∂nu|V = −zκ2u|V , which on the face of it is a δ-type
matching condition, albeit with coupling constants proportional to the spectral parameter
z. It would seem natural, therefore, for the self-adjoint operator Aeff to be a H−1 singular
perturbation of the graph Laplacian with standard boundary conditions. Instead, our result
shows that it is in fact a more singular H−2 perturbation. The underlying reasons of this
peculiar behaviour are discussed in detail in [59], where the relationship of operators of
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the class considered with those in the area of zero-range potentials with internal structure,
as introduced by B. S. Pavlov [60,61], is explained. We also point out that the assertion of
Theorem 5 has been observed in a particular case of the cycle graph with one vertex (the
loop) in [14] in the context of a high-contrast homogenisation problem on the real line.

We conclude the spectral analysis of the operator Aeff by a brief discussion of its kernel
and the comparison of the latter with that of the operator Â−κ2 . It turns out that, unlike
what happens with its non-zero spectrum, the kernel kerAeff of the operator Aeff is that of
the Kirchhoff graph Laplacian.

Note first that kerAeff necessarily belongs to the non-simple (i.e., self-adjoint) part of
A. Indeed, for (u, β)⊤ ∈ kerAeff it has to satisfy

−u′′ = 0 on G, ∂nu|V = 0, uV = κ−1β,

where the boundary conditions are equivalent to Γ0(u, β)⊤ = 0, Γ1(u, β)⊤ = 0. On the
other hand, this is precisely the condition for u to be in the kernel of a graph Laplacian with
Kirchhoff matching conditions. One therefore infers from [5] that dim kerAeff = 1 (in our
case of connected graphs), and the elements of kerAeff are constants on G.

The kernel of Â−κ2 is spanned by functions u such that

−u′′ = 0 on G and Σu|V = κ2∂τ
nu|V .

It is easily checked that a non-trivial solution to this problem could exist only if
∂τ

nu|V = 0, Σu|V = 0 or, in other words, if Γ̂0u = Γ̂1u = 0. This means that, precisely as in
the case of Aeff, the kernel of Â−κ2 necessarily belongs to the non-simple (i.e., self-adjoint)
part of the symmetric operator (Aδ′

max)
∗. The question of its existence and dimension admits

a simple answer in terms of the graph topology. It is clear that it is trivial in the case when
G is a tree; in general, its dimension is shown to be equal to the cyclomatic number χ of the
graph G. In particular, this yields unitary equivalence of Aeff and Â−κ2 in the case where G
contains exactly one cycle.

Remark 3. The result of the present section seems to have been overlooked in a number of now-
classical papers dealing with Sturm–Liouville problems on an interval with boundary conditions
depending on a spectral parameter; see, e.g., [62–67].

Conjecture 1. The above discussion raises the question of which definition of δ′-type interaction on
a graph is motivated physically, i.e., whether it is the one emerging from the analysis of thin networks
as the operator Ahom, see (16)–(18), or the traditional (see [5]) definition (22)–(23). At first sight,
the difference between the two operators is insignificant: it is only in their kernels. However, it
can happen to be of paramount importance if, e.g., one considers an ε-periodic graph with δ′-type
matching conditions, in which case the homogenisation procedure [11,12] will lead to drastically
different outcomes for the two related setups, as it relies upon a “threshold effect" [68] in the
behaviour of the least eigenvalue of the operator on the fundamental cell for small quasimomenta.
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