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Abstract: This paper establishes a new type of space, modified intuitionistic fuzzy soft metric space
(MIFSMS). Basic properties and topological structures are defined in the setting of this new notion
with valid examples. Moreover, we have given some new results along with suitable examples to
show their validity. An application for finding the solution of an integral equation is also given by
utilizing our newly developed results.
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1. Introduction

The concept of vagueness came into existence when it was difficult for the interval
mathematics to solve problems with different uncertainties. To tackle with such issues,
Zadeh [1] gave fuzzy sets (FS) that were very well defined by using the indicator function.
Many properties and important results are given in [1] that build a new field for the
researchers to explore. Thereafter, K.T. Atanassov [2] presented an intuitionistic fuzzy set
(IFS) consisting of membership and non membership functions as well.

Experiments solving issues in economics, engineering, environmental science, sociol-
ogy, medical science and many other fields deal with the complex problems of modeling
uncertain data. While some mathematical theories such as “probability theory, fuzzy set
theory, rough set theory, vague set theory and the interval mathematics” are practical in
defining uncertainty, each of these concepts has their own drawbacks. Further, in case
of data containing parameters, Molodtsov [3] gave the concept of soft sets to deal with
the uncertainties. Soft sets have applications in several fields including the “smoothness
of functions, game theory, operations research, Riemann integration, Perron integration,
probability theory and measurement theory”. Especially, it has been very well applied to
soft decision making problems. Das and Samanta [4–6] applied the concept of soft sets to
metric spaces (MS) and hence presented Soft Metric Spaces (SMS) using soft points of soft
sets. Maji et al. [7] in 2001 introduced Fuzzy Soft Sets. Beaula and Gunaseli [8] applied
the MS concept to Fuzzy Soft Sets and hence introduced Fuzzy Soft Metric Spaces (FSMS)
using a fuzzy soft point and defined some of its characteristics. See also [9–11]. Saadiat
et al. [12] gave a vital concept of Modified Intuitionistic Fuzzy Metric Spaces (MIFMS) by
availing the continuous t-representable norm.

2. Preliminaries

In the given section, χ denotes the universe, Ω depicts the parameter set, Ω̄ represents
the absolute soft set, and SP(χ̄) denotes the set consisting of all the soft points of χ̄.
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Definition 1 ([3]). A 2-tuple (∆, Ω) depicts a soft set on a universe χ where Ω represents the
parameter set and ∆ denotes the map from Ω to power set of χ, i.e., ∆ : Ω → P(χ).

Definition 2 ([7]). A soft set (∆, Ω) is an absolute soft set if ∆(ι) = χ for every ι ∈ Ω.

Definition 3 ([7]). A soft point is a soft set (∆, Ω) if ∆(ι) = {κ} for any κ ∈ χ and ∆(λ) = ϕ
for λ ∈ χ/{ι}.

Definition 4 ([4,5]). A 3-tuple (χ̄, ρ̄, Ω) denotes a SMS, where ρ̄ : SP(χ̄)× SP(χ̄) → R(Ω) is
the soft metric and R(Ω) is the set having non-negative soft real numbers with ρ̄ satisfying the
given assertions for all ῑe1 , κ̄e2 , λ̄e3 ∈ SP(χ̄):

(i) ρ̄(ῑe1 , κ̄e2) > 0̄;
(ii) ρ̄(ῑe1 , κ̄e2) = 0̄ iff ῑe1 = κ̄e2 ;
(iii) ρ̄(ῑe1 , κ̄e2) = ρ̄(κ̄e2 , ῑe1);
(iv) ρ̄(ῑe1 , κ̄e2) ≤ ρ̄(ῑe1 , λ̄e3) + ρ̄(λ̄e3 , κ̄e2).

Definition 5 ([7]). A 2-tuple (∆, Ω) over a universe χ is a fuzzy soft set, where Ω represents the
parameter set and ∆ is the map from Ω to F(χ) which is the set having fuzzy subsets in universe χ,
i.e., ∆ : Ω → F(χ).

Definition 6 ([8]). A 3-tuple (χ̄, ∆, ∗) is a soft fuzzy metric space (SFMS), where SFM on χ̄
is given by map ∆ : SP(χ̄) × SP(χ̄) × (0, ∞) → [0, 1] satisfying the below assertions for all
ῑe1 , κ̄e2 , λ̄e3 ∈ SP(χ̄) and ρ, ϱ > 0:

(i) ∆(ῑe1 , κ̄e2 , ϱ) > 0;
(ii) ∆(ῑe1 , κ̄e2 , ϱ) = 1 iff ῑe1 = κ̄e2 ;
(iii) ∆(ῑe1 , κ̄e2 , ϱ) = ∆(κ̄e2 , ῑe1 , ϱ);
(iv) ∆(ῑe1 , κ̄e2 , ϱ + ρ) ≥ ∆(ῑe1 , λ̄e3 , ϱ) ∗ ∆(λ̄e3 , κ̄e2 , ρ);
(v) ∆(ῑe1 , κ̄e2 , .) : (0, ∞) → [0, 1] is continuous.

Definition 7 ([12]). A 3-tuple (χ, Mω,ψ, τ) is a MIFMS, where χ is an arbitrary set, ω, ψ depicts
the fuzzy sets from χ2 × (0, ∞) to [0, 1] asserting ω(ι, κ, ϱ) + ψ(ι, κ, ϱ) ≤ 1 for every ι, κ ∈ χ and
ϱ > 0, continuous t-representable norm is denoted by τ and Mω,ψ depicts a map χ2 × (0, ∞) → L∗

that satisfies the below assertions for every ι, κ, λ ∈ χ and ρ, ϱ > 0:

(i) Mω,ψ(ι, κ, ϱ) >L∗ 0L∗ ;
(ii) Mω,ψ(ι, κ, ϱ) = 1L∗ iff ι = κ;
(iii) Mω,ψ(ι, κ, ϱ) = Mω,ψ(κ, ι, ϱ);
(iv) Mω,ψ(ι, κ, ϱ + ρ) ≥L∗ τ(Mω,ψ(ι, λ, ϱ), Mω,ψ(λ, κ, ρ));
(v) Mω,ψ(ι, κ, .) : (0, ∞) → L∗ is continuous.

Here, MIFM Mω,ψ is given as

Mω,ψ(ι, κ, ϱ) = (ω(ι, κ, ϱ), ψ(ι, κ, ϱ)).

3. Modified Intuitionistic Fuzzy Soft Metric Space

Definition 8 ([13]). A map Θ on L∗, Θ : (L∗)2 → L∗ represents a triangular norm (t − norm) if
it satisfies the below assertions:

(i) Θ(ι, 1L∗) = ι, for all ι ∈ L∗;
(ii) Θ(ι, κ) = Θ(κ, ι), for all (ι, κ) ∈ (L∗)2;
(iii) Θ(ι, Θ(κ, λ)) = Θ(Θ(ι, κ), λ), for all (ι, κ, λ) ∈ (L∗)3;
(iv) ι ≤ ι′ and κ ≤ κ′ ⇒ Θ(ι, κ) ≤L∗ Θ(ι′, κ′), for all (ι, ι′, κ, κ′) ∈ (L∗)4 .
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Definition 9 ([13]). A continuous t-representable norm is a continuous t − norm Θ on L∗ if it
implies the existence of a t − conorm ⋄ on [0, 1] which is continuous so that

Θ(ι, κ) = (ι1 ∗ κ1, ι2 ⋄ κ2)

for every ι = (ι1, ι2), κ = (κ1, κ2) ∈ L∗.

Definition 10. A 3-tuple (χ̄, Mω,ψ, Θ) is a MIFSMS, where χ̄ is any set, ω and ψ are SFS, Θ
denotes a t-representable norm possessing continuity and Mω,ψ represents a map from SP(χ̄)×
SP(χ̄)× (0, ∞) to L∗ fulfilling the below assertions for all ῑe1 , κ̄e2 , λ̄e3 ∈ SP(χ̄) and ρ, ϱ > 0:

(i) Mω,ψ(ῑe1 , κ̄e2 , ϱ) >L∗ 0L∗ ;
(ii) Mω,ψ(ῑe1 , κ̄e2 , ϱ) = 1L∗ iff ῑe1 = κ̄e2 ;
(iii) Mω,ψ(ῑe1 , κ̄e2 , ϱ) = Mω,ψ(κ̄e2 , ῑe1 , ϱ);
(iv) Mω,ψ(ῑe1 , κ̄e2 , ϱ + ρ) ≥L∗ Θ(Mω,ψ(ῑe1 , λ̄e3 , ϱ), Mω,ψ(λ̄e3 , κ̄e2 , ρ));
(v) Mω,ψ(ῑe1 , κ̄e2 , .) : (0, ∞) → L∗ is continuous.

Then, Mω,ψ is MIFSM on χ̄ where level of closeness and non closeness between ῑe1 , κ̄e2 w.r.t. ϱ
is depicted by the functions ω(ῑe1 , κ̄e2 , ϱ) and ψ(ῑe1 , κ̄e2 , ϱ) respectively and metric Mω,ψ is given as

Mω,ψ(ῑe1 , κ̄e2 , ϱ) = (ω(ῑe1 , κ̄e2 , ϱ), ψ(ῑe1 , κ̄e2 , ϱ)).

Remark 1. The function ω(ῑe1 , κ̄e2 , ϱ) is increasing and the function ψ(ῑe1 , κ̄e2 , ϱ) is decreasing in
a MIFSMS, for every ῑe1 , κ̄e2 ∈ SP(χ̄).

Example 1. Take (χ̄, d) a SMS and ω, ψ soft fuzzy sets on SP(χ̄) × SP(χ̄) × (0, ∞) given
as below:

Mω,ψ(ῑe1 , κ̄e2 , ϱ) = (ω(ῑe1 , κ̄e2 , ϱ), ψ(ῑe1 , κ̄e2 , ϱ))

= (
hϱn

hϱn + md(ῑe1 , κ̄e2)
,

md(ῑe1 , κ̄e2)

hϱn + md(ῑe1 , κ̄e2)
)

for all h, ϱ, m, n ∈ R+; Θ(r̄, s̄) = (r̄1 s̄1, min(r̄2 + s̄2, 1)), where r̄ = (r̄1, r̄2) and s̄ = (s̄1, s̄2) ∈
L∗. Then, 3-tuple (χ̄, Mω,ψ, Θ) is a MIFSMS.

Example 2. Consider χ = N. Define Θ( ȷ̄, ℓ̄) = (max{0, ȷ̄1 + ℓ̄1 − 1}, ȷ̄2 + ℓ̄2 − ȷ̄2ℓ̄2), where
ȷ̄ = ( ȷ̄1, ȷ̄2) and ℓ̄ = (ℓ̄1, ℓ̄2) ∈ L∗. Take ω, ψ be soft fuzzy sets on SP(χ̄)× SP(χ̄)× (0, ∞) given
as Mω,ψ(ῑe1 , κ̄e2 , ϱ) = (ω(ῑe1 , κ̄e2 , ϱ), ψ(ῑe1 , κ̄e2 , ϱ))

Mω,ψ(ῑe1 , κ̄e2 , ϱ) =

(
ῑe1
κ̄e2

,
κ̄e2−ῑe1

κ̄e2
) if ῑe1 ≤ κ̄e2

(
κ̄e2
ῑe1

,
ῑe1−κ̄e2

ῑe1
) if κ̄e2 ≤ ῑe1

for all ῑe1 , κ̄e2 ∈ SP(χ̄) and ϱ > 0. Then, 3-tuple (χ̄, Mω,ψ, Θ) is also a MIFSMS.

Lemma 1. Let (χ̄, Mω,ψ, τ) be MIFSMS. Then, Mω,ψ(ῑe1 , κ̄e2 , ϱ) is increasing with respect to
ϱ > 0 in (L∗,≤L∗) for every ῑe1 , κ̄e2 ∈ SP(χ̄).

Definition 11. Let (χ̄, Mω,ψ, τ) be MIFSMS. Mω,ψ possesses continuity on SP(χ̄)× SP(χ̄)×
(0, ∞) if

lim
n→∞

Mω,ψ(ῑen , κ̄en , ϱn) = Mω,ψ(ῑe1 , κ̄e2 , ϱ)

where sequence {(ῑen , κ̄en , ϱn)} converges to (ῑe1 , κ̄e2 , ϱ).
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Lemma 2. For (χ̄, Mω,ψ, τ) be a MIFSMS, then Mω,ψ possesses continuity on SP(χ̄)× SP(χ̄)×
(0, ∞).

4. Results and Discussion

Definition 12. An open ball in a MIFSMS (χ̄, Mω,ψ, τ) is depicted by B(ῑe1 , ϵ, ϱ) having center
ῑe1 ∈ χ̄ and radius 0 < ϵ < 1 for any ϱ > 0 and is given as,

B(ῑe1 , ϵ, ϱ) = {κ̄e2 ∈ χ̄ : Mω,ψ(ῑe1 , κ̄e2 , ϱ) >L∗ (Ns(ϵ), ϵ)}.

Theorem 3. Every open ball B(ūe1 , ϵ, ϱ) in MIFSMS is an open set.

Proof. Take v̄e2 ∈ B(ūe1 , ϵ, ϱ), then Mω,ψ(ūe1 , v̄e2 , ϱ) >L∗ (Ns(ϵ), ϵ), so

ω(ūe1 , v̄e2 , ϱ) > 1 − ϵ, ψ(ūe1 , v̄e2 , ϱ) < ϵ.

Since ω(ūe1 , v̄e2 , ϱ) > 1 − ϵ, there exists ϱo ∈ (0, ϱ) so that ω(ūe1 , v̄e2 , ϱo) > 1 − ϵ and
ψ(ūe1 , v̄e2 , ϱo) < ϵ.

Put ϵo = ω(ūe1 , v̄e2 , ϱo).
Since ϵo > 1 − ϵ, then there exists η ∈ (0, 1) so that ϵ0 > 1 − η > 1 − ϵ.
Now, for given ϵ and η such that ϵo > 1 − η, there exist ϵ1,ϵ2 ∈ (0, 1) such that

τ(ϵ
′
o, ϵ

′
1) >L∗ (Ns(η), η), where ϵ

′
o = (ϵo, 1 − ϵo) and ϵ

′
1 = (ϵ1, 1 − ϵ2).

Let ϵ3 =max{ϵ1, ϵ2} and open ball B(v̄e2 , 1 − ϵ3, ϱ − ϱo).
Claim that B(v̄e2 , 1 − ϵ3, ϱ − ϱo) ⊂ B(ūe1 , ϵ, ϱ).
Consider w̄e3 ∈ B(v̄e2 , 1− ϵ3, ϱ − ϱo), then Mω,ψ(v̄e2 , w̄e3 , ϱ − ϱo) >L∗ (Ns(1− ϵ3), ϵ3), so

ω(v̄e2 , w̄e3 , ϱ − ϱo) > ϵ3, ψ(v̄e2 , w̄e3 , ϱ − ϱo) < 1 − ϵ3.

Now, Mω,ψ(ūe1 , w̄e3 , ϱ) ≥L∗ τ(Mω,ψ(ūe1 , v̄e2 , ϱo), Mω,ψ(v̄e2 , w̄e3 , ϱ − ϱo)) ≥L∗ (Ns(ϵ), ϵ).
Thus, w̄e3 ∈ B(ūe1 , ϵ, ϱ). Hence, B(v̄e2 , 1 − ϵ3, ϱ − ϱo) ⊂ B(ūe1 , ϵ, ϱ).

Remark 2. The topology generated by Mω,ψ on χ̄ in MIFSMS (χ̄, Mω,ψ, τ) is given as

τω,ψ={Y ⊆ χ̄: for every ūe1 ∈ Y, there exist ϱ > 0 and ϵ ∈ (0, 1) so that B(ūe1 , ϵ, ϱ) ⊆ Y}.

Theorem 4. If (χ̄, Mω,ψ, τ) is a MIFSMS, then it is a Hausdorff space.

Proof. Given that (χ̄, Mω,ψ, τ) is MIFSMS, consider ūe1 , v̄e2 ∈ χ̄ be two distinct points, then

0L∗ <L∗ Mω,ψ(ūe1 , v̄e2 , ϱ) <L∗ 1L∗ .

Let s1 = ω(ūe1 , v̄e2 , ϱ), s2 = ψ(ūe1 , v̄e2 , ϱ) and s =max{s1, 1 − s2}.
For each s0 ∈ (s, 1), there exist s3, s4 such that τ((s3, 1 − s4), (s3, 1 − s4)) ≥L∗ (Ns(1 −

s0), s0).
Let s5 = max{s3, s4}.
Consider two MIFSOBs B(ūe1 , 1 − s5, ϱ

2 ) and B(v̄e2 , 1 − s5, ϱ
2 ).

Claim that B(ūe1 , 1 − s5, t
2 ) ∩ B(v̄e2 , 1 − s5, ϱ

2 ) = ϕ.
Let w̄e3 ∈ B(ūe1 , 1 − s5, ϱ

2 ) ∩ B(v̄e2 , 1 − s5, ϱ
2 ).

(s1, s2) = Mω,ψ(ūe1 , v̄e2 , ϱ)

≥L∗ τ(Mω,ψ(ūe1 , w̄e3 ,
ϱ

2
), Mω,ψ(w̄e3 , v̄e2 ,

ϱ

2
))

≥L∗ τ((s5, 1 − s5), (s5, 1 − s5)) ≥L∗ (Ns(1 − s0), s0)

>L∗ (s1, s2),

which is contrary. So (χ̄, Mω,ψ, τ) is a Hausdorff space.
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Definition 13. A subset Y of χ̄ in a MIFSMS (X̄, Mω,ψ, τ) is called IF-bounded if it implies the
existence of ϱ > 0 and 0 < ϵ < 1 so that Mω,ψ(ūe1 , v̄e2 , t) >L∗ (Ns(ϵ), ϵ) for each ūe1 , v̄e2 ∈ Y.

Theorem 5. If (χ̄, Mω,ψ, τ) is MIFSMS and Y ⊆ χ̄ is compact, then Y is IF-bounded.

Proof. Consider ϱ > 0 and 0 < ϵ < 1.
Let {B(ūe1 , ϵ, t) : ūe1 ∈ Y} be an open cover of Y.
As Y is given to be compact, there exist ūe1 , ūe2 ,. . . ,ūen ∈ Y such that Y ⊆ ∪n

i=1
B(ūei , ϵ, t).

Let ūe1 , v̄e2 ∈ Y, then ūe1 ∈ B(ūei , ϵ, ϱ) and v̄e2 ∈ B(ūej , ϵ, ϱ) for some i,j; then

Mω,ψ(ūe1 , ūei , ϱ) >L∗ (Ns(ϵ), ϵ), Mω,ψ(v̄e2 , ūej , ϱ) >L∗ (Ns(ϵ), ϵ).

Let α = max{ω(ūei , ūej , ϱ) : 1 ≤ i, j ≤ p} and β = max{ψ(ūei , ūej , ϱ) : 1 ≤ i, j ≤ p}.
Then, α, β > 0.
Now,

Mω,ψ(ūe1 , v̄e2 , 3ϱ) >L∗ τ2(Mω,ψ(ūe1 , ūei , ϱ), Mω,ψ(ūei , ūej , ϱ), Mω,ψ(ūej , v̄e2 , ϱ))

≥L∗ τ2((1 − ϵ, ϵ), (α, β), (1 − ϵ, ϵ))

>L∗ (Ns(η1), Ns(η2))

for some 0 < η1, η2 < 1.
Let η = max{η1, η2} and ϱ′ = 3ϱ, then Mω,ψ(ūe1 , v̄e2 , ϱ′) >L∗ (Ns(η), η) for all

ūe1 , v̄e2 ∈ Y.
Hence, Y is IF-bounded.

Theorem 6. If (χ̄, Mω,ψ, τ) is a MIFSMS and τω,ψ is a topology on χ̄, then ūen → ūe1 if

ltn→∞Mω,ψ(ūen , ūe1 , ϱ) = 1L∗

for ūen in χ̄.

Proof. Take ϱ > 0.
Consider ūen → ūe1 , then there exists n0 ∈ N so that ūen ∈ B(ūe1 , ϵ, ϱ) for all n ≥

n0, ϵ ∈ (0, 1); then, Mω,ψ(ūen , ūe1 , ϱ) >L∗ (Ns(ϵ), ϵ).
Hence, ltn→∞Mω,ψ(ūen , ūe1 , ϱ) = 1L∗ .
Conversely, let ltn→∞Mω,ψ(ūen , ūe1 , ϱ) = 1L∗ , thus for ϵ ∈ (0, 1), there exists n0 ∈ N

satisfying Mω,ψ(ūen , ūe1 , ϱ) >L∗ (Ns(ϵ), ϵ) for each n ≥ n0.
Thus, ūen ∈ B(ūe1 , ϵ, ϱ) where n ≥ n0.
Hence, ūen → ūe1 .

Definition 14. Consider (χ̄, Mω,ψ, τ) to be a MIFSMS and {ūen} a sequence in χ̄, then

1. The sequence is Cauchy iff for every ϱ > 0, which implies the existence of δo ∈ N that satisfies

ltno→∞Mω,ψ(ūen , ūen+m , t) = 1L∗

where n, m ≥ δo.
2. The sequence converges to ū iff for every ϱ > 0

ltn→∞Mω,ψ(ūen , ū, ϱ) = 1L∗

Definition 15. A MIFSMS (χ̄, Mω,ψ, τ) is complete iff every Cauchy sequence converges in it.
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Theorem 7. If any Cauchy sequence in MIFSMS (χ̄, Mω,ψ, τ) has a subsequence that converges
in it, then it is a complete space.

Proof. Consider {ūen} be any sequence which is Cauchy and {ūeni
} be any of its subse-

quence converging to ū.
Claim that ūen → ū.
Take ϱ > 0 and ϵ ∈ (0, 1).
Consider s ∈ (0, 1) such that

τ((1 − s, s), (1 − s, s)) ≥L∗ (Ns(ϵ), ϵ).

Since sequence {uen} is given as Cauchy, there exist eno ∈ N such that

Mω,ψ(ūem , ūen ,
ϱ

2
) >L∗ (Ns(s), s)

for all em, en ≥ eno .
Since ūeni

→ ū, there exist positive integer eip such that eip > eno ,

Mω,ψ(ūei , ū,
ϱ

2
) >L∗ (Ns(s), s).

For, if en ≥ eno , we have

Mω,ψ(ūen , ū, ϱ) ≥L∗ τ(Mω,ψ(ūen , ūeip
,

ϱ

2
), Mω,ψ(ūeip

, ū,
ϱ

2
))

>L∗ τ((1 − s, s), (1 − s, s))

≥L∗ (Ns(ϵ), ϵ).

Thus, ūeni
→ ū and (χ̄, Mω,ψ, τ) is a complete space.

5. Fixed Point Theorems

In this section, we have extended Gregori-Sapena’s [14] and Zikic’s fixed point
Theorem [15] to MIFSMS.

Definition 16. A sequence {tn} is known as s-increasing if there exists no ∈ N such that

tn + 1 ≤ tn+1,

for all n ≥ no.

Theorem 8. Consider (χ̄, Mω,ψ, τ) be complete MIFSMS, so that for every s-increasing sequence
{ϱn} and arbitrary ūe1 , v̄e2 ∈ SP(χ̄), (1) holds

ltn→∞

n

∏
i=1

Mω,ψ(ūe1 , v̄e2 , ϱi) = 1L∗ . (1)

Consider h ∈ (0, 1) and S : SP(χ̄) → SP(χ̄) be any map that satisfies

Mω,ψ(Sūe1 , Sv̄e2 , hϱ) ≥L∗ Mω,ψ(ūe1 , v̄e2 , ϱ)

for each ūe1 , v̄e2 ∈ SP(χ̄). Then, S possesses a fixed point which is unique as well.

Proof. Consider ū ∈ SP(χ̄) and let ūen = Sn(ū), n ∈ N. Thus,

Mω,ψ(ūe1 , ūe2 , ϱ) = Mω,ψ(Sū, S2ū, ϱ) ≥L∗ Mω,ψ(ū, Sū,
ϱ

h
) = Mω,ψ(ū, ūe1 ,

ϱ

h
). (2)
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By induction, we have

Mω,ψ(ūen , ūen+1 , ϱ) ≥L∗ Mω,ψ(ū, ūe1 ,
ϱ

hn ). (3)

Consider ϱ > 0. Now, for m, n ∈ N, take n < m; considering ri > 0, i = n, . . . , m − 1 that
satisfies rn + rn+1 + · · ·+ rm−1 ≤ 1, we have

Mω,ψ(ūen , ūem , ϱ) ≥L∗ τm−n−2(Mω,ψ(ūen , ūen+1 , rnϱ)

, . . . , Mω,ψ(ūem−1 , ūem , rm−1ϱ))

≥L∗ τm−n−2(Mω,ψ(ū, ūe1 ,
rnϱ

hn ),

. . . , Mω,ψ(ū, ūe1 ,
rm−1ϱ

hm−1 )).

(4)

Considering rp =
1

p(p + 1)
, p = n, . . . , m − 1, we get

Mω,ψ(ūen , ūem , ϱ) ≥L∗ τm−n−2(Mω,ψ(ū, ūe1 ,
ϱ

n(n + 1)hn ), . . . ,

Mω,ψ(ū, ūe1 ,
ϱ

(m − 1)mhm−1 )).
(5)

Now, define ϱs =
ϱ

s(s + 1)hs . It is trivial that ϱs+1 − ϱs → ∞ as s → ∞, thus {ϱs} is an

s-increasing sequence. So, we have

ltn→∞

∞

∏
n=m

Mω,ψ(ū, ūe1 ,
ϱ

n(n + 1)hn ) = 1L∗ . (6)

Equations (5) and (6) implies ltn→∞Mω,ψ(ūen , ūem , ϱ) = 1L∗ for n < m. Thus, sequence
{ūen} is Cauchy. As χ̄ is complete, there exist v̄ ∈ SP(χ̄) so that ūen → v̄. Claim that S
possesses v̄ as its fixed point.

Mω,ψ(Sv̄, v̄, ϱ) ≥L∗ τ(ltn→∞Mω,ψ(Sv̄, Sūen ,
ϱ

2
), ltn→∞Mω,ψ(ūen+1 , v̄,

ϱ

2
))

≥L∗ τ(ltn→∞Mω,ψ(v̄, ūen ,
ϱ

2
), ltn→∞Mω,ψ(ūen+1 , v̄,

ϱ

2
)) = 1L∗ .

(7)

Thus, Mω,ψ(Sv̄, v̄, ϱ) = 1L∗ , that implies S(v̄) = v̄.
Uniqueness: Consider w̄ ∈ SP(X̄) to be any other fixed point of S so that S(w̄) = w̄.

Thus, we have

1L∗ ≥L∗ Mω,ψ(v̄, w̄, t) = Mω,ψ(S(v̄), S(w̄), ϱ)

≥L∗ Mω,ψ(v̄, w̄,
ϱ

h
) = Mω,ψ(S(v̄), S(w̄),

ϱ

h
)

≥L∗ Mω,ψ(v̄, w̄,
ϱ

h2 ) = Mω,ψ(S(v̄), S(w̄),
ϱ

h2 )

. . .

≥L∗ ltn→∞Mω,ψ(v̄, w̄,
ϱ

hn )

= 1L∗ .

(8)

Hence, Mω,ψ(v̄, w̄, ϱ) = 1L∗ , that implies v̄ = w̄.
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Example 3. Take χ̄ = [0, 2] and define Θ( ȷ̄, ℓ̄) = ( ȷ̄1ℓ̄1, max{ ȷ̄2, ℓ̄2}). Take ω, ψ soft fuzzy sets

on SP(χ̄)× SP(χ̄)× (0, ∞) given as Mω,ψ(v̄, w̄, ϱ) = (e−(max{v̄,w̄}
ϱ ), 1 − e−(max{v̄,w̄}

ϱ )
), for all v̄,

w̄ ∈ SP(χ̄), ϱ > 0. Then, (χ̄, Mω,ψ, Θ) is a complete MIFSMS. Define a self map T : SP(χ̄) →
SP(χ̄) so that

T(ῑ) =


0 if ῑ = 1
ῑ
2 if ῑ ∈ [0, 1)
ῑ
4 if ῑ ∈ (1, 2].

Then, T satisfies Theorem 8 and possesses 0 as its unique fixed point.

Lemma 9. If G : (0, ∞) → [0, 1] is an increasing function, then it satisfies

ltn→∞

∞

∏
i=n

G(ρi
o) = 0 ⇒ ltn→∞

∞

∏
i=n

G(ρi) = 0 (9)

for all ρ ∈ (0, 1) and ∏ is taken as co-norm ⋄.

Proof. Case I Consider ρ < ρo. Now, ρi < ρi
o for i ∈ N, in view of the fact that G is

increasing G(ρ) ≤ G(ρo). So, ∏∞
i=n G(ρi) ≤ ∏∞

i=n G(ρi
o), where n ∈ N. Hence, the proof

is complete.
Case II Consider ρ ≥ ρo. Suppose ρ =

√
ρo, then

∞

∏
i=2p′

G(ρi) = [
∞

∏
i=p′

G(ρ2i)] ⋄ [
∞

∏
i=p′

G(ρ2i+1)] ≤ [
∞

∏
i=p′

G(ρi
o)] ⋄ [

∞

∏
i=p′

G(ρi
o)]. (10)

Thus, we have ltp′→∞ ∏∞
i=2p′ G(ρi) ≤ 0 ⋄ 0 = 0. Furthermore, ltp′→∞ ∏∞

i=2p′+1 G(ρi) ≤
ltp′→∞ ∏∞

i=2p′+2 G(ρi) = 0 that implies ltp′→∞ ∏∞
i=p′ G(ρi) = 0 if ρ =

√
ρo. As G is increas-

ing it can be verified easily that ltp′→∞ ∏∞
i=p′ G(ρi) = 0 if ρ <

√
ρo.

Now, if ρ > ρo, that implies the existence of p′ ∈ N so that ρ < ρ
(1/2)p′

o and on
repeating the above process p′-times, we obtain ltp′→∞ ∏∞

i=p′ G(ρi) = 0.

Lemma 10. If H : (0, ∞) → [0, 1] is a decreasing function, then it satisfies

ltn→∞

∞

∏
i=n

H(ρi
o) = 1 ⇒ ltn→∞

∞

∏
i=n

H(ρi) = 1 (11)

for all ρ ∈ (0, 1) and ∏ is taken as norm ∗.

Proof. The above can be easily proved on the similar lines of Lemma 9.

Lemma 11. The sequence ūen = Sn(ūe1) is a Cauchy sequence.

Proof. Consider G(ū) = ψ(ūe1 , S(ūe1),
1
ū
) and H(ū) = ω(ūe1 , S(ūe1),

1
ū
), then maps G and

H are increasing and decreasing, respectively, from (0, ∞) to [0, 1]. Consider h < ρ < 1,
then by Lemmas 9 and 10, we have

ltn→∞

∞

∏
i=n

Mω,ψ(ūe1 , Sūe1 ,
1

(h/ρ)i ) = 1L∗ . (12)
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As ρ < 1, ∑∞
n=1 ρn < ∞, so for every ϵo > 0 there exist no so that ∑∞

n=no ρn < ϵo. Now, if
ρ > n > no and t > ϵo, we have

Mω,ψ(ūen , ūep , t) ≥L∗ Mω,ψ(ūen , ūep , ϵo) ≥L∗

p−1

∏
i=n

Mω,ψ(ūei , ūei−1 , ρi)

≥L∗

p−1

∏
i=n

Mω,ψ(ūe1 , Sūe1 ,
ρi

hi ) =
p−1

∏
i=n

Mω,ψ(ūe1 , Sūe1 ,
1

(h/ρ)i ).

(13)

Thus, from Equation (12), we have ltn→∞Mω,ψ(ūen , Sūep , t) = 1L∗ where p > n. Thus, {ūen}
is Cauchy.

Theorem 12. Consider (χ̄, Mω,ψ, τ) to be complete MIFSMS, so that for some ρo ∈ (0, 1) and
ūeo ∈ SP(χ̄), (14) holds

ltn→∞

∞

∏
i=n

Mω,ψ(ūeo , Sūeo ,
1
ρi

o
) = 1L∗ . (14)

Consider h ∈ (0, 1) and S : SP(χ̄) → SP(χ̄) that satisfies

Mω,ψ(Sūe1 , Sv̄e2 , ht) ≥L∗ Mω,ψ(ūe1 , v̄e2 , t)

for each ūe1 , v̄e2 ∈ SP(χ̄). Then, S possesses a fixed point which is unique as well.

Proof. We will be proving Theorem 12 by the above lemmas.
As (χ̄, Mω,ψ, τ) is complete MIFSMS, there exists v̄ ∈ SP(χ̄) so that ltn→∞ūen = v̄.

Now, it can be easily proven that S possesses v̄ as its fixed point which is unique as well by
the similar argument as used in Theorem 8. This completes the proof of Theorem 12.

Example 4. Take χ̄ = [0, 1] ∩ Q and define Θ( ȷ̄, ℓ̄) = (max{ ȷ̄1 + ℓ̄1 − 1, 0}, min{ ȷ̄2 + ℓ̄2, 1}).
Take ω, ψ soft fuzzy sets on SP(χ̄)× SP(χ̄)× (0, ∞) given as Mω,ψ(v̄, w̄, ϱ) = (1 − max{v̄,w̄}

1+ϱ ,
max{v̄,w̄}

1+ϱ ), for all v̄, w̄ ∈ SP(χ̄), ϱ > 0. Then, (χ̄, Mω,ψ, Θ) is a complete MIFSMS. Define a self
map T : SP(χ̄) → SP(χ̄) so that

T(ῑ) =

{
ῑ
4 if ῑ ∈ [0, 1

2 ] ∩ Q
ῑ
2 if ῑ ∈ ( 1

2 , 1] ∩ Q.

Then, T satisfies Theorem 12 and possesses 0 as its unique fixed point.

6. Application

Now, we are giving an application of Theorem 8 in solving integral equation.
Consider the following integral equation:

ῑe(r) =
∫ r

0
K(r, s, ῑe(s))ds (15)

for all r ∈ [0, I], where I > 0 and K ∈ C([0, I]× [0, I]× R, R). Consider χ̄ = C([0, I], R)
be the space consisting of continuous functions on [0, I] with the norm ∥ ῑe ∥= supr∈[0,I] |
ῑe(r) |, where ῑe ∈ χ̄ and the induced soft metric is defined as µ(ῑe, κ̄e) = supr∈[0,I] |
ῑe(r)− κ̄e(r) |, for all ῑe, κ̄e ∈ χ̄. Let the MIFSM Mω,ψ be defined as

Mω,ψ(ῑe, κ̄e, ϱ) = (
ϱ

ϱ + supr∈[0,I] | ῑe(r)− κ̄e(r) |
,

supr∈[0,I] | ῑe(r)− κ̄e(r) |
ϱ + supr∈[0,I] | ῑe(r)− κ̄e(r) |

),



Mathematics 2024, 12, 1154 10 of 11

where ϱ, m, n ∈ R+ and τ(ū, v̄) = (ū1v̄1, min(ū2 + v̄2, 1)). Then, (X̄, Mω,ψ, τ) is a com-
plete MIFSMS.

Now, claim the existence of a solution of (15).
Let function K satisfy the following conditions:

(i) K(r, s, ῑe(s)) ≥ 0, for all r, s ∈ [0, I] and ῑe ∈ χ̄;
(ii) There exist λ > 0 so that

| K(r, s, ῑe(s))− K(r, s, κ̄e(s)) |≤ λsupr∈[0,I] | ῑe(r)− κ̄e(r) |,

for all r, s ∈ [0, I];
(iii) There exist h ∈ (0, 1) so that λr < h.

Consider {ts} to be any s-increasing sequence, so that ts+1 − ts → ∞ as s → ∞, thus
ltn→∞ ∏n

i=1 Mω,ψ(ῑe, κ̄e, ti) = 1L∗ .
Define a self map S : χ̄ → χ̄ as

S(ῑe)(ȷ) =
∫ ȷ

0
K(ȷ, ℓ, ῑe(ℓ))dℓ,

then, we have

S(ῑe)(ȷ)− S(κ̄e)(ȷ) =
∫ ȷ

0
K(ȷ, ℓ, ῑe(ℓ))− K(ȷ, ℓ, κ̄e(ℓ))dℓ,

thus

| S(ῑe)(ȷ)− S(κ̄e)(ȷ) |= |
∫ ȷ

0
K(ȷ, ℓ, ῑe(ℓ))− K(ȷ, ℓ, κ̄e(ℓ))dℓ |

≤
∫ ȷ

0
| K(ȷ, ℓ, ῑe(ℓ))− K(ȷ, ℓ, κ̄e(ℓ)) | dℓ

≤ λȷsupȷ∈[0,I] | ῑe(ȷ)− κ̄e(ȷ) |
< hsupȷ∈[0,I] | ῑe(ȷ)− κ̄e(ȷ) | .

Now, we have

Mω,ψ(Sῑe(ȷ), Sκ̄e(ȷ), hϱ) =(
hϱ

hϱ + supȷ∈[0,I] | Sῑe(ȷ)− Sκ̄e(ȷ) | ,
supȷ∈[0,I] | Sῑe(ȷ)− Sκ̄e(ȷ) |

hϱ + supȷ∈[0,I] | Sῑe(ȷ)− Sκ̄e(ȷ) | )

= (
ϱ

ϱ +
supȷ∈[0,I] |Sῑe(ȷ)−Sκ̄e(ȷ)|

h

,
supȷ∈[0,I] |Sῑe(ȷ)−Sκ̄e(ȷ)|

h

ϱ +
supȷ∈[0,I] |Sῑe(ȷ)−Sκ̄e(ȷ)|

h

)

≥L∗ (
ϱ

ϱ + supȷ∈[0,I] | ῑe(ȷ)− κ̄e(ȷ) | ,
supȷ∈[0,I] | ῑe(ȷ)− κ̄e(ȷ) |

ϱ + supȷ∈[0,I] | ῑe(ȷ)− κ̄e(ȷ) | )

= Mω,ψ(ῑe(ȷ), κ̄e(ȷ), ϱ).

Thus, Mω,ψ(Sῑe(ȷ), Sκ̄e(ȷ), hϱ) ≥L∗ Mω,ψ(ῑe(ȷ), κ̄e(ȷ), ϱ). Therefore, every assertion of
Theorem 8 holds. Hence, S possesses a fixed point ζ̄ ∈ χ̄ which is unique as well so
that Sζ̄ = ζ̄, thus ζ̄ ∈ C([0, I], R) satisfies integral Equation (15).

7. Conclusions

We have defined basic notions of MIFSMS in this paper. Some Theorems of MIFMS
have been broadened in MIFSMS. FPT’s are also proven in our new space along with an
application to the integral equation.

8. Discussion

The new results and examples formulated in this work lay the foundation of new
results in the future. Moreover, to prove the validity of new results, an application is given
in solving the integral equation.
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