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Abstract: This paper presents a comprehensive survey of the generalization of hybrid numbers and
hybrid polynomials, particularly in the fields of mathematics and physics. In this paper, by using
higher-order generalized Fibonacci polynomials, we introduce higher-order generalized Fibonacci
hybrid polynomials called higher-order generalized Fibonacci hybrinomials. We obtain some special
cases and algebraic properties of the higher-order generalized Fibonacci hybrinomials, such as the
recurrence relation, generating function, exponential generating function, Binet formula, Vajda’s
identity, Catalan’s identity, Cassini’s identity and d’Ocagne’s identity. We also present three different
matrices whose components are higher-order generalized Fibonacci hybrinomials, higher-order
generalized Fibonacci polynomials and Lucas polynomials. By using these matrices, we obtain some
identities related to these newly established hybrinomials.
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1. Introduction

The importance of certain integer sequences extends beyond the boundaries of pure
and applied mathematics, permeating various scientific disciplines such as physics and en-
gineering. One of the best known integer sequences is the Fibonacci sequence, named after
the famous Italian mathematician Leonardo Pisano, more commonly known as Fibonacci.
The Fibonacci sequence has many applications in various fields, including mathematics,
physics and engineering. This has made it a subject of interest to many researchers [1,2].
The study of Fibonacci and Lucas numbers has been the subject of extensive research by
mathematicians in the literature. The Fibonacci sequence {Fn} and Lucas sequence {Ln}
are, respectively, defined by the following recurrence relations: for n ∈ N∪ {0} (here, N is
the set of positive integers),

Fn+2 = Fn+1 + Fn

and
Ln+2 = Ln+1 + Ln,

where F0 = 0, F1 = 1, L0 = 2 and L1 = 1. The Binet formulas for the Fibonacci numbers
and Lucas numbers are

Fn =
αn − βn

α − β

and
Ln = αn + βn,
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where α and β are the roots of the characteristic equation x2 − x − 1 = 0. One such
generalization is the Fibonacci divisor, also known as higher-order Fibonacci numbers,
which were studied by Pashaev and Özvatan (see, for details, [3,4]). Higher-order Fibonacci
numbers (or Fibonacci divisor, conjugate to Fs) are defined for s ≥ 1 integers as follows:

F(s)
n =

Fns

Fs
=

(αs)n − (βs)n

αs − βs . (1)

As Fns is divisible by Fs, the ratio Fns
Fs is an integer. Therefore, all higher-order Fibonacci

numbers, namely, F(s)
n , are integers. For s = 1, the higher-order Fibonacci number F(1)

n
becomes an ordinary Fibonacci number. For s = 1, 2, 3, 4, 5 and n ∈ N, the first few numbers
of the higher-order Fibonacci numbers F(s)

n are as follows:

• For s = 1, F(1)
n = Fn = 1, 1, 2, 3, . . . ;

• For s = 2, F(2)
n = F2n = 1, 3, 8, 21, . . . ;

• For s = 3, F(3)
n = 1

2 F3n = 1, 4, 17, 72, . . . ;

• For s = 4, F(4)
n = 1

3 F4n = 1, 7, 48, 329, . . . ;

• For s = 5, F(5)
n = 1

5 F5n = 1, 11, 122, 1353, . . . .

Pashaev [4] presented the critical characteristics of higher-order Fibonacci numbers
and simultaneously demonstrated their application in various physical examples.

In [5], Horadam defined the general polynomial sequence of second order as

wn(γ) = p(γ)wn−1(γ) + q(γ)wn−2(γ),

where
w0(γ) = c0, w1(γ) = c1γd, p(γ) = c2γd, q(γ) = c3γd

in which c0, c1, c2, c3 are constants and d = 0 or 1. Lee and Asci [6] defined and studied
(p, q)-Fibonacci and (p, q)-Lucas polynomials extensively. These polynomials are also
called generalized Fibonacci and Lucas polynomials. For n ≥ 2, the genaralized Fibonacci
and Lucas polynomials are defined by

Un+2(γ) = p(γ)Un+1(γ)− q(γ)Un(γ), (2)

Vn+2(γ) = p(γ)Vn+1(γ)− q(γ)Vn(γ), (3)

where U0(γ) = 0, U1(γ) = 1, V0(γ) = 2, and V1(γ) = p(γ). The generalized Fibonacci
and Lucas polynomials can be expressed by

Un(γ) =
ηn(γ)− θn(γ)

η(γ)− θ(γ)
, (4)

Vn(γ) = ηn(γ) + θn(γ), (5)

where η(γ) and θ(γ) are the roots of the characteristic equation t2 − p(γ)t + q(γ) = 0 with
p2(γ)− 4q(γ) ⩾ 0.

Similar to Equation (1), one can present the higher-order generalized Fibonacci poly-
nomial for s ∈ N as

U(s)
n (γ) =

Uns(γ)

Us(γ)
=

ηsn(γ)− θsn(γ)

ηs(γ)− θs(γ)
, (6)

where U(s)
0 (γ) = 0 and U(s)

1 (γ) = 1. For γ = 1, the higher-order generalized Fibonacci

polynomial U(s)
n (γ) becomes the higher-order generalized Fibonacci numbers studied

by Kızılateş and Kibar [7]. These polynomials have the following algebraic properties
as follows:
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• For n ∈ N, the recurrence relation for higher-order generalized Fibonacci polynomials
is as follows:

U(s)
n+1(γ) = Vs(γ)U

(s)
n (γ)− qs(γ)U(s)

n−1(γ), (7)

where Vs(γ) are the generalized Lucas polynomials.
• The following identities hold for:

U(s)
−n(γ) = −qsn(γ)U(s)

n (γ),

U(−s)
−n (γ) = −qs(γ)U(s)

n (γ)

and
U(−s)

n (γ) = qs(1−n)(γ)U(s)
n (γ).

• The generating function of higher-order generalized Fibonacci polynomials is

∞

∑
n=0

U(s)
n (γ)tn =

t
1 − Vs(γ)t + qs(γ)t2 .

Complex, hyperbolic and dual numbers are well-known two-dimensional number
systems that have been extensively studied in geometric, mathematical and physical
applications by numerous researchers. Özdemir [8] was the first to define the set of hybrid
numbers, denoted by K, which includes both complex and dual numbers, as well as
hyberbolic numbers. He also provided various theorems, properties and matrix forms
related to hybrid numbers. A hybrid number is defined as

K =
{

u + vi + wε+ rh : u, v, w, r ∈ R, i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε+ i
}

,

where R is the set of real numbers. With the hybrid numbers, we can perform some
properties and operations. Namely, taking two hybrid numbers Z1 = u1 + v1i + w1ε+ r1h
and Z2 = u2 + v2i + w2ε+ r2h, we get

(a). Z1 = Z2 if and only if u1 = u2, v1 = v2, w1 = w2, r1 = r2 (equality);
(b). Z1 + Z2 = (u1 + u2) + (v1 + v2)i+(w1 + w2)ε+(r1 + r2)h (addition);
(c). Z1 − Z2 = (u1 − u2) + (v1 − v2)i+(w1 − w2)ε+(r1 − r2)h (subtraction);
(d). k Z1 = ku1 + kv1i + kw1ε+ kr1h (multiplication by scalar k ∈ R).

The hybrid product is obtained by distributing the terms to the right while preserving
the order of unit multiplication. Then, the values of the following are written, substitut-
ing each product of units with the corresponding equalities: i2 = −1, ε2 = 0, h2 = 1,
ih = −hi = ε+ i. From these equalities, we can obtain the product of any two hybrid units.
Table 1 shows the multiplication table for the basis of hybrid numbers.

Table 1. Multiplication table for K.

1 i ε h

1 1 i ε h
i i −1 1 − h ε+ i
ε ε h + 1 0 −ε
h h −ε− i ε 1

Let Z = u + vi + wε+ rh be any hybrid number. The conjugate of Z is defined by

Z̄ = u − vi − wε− rh.

The real number

C(Z ) = Z Z̄ = Z̄ Z =u2 + (v − w)2 − w2 − r2 = u2 + v2 − 2vw − r2,
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is called the character of the hybrid number Z . Hybrid numbers are classified as space-
like, time-like, or light-like based on the character of Z . Specifically, a hybrid number is
space-like if C(Z ) is less than zero, time-like if C(Z ) is greater than zero and light-like
if C(Z ) equals zero. It is important to note that hybrid number multiplication is not
commutative, but it does have the property of associativity. The set of hybrid numbers
forms a non-commutative ring under addition and multiplication (please see [8]).

After Özdemir’s paper, hybrid numbers, whose components are defined by the ho-
mogeneous recurrence relation with constant coefficients, have been studied by a large
number of researchers since 2018 (please see [9–15]). In [16], Kızılateş and Kone introduced
Fibonacci divisor hybrid numbers that generalize the Fibonacci hybrid numbers defined
by Szynal-Liana and Wloch [9]. The Fibonacci divisor hybrid numbers (or higher-order
Fibonacci hybrid numbers) are defined by

FH(s)
n = F(s)

n + F(s)
n+1i + F(s)

n+2ε+ F(s)
n+3h.

They also gave some properties of these numbers. Szynal-Liana and Wloch [17] defined and
studied a family of special polynomials and special numbers related to the Fibonacci and
Lucas hybrid polynomials, namely Fibonacci and Lucas hybrinomials. In [18], Szynal-Liana
et al. defined the Pell hybrinomials and gave some properties of them. Then, Kızılateş [19]
defined and studied Horadam hybrinomials which are a generalization of Fibonacci and
Lucas hybrinomials. The Horadam hybrinomials are defined by

Hn(x) = hn(x) + hn+1(x)i + hn+2(x)ε+ hn+3(x)h. (8)

where hn(x) = hn(x; a, b; p, q) are the Horadam polynomials [5] defined by

hn(x) = pxhn−1(x) + qhn−2(x), n ≥ 3 (9)

with the initial values h1(x) = a and h2(x) = bx. For some other papers, please see [20–23].
Motivated by the above papers, especially articles [17–19], in this paper, we define

higher-order generalized Fibonacci hybrinomials. Our definition includes not only Fi-
bonacci and Fibonacci-type hybrinomials existing in the literature, but also new hybrid
polynomials and numbers depending on the parameter s that generalize these numbers and
polynomials. We give the recurrence relation, the generating functions, and the Binet-like
formula of higher-order Fibonacci hybrid polynomials. We also give some identities such
as Vajda’s identity and its special cases. In the third part, we define some matrices whose
elements are higher-order generalized Fibonacci hybrinomials and higher-order general-
ized Fibonacci and Lucas polynomials. We give the relations between these matrices. We
also use these relations to obtain some identities for the newly defined family of hybrid
polynomials and numbers.

2. Higher-Order Generalized Fibonacci Hybrinomials

In this paper, we define higher-order generalized Fibonacci hybrinomials as follows.

Definition 1. For n ∈ N ∪ {0}, the nth higher-order generalized Fibonacci hybrinomials are
defined by

KU(s)
n (γ) = U(s)

n (γ) + U(s)
n+1(γ)i + U(s)

n+2(γ)ε+ U(s)
n+3(γ)h.

In fact, higher-order generalized Fibonacci hybrinomials contain several important
hybrinomials and hybrid numbers as special cases. We give the following to illustrate
the facts:

• For p(γ) = γ and q(γ) = −1, the higher-order generalized Fibonacci hybrinomials

KU(s)
n (γ) become the higher-order Fibonacci hybrinomials KF(s)

n (γ);
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• For p(γ) = 2γ and q(γ) = −1, the higher-order generalized Fibonacci hybrinomials

KU(s)
n (γ) become the higher-order Pell hybrinomials KP(s)

n (γ);
• For p(γ) = 1 and q(γ) = −1, the higher-order generalized Fibonacci hybrinomials

KU(s)
n become the higher-order Fibonacci hybrid numbers KF(s)

n [16];
• For p(γ) = 2 and q(γ) = −1, the higher-order generalized Fibonacci hybrinomials

KU(s)
n become the higher-order Pell hybrid numbers KP(s)

n ;
• For p(γ) = 1 and q(γ) = −2γ, the higher-order generalized Fibonacci hybrinomials

KU(s)
n become the higher-order Jacobsthal hybrinomials KJ(s)n (γ);

• For p(γ) = 1 and q(γ) = −2, the higher-order generalized Fibonacci hybrinomials

KU(s)
n become the higher-order Jacobsthal hybrid numbers KJ(s)n .

The following Lemma is crucial to our main results.

Lemma 1. Let η̃(γ) and θ̃(γ) be defined as follows:

η̃(γ) := 1 + ηs(γ)i + η2s(γ)ε+ η3s(γ)h

and
θ̃(γ) := 1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h.

Then, we have
η̃(γ)θ̃(γ) = Φ − Ωqs(γ)ω (10)

and
θ̃(γ)η̃(γ) = Φ + Ωqs(γ)ω, (11)

where
Ω = (ηs(γ)− θs(γ)),

Φ = 1 − qs(γ) + q3s(γ) + qs(γ)Vs(γ) + Vs(γ)i+V2s(γ)ε+V3s(γ)h

and
ω =U(s)

2 (γ)i + U(s)
2 (γ)ε− h.

Proof. We first prove (10). Due to Table 1, we can compute

η̃(γ)θ̃(γ) =
(

1 + ηs(γ)i + η2s(γ)ε+ η3s(γ)h
)(

1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h
)

= 1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h

+ηs(γ)i
(

1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h
)

+η2s(γ)ε
(

1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h
)

+η3s(γ)h
(

1 + θs(γ)i + θ2s(γ)ε+ θ3s(γ)h
)

= 1 − qs(γ) + ηs(γ)θs(γ)(θs(γ) + ηs(γ)) + q3s(γ)

+
(

Vs(γ) + ηs(γ)θs(γ)
(

θ2s(γ)− η2s(γ)
))

i

+
(

V2s(γ) + ηs(γ)θs(γ)
(

θ2s(γ)− η2s(γ)
)
− η2s(γ)θ2s(γ)(θs(γ)− ηs(γ))

)
ε

+(V3s(γ)− ηs(γ)θs(γ)(θs(γ)− ηs(γ)))h

= 1 − qs(γ) + qs(γ)Vs(γ) + q3s(γ)

+
(

Vs(γ)− qs(γ)
(

η2s(γ)− θ2s(γ)
))

i

+
(

V2s(γ)− qs(γ)
(

η2s(γ)− θ2s(γ)
)
+ q2s(γ)(ηs(γ)− θs(γ))

)
ε

+(V3s(γ) + qs(γ)(ηs(γ)− θs(γ)))h

= 1 − qs(γ) + q3s(γ) + qs(γ)Vs(γ)
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+

(
Vs(γ)− qs(γ)

(
η2s(γ)− θ2s(γ)

)ηs(γ)− θs(γ)

ηs(γ)− θs(γ)

)
i

+

(
V2s(γ)− qs(γ)

(
η2s(γ)− θ2s(γ)

)ηs(γ)− θs(γ)

ηs(γ)− θs(γ)
+ q2s(γ)(ηs(γ)− θs(γ))

)
ε

+(V3s(γ) + qs(γ)(ηs(γ)− θs(γ)))h.

Substituting
(ηs(γ)− θs(γ)) → Ω,

1 − qs(γ) + q3s(γ) + qs(γ)Vs(γ) + Vs(γ)i+V2s(γ)ε+V3s(γ)h →Φ

and
U(s)

2 (γ)i +
(

U(s)
2 (γ)− qs(γ)

)
ε− h → ω,

in the last equation, we conclude

η̃(γ)θ̃(γ) = Φ − Ωqs(γ)ω.

Following a similar argument as the proof of (10), one can verify (11). The proof of Lemma 1
is complete.

Next, we give the Binet formula for higher-order generalized Fibonacci hybrinomials
of parameter s. Using this formula, we derive some properties of these hybrinomials.

Theorem 1. Let n ∈ N ∪ {0}. The Binet formula for the higher-order generalized Fibonacci
hybrinomials KU(s)

n (γ) is

KU(s)
n (γ) =

η̃(γ)(ηs(γ))n − θ̃(γ)(θs(γ))n

ηs(γ)− θs(γ)
. (12)

Proof. By using (6), we obtain

KU(s)
n = U(s)

n (γ) + U(s)
n+1(γ)i + U(s)

n+2(γ)ε+ U(s)
n+3(γ)h

=

(
ηsn(γ)− θsn(γ)

ηs(γ)− θs(γ)

)
+

ηs(n+1)(γ)− θs(n+1)(γ)

ηs(γ)− θs(γ)
i

+

(
ηs(n+2)(γ)− θs(n+2)(γ)

ηs(γ)− θs(γ)

)
ε+

(
ηs(n+3)(γ)− θs(n+3)(γ)

ηs(γ)− θs(γ)

)
h

=
1

ηs(γ)− θs(γ)

 ηsn(γ)
(

1 + ηs(γ)i + (ηs(γ))2ε+ (ηs(γ))3h
)

−θsn(γ)
(

1 + (θs(γ))i + (θs(γ))2ε+ (θs(γ))3h
) 

=
η̃(γ)(ηs(γ))n − θ̃(γ)(θs(γ))n

ηs(γ)− θs(γ)
.

The proof is complete.

Theorem 2. The generating function for the higher-order generalized Fibonacci hybrinomials
KU(s)

n (γ) is

∞

∑
n=0

KU(s)
n (γ)tn =

η̃(γ)− θ̃(γ)− t(η̃(γ)θs(γ)− θ̃(γ)ηs(γ))

(ηs(γ)− θs(γ))(1 − Vs(γ)t + qs(γ)t2)
. (13)

Proof. Using (12) and (5), we find that

∞

∑
n=0

KU(s)
n (γ)tn =

∞

∑
n=0

η̃(γ)ηsn(γ)− θ̃(γ)θsn(γ)

ηs(γ)− θs(γ)
tn
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=
η̃(γ)

ηs(γ)− θs(γ)

∞

∑
n=0

ηsn(γ)tn − θ̃(γ)

ηs(γ)− θs(γ)

∞

∑
n=0

θsn(γ)tn

=
1

ηs(γ)− θs(γ)

(
η̃(γ)

1 − ηs(γ)t
− θ̃(γ)

1 − θs(γ)t

)

=
1

ηs(γ)− θs(γ)

η̃(γ)− η̃(γ)θs(γ)t − θ̃(γ) + θ̃(γ)ηs(γ)t
(1 − ηs(γ)t)(1 − θs(γ)t)

=
1

ηs(γ)− θs(γ)

η̃(γ)− θ̃(γ)− t
(

η̃(γ)θs(γ)− θ̃(γ)ηs(γ)
)

1 − (θs(γ) + ηs(γ))t + ηs(γ)θs(γ)t2

=
η̃(γ)− θ̃(γ)− t(η̃(γ)θs(γ)− θ̃(γ)ηs(γ))

(ηs(γ)− θs(γ))(1 − Vs(γ)t + qs(γ)t2)
.

The proof is complete.

Theorem 3. For m ∈ N and n ∈ N∪ {0}, the generating function of the higher-order generalized
Fibonacci hybrinomials KU(s)

n+m(γ) is

∞

∑
n=0

KU(s)
n+m(γ)t

n =
KU(s)

m (γ)−KU(s)
m−1(γ)q

s(γ)t
1 − Vs(γ)t + qs(γ)t2 .

Proof. By virtue of (12) and after some calculations, we have

∞

∑
n=0

KU(s)
n+m(γ)t

n =
∞

∑
n=0

(
η̃(γ)ηs(n+m)(γ)− θ̃(γ)θs(n+m)(γ)

ηs(γ)− θs(γ)

)
tn

=
1

ηs(γ)− θs(γ)

(
∞

∑
n=0

η̃(γ)ηs(n+m)(γ)tn −
∞

∑
n=0

θ̃(γ)θs(n+m)(γ)tn

)

=
1

ηs(γ)− θs(γ)

(
η̃(γ)ηsm(γ)

∞

∑
n=0

ηsn(γ)tn − θ̃(γ)θsm(γ)
∞

∑
n=0

θsn(γ)tn

)

=
1

ηs(γ)− θs(γ)

(
η̃(γ)ηsm(γ)(1 − θs(γ)t)− θ̃(γ)θsm(γ)(1 − ηs(γ)t)

(1 − ηs(γ)t)(1 − θs(γ)t)

)

=
η̃(γ)ηsm(γ)− θ̃(γ)θsm(γ)

ηs(γ)− θs(γ)

1
1 − Vs(γ)t + qs(γ)t2

−
ηs(γ)θs(γ)t

(
η̃(γ)ηs(m−1)(γ)− θ̃(γ)θs(m−1)(γ)

)
(ηs(γ)− θs(γ))(1 − Vs(γ)t + qs(γ)t2)

=
KU(s)

m (γ)

1 − Vs(γ)t + qs(γ)t2 −

(
η̃(γ)ηs(m−1)(γ)− θ̃(γ)θs(m−1)(γ)

)
(ηs(γ)− θs(γ))

× qs(γ)t
(1 − Vs(γ)t + qs(γ)t2)

=
KU(s)

m (γ)−KU(s)
m−1(γ)q

s(γ)t
1 − Vs(γ)t + qs(γ)t2 .

The proof is complete.
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Theorem 4. The exponential generating function for the higher-order generalized Fibonacci hybri-
nomials KU(s)

n (γ) is

∞

∑
n=0

KU(s)
n (γ)

tn

n!
=

η̃(γ)eηs(γ)t − θ̃(γ)eθs(γ)t

ηs(γ)− θs(γ)
. (14)

Proof. Using the Binet formula for the KU(s)
n (γ), we have

∞

∑
n=0

KU(s)
n (γ)

tn

n!
=

∞

∑
n=0

(
η̃(γ)ηsn(γ)− θ̃(γ)θsn(γ)

ηs(γ)− θs(γ)

)
tn

n!

=
1

ηs(γ)− θs(γ)

(
η̃(γ)

∞

∑
n=0

ηsn(γ)

n!
tn − θ̃(γ)

∞

∑
n=0

θsn(γ)

n!
tn

)

=
1

ηs(γ)− θs(γ)

(
η̃(γ)eηs(γ)t − θ̃(γ)eθs(γ)t

)
=

η̃(γ)eηs(γ)t − θ̃(γ)eθs(γ)t

ηs(γ)− θs(γ)
.

The proof is complete.

Theorem 5. For n ∈ N, the recurrence relation for the higher-order generalized Fibonacci hybrino-
mials KU(s)

n (γ) is

KU(s)
n+1(γ) = KU(s)

n (γ)Vs(γ)− qs(γ)KU(s)
n−1(γ). (15)

Proof. Applying (12) and (5) gives

KU(s)
n+1(γ) =

η̃(γ)ηs(n+1)(γ)− θ̃(γ)θs(n+1)(γ)

ηs(γ)− θs(γ)

=
1

ηs(γ)− θs(γ)

(
η̃(γ)ηsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

)
=

1
ηs(γ)− θs(γ)

[
η̃(γ)ηsn(γ)ηs(γ)− θ̃(γ)θsn(γ)ηs(γ)

+θ̃(γ)θsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

]

=
1

ηs(γ)− θs(γ)

(
η̃(γ)ηsn(γ)− θ̃(γ)θsn(γ)

)
ηs(γ)

+
1

ηs(γ)− θs(γ)

(
θ̃(γ)θsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

)
= KU(s)

n (γ)ηs(γ) +
1

ηs(γ)− θs(γ)

(
θ̃(γ)θsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

)
= KU(s)

n (γ)(ηs(γ) + θs(γ))−KU(s)
n (γ)θs(γ)

+
1

ηs(γ)− θs(γ)

[
θ̃(γ)θsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

]
= KU(s)

n (γ)Vs(γ) +
1

ηs(γ)− θs(γ)

(
θ̃(γ)θsn(γ)θs(γ)− η̃(γ)ηsn(γ)θs(γ)

+θ̃(γ)θsn(γ)ηs(γ)− θ̃(γ)θsn(γ)θs(γ)

)

= KU(s)
n (γ)Vs(γ) +

1
ηs(γ)− θs(γ)

[
−η̃(γ)ηsn(γ)θs(γ) + θ̃(γ)θsn(γ)ηs(γ)

]
= KU(s)

n (γ)Vs(γ) +
(η(γ)θ(γ))s

ηs(γ)− θs(γ)

[
θ̃(γ)θs(n−1)(γ)− η̃(γ)ηs(n−1)(γ)

]
= KU(s)

n (γ)Vs(γ)− qs(γ)

[
η̃(γ)(ηs(γ))n−1 − θ̃(γ)(θs(γ))n−1

ηs(γ)− θs(γ)

]
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= KU(s)
n (γ)Vs(γ)− qs(γ)KU(s)

n−1(γ).

The required proof is complete.

Table 1 shows us that the multiplication operation in the hybrid numbers is not
commutative. Starting from this, we now give Vajda’s identity, which generalizes Catalan’s,
Cassini’s, and d’Ocagne’s identities that are well known in the literature.

Theorem 6 (Vajda’s identity). For any integers n, m and r, we have

KU(s)
n+m(γ)KU(s)

n+r(γ)−KU(s)
n (γ)KU(s)

n+m+r(γ) = qsn(γ)U(s)
m (γ)

[
ΦU(s)

r (γ) + qs(γ)ωVsr(γ)
]
. (16)

Proof. Using Binet formula for the higher-order generalized Fibonacci hybrinomials, we have

KU(s)
n+m(γ)KU(s)

n+r(γ)−KU(s)
n (γ)KU(s)

n+m+r(γ)

=
1

(ηs(γ)− θs(γ))2

[
−η̃(γ)θ̃(γ)(ηs(γ))n+m(θs(γ))n+r − θ̃(γ)η̃(γ)(θs(γ))n+m(ηs(γ))n+r

+η̃(γ)θ̃(γ)(ηs(γ))n(θs(γ))n+m+r + θ̃(γ)η̃(γ)(θs(γ))n(ηs(γ))n+m+r

]

=
(ηs(γ)θs(γ))n

(ηs(γ)− θs(γ))2

[
−η̃(γ)θ̃(γ)ηsm(γ)θsr(γ)− θ̃(γ)η̃(γ)θsm(γ)ηsr(γ)

+η̃(γ)θ̃(γ)θs(m+r)(γ) + θ̃(γ)η̃(γ)ηs(m+r)(γ)

]

=
qsn(γ)

(ηs(γ)− θs(γ))2

[
−η̃(γ)θ̃(γ)θsr(γ)(ηsm(γ)− θsm(γ))

+θ̃(γ)η̃(γ)ηsr(γ)(ηsm(γ)− θsm(γ))

]

=
qsn(γ)

(ηs(γ)− θs(γ))2 (η
sm(γ)− θsm(γ))

[
−η̃(γ)θ̃(γ)θsr(γ) + θ̃(γ)η̃(γ)ηsr(γ)

]
=

qsn(γ)

(ηs(γ)− θs(γ))2 (η
sm(γ)− θsm(γ))[−(Φ − Ωqs(γ)ω)θsr(γ) + (Φ + Ωqs(γ)ω)ηsr(γ)]

=
qsn(γ)U(s)

m (γ)

ηs(γ)− θs(γ)
[−Φθsr(γ) + Ωqs(γ)ωθsr(γ) + Φηsr(γ) + Ωqs(γ)ωηsr(γ)]

=
qsn(γ)U(s)

m (γ)

ηs(γ)− θs(γ)
[Φ(ηsr(γ)− θsr(γ)) + Ωqs(γ)ω(θsr(γ) + ηsr(γ))]

=
qsn(γ)U(s)

m (γ)

ηs(γ)− θs(γ)

[
ΦΩU(s)

r (γ) + Ωqs(γ)ωVsr(γ)
]

=
qsn(γ)U(s)

m (γ)

ηs(γ)− θs(γ)
Ω
[
ΦU(s)

r (γ) + qs(γ)ωVsr(γ)
]

= qsn(γ)U(s)
m (γ)

[
ΦU(s)

r (γ) + qs(γ)ωVsr(γ)
]
.

The required proof is complete.

Remark 1. As applications of Theorem 6, we obtain the following results.

(i) When taking m → −r, we derive Catalan’s identity for KU(s)
n (γ) as follows:

KU(s)
n−r(γ)KU(s)

n+r(γ)−
(
KU(s)

n (γ)
)2

= qsn(γ)U(s)
−r (γ)

[
ΦU(s)

r (γ) + qs(γ)ωVsr(γ)
]
.

(ii) When taking r = −m = 1, we obtain Cassini’s identity for KU(s)
n (γ) as follows:

KU(s)
n−1(γ)KU(s)

n+1(γ)−
(
KU(s)

n (γ)
)2

= −qsn+s(γ)[Φ + qs(γ)ωVs(γ)].
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(iii) When taking r → j − n, and m = 1, we have d’Ocagne’s identity for KU(s)
n (γ) as follows:

KU(s)
n+1(γ)KU(s)

j (γ)−KU(s)
n (γ)KU(s)

j+1(γ) = qsn(γ)
[
ΦU(s)

j−n(γ) + qs(γ)ωVs(j−n)(γ)
]
.

Remark 2. For γ = 1, higher-order generalized Fibonacci hybrid numbers have the following
character:

C
(
KU(s)

n

)
=

(
U(s)

n

)2
+
(

U(s)
n+1

)2
− 2U(s)

n+1U(s)
n+2 −

(
U(s)

n+3

)2

<
(

U(s)
n

)2
+
(

U(s)
n+1

)2
− 2
(

U(s)
n+1

)2
−
(

U(s)
n+3

)2

=
(

U(s)
n

)2
−
(

U(s)
n+1

)2
−
(

U(s)
n+3

)2
< 0. (17)

Thus, from (17), the higher-order generalized Fibonacci hybrid numbers are space-like.

3. Matrix Representations for Higher-Order Generalized Fibonacci Hybrinomials

In this part of the our paper, we define three different matrices as follows: for n ∈ N,

A(s)
n =

(
KU(s)

n+1(γ) KU(s)
n (γ)

KU(s)
n (γ) KU(s)

n−1(γ)

)
, (18)

Q (s) =

(
Vs(γ) −qs(γ)

1 0

)
, (19)

R (s)
n =

(
U(s)

n+1(γ) U(s)
n (γ)

U(s)
n (γ) U(s)

n−1(γ)

)
, (20)

where KU(s)
n (γ), Vs(γ), and U(s)

n (γ) are higher-order generalized Fibonacci hybrinomi-
als, generalized Lucas polynomials, and higher-order generalized Fibonacci polynomials,
respectively. Based on these matrices, we will obtain some identities for higher-order
generalized Fibonacci hybrinomials.

Lemma 2. Let n ≥ 1 be an integer. Then, we have

A(s)
n = Q (s)A(s)

n−1.

Proof. Applying matrix multiplication and (15) yields

Q (s)A(s)
n−1 =

(
Vs(γ) −qs(γ)

1 0

)(
KU(s)

n (γ) KU(s)
n−1(γ)

KU(s)
n−1(γ) KU(s)

n−2(γ)

)

=

(
Vs(γ)KU(s)

n (γ)− qs(γ)KU(s)
n−1(γ) Vs(γ)KU(s)

n−1(γ)− qs(γ)KU(s)
n−2(γ)

KU(s)
n (γ) KU(s)

n−1(γ)

)

=

(
KU(s)

n+1(γ) KU(s)
n (γ)

KU(s)
n (γ) KU(s)

n−1(γ)

)
= A(s)

n .

The proof is complete.

Lemma 3. Let n ≥ 1 be an integer. Then, we have

R (s)
n = Q (s) R (s)

n−1.
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Proof. By using matrix multiplication and (7), we have

Q (s) R (s)
n−1 =

(
Vs(γ) −qs(γ)

1 0

)(
U(s)

n (γ) U(s)
n−1(γ)

U(s)
n−1(γ) U(s)

n−2(γ)

)

=

(
Vs(γ)U

(s)
n (γ)− qs(γ)U(s)

n−1(γ) Vs(γ)U
(s)
n−1(γ)− qs(γ)U(s)

n−2(γ)

U(s)
n (γ) U(s)

n−1(γ)

)

=

(
U(s)

n+1(γ) U(s)
n (γ)

U(s)
n (γ) U(s)

n−1(γ)

)
= R (s)

n .

The proof is complete.

Lemma 4. Let n ≥ 1 be an integer. Then, we have

A(s)
n =

(
Q (s)

)n
A(s)

0 . (21)

Proof. We will verify that (21) is true by induction on n. Since

Q (s)A(s)
0 =

(
Vs(γ) −qs(γ)

1 0

)(
KU(s)

1 (γ) KU(s)
0 (γ)

KU(s)
0 (γ) KU(s)

−1(γ)

)

=

(
Vs(γ)KU(s)

1 (γ)− qs(γ)KU(s)
0 (γ) Vs(γ)KU(s)

0 (γ)− qs(γ)KU(s)
−1(γ)

KU(s)
1 (γ) KU(s)

0 (γ)

)

=

(
KU(s)

2 (γ) KU(s)
1 (γ)

KU(s)
1 (γ) KU(s)

0 (γ)

)
,

the equality (21) holds for n = 1. Suppose that (21) is true for n. Then, by the inductive
hypothesis, we have

(
Q (s)

)n+1
A(s)

0 =

(
Vs(γ) −qs(γ)

1 0

)n+1
(

KU(s)
1 (γ) KU(s)

0 (γ)

KU(s)
0 (γ) KU(s)

−1(γ)

)

=

(
Vs(γ) −qs(γ)

1 0

)(
Vs(γ) −qs(γ)

1 0

)n
(

KU(s)
1 (γ) KU(s)

0 (γ)

KU(s)
0 (γ) KU(s)

−1(γ)

)

=

(
Vs(γ) −qs(γ)

1 0

)(
KU(s)

n+1(γ) KU(s)
n (γ)

KU(s)
n (γ) KU(s)

n−1(γ)

)

=

(
Vs(γ)KU(s)

n+1(γ)− qs(γ)KU(s)
n (γ) Vs(γ)KU(s)

n (γ)− qs(γ)KU(s)
n−1(γ)

KU(s)
n+1(γ) KU(s)

n (γ)

)

=

(
KU(s)

n+2(γ) KU(s)
n+1(γ)

KU(s)
n+1(γ) KU(s)

n (γ)

)
= A(s)

n+1,

which shows that (21) is also true for n + 1. Therefore, by the principle of mathematical
induction, (21) is true for all n ∈ N. The proof is complete.

Lemma 5. Let n ≥ 1 be an integer. Then, we have

R (s)
n =

(
Q (s)

)n
R (s)

0 . (22)
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Proof. We will prove that (22) is true by induction on n. Since

Q (s) R (s)
0 =

(
Vs(γ) −qs(γ)

1 0

)(
U(s)

1 (γ) U(s)
0 (γ)

U(s)
0 (γ) U(s)

−1(γ)

)

=

(
Vs(γ)U

(s)
1 (γ)− qs(γ)U(s)

0 (γ) Vs(γ)U
(s)
0 (γ)− qs(γ)U(s)

−1(γ)

U(s)
1 (γ) U(s)

0 (γ)

)

=

(
U(s)

2 (γ) U(s)
1 (γ)

U(s)
1 (γ) U(s)

0 (γ)

)
= R (s)

1 .

we know that (22) holds for n = 1. Suppose that (22) is true for n. Then, by the inductive
hypothesis, we get

(
Q (s)

)n+1
R (s)

0 =

(
Vs(γ) −qs(γ)

1 0

)n+1
(

U(s)
1 (γ) U(s)

0 (γ)

U(s)
0 (γ) U(s)

−1(γ)

)

=

(
Vs(γ) −qs(γ)

1 0

)(
Vs(γ) −qs(γ)

1 0

)n
(

U(s)
1 (γ) U(s)

0 (γ)

U(s)
0 (γ) U(s)

−1(γ)

)

=

(
Vs(γ) −qs(γ)

1 0

)(
U(s)

n+1(γ) U(s)
n (γ)

U(s)
n (γ) U(s)

n−1(γ)

)

=

(
Vs(γ)U

(s)
n+1(γ)− qs(γ)U(s)

n (γ) Vs(γ)U
(s)
n (γ)− qs(γ)U(s)

n−1(γ)

U(s)
n+1(γ) U(s)

n (γ)

)

=

(
U(s)

n+2(γ) U(s)
n+1(γ)

U(s)
n+1(γ) U(s)

n (γ)

)
= R (s)

n+1,

which means that (22) is also true for n + 1. Therefore, by the principle of mathematical
induction, (22) is true for all n ∈ N. The proof is complete.

Lemma 6. Let n ≥ 1 be an integer. Then, we have

(
Q (s)

)n
=

(
U(s)

n+1(γ) −qs(γ)U(s)
n (γ)

U(s)
n (γ) −qs(γ)U(s)

n−1(γ)

)
. (23)

Proof. We will show that (23) is true by induction on n. Clearly, from (19), the equality (23)
holds for n = 1. Assume that our assertion holds for n. Then, by the inductive hypothesis,
we have

(
Q (s)

)n+1
=

(
Vs(γ) −qs(γ)

1 0

)(
U(s)

n+1(γ) −qs(γ)U(s)
n (γ)

U(s)
n (γ) −qs(γ)U(s)

n−1(γ)

)

=

 Vs(γ)U
(s)
n+1(γ)− qs(γ)U(s)

n (γ) −qs(γ)
(

Vs(γ)U
(s)
n (γ)− qs(γ)U(s)

n−1(γ)
)

U(s)
n+1(γ) −qs(γ)U(s)

n (γ)


=

(
U(s)

n+2(γ) −qs(γ)U(s)
n+1(γ)

U(s)
n+1(γ) −qs(γ)U(s)

n (γ)

)
,

which shows (23) is also true for n + 1. Therefore, by the principle of mathematical
induction, (23) is true for all n ∈ N.

Theorem 7. Let m, n ∈ N. Then,

KU(s)
n+m(γ) = U(s)

n+1(γ)KU(s)
m (γ)− q−s(γ)U(s)

n (γ)KU(s)
m−1(γ).
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Proof. From (18), we have

A(s)
n+m =

(
KU(s)

n+m+1(γ) KU(s)
n+m(γ)

KU(s)
n+m(γ) KU(s)

n+m−1(γ)

)
.

By using Theorem 4 and Lemma 3, we have

A(s)
n+m =

(
Q (s)

)n+m
A(s)

0 =
(

Q (s)
)n(

Q (s)
)m

A(s)
0 (24)

and
R (s)

n =
(

Q (s)
)n

R (s)
0 ⇒

(
Q (s)

)n
= R (s)

n

(
R (s)

0

)−1
. (25)

Substituting (25) into (24), we get

A(s)
n+m =

(
Q (s)

)n(
Q (s)

)m
A(s)

0 = R (s)
n

(
R (s)

0

)−1
A(s)

m .

Then, we have

A(s)
n+m =

(
U(s)

n+1(γ) U(s)
n (γ)

U(s)
n (γ) U(s)

n−2(γ)

)
1

U(s)
1 (γ)U(s)

−1(γ)−
(

U(s)
0 (γ)

)2

(
U(s)
−1(γ) −U(s)

0 (γ)

−U(s)
0 (γ) U(s)

1 (γ)

)

×
(

KU(s)
m+1(γ) KU(s)

m (γ)

KU(s)
m (γ) KU(s)

m−1(γ)

)

=
1

U(s)
1 (γ)U(s)

−1(γ)−
(

U(s)
0 (γ)

)2

(
U(s)

n+1(γ) U(s)
n (γ)

U(s)
n (γ) U(s)

n−2(γ)

)(
U(s)
−1(γ) −U(s)

0 (γ)

−U(s)
0 (γ) U(s)

1 (γ)

)

×
(

KU(s)
m+1(γ) KU(s)

m (γ)

KU(s)
m (γ) KU(s)

m−1(γ)

)

Taking the first row’s and second column’s entry of each side from the above formula gives

KU(s)
n+m(γ)

=
1

U(s)
1 (γ)U(s)

−1(γ)−
(

U(s)
0 (γ)

)2

 (
U(s)

n+1(γ)U
(s)
−1(γ)− U(s)

n (γ)U(s)
0 (γ)

)
KU(s)

m (γ)

+
(
−U(s)

n+1(γ)U
(s)
0 (γ) + U(s)

n (γ)U(s)
1 (γ)

)
KU(s)

m−1(γ)


=

1

−qs(γ)
(

U(s)
1 (γ)

)2

 (
−qs(γ)U(s)

n+1(γ)U
(s)
1 (γ)− U(s)

n (γ)U(s)
0 (γ)

)
KU(s)

m (γ)

+
(
−U(s)

n+1(γ)U
(s)
0 (γ) + U(s)

n (γ)U(s)
1 (γ)

)
KU(s)

m−1(γ)


=

1
−qs(γ)

(
−qs(γ)U(s)

n+1(γ)KU(s)
m (γ) + U(s)

n (γ)KU(s)
m−1(γ)

)
= U(s)

n+1(γ)KU(s)
m (γ)− q−s(γ)U(s)

n (γ)KU(s)
m−1(γ).

The proof is complete.

Theorem 8. For any k, l, m, n integers for which k + l = m + n, we have

U(s)
k (γ)KU(s)

l (γ)− U(s)
m (γ)KU(s)

n (γ) = −qs(γ)
(

U(s)
m−1(γ)KU(s)

n−1(γ)− U(s)
k−1(γ)KU(s)

l−1(γ)
)

. (26)

Proof. From (21), we have(
Q (s)

)k
A(s)

l =
(

Q (s)
)k(

Q (s)
)l

A(s)
0 =

(
Q (s)

)k+l
A(s)

0
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=
(

Q (s)
)m+n

A(s)
0 =

(
Q (s)

)m(
Q (s)

)n
A(s)

0 =
(

Q (s)
)m

A(s)
n .

Namely, we have (
Q (s)

)k
A(s)

l =
(

Q (s)
)m

A(s)
n .

(
Q (s)

)k
A(s)

l =

(
Vs(γ) −qs(γ)

1 0

)k
(

KU(s)
l+1(γ) KU(s)

l (γ)

KU(s)
l (γ) KU(s)

l−1(γ)

)

=

(
U(s)

k+1(γ) −qs(γ)U(s)
k (γ)

U(s)
k (γ) −qs(γ)U(s)

k−1(γ)

)(
KU(s)

l+1(γ) KU(s)
l (γ)

KU(s)
l (γ) KU(s)

l−1(γ)

)
. (27)

Similarly,
(

Q (s)
)m

A(s)
n is equal to U(s)

m+1(γ)KU(s)
n+1(γ)− qs(γ)U(s)

m (γ)KU(s)
n (γ) U(s)

m+1(γ)KU(s)
n (γ)− qs(γ)U(s)

m (γ)KU(s)
n−1(γ)

U(s)
m (γ)KU(s)

n+1(γ)− qs(γ)U(s)
m−1(γ)KU(s)

n (γ) U(s)
m (γ)KU(s)

n (γ)− qs(γ)U(s)
m−1(γ)KU(s)

n−1(γ)

. (28)

If we equate the second row and second column elements of matrices (27) and (28), we
conclude that

U(s)
k (γ)KU(s)

l (γ)− qs(γ)U(s)
k−1(γ)KU(s)

l−1(γ) = U(s)
m (γ)KU(s)

n (γ)− qs(γ)U(s)
m−1(γ)KU(s)

n−1(γ)

and

U(s)
k (γ)KU(s)

l (γ)− U(s)
m (γ)KU(s)

n (γ) = −qs(γ)
(

U(s)
m−1(γ)KU(s)

n−1(γ)− U(s)
k−1(γ)KU(s)

l−1(γ)
)

.

So, Equation (26) is obtained.

Theorem 9. Let n ∈ N. Then,

KU(s)
m+1(γ)KU(s)

m−1(γ)−
(
KU(s)

m (γ)
)2

=
qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

V2s(γ)

qs(γ)
+ Ω2ωVs(γ) + 2Φ

)
(29)

and

KU(s)
m−1(γ)KU(s)

m+1(γ)−
(
KU(s)

m (γ)
)2

=
qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

V2s(γ)

qs(γ)
− Ω2ωVs(γ) + 2Φ

)
. (30)

Proof. If we take the determinant of both sides of Equation (21) and use the multiplication
from above to down below rule for the determinant A(s)

n [24] (p. 141), we find that

qsn(γ)

(
KU(s)

1 (γ)KU(s)
−1(γ)−

(
KU(s)

0 (γ)
)2
)

=
qsn(γ)

(ηs(γ)− θs(γ))2


(

η̃(γ)(ηs(γ))− θ̃(γ)(θs(γ))
)(

η̃(γ)(ηs(γ))−1 − θ̃(γ)(θs(γ))−1
)

−
(

η̃(γ)− θ̃(γ)
)2


=

qsn(γ)

(ηs(γ)− θs(γ))2

 η̃2(γ) + θ̃2(γ)

−η̃(γ)θ̃(γ)ηs(γ)(θs(γ))−1 − θ̃(γ)η̃(γ)θs(γ)(ηs(γ))−1

−η̃2(γ) + η̃(γ)θ̃(γ) + θ̃(γ)η̃(γ)− θ̃2(γ)


=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−η̃(γ)θ̃(γ)ηs(γ)(θs(γ))−1 − θ̃(γ)η̃(γ)θs(γ)(ηs(γ))−1

+η̃(γ)θ̃(γ) + θ̃(γ)η̃(γ)

)
.
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By virtue of (10) and (11), we deduce

=
qsn(γ)

(ηs(γ)− θs(γ))2

(
−η̃(γ)θ̃(γ)ηs(γ)(θs(γ))−1 − θ̃(γ)η̃(γ)θs(γ)(ηs(γ))−1

+Φ − Ωqs(γ)ω+ Φ + Ωqs(γ)ω

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−η̃(γ)θ̃(γ)

ηs(γ)

θs(γ)
− θ̃(γ)η̃(γ)

θs(γ)

ηs(γ)
+ 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−(Φ − Ωqs(γ)ω)

ηs(γ)

θs(γ)
− (Φ + Ωqs(γ)ω)

θs(γ)

ηs(γ)
+ 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

ηs(γ)

θs(γ)
− Φ

θs(γ)

ηs(γ)
+ Ωqs(γ)ω

ηs(γ)

θs(γ)
− Ωqs(γ)ω

θs(γ)

ηs(γ)
+ 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

η2s(γ) + θ2s(γ)

qs(γ)
+ Ωqs(γ)ω

η2s(γ)− θ2s(γ)

qs(γ)
+ 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

η2s(γ) + θ2s(γ)

qs(γ)
+ Ωω(ηs(γ)− θs(γ))(ηs(γ) + θs(γ)) + 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

η2s(γ) + θ2s(γ)

qs(γ)
+ Ω2ωVs(γ) + 2Φ

)
=

qsn(γ)

(ηs(γ)− θs(γ))2

(
−Φ

V2s(γ)

qs(γ)
+ Ω2ωVs(γ) + 2Φ

)
.

Hence, we show the assertion (29). Using the multiplication from down below to the
above rule for the determinant A(s)

n , (30) can be proved similarly.

4. Conclusions and Discussion

In this paper, we have defined and studied a different generalization of Fibonacci
hybrid numbers and polynomials, which resulted in not only some existing families of
hybrid numbers and polynomials in the literature but also some new families of hybrid
numbers and polynomials according to the values of the parameters. In the last section, we
have obtained some identities for higher-order generalized Fibonacci hybrid polynomials
by using some matrices of a special type. Therefore, our results generalize some previous
papers [16,17,19]. For future research, in view of this paper, researchers can define many
hypercomplex polynomials using other higher-order polynomial families.
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