
Citation: Che, Z.; Peng, C. Improving

Support Vector Regression for

Predicting Mechanical Properties in

Low-Alloy Steel and Comparative

Analysis. Mathematics 2024, 12, 1153.

https://doi.org/10.3390/

math12081153

Academic Editor: Amit Banerjee

Received: 13 March 2024

Revised: 6 April 2024

Accepted: 10 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Improving Support Vector Regression for Predicting Mechanical
Properties in Low-Alloy Steel and Comparative Analysis
Zhongyuan Che 1,2 and Chong Peng 1,2,*

1 School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China;
chezhongyuanmxz@163.com

2 Jiangxi Research Institute, Beihang University, Nanchang 330096, China
* Correspondence: pch@buaa.edu.cn

Abstract: Low-alloy steel is widely employed in the aviation industry for its exceptional mechanical
properties. These materials are frequently used in critical structural components such as aircraft
landing gear and engine mounts, where a high strength-to-weight ratio is crucial for optimal perfor-
mance. However, the mechanical properties of low-alloy steel are influenced by various components
and their compositions, making identification and prediction challenging. Accurately predicting
these mechanical properties can significantly reduce the development time of new alloy steel, lower
production costs, and offer valuable insights for design analysis. support vector regression (SVR) is
known for its superior learning and generalization capabilities. However, optimizing SVR perfor-
mance can be challenging due to the significant impact of the penalty factor and kernel parameters.
To address this issue, a hybrid method called SMA-SVR is proposed, which combines the Slime
Mould Algorithm (SMA) with SVR. This hybrid approach aims to efficiently and accurately predict
two crucial mechanical parameters of low-alloy steel: tensile strength and 0.2% proof stress. Detailed
descriptions of the modeling processes and principles that are involved in the hybrid method are
provided. Furthermore, three other popular hybrid models for comparison are introduced. To
evaluate the performance of these models, four statistical measures are utilized: Mean Absolute Error,
Root Mean Square Error, R-Squared, and computational time. Using data from the NIMS database
and from material tests conducted on a universal testing machine, experiments were carried out to
compare the performance of these models. The results indicate that SMA-SVR outperforms the other
methods in terms of accuracy and computational efficiency.

Keywords: hybrid modeling; prediction; metaheuristic algorithms; mechanical properties; low-alloy steel

MSC: 68T20; 68W50

1. Introduction

Material mechanical properties play a fundamental role in various areas, such as
design specifications, manufacturing processes, operational methods, and failure analysis.
Conventional experiments are frequently employed to ascertain the mechanical properties
of materials. Extensive testing can be resource-intensive and non-directional, which is
frequently unavoidable in the search for innovative materials with improved performance.
Moreover, traditional methods struggle to keep pace with the modern industrial need for
high quality, rapid production cycles, and cost efficiency. Therefore, there is a growing
necessity to swiftly and accurately predict the mechanical properties of materials.

Predicting material performance presents challenges. Factors like chemical compo-
sition, element content, manufacturing processes, and operating temperatures intricately
influence material behavior, creating a complex nonlinear system that is challenging to
decipher. Although data form the backbone of material performance prediction, the time-
consuming nature of material testing sometimes results in small datasets. Effectively
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identifying the nonlinear system under limited sample conditions becomes crucial for
ensuring the reliability of material attribute predictions.

In response to these issues, scientists have proposed various predictive methods, in-
cluding empirical formulations [1,2], linear regression analysis [3,4], finite element analysis
(FEA) [5], and Monte Carlo methods [6–9]. These methods are predominantly empirical
and statistical in nature. However, the practical implementation of these methods is often
hindered by the inherent difficulties in capturing nonlinear correlations within the data,
leading to reduced prediction accuracy and limited generalizability. Mechanism mod-
eling has emerged as an alternative approach for predicting the mechanical properties
of materials. Nonetheless, the complexity of these mechanisms, which are contingent
upon production and manufacturing processes, restrict their applicability. For instance,
traditional metallurgical mechanism models, while effective in representing most process-
ing procedures, are structurally complex, computationally intensive, and require a deep
understanding of specific metallurgical processes as a prerequisite [10].

Researchers have increasingly focused on utilizing machine learning methods to pre-
dict material performance, leveraging their capacity to extract high-dimensional features
from raw data [11–15]. By effectively capturing the nonlinear relationships between mate-
rial parameters and mechanical properties, machine learning models offer valuable insights
into the complex interplay, thus guiding experimental efforts [16]. Ke Duan et al. [17] devel-
oped a model that integrates molecular dynamics simulations, particle swarm optimization
(PSO), and artificial neural networks to determine the coarse granulation of cross-linked
epoxy resins. Similarly, Georgios Konstantopoulos et al. [18] introduced a machine learning
model to elucidate the structure–property relationship in carbon fiber-reinforced polymer
composites (CFRPs), comparing the classification performance of neural networks, decision
trees, and support vector machines. In another study, Yupeng Diao [19] devised a predictive
model for steel corrosion by translating chemical composition into physical characteristics.
Meanwhile, Changsheng Wang [20] employed a machine learning system for the design of
alloy material compositions, thereby expediting the material development process. M.Z.
Naser [21] put forth an analytical model based on symbolic regression and genetic al-
gorithms (GAs) to forecast the behavior of concrete structures under high-temperature
conditions. Additional research endeavors encompassed the prediction of solute behaviors
in ductile magnesium alloys [22], residual stress estimation in aluminum plates using the
K-Nearest Neighbors (KNN) algorithm [23], and the evaluation of glass fiber orientation
through a convolutional neural network and inertial tensor analysis [24].

From the above research, it can be observed that current machine learning used for
material performance prediction can mainly be divided into artificial neural networks,
backpropagation networks, tree models and their variations, and deep neural networks.
The accuracy of regression models based on artificial neural networks highly depends on
the quality and quantity of the input data. If the dataset is insufficient or contains noise, the
predictive ability of the model is likely to be affected. Although training neural network
models with backpropagation can help the model converge quickly, its performance is
still influenced by multiple hyperparameters, such as the learning rate, hidden layer, and
number of neurons, which are often set empirically.

Subsequently, prediction methods based on tree models, such as random forests, have
shown good performance, but they also require a large amount of parameter tuning and
computational resources, especially as the dataset size increases, as the model can become
time-consuming. Moreover, if the model overfits the training data, it may perform poorly
on the test data.

Some deep learning models may perform well in predicting the performance of specific
types of metals, but for different types of alloys, they may require readjustments to provide
satisfactory predictive performance. For example, deep neural networks usually require a
substantial number of computational resources and time for training, which may limit their
feasibility in practical applications. Lastly, in many cases, the datasets for metals are small,
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which requires the developed predictive models to quickly learn the nonlinear relationship
between metal elements and mechanical performance.

Consequently, the development of efficient machine learning models capable of pre-
dicting the mechanical properties of materials holds paramount importance while also
furnishing valuable insights for the advancement of new materials. For instance, compre-
hending the intricate interrelationships among process parameters, structural configura-
tions, and mechanical properties of alloys is indispensable for conducting retrospective
analyses and identifying the optimal process parameters [25]. Low-alloy steel holds signifi-
cant value in various industries due to its consistent quality, excellent corrosion resistance,
remarkable technological properties, and high recovery rate. These types of steel find ap-
plications in engineering plants, aircraft bodies, automobiles, ships, buildings, and bridges.
The mechanical characteristics of alloy steel are predominantly governed by their chemical
composition and manufacturing process [26,27]. However, the rolling process of alloy steel
presents a complex and nonlinear system, posing significant challenges in mathematically
expressing these relationships [28]. Studies have indicated that the microstructure of al-
loys, influenced by their chemical composition, manufacturing method, and operating
temperature, plays a crucial role in determining their properties [29,30]. Consequently, a
machine learning-based model leveraging elemental composition and microstructure can
be developed to forecast the mechanical properties of low-alloy steel.

In this paper, a hybrid framework utilizing support vector regression (SVR) optimized
by the Slime Mould Algorithm (SMA) is proposed to predict the mechanical properties
of low-alloy steel. SVR is well-suited to address challenges associated with high dimen-
sionality, small sample size, and nonlinearity, while SMA is adept at searching for and
optimizing the penalty factor and kernel parameter of SVR to boost prediction accuracy
and robustness. The study employs data on low-alloy steel from the NIMS Materials
Database and data from material tests conducted on a universal testing machine (UTM).
The target is to predict two key mechanical parameters: tensile strength and 0.2% proof
stress. The model’s predictive prowess was assessed using four statistical criteria—Mean
Absolute Error (MAE), R2 (R-Squared), computational time, and Root Mean Square Error
(RMSE). Furthermore, three popular hybrid models optimized through metaheuristics were
selected and compared with SMA-SVR. These models included SVR optimized by Grey
Wolf Optimizer (GWO-SVR), Back Propagation optimized by particle swarm optimization
(PSO-BP), and the Elman recurrent neural network optimized by the Sparrow Search Algo-
rithm (SSA-Elman), all of which have exhibited promising performance in engineering and
materials science studies [31–37]. The parameters of the respective models were fine-tuned
using metaheuristic algorithms. The discussion delves into the experimental findings of
SMA-SVR, along with its comparative analysis with GWO-SVR, PSO-BP, and SSA-Elman.

The novelty of this study can be mainly summarized in the following points:

1. Firstly, this work combines SMA with SVR to optimize the key hyperparameters,
which is not commonly seen in previous studies on predicting the mechanical proper-
ties of materials in materials science. The proposed model is specifically applied and
discussed in the domain of predicting the mechanical properties of low-alloy steel,
which is a practical contribution to the interdisciplinary field of materials science and
artificial intelligence.

2. Secondly, the established hybrid model provides comprehensive experimental valida-
tion by comparing it with different popular models, thereby analyzing the effective-
ness and unique features of the proposed method.

3. Lastly, the model training and validation are conducted using the data from both
the NIMS database and UTM testing. By incorporating publicly available data for
testing the model performance and utilizing small-sample datasets for validation, the
practicality and credibility of the research are enhanced.

The subsequent sections of this paper include the following: a detailed exploration of
the modeling process and evaluation metrics in Section 2, an investigation and discourse
on the prediction accuracy and efficacy of hybrid models utilizing the NIMS database in
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Section 3, prediction experiments employing material test data from the UTM in Section 4,
and a conclusive summary accompanied by insights into future research avenues in Section 5.

2. Modeling Process of Hybrid Models Incorporating Multiple Statistical Indicators
2.1. Support Vector Regression Optimized by Slime Mould Algorithm

SVR was proposed by Vapnik et al. in 1996 [38]. It is commonly used to solve high-
dimensional modeling, small samples, and nonlinear problems. The main theory of SVR is
as follows. For a given dataset, D = {xi, yi}n

i=1, where xi is the i-th input eigenvector, yi is
the corresponding output vector and n is the number of all samples. Nonlinear mapping is
used to map the sample set from low-dimensional space to high-dimensional space. This
kind of nonlinear mapping can be defined as shown below [39]:

f (x) = ω · ϕ(x) + b (1)

where x represents input data, ω is weight, and b is the intercept. {ξi}n
i=1 and

{
ξ∗i
}n

i=1 are
introduced as relaxation variables. Then, the equation can be changed as follows [40]:

minH(ω, b, ξ) =
1
2
∥ω∥2 + C

n

∑
i=1

(ξi + ξ∗i ) (2)

s.t.


yi − ω · ϕ(x)− b ≤ ε + ξi
ω · ϕ(x) + b − yi ≤ ε + ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(3)

where C is the penalty factor, and ε is the maximum allowable error of the regression.
Equation (2) can be transformed into the following Equation (4) by introducing the Lagrange
multiplier and kernel function [38]:

maxH(α∗i , αi) = −1
2

n

∑
i=1

n

∑
j=1

(α∗i − αi)
(

α∗j − αj

)
ϕ(xi)ϕ

(
xj
)
−

n

∑
i=1

αi(yi + ε) +
n

∑
i=1

α∗i (yi − ε) (4)

s.t.


n
∑
i

(
α∗i − αi

)
= 0

0 ≤ αi, α∗i ≤ C
(5)

where α∗i , αi are Lagrange multipliers. After minimizing the Lagrange function, the formula
of the nonlinear mapping is obtained. Its expression can be described as follows [38]:

f (x) =
n

∑
i=1

(αi − α∗i )K(xi, x) + b (6)

where K(xi, x) is the kernel function. And radial basis function (RBF) is a type of kernel
function that is used commonly in SVR. σ represents the kernel parameter of RBF. Then, its
expression can be defined as below [41]:

KRBF(xi, x) = exp

(
−∥xi − x∥2

2σ2

)
(7)

SMA was proposed in 2020 by Li et al. [42]. SMA is inspired by the spreading and
foraging behaviors of Physarum polycephalum. Slime mould mainly relies on propagating
waves generated by biological oscillators to change the flow of cytoplasm in the veins,
which encourages them to move toward locations with better food concentrations. The
behavior of slime mould searching for food is modeled as a mathematical equation with
the following position-updated equation [42]:

X(t + 1) =
{

Xb(t) + vb · (W · XA(t)− XB(t)), r < p
vc · X(t), r ≥ p

(8)
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p = tanh|S(i)− FD| (9)

where Xb is the highest concentration of food odor found at present. X is the current position
of slime mould. XA and XB are the fitness values of two randomly selected individuals.
t is the current iteration. vb is a coefficient that randomly oscillates between [−a, a] and
tends toward zero with increasing iterations. vc is a coefficient whose value is between
[0, 1] and finally tends to 0. W is the adaptive weight of slime mould. r is a random value
in the interval [0, 1]. S(i) represents the fitness of X. FD is the best fitness in all iterations.
tmax represents the maximum iteration. The expressions of a and W are defined below [42]:

a = arctanh
(

1 − t
tmax

)
(10)

W(Ssort(i)) =

 1 + r · log
(

Fb−S(i)
Fb−Fw

+ 1
)

, condition

1 − r · log
(

Fb−S(i)
Fb−Fw

+ 1
)

, others
(11)

where r simulates the uncertainty of the slime mould venous contraction. The condition
represents the top half of the population in S(i). In fact, it mimics the way that slime mould
searches for food. Fb is the best fitness obtained in the current iteration, and Fw represents
the worst fitness. Ssort(i) represents the fitness sequence (select the increasing sequence
when solving the minimization problem).

When forecasting based on the SVR model, both the error of prediction value and
the computational time of the model are significantly affected by the penalty factor C and
the kernel parameter σ. However, there is a lack of methods to guide the selection of the
hyperparameters of SVR. When the dataset and optimization goal change, the optimal
combination of parameters changes a lot. Therefore, it is difficult to select a suitable
combination based on experience. SMA, as a biological metaheuristic algorithm, has fast
global search and effective convergence ability. When different optimization problems need
to be solved, SMA can select a set of appropriate hyperparameter combinations for SVR to
achieve the goal of reducing its computational time and improving prediction accuracy.

The modeling steps of SMA-SVR are as follows:

(1) Divide the material dataset into the training set and test set. Then, normalize the
data. The content of the elements and temperature of low-alloy steel are used as
input features, and a certain mechanical property is used as the output variable to be
predicted.

(2) Set the bounds of the two hyperparameters of SVR. Provide the initial parameters of
SMA, including the dimensionality of the variables, the number of slime populations,
and maximum iterations.

(3) Use the hyperparameters of SVR as the optimization variables of SMA and then
calculate the optimal individuals of the population using the fitness function.

(4) With iterations, SMA gradually steers the population toward minimizing the deviation
of the predicted value from the true value.

(5) The optimal combination of hyperparameters, searched by SMA, is output to the SVR.
The data and the optimized hyperparameters are used to perform the training of the
SVR model.

(6) Calculate the accuracy of the predicted values and the computational time of the
model based on multiple statistical indicators.

(7) Output the experimental results, while the associated images are automatically drawn
based on the program.

The modeling process of SMA-SVR is shown in Figure 1.
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The Mean Square Error (MSE) is the expected value of the square of the difference
between the estimated value and the true value. It is suitable for evaluating the degree of
variation in data. A smaller MSE means more accurate predicted data. Thus, MSE is chosen
as the fitness function in this paper and defined as follows:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (12)

where n represents the number of samples. ŷi is the predicted value and yi is the real value
of the dataset.

Moreover, in order to evaluate the ability of prediction and robustness more fairly,
three other error measurements were selected as the basis for analyzing the performance
of the model. Their descriptions are as follows. MAE is the average of the absolute errors
between the predicted and observed values. RMSE is the square root of MSE. A regression
model’s R2 statistic estimates the percentage of the dependent variable’s variation that the
independent variable can account for. R2 demonstrates how well the data fit the regression
model. Computational time (CT) is the sum of the time spent on training and testing the
model each time, which is automatically recorded by the timer of the program.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (13)

RMSE =

√
1
n

n

∑
i=1

(yi − ŷi)
2 (14)

R2 = 1 −

n
∑

i=1
(yi − ŷi)

2

n
∑

i=1
(yi − y)2

(15)
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2.2. Further Explanation of the Optimization Parameters

In this paper, a hybrid model was proposed combining SMA optimization with SVR by
optimizing the penalty factor and kernel parameter. In addition, other recognized hybrid
models were selected to compare their prediction performance. Specifically, Grey Wolf
Optimization (GWO) was utilized to optimize the SVR parameters, leading to the creation
of GWO-SVR. Moreover, particle swarm optimization (PSO) was applied to optimize the
weight and threshold of Back Propagation (BP), resulting in the development of PSO-BP.
Lastly, the Sparrow Search Algorithm (SSA) was employed to optimize the initialization
parameters (weight and threshold) of Elman, giving rise to SSA-Elman. Each metaheuristic
algorithm iteration was conducted over 100 cycles with a population size of 20. For a
comprehensive understanding of the optimization parameters, please refer to Table 1 for
additional details.

Table 1. Detailed description of the hybrid models.

Hybrid Models Description

SMA-SVR
The combination of the penalty factor and kernel parameter is the objective
to be optimized. The boundary of the penalty factor is [0.01, 50]. The Kernel
parameter is bounded by [0.1, 100].

GWO-SVR
The position of Alpha Grey Wolf represents the combination of the penalty
factor and kernel parameter. And the boundary of the penalty factor is
[0.01, 50]. The Kernel parameter is also bounded by [0.1, 100].

PSO-BP

The weight and threshold of BP are optimized by PSO. The parameters of BP
are the number of neurons in a hidden layer = 5, target error = 1 × 10−4, and
learning rate = 0.01. The parameters of PSO are as follows: c1 = 1.5, c2 = 1.5,
and w = 0.8.

SSA-Elman

The weight and threshold of Elman are optimized by SSA. The parameters of
Elman include the number of neurons in a hidden layer = 5, epochs = 1000,
learning rate = 0.01, minimum performance gradient = 1 × 10−6, and
maximum number of failures = 6. The parameters of SSA include an Alarm
value = 0.6, a proportion of discoverers = 0.7, and a proportion of scouts = 0.2.

3. Test Cases and Discussion Based on NIMS Database Data
3.1. The Source and Introduction of the Data from NIMS Database

In Sections 3.1–3.3, a dataset of low-alloy steel was utilized. It was sourced from the
Materials Database of the National Institute for Materials Science [43] (https://cds.nims.go.
jp/). However, the data available in the NIMS Materials Database were solely provided in
PDF format. Thus, an open-source OCR tool (PaddleOCR) was employed to structure the
data on low-alloy steel into a tabular format. While the use of an OCR tool proves to be
a convenient method for converting PDF data into tabular form, it may introduce certain
limitations and biases. Following the identification and merging process checks to ensure
the consistency between the original and identified data were also conducted. Subsequently,
a dataset consisting of 914 samples, each encompassing 16 features, was compiled. These
features included 11 elements of the content of low-alloy steel, 1 facet of temperature
information, and 4 attributes concerning the mechanical properties of materials. For a
detailed overview of the features, please refer to Table 2.

Table 2. The characteristics and description of the dataset.

Characteristics Description

Elements The element type and content of each low-alloy steel, including C,
Si, N, S, P, Al, V, Cr, Cu, Ni, Mo, Mn

Temperature Temperature for mechanical property test of each low-alloy steel
Mechanical properties Tensile strength and 0.2% proof stress

https://cds.nims.go.jp/
https://cds.nims.go.jp/
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3.2. Tests and Discussion of Tensile Strength Prediction

Tensile strength stands out as a pivotal variable extensively utilized in design, struc-
tural analysis, manufacturing quality management, failure analysis, and other relevant
fields. Hence, tensile strength was chosen as the target variable for prediction in this section.
The content of elements and temperature of materials, as outlined in Table 2, were selected
as the input features for model training. The data were partitioned into training and test
sets at a ratio of 7:3. Specifically, 640 rows of data were randomly assigned as the training
data input for each modeling iteration, while the remaining 274 rows were earmarked for
the test set.

The performance of these hybrid models (SMA-SVR, GWO-SVR, PSO-BP, and SSA-
Elman) was assessed. All experiments were carried out on a single computer equipped
with an Intel Core i7-11800H processor, Samsung DDR4 3200 MHz 16 GB memory, and
NVIDIA GeForce RTX 3060 6 GB graphics card. To gauge the robustness of each hybrid
model, the testing process was conducted ten times and documented the average values
(MEAN) and standard deviations (STDs) of the results, which are detailed in Table 3. To
present the test results more intuitively, a dual Y-axis line chart with error intervals was
created, as shown in Figure 2. The horizontal axis represents different hybrid models;
the left vertical axis corresponds to the MAE of the test results, and the right vertical axis
represents the computational time of these models. The legend indicates MAE and time
(marked in red and blue, respectively), corresponding to the left and right vertical axes.

Table 3. The experimental results of tensile strength prediction.

Hybrid Models Indicators MAE RMSE R2 CT (s)

SMA-SVR
MEAN 15.9361 24.7482 0.9602 52.4216
STD 1.0621 2.9454 0.0108 7.1783

GWO-SVR
MEAN 31.9902 53.6377 0.8154 129.5067
STD 5.4879 10.1818 0.0697 29.3234

PSO-BP
MEAN 27.6195 36.7715 0.9156 79.8108
STD 2.7986 3.0094 0.0146 0.7885

SSA-Elman
MEAN 26.1757 37.0577 0.9129 283.7778
STD 1.7819 2.8756 0.0185 37.4507
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The performance of the four hybrid models is compared using different evaluation
metrics. The results indicate that the MAE of SMA-SVR is significantly smaller than that of
the other three models, with SSA-Elman achieving the lowest MAE of 26.1757. Notably, the
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MAE of SMA-SVR is 39.12% smaller than that of SSA-Elman. When analyzing RMSE, SMA-
SVR demonstrates superior performance compared to PSO-BP, SSA-Elman, and GWO-SVR,
in that order. Specifically, the discrepancy between the predicted and actual values is the
smallest for SMA-SVR, while GWO-SVR exhibits the largest RMSE among them.

In the evaluation of the R2, which indicates the goodness of fit of the regression model,
SMA-SVR stands out with an R2 value of 0.9602. The low standard deviation of R2 at
0.0108 suggests that the predictions made by SMA-SVR are highly stable, with minimal
data dispersion. It is noteworthy that a significantly shorter average computational time
was required by SMA-SVR compared to GWO-SVR, PSO-BP, and SSA-Elman. In particular,
the computational time of SMA-SVR is 81.53%, which is less than that of SSA-Elman.

The analyses demonstrate that the predictive performance of SMA-SVR outperforms
the other three hybrid models significantly. To further evaluate the models, the best
prediction results from these tests are recorded. A comparison chart is designed to display
the actual and predicted values of the test set for each model, as depicted in Figure 3.
Moreover, a box plot of R2 values is constructed to facilitate visual comparison of their
prediction accuracy, as illustrated in Figure 4.
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To assess the effectiveness of prediction models, regression plots were used. In these
plots (refer to Figures 5–8), the horizontal axis represents the true data values, while the
vertical axis displays the predicted values. Each sample point on the plot is positioned
based on both the actual and predicted values. When the predicted values match the actual
values, all sample points align perfectly along a straight line that follows the diagonal of
the plot. The Ordinary Least Squares Regression (OLS) method is applied to determine the
least-square line for these sample points. The closer this line aligns with the diagonal, the
higher the accuracy of the forecast.
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The figures indicate that the majority of sample points in the regression plot for the
SMA-SVR model are clustered closely around the least-square line, suggesting a high level
of prediction accuracy and robustness across various test sets. On the contrary, sample
points from the other three models exhibit notable deviations from their respective least-
square lines, suggesting a higher likelihood of significant prediction errors in multiple
predictions made using GWO-SVR, PSO-BP, and SSA-Elman.

The results of the multiple comparison tests are tabulated in Table 4, with the best
hybrid model labeled as “1”, followed by the second-best as “2”, and so forth. It is
noteworthy that, among all the models under comparison, SMA-SVR emerges as the top
performer in predictive capabilities.

Table 4. Ranking of the hybrid models designed for prediction.

Indicators SMA-SVR GWO-SVR PSO-BP SSA-Elman

MAE 1 3 2 2
RMSE 1 3 2 2
R2 1 3 2 2
CT 1 3 2 4
Total 4 12 8 10
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3.3. Tests and Discussion of 0.2% Proof Stress Prediction

In materials exhibiting non-linear behavior or inelasticity, such as low-alloy steel,
determining the yield point often necessitates the use of the 0.2% offset method. Within the
realm of engineering, the 0.2% proof stress serves as a crucial indicator for the yield stress
of steel. Like other elastic materials, steel elongates and deforms when subjected to stress.
Upon stress release, the material is expected to revert to its original dimensions. However, if
the stress surpasses a critical value, the material endures permanent deformation, marking
the onset of a plastic zone or the attainment of the yield point. Accordingly, the proof stress
signifies the elastic limit of the material, which is a pivotal parameter in engineering design.
Typically, this value is derived by drawing a line parallel to the stress–strain curve at the
0.2% strain value.

To assess the efficacy of hybrid models in predicting the 0.2% proof stress of low-alloy
steel, this section focused on the elemental composition and operating temperatures as
input variables. The target prediction variable remained at 0.2% proof stress. A random
selection of 640 sample entries from the dataset constituted the training set, while the
remaining 274 samples were allocated to the test set, maintaining a consistent training-
to-test ratio of 7:3. The procedural aspects of training and testing for the four hybrid
models mirrored those of the prior evaluation, with hardware specifications, population
size, and iteration counts remaining consistent. The outcomes of the 0.2% proof stress
prediction tests are detailed in Table 5 for reference. A bar chart with the MAE and RMSE
data of the experimental results is further plotted for a visual comparison of the prediction
performance of these models, as shown in Figure 9.

Table 5. The experimental results of 0.2% proof stress prediction.

Hybrid Models Indicators MAE RMSE R2 CT (s)

SMA-SVR
MEAN 15.7577 26.0341 0.9599 48.3597
STD 1.1167 5.5874 0.0155 6.4954

GWO-SVR
MEAN 33.6462 55.5973 0.8365 148.8186
STD 2.7055 3.4792 0.0143 27.2309

PSO-BP
MEAN 24.5863 36.2034 0.9232 80.1724
STD 1.5038 4.2324 0.0176 3.4577

SSA-Elman
MEAN 25.8850 36.1494 0.9229 254.7069
STD 3.9774 5.1697 0.0298 15.3139
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The analysis of predicting 0.2% proof stress by the models indicates that SMA-SVR
achieves the highest prediction accuracy among them, with an R2 ranking of SMA-SVR
> PSO-BP > SSA-Elman > GWO-SVR. Furthermore, SMA-SVR demonstrates the lowest
values for MAE and RMSE. In addition, SMA-SVR has the shortest computational time for
both training and testing, representing only 32.50% of GWO-SVR and 18.99% of SSA-Elman.

An analysis of the prediction errors of each model was also conducted separately.
Initially, a normality test was performed using the Shapiro–Wilk test method, considering
the small sample sizes in each group. The results of the normality test can be found in
Table 6.

Table 6. The results of S-W tests of the prediction errors.

Hybrid Models Sample Size Median MEAN STD Skewness Kurtosis S-W Tests

SMA-SVR 274 0.269 −1.297 20.263 −0.648 3.420 0.945 (0.000)
GWO-SVR 274 1.141 8.831 49.229 1.701 5.379 0.839 (0.000)
PSO-BP 274 −0.508 −0.488 28.652 0.298 1.271 0.985 (0.006)
SSA-Elman 274 −3.420 −1.480 30.571 0.500 3.348 0.965 (0.000)

The normality test conducted on the prediction errors indicates that the models do
not follow a normal distribution at a significance level of 1% (all p-values are below 0.05).
Consequently, a detailed analysis of the error distributions was conducted, and error
histograms for each model were created, as illustrated in Figures 10–13.
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Figure 13. The histogram of the prediction errors of SSA-Elman.

The prediction errors of SMA-SVR are primarily clustered in the range of [−25, 25],
with absolute error values generally below 90. In contrast, the prediction errors of GWO-
SVR are predominantly found within the range of [−30, 30], but a considerable number
of samples exhibit an absolute error exceeding 90, with four samples exhibiting values
exceeding 200. While the errors tend to be centered around 0, the deviations from the actual
values significantly diminish the reliability of GWO-SVR predictions.

The prediction errors of PSO-BP are mainly distributed within the interval of [−40, 40],
with some samples falling in the ranges of [−70, −40] and [40, 70] and two samples showing
absolute errors exceeding 90. Similarly, the prediction errors of SSA-Elman are concentrated
in the range of [−45, 45], with only two samples exhibiting an absolute error exceeding 90
and one sample showing a prediction error of more than 160 for the absolute value.

Overall, the prediction performance of SMA-SVR surpasses all the other models, with
error values predominantly centered around 0 and absolute errors mostly below 90. As a
result, SMA-SVR stands out as the most reliable model among the models considered.

4. Prediction Tests with Data from the Universal Testing Machine

Tensile tests were carried out on 30 varieties of low-alloy steel, utilizing a universal
testing machine (UTM). The resulting data on tensile strength and 0.2% proof stress were
collected. Subsequently, a comparative analysis and discussion were conducted to further
evaluate the predictive capabilities of the hybrid models.

4.1. Material Preparation and Experiment Design

In total, 30 types of low-alloy steel were selected based on their mechanical properties
and intended usage scenarios. Detailed information about these steel types can be found in
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Table 7, where they are categorized into nine distinct groups, including corrosion-resistant
steel, high-strength steel, structural steel, and welded weathering steel. Table 8 records the
elemental compositions of these low-alloy steel types.

Table 7. The grades, characteristics and uses of the selected low-alloy steel.

Category Grade of Low-Alloy Steel Characteristics and Uses of Materials

1 10CrMoAl, 16MnCu, 10Cr4Al
Seawater corrosion-resistant low-alloy steel, good
corrosion resistance, and pitting resistance, widely
used in oil tanks, bridges, oil derricks, etc.

2 Q500D, Q460C, Q420E, Q390B,
Q345D

Low-alloy, high-strength structural steel with high
strength, is used for large engineering structures,
large ships, bridges, power plant equipment,
high-pressure boilers, etc.

3 Q550NH, Q415NH, Q235NH Welded weathering steel for structures such as
vehicles, bridges, containers, buildings, etc.

4 L360, L320, L245, L290, L485,
L450, L415, L390

Wide and thick steel plates for oil and gas
transmission pipelines

5 Q460CF-D

Low-weld crack sensitivity high-strength steel plate
is mainly used for the production of hydroelectric
power station pressure steel pipes and railroad
vehicles with high requirements for weldability

6 AH420

Ultra-high-strength grade steel is used in the
manufacture of aircraft beams, engine shafts,
high-strength bolts, solid rocket motor cases,
high-pressure vessels, etc.

7 Q550qD, Q460qE, Q420qE,
Q345qD, Q235qD Structural steel for bridges

8 16MnDR, 15MnNiDR
Low-alloy steel plates for low-temperature pressure
vessels are widely used in petroleum, chemical,
power stations, boilers, and other industries

9 HP345, HP295

Steel plates and strips for welded gas cylinders are
mainly used for manufacturing liquid chlorine,
liquid ammonia, and other types of low-pressure
steel-welded gas cylinders

Table 8. The elemental compositions of the low-alloy steel types.

Alloy Code C Si Mn P S Ni Cr Mo Cu V Al N

Q550NH 0.160 0.650 2.000 0.025 0.030 0.375 0.775 / 0.375 / / /
Q500D 0.180 0.600 1.800 0.030 0.025 0.800 0.600 0.200 0.550 0.120 0.015 0.015
L485 0.100 0.400 1.800 0.020 0.010 / / / / / / /

Q550qD 0.180 0.550 1.350 0.025 0.015 1.000 0.800 0.400 0.550 0.080 0.015 0.012
L450 0.120 0.400 1.650 0.020 0.010 / / / / / / /
L415 0.120 0.400 1.650 0.020 0.010 / / / / / / /

Q460C 0.200 0.500 1.800 0.030 0.030 0.800 0.300 0.200 0.550 0.200 0.015 0.015
Q460CF-D 0.090 0.500 1.800 0.020 0.010 / / / / / / /

L390 0.120 0.400 1.650 0.020 0.015 / / / / / / /
L360 0.200 0.350 1.400 0.020 0.015 / / / / / / /

AH420 0.210 0.550 1.700 0.300 0.030 / / / / / / 0.020
Q415NH 0.120 0.650 1.100 0.025 0.030 0.385 0.775 / 0.375 / / /

Q420E 0.200 0.500 1.700 0.025 0.020 0.800 0.300 0.200 0.300 0.200 0.015 0.015
L320 0.200 0.350 1.400 0.025 0.015 / / / / / / /

10CrMoAl 0.100 0.350 0.500 0.045 0.045 / 1.000 0.600 / / 0.600 /
L245 0.200 0.350 1.300 0.025 0.015 / / / / / / /
L290 0.200 0.350 1.300 0.025 0.015 / / / / / / /

Q390B 0.200 0.500 1.700 0.035 0.035 0.500 0.300 0.100 0.300 0.200 / 0.015
Q460qE 0.180 0.550 1.400 0.020 0.010 0.700 0.800 0.350 0.550 0.080 0.015 0.012
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Table 8. Cont.

Alloy Code C Si Mn P S Ni Cr Mo Cu V Al N

HP345 0.200 0.350 1.500 0.025 0.015 / / / / / 0.020 /
16MnDR 0.200 0.325 1.400 0.020 0.010 / / / / / 0.020 /

15MnNiDR 0.180 0.325 1.400 0.020 0.001 0.400 / / / 0.060 0.020 /
Q345D 0.180 0.500 1.700 0.030 0.025 0.500 0.300 0.100 0.300 0.150 0.015 0.012
Q420qE 0.180 0.550 1.350 0.020 0.010 0.700 0.800 0.350 0.550 0.080 0.015 0.012
16MnCu 0.160 0.400 1.400 0.050 0.050 / / / 0.300 / / /
HP295 0.180 0.100 1.000 0.025 0.015 / / / / / 0.020 /

Q345qD 0.180 0.550 1.300 0.025 0.020 0.500 0.800 0.200 0.550 0.080 0.015 0.012
10Cr4Al 0.130 0.050 0.050 / 0.025 / 4.100 / / / 0.900 /
Q235NH 0.130 0.250 0.400 0.030 0.030 0.650 0.600 / 0.400 / / /
Q235qD 0.170 0.350 1.400 0.025 0.025 0.300 0.300 / 0.300 / 0.015 0.012

To create the test samples, 1500 mm × 1000 mm × 5 mm steel plates were utilized for
each steel type. These plates underwent wire cutting and grinding processes following
the design drawing of the test piece (refer to Figure 14). For every grade of steel, three test
pieces were meticulously prepared, and each test piece underwent three separate tensile
tests. The average values of tensile strength and 0.2% proof stress derived from these tests
were collected as test data.
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The material preparation procedure was carefully crafted to ensure uniformity and
consistency among the specimens. Through the wire-cutting and grinding processes, the
specimens were standardized in dimensions and surface finish, thereby reducing any
potential impact on the experimental outcomes. Conducting three tests for each test piece
enabled us to acquire dependable and consistent data for all types of steel.

The universal testing machine (UTM) used was HDW-50k with the following param-
eters: maximum range: 5 × 105 N; accuracy level: 1st rank; error of the indicated value:
±1.0%; load measurement range: 2~100% of the full range; and displacement resolution:
1 × 10−2 mm. The extensometer’s scale distance for tests is 25 mm, with a relative error of
±1.0% for both the scale distance and the indicated value.

The experimental process involves using the UTM sensor to measure the force on the
test pieces and the extensometer to determine their deformation. Photographs of the test
site can be found in Figure 15. The specific steps are as follows:

(1) Mount the test piece in the UTM collet with the extensometer fixed in the middle.
(2) Axially stretch the test piece using the UTM with a strain rate set to 1.0 mm/min.
(3) Measure the force of the test piece with the UTM force sensor and the deformation

with the extensometer.
(4) During the test, real-time measurement information is output to UTM software (UTM,

Orlando, FL, USA, https://getutm.app) for processing.
(5) After the test, software is used to calculate the measured information, obtaining the

data for tensile strength and 0.2% proof stress.
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±1.0% for both the scale distance and the indicated value. 
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4.2. Evaluation and Performance Analysis

The predictive capabilities of the four hybrid models are assessed by estimating the ten-
sile strength and 0.2% proof stress of low-alloy steel based on their elemental composition
as the input features. The dataset comprises 30 entries, with 21 entries randomly allocated
to the training set and the remaining 9 to the test set, maintaining a 7:3 ratio between the
training and test sets. Throughout the experiments, the hardware configuration of the
computer remained constant, while specific parameters were adjusted as detailed below.
For both SMA-SVR and GWO-SVR, the population size was fixed at 200, and the maximum
number of iterations was set to 300. The penalty factor ranged between 0.01 and 800, and
the kernel parameter was between 0.001 and 50. In the case of PSO-BP, the particle size was
set to 30, and the maximum number of iterations was capped at 100, while the hidden layer
of the BP network housed 7 nodes. As for SSA-Elman, the sparrow population size was 50,
and the maximum number of iterations for the Elman network was set at 1000.

Each model underwent 20 repetitions to acquire prediction results and evaluation
metrics, as summarized in Table 9. To illustrate prediction errors visually, box plots
depicting MAE were generated, as depicted in Figure 16. Regarding the prediction of tensile
strength, SSA-Elman emerged as the hybrid model with the least favorable performance.
Despite its commendable accuracy, it was burdened with prolonged computational time
and yielded higher MAE and MSE values when contrasted with the other models. In
comparison, while PSO-BP exhibited a lower prediction error than SSA-Elman, its R2

value was the most modest, signifying challenges in comprehending the intricate mapping
relationship between the material composition and properties.
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Table 9. The test results and evaluation indicators of tensile strength prediction.

Hybrid Models Indicators MEAN STD Median

SMA-SVR

MAE 23.9016 7.5074 23.8317
MSE 987.2799 603.6388 962.3523
RMSE 30.1312 9.1417 31.0218
R2 0.8563 0.0511 0.8525
Time (s) 7.9878 0.6714 7.7287

GWO-SVR

MAE 43.3931 15.0256 41.6687
MSE 4077.4096 2698.6676 3357.6671
RMSE 60.4693 21.0482 57.9448
R2 0.4389 0.2425 0.3924
Time (s) 8.5734 1.5607 8.5828

PSO-BP

MAE 57.2008 18.0336 57.3019
MSE 6153.8801 3859.8489 4744.1278
RMSE 74.2614 25.9377 68.8694
R2 −0.0255 0.5288 0.0399
Time (s) 109.7039 10.0224 102.8430

SSA-Elman

MAE 62.0889 17.7758 57.3609
MSE 7179.0305 6843.9529 4948.5308
RMSE 79.6986 29.5075 70.3273
R2 0.2047 0.1992 0.1065
Time (s) 155.6183 7.9242 158.3449

SMA-SVR and GWO-SVR, both known for their suitability in small sample sizes,
outperformed the previous two models. SMA-SVR demonstrates the highest R2 value,
which is approximately twice as high as that of GWO-SVR. Moreover, SMA-SVR exhibits
a 44.92% smaller MAE value than GWO-SVR, with a shorter computational time. In the
20 conducted tests, SMA-SVR yielded the most favorable outcomes with a penalty factor
set to 450.5898 and a kernel parameter set to 0.0073. The resulting values for MAE, MSE,
R2, and computational times were 12.5516, 296.5571, 0.9593, and 9.1410 s, respectively.
Conversely, GWO-SVR delivered optimal results when the penalty factor was set to 800.0
and the kernel parameter to 0.7702. Under these settings, GWO-SVR displays an MAE of
20.0123, an MSE of 618.0679, an R2 of 0.9324, and a computational time of 10.9094 s.

According to the findings, SMA-SVR exhibits the most robust modeling capability
among the four hybrid models. Its predictions are not only accurate but also efficient,
rendering it a prudent choice for predicting the tensile strength of low-alloy steel.

The test results and error measurements of 0.2% proof stress prediction are recorded
in Table 10. Based on the experimental results of 0.2% proof stress, a dual Y-axis graph
combining a bar chart and a line graph is plotted to visually demonstrate the prediction
performance of each model, as shown in Figure 17. It includes the RMSE, MAE, and
R-squared data. SMA-SVR also stands out as the best model with the smallest MAE and
MSE values, as well as the shortest computational time. This test further demonstrates its
robustness. However, a closer examination of the best prediction results from each model
reveals some intriguing phenomena.

Table 10. The test results and error measurements of 0.2% proof stress prediction.

Hybrid Models Indicators MEAN STD Median

SMA-SVR

MAE 43.8716 9.8879 45.1705
MSE 2804.1741 1037.3345 2724.4200
RMSE 51.9970 10.2846 52.1958
R2 0.8003 0.0474 0.7913
Time (s) 8.9335 1.0544 8.6116
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Table 10. Cont.

Hybrid Models Indicators MEAN STD Median

GWO-SVR

MAE 66.8823 16.5486 60.4250
MSE 7131.4586 3980.1947 5977.6832
RMSE 82.0430 20.5301 77.3122
R2 0.4334 0.1400 0.4168
Time (s) 9.1828 2.0273 8.9995

PSO-BP

MAE 65.9220 16.1245 63.6380
MSE 6523.8342 3154.8717 5521.9045
RMSE 78.7286 18.5142 74.2658
R2 0.0283 0.3379 −0.0410
Time (s) 105.3629 7.5211 101.3413

SSA-Elman

MAE 69.8350 29.9387 61.8377
MSE 9342.1954 13,999.0466 5335.6513
RMSE 85.5847 46.0829 73.0385
R2 0.2323 0.2137 0.1536
Time (s) 167.4383 14.8824 163.9477

Mathematics 2024, 12, 1153 24 of 28 
 

 

Time (s) 109.7039  10.0224  102.8430  

SSA-Elman 

MAE 62.0889  17.7758  57.3609  
MSE 7179.0305  6843.9529  4948.5308  
RMSE 79.6986  29.5075  70.3273  
R2 0.2047  0.1992  0.1065  
Time (s) 155.6183  7.9242  158.3449  

SMA-SVR and GWO-SVR, both known for their suitability in small sample sizes, out-
performed the previous two models. SMA-SVR demonstrates the highest R2 value, which 
is approximately twice as high as that of GWO-SVR. Moreover, SMA-SVR exhibits a 
44.92% smaller MAE value than GWO-SVR, with a shorter computational time. In the 20 
conducted tests, SMA-SVR yielded the most favorable outcomes with a penalty factor set 
to 450.5898 and a kernel parameter set to 0.0073. The resulting values for MAE, MSE, R2, 
and computational times were 12.5516, 296.5571, 0.9593, and 9.1410 s, respectively. Con-
versely, GWO-SVR delivered optimal results when the penalty factor was set to 800.0 and 
the kernel parameter to 0.7702. Under these settings, GWO-SVR displays an MAE of 
20.0123, an MSE of 618.0679, an R2 of 0.9324, and a computational time of 10.9094 s. 

According to the findings, SMA-SVR exhibits the most robust modeling capability 
among the four hybrid models. Its predictions are not only accurate but also efficient, ren-
dering it a prudent choice for predicting the tensile strength of low-alloy steel. 

The test results and error measurements of 0.2% proof stress prediction are recorded 
in Table 10. Based on the experimental results of 0.2% proof stress, a dual Y-axis graph 
combining a bar chart and a line graph is plotted to visually demonstrate the prediction 
performance of each model, as shown in Figure 17. It includes the RMSE, MAE, and R-
squared data. SMA-SVR also stands out as the best model with the smallest MAE and 
MSE values, as well as the shortest computational time. This test further demonstrates its 
robustness. However, a closer examination of the best prediction results from each model 
reveals some intriguing phenomena. 

 
Figure 17. The dual-axis graph featuring RMSE, MAE, and R-squared metrics for analysis of the 
models’ performance. 

  

Figure 17. The dual-axis graph featuring RMSE, MAE, and R-squared metrics for analysis of the
models’ performance.

With the penalty factor set to 536.0331 and the kernel parameter set to 0.0214, SMA-SVR
produced the most accurate predictions, achieving an R2 value of 0.9117, RMSE of 30.1331,
and MAE of 24.9031. Interestingly, the second-best performing model was not GWO-SVR
but rather SSA-Elman, which yielded an R2 value of 0.8434, RMSE of 49.2817, and MAE of
42.2157. This outcome underscores the critical impact of hyperparameter optimization on
the learning capabilities of models. The selection of appropriate hyperparameters leads to
a considerable improvement in both computational time and prediction accuracy.

The combination of SMA and SVR proves to be highly successful, with the hyperpa-
rameter optimization of SMA significantly outperforming that of GWO. The prediction
performance and computational efficiency of SMA-SVR are optimal among the experiments
conducted. SMA-SVR demonstrates an exceptional ability to learn the complex mapping
between chemical compositions and material properties, even with small sample sizes.
Moreover, it exhibits a strong generalization ability. These findings support the argument
that SMA-SVR is an ideal choice for predicting the 0.2% proof stress of low-alloy steel.
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5. Conclusions

Understanding mechanical properties is essential for various industrial applications,
such as design, manufacturing processes, and product reliability. Accurately predicting
material performance not only aids designers in selecting the right materials but also
provides valuable guidance to processors seeking new materials and assists engineers
in analyzing product failures. In this study, a hybrid SMA-SVR model is proposed that
optimizes two hyperparameters of SVR to create a fast and effective predictor for material
properties. To validate our approach, it is compared with other popular models (GWO-
SVR, PSO-BP, SSA-Elman) using data from the NIMS Materials Database and material tests
conducted on a universal testing machine.

A comprehensive evaluation of the models reveals SMA-SVR as the most accurate
and efficient model, requiring a shorter computational time. The integration of SMA and
SVR demonstrates significant promise in predicting the mechanical properties of low-alloy
steel and enhancing industrial manufacturing processes. And this study concludes the
following key points:

1. The accuracy of predicting in SVR hinges on factors like penalty factor and kernel
parameters, tailoring to the variables under prediction. The incorporation of SMA not
only boosts prediction accuracy but also slashes processing time significantly.

2. Among the experiments, SMA-SVR stands out for its exceptional predictive prowess
in tensile strength tests. SMA-SVR outshines PSO-BP, SSA-Elman, and GWO-SVR
with the highest R2 ranking, the lowest RMSE ranking, and notably the shortest
computational time.

3. SMA-SVR exhibits minimal prediction errors for the 0.2% proof stress, with errors
mainly clustered in the range [−25, 25] and absolute error values below 90. GWO-
SVR, on the other hand, displays errors mostly around zero, albeit with four errors
exceeding 200. Conversely, PSO-BP and SSA-Elman models performed less effectively
than SMA-SVR. As the precision in predictions escalates, reference values tend to rise,
making SMA-SVR the most practical model within the assessment.

4. Evaluating a material’s microstructure conventionally entails a substantial investment
of cost and time, often constrained by limited sample sizes. Nonetheless, SMA-SVR
adeptly links a material’s chemical composition to its mechanical properties, even for
modest samples, transcending the grade limitations of low-alloy steel. With robust
generalization capabilities, SMA-SVR extends its utility across various industrial
domains, offering high prediction accuracy and minimal errors for small sample sizes
among the models surveyed.

Potential avenues for future exploration encompass leveraging composite strategies
to bolster SMA-SVR’s predictive capability or amplifying SMA’s global search proficiency.
Conducting further experiments and analyses with reduced sample sizes could study the
model’s efficacy across diverse applications, paving the way for the wider adoption of
SMA-SVR as a dependable and efficient tool for material property forecasts.
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