
Citation: Lazebnik, T.; Bunimovich-

Mendrazitsky, S. More Numerically

Accurate Algorithm for Stiff Matrix

Exponential. Mathematics 2024, 12,

1151. https://doi.org/10.3390/

math12081151

Academic Editor: Qing-Wen Wang

Received: 12 March 2024

Revised: 7 April 2024

Accepted: 8 April 2024

Published: 11 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

More Numerically Accurate Algorithm for Stiff
Matrix Exponential
Teddy Lazebnik 1,2,* and Svetlana Bunimovich-Mendrazitsky 1

1 Department of Mathematics, Ariel University, Ariel 4070000, Israel; svetlanabu@ariel.ac.il
2 Department of Cancer Biology, Cancer Institute, University College London, London WC1E 6BT, UK
* Correspondence: t.lazebnik@ucl.ac.uk

Abstract: In this paper, we propose a novel, highly accurate numerical algorithm for matrix expo-
nentials (MEs). The algorithm is based on approximating Putzer’s algorithm by analytically solving
the ordinary differential equation (ODE)-based coefficients and approximating them. We show that
the algorithm outperforms other ME algorithms for stiff matrices for several matrix sizes while
keeping the computation and memory consumption asymptotically similar to these algorithms. In
addition, we propose a numerical-error- and complexity-optimized decision tree model for efficient
ME computation based on machine learning and genetic programming methods. We show that,
while there is not one ME algorithm that outperforms the others, one can find a good algorithm for
any given matrix according to its properties.

Keywords: decision tree for a numerical algorithm; stiff matrix exponential; Putzer approximation

MSC: 65L04; 65L08

1. Introduction and Related Work

A matrix exponential (ME) is a function defined as the solution of a system of n linear,
homogeneous, first-order, ordinary differential equations (ODEs) with constant coefficients.
Equation (1) outlines a formal writing of the ME function:

Y(t) = eMtY(0)↔ Y′(t) = MY(t), M ∈ Cn×n, (1)

where M ∈ Cn×n is an arbitrary matrix, Y(t) is a dynamic over time, and Y(0) is the initial
condition of the dynamic system.

An ME is a widely used function [1–5]. For instance, it is used in linear control systems
in order to find the state space, as the ME plays a fundamental role in the solution of the
state equations [6,7]. In a more general sense, it plays a role in exploring and solving a
wide range of dynamical systems represented by a set of ODEs [1]. Due to their usefulness
in many applications, MEs have been widely investigated [1,8–11].

The analytical solution of Equation (1) takes the form [8]:

eM =
∞

∑
i=0

Mi

i!
. (2)

Equation (2) is also known as the naive ME algorithm. It is numerically unstable, slow,
and relatively inaccurate when considering floating-point arithmetic [1]. Recently, in the
context of modern computer systems, numerical computation of MEs has become more
relevant than ever before [1,12]. One of the main challenges associated with computing
MEs is the numerical accuracy for any given matrix [9].

One can roughly divide the numerical ME algorithms into two groups: algorithms
designed specifically to exploit a property of some groups of matrices (for example, diagonal

Mathematics 2024, 12, 1151. https://doi.org/10.3390/math12081151 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12081151
https://doi.org/10.3390/math12081151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7851-8147
https://orcid.org/0000-0001-5280-3217
https://doi.org/10.3390/math12081151
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12081151?type=check_update&version=1

Mathematics 2024, 12, 1151 2 of 13

matrices) and algorithms that are suitable for all matrices. Usually, when one uses an
algorithm from the first group, the obtained result is accurate and the computation is
stable since the algorithm is explicitly designed to handle the given input matrix. If, for
some reason, one uses an inappropriate matrix in such an algorithm, the algorithm more
often than not produces a (highly) incorrect result. Algorithms from the second group are
usually found in large computational systems as they do not require that the result of the
computation, which takes place before the computation of the ME algorithm, satisfies a
given condition. This general nature makes these algorithms usable in a wider context [1].
However, each algorithm in this group has a set of matrices that result in large errors or
even divergence during computation [1].

One can name several popular examples of such algorithms. First, there is a Taylor
series method with a stop condition that is based on Peano’s remainder being smaller than
some pre-defined threshold [13]. As a numerical method, it is often slow and inaccurate [1].
Specifically, matrices with small values, in absolute terms, are more likely to produce large
errors due to cancellation errors. Second, the Pade-approximation-based algorithm is a
two-parameter approximation of the ME Taylor series algorithm, which makes it more
robust and well-performing after using scaling and squaring algorithm [1]. However, these
algorithms obtain poor results, with the norm of the matrix ||M|| being large. Third, the
Cayley–Hamilton ME algorithm provides another form of approximation of the Taylor
series. The coefficients of the decomposition of the input matrix are very sensitive to round-
off errors as they generate a large error, specifically when the rank of the input matrix (M)
is significantly smaller than that of the diminution of the matrix [8].

Another family of algorithms takes advantage of the eigenvalues of the input matrix.
For instance, there are Lagrange-interpolation-based methods [8]. These methods provide
very accurate results on average [1]. However, for an input matrix with close but not equal
eigenvalues (i.e., |λj − λk| << 1), this method has a significant cancellation error as a result
of dividing each iteration by |λj − λk|. Matrices with eigenvalues with great algebraic
multiplicity will produce significant error and make the algorithm unstable. In a similar
manner, the Newton interpolation algorithm is a good example as well. This algorithm is
based on a recursive decomposition method of the input matrix and suffers from the same
issues as the Lagrange interpolation algorithm.

An additional family of algorithms is the general-purpose ODE solvers. The main idea
is that the ME is defined as a solution for a system of ODEs (see Equation (1)). Therefore, it
is possible to solve Equation (1) numerically using different approaches such as the Euler,
exponential integrator, and Runge–Kutta methods [14–16]. The Krylov methods are widely
used to solve MEs for which the matrices are large and sparse [17]. These methods are
widely adapted due to the fast and accurate results they produce for sparse matrices, which
are becoming more common in multiple applications [17,18]. This class of methods is
mainly dependent on the norm of the input matrix [19,20]. For cases for which the input
matrix is negative definite, the condition number defines the convergence rate and error
boundary [17,21]. However, this class of methods does not allow obtaining the ME itself
but the product of the ME with a vector. While of interest in multiple applications, in this
work, we aim to obtain the ME, as it can be both analyzed by itself and later multiplied
with any vector easily.

Moreover, a large body of work investigates the numerical computation of MEs for the
transient analysis of continuous-time Markov chains [22]. Multiple numerical algorithms
for MEs are proposed: mostly based on the uniformization method [23]. These methods
are shown to handle cases for which stiffness occurs. Nonetheless, [22] shows that even
modern continuous-time Markov chain solvers are outperformed by Pade approximation
combined with scaling and squaring. Recently, further works focused on the computation
time and computational memory requirements of ME as matrices grow in size for multiple
realistic cases [24,25].

In this study, we propose a novel L-EXPM algorithm that numerically solves MEs with
a high level of accuracy. The L-EXPM is designed to tackle the issues of previous methods

Mathematics 2024, 12, 1151 3 of 13

by combining the advantages of series-based algorithms (for example, Pade) and the
eigenvalue-based methods (for example, Newton) by approximating Putzer’s algorithm.

The remainder of the paper is organized as follows. First, we introduce the proposed L-
EXPM algorithm with asymptotic complexity and memory consumption analysis and prove
it solves MEs. Second, we numerically evaluate the numerical accuracy of the proposed
L-EXPM algorithm relative to other ME algorithms on stiff matrices. Third, we propose
a complexity- and numerical-accuracy-optimized decision tree model for numerically
solving ME. Finally, we conclude the usage of the proposed L-EXPM with a decision tree
and suggest future work.

2. The L-EXPM Algorithm
2.1. Algorithm

Numerical computation of MEs using L-EXPM is aimed to reduce the error in comput-
ing MEs for any given complex square matrix. L-EXPM is based on Putzer’s algorithm [26]
for the decomposition of MEs. L-EXPM handles two steps of the original algorithm from a
numerical perspective. First, it finds the eigenvalues of the input matrix (M). This is not
a trivial task, especially for large-size matrices. However, recent power methods, such as
the Lanczos algorithm [27], are able to obtain the needed eigenvalues with decent accuracy.
Second, rather than solving a system of ODEs recursively to obtain the coefficients of
the decomposed matrices, the coefficients are iteratively approximated via an analytical
solution of the system of ODEs. A schematic view of the algorithm’s structure is shown in
Figure 1.

Finding the eigenvalues
of the matrix

Input matrix
with dim N

Pultzer approximation
for dimention i

eigenvalues
and i = 0

if i < N: i = i + 1

Matrix exponentelsewhere

Figure 1. A schematic view of the algorithm’s structure.

The L-EXPM algorithm takes a square complex (or real) matrix and returns the ME of
this matrix. It works as follows: In line 2, the vector of eigenvalues of the input matrix is
obtained using some algorithm that finds numerically the eigenvalues of the input matrix.
Any algorithm may be used. Specifically, the Lanczos [27] algorithm has been used with
the stability extension proposed by Ojalvo and Newman [28] and the spatial bisection
algorithm [29]. In line 3, the eigenvalues that are too close to each other are converted
to the same eigenvalue, and eigenvalues that are too close to 0 are converted to 0. In
lines 4–5, the initial r and P (the input matrix decomposition (P) and its coefficient) from
Putzer’s algorithm are initialized. Lines 6–11 are the main loop of the algorithm, with line
8 being the sum of ri+1Pi, while ri in line 9 is an approximation of the ri shown in [26], as
shown in Theorem 1. Specifically, cl and ak are the coefficients of the polynomial–exponent
representation of ri, as later described in Equation (10). Line 10 is the iterative calculation
of Pi.

In line 3, controlEigs(M) is a function that replaces every two eigenvalues that satisfy
||λi − λj|| < ϵ or one eigenvalue ||λi|| < ϵ, where ϵ is an arbitrary small threshold with the
same eigenvalue λi or 0.

We examine the L-EXPM algorithm’s storage requirements and complexity (Algorithm
1). Analyzing the worst-case scenario, asymptotic complexity, and memory consumption
can be performed by dividing the algorithm into two parts: lines 2–5 and 6–11. Assuming
that the worst complexity and memory consumption of the algorithm that finds the eigen-
values of the input matrix are O(Ec) and O(Em), respectively, and that the input matrix
is n-dimensional, then it is easy to see that controlEigs has O(n2) complexity and O(n)
memory consumption as it compares every two values in a vector. Lines 4 and 5 are the
initialization of two matrices, so O(1) complexity and O(n2) memory consumption are

Mathematics 2024, 12, 1151 4 of 13

required. Therefore, this part of the algorithm results in O(max(Ec, n2)) complexity and
O(Em, n2) memory consumption.

Algorithm 1 L-EXPM

1: procedure L-EXPM(M)
2: Λ← eigs(M)
3: Λ← controlEigs(Λ)

4: r ← eΛ[1]

5: P← Idim(M)×dim(M)

6: i = 1
7: while i ≤ dim(M) do
8: expm← expm + r · P
9: r ← eΛ[i]Σi

k=0Σi
l=0

(−1
(λi−ak)

)l+1cle(ak−Λ[i])Σl
m=0

l!
(l−m)! (Λ[i]− ak)

l−m

10: P← P(M− Idim(M)×dim(M)Λ[i + 1])
11: end while
12: return expm
13: end procedure

Regarding lines 7–11, we repeat the inner loop n times. Inside the inner loop at
line 8, there is addition between two matrices, which has O(n2) complexity and memory
consumption. In line 9, there are three sums, each bounded by n. In addition, in the inner
sum, there is a factorial, which is naively calculated in O(l) in each loop and can be bounded
by O(n) overall, and therefore, in the worst case, it can be calculated as O(n4) complexity
and O(n) memory consumption. Nevertheless, calculating the size of the factorial and
storing it in a vector of size n reduces the complexity of line 9 to O(n3). In line 10, the more
expensive computation is the matrix multiplication, which is bounded by O(n3) complexity
and O(n2) memory consumption. Therefore, the algorithm’s complexity is bounded by
O(n4) complexity and O(n3) memory consumption. The values of ak and cl are determined
during the run time as shown in the Proof of Lemma 1.

2.2. Proof of Soundness and Completeness

In this section, we provide analytical proof for the soundness and completeness of the
L-EXPM algorithm. The proof outlines how to reduce the formula proposed in L-EXPM,
lines 8–19, to the formula used in Putzer’s algorithm [26].

Theorem 1. For any given matrix M ∈ Cn×n, algorithm L-EXPM solves Equation (1).

Proof. Consider the following equation:

Y′(t) = MY(t), M ∈ Cn×n.

First, one needs to obtain the eigenvalues of the input matrix M. It is possible to
find the biggest eigenvalue of M using the Lanczos algorithm [27]. Using Ojalvo and
Newman’s algorithm, this process is numerically stable [28]. The result of their algorithm
is a tridiagonal matrix Tm×m, which is similar to the original matrix M. The eigenvalues of
Tm×m can be obtained with an error ϵ as small as needed using spectral bisection [29].

According to the Putzer algorithm [26], a solution to the ME takes the form:

Y(t) = Σn−1
j=0 rj+1(t)Pj, such that

P0 = I, ∀j ∈ [0, n− 1] : Pj = Πj
k=1(M− λk I), and

r′1 = λ1r1, r1(0) = 1, ∀j ∈ [2, n− 1] : r′j = λjrj + rj−1, rj(0) = 0,
(3)

Mathematics 2024, 12, 1151 5 of 13

where λi ∈ Λ are the eigenvalues of M ordered from the absolute largest eigenvalue to the
smallest one. The solution for r′j = λjrj for any j ∈ [1, n− 1] is a case of a non-heterogeneous
linear ODE with a constant coefficient and, therefore, takes the form:

r1 = eλ1t, rj = eλjt
(∫

e−λjtrj−1(t)dt−
∫

rj−1(t)dt|t=0
)

(4)

Regarding Pj, it is possible to obtain Pj+1 given Pj using the formula:

Pj+1 = Pj(M− λj+1 I), (5)

because

Pj+1 := Πj+1
k=1(M− λk I) and Pj := Πj

k=1(M− λk I)→ Pj+1 := PjΠ
j+1
k=j+1(M− λk I) = Pj(M− λj+1 I).

Equation (1) may diverge if λ1 = 0: then rj =
(−1)j

λj−1λj
for 2 ≤ j ≤ n and r1 = 1. In

general, this calculation has only precision errors. It may have a significant cancellation
error when λj−1λj → 0.

Now, one needs to show that the solution for rj takes the form shown in line 9 of the
L-EXPM algorithm.

Lemma 1. ∀j ∈ [1, n] : rj(t) := Σn
k=1 pk(t)eakt, where pk are polynomials and ak ∈ C are

constants.

Proof of Lemma 1. Induction on j. For j = 1, r1 = eλ1t − 1, which satisfies the condition.
Assume the condition is satisfied for rj, and we show rj+1 has satisfied the condition. Now,
according to Equation (4):

rj+1 = eλj+1t
∫

e−λj+1trj(t)dt− eλj+1t
∫

rj(t)dt|t=0. (6)

The second term is the multiplication of a constant by an exponent and therefore
satisfies the condition. Now, we examine the first term. Based on the assumption, it takes
the form:

rj+1 = eλj+1t
∫

e−λj+1tΣk pk(t)eaktdt = eλj+1t
∫

Σk pk(t)e
(ak−λj+1)tdt. (7)

Integration of the sum is equal to the sum of the integrations, so we can write:

rj+1 = eλj+1tΣk

∫
pk(t)e

(ak−λj+1)tdt. (8)

Therefore, it is enough to show that
∫

pk(t)e
(ak−λj+1)tdt satisfies the condition, because

a sum of sums of elements that satisfy the condition also satisfies the condition. Now, pk(t)
is a polynomial, and therefore it is possible to obtain:

rj+1 =
∫
(c0 + c1t + · · ·+ cltl)e(ak−λj+1)tdt =

∫
c0e(ak−λj+1)t +

∫
c1te(ak−λj+1)t + · · ·+

∫
cltle(ak−λj+1)tdt. (9)

As a result, if one shows that
∫

cltle(ak−λj+1)tdt satisfies the condition, the whole term
satisfies the condition. Now,∫

cltle(ak−λj+1)tdt =
∫ ∞

(λj+1−ak)t

cl

(λj+1 − ak)l xle−xdx. (10)

As this integral is the incomplete gamma function, it is possible to approximate it
as follows:

Mathematics 2024, 12, 1151 6 of 13

(−1
(λj+1 − ak)

)l+1cle
(ak−λj+1)tΣl

m=0
l!

(l −m)!
((λj+1 − ak)t)l−m. (11)

Equation (11) is an exponent of a constant and a sum of polynomials and therefore
satisfies the condition. Therefore, the first term in Equation (6) satisfies the condition.
Therefore, rj for j ∈ [1, n− 1] satisfies the condition.

Since the Putzer algorithm [26] solves Equation (1), it is enough to show that it is
possible to obtain rj using line 9 because the L-EXPM algorithm is an approximation of the
Putzer algorithm and therefore solves Equation (1).

Now, for j = 1, r1(t) = eλ1t − 1. According to Lemma 1, r2 takes the form:

r2(t) = eλ2t ∫ e−λ2t(eλ1t − 1)dt− eλ2t ∫ eλ1t − 1dt|t=0 = e(λ2+λ1)t(1
λ1−λ2

+ 1
λ2

+ α2)− eλ2t(1
λ1
− t + α1), (12)

where {αi}2
i=1 are constants. It is known that r2(0) = 1, so by setting t = 0 in Equation (12),

one obtains:

r2(t) = (λ1
λ2(λ1−λ2)

)e(λ2+λ1)t − (1
λ1
− t)eλ2t +

λ2
1−λ1λ2−λ2
λ1(λ1−λ2)

. (13)

This process repeats itself for any rj, j ∈ [3, n− 1].

3. Numerical Algorithm Evaluation

In comparison with other algorithms, L-EXPM’s storage requirements and complexity
are asymptotically equal to the ones of the algorithms with the lowest storage requirements
and complexity [8]. To evaluate the performance of L-EXPM compared to the state-of-
the-art ME algorithms, a general case matrix may be required. Nevertheless, since ME
algorithms provide large errors if the given matrix has a specific property, several families
of stiff and non-stiff matrices should be used to obtain a general case analysis of the
algorithm’s performance.

3.1. Artificial Stiff Matrices Analysis

We evaluate the performance of L-EXPM with respect to four state-of-the-art ME
algorithms: Taylor, Pade, Newton, and Lagrange. For each algorithm, the parameters and
tolerances are obtained using the grid search method [30]. Namely, for the Taylor algorithm,
the number of terms is determined. In a similar manner, for the Pade algorithm, the
fixed degrees combined with scaling and squaring [31,32] and the tolerance parameter are
determined using the grid search method. The evaluation of the algorithms is performed
using their MATLAB implementations (version 2020b). Since all five algorithms handle
random, non-stiff matrices, we compared these algorithms on seven types of stiff matrices:

1. Matrices for which the difference between the eigenvalues of the matrix is small but
not negligible: we randomly pick a value (a > 0) and an amplitude (ϵ << 1) and
generate matrices with eigenvalues that are in the range (a± ϵ).

2. Matrices for which the eigenvalues are approaching 0: we generate matrices with
eigenvalues that satisfy the following formula: 1 ≤ i ≤ n, λi =

1
(i+2)2 .

3. Matrices with large diameters: we generate matrices with eigenvalues that satisfy the
formula
0 ≤ i ≤ n, λi = a− (a−b)i

n , where a and b are picked randomly such that b >> a.
4. Matrices that have a large condition number: we generate matrices with eigenvalues

that satisfy the formula 1 ≤ i ≤ n, λi ∈ [a, b], such that |b||a| >> 1.

5. Matrices that have eigenvalues with significant algebraic multiplicity: we generate
matrices with eigenvalues with an algebraic multiplicity of at least two.

6. Matrices with a single eigenvalue: we generate matrices with a single eigenvalue
picked at random.

Mathematics 2024, 12, 1151 7 of 13

7. Matrices with complex eigenvalues with a large imaginary part: we generate matrices
with eigenvalues that satisfy the formula 0 ≤ j ≤ n, λi = a + 10i · a, where a ∈
[−100, 100] is a random number.

The matrices are generated as follows. First, a Jordan matrix (J) with the required
eigenvalues is randomly generated. Then, a random matrix P with the same size of J
is generated such that the condition number of P is less than two, and its determinant
0.5 ≤ det(P) ≤ 1.5. The random matrix used in the analysis is obtained by computing
M = P−1 JP. For each type of matrix, we examine the performance of each algorithm on
matrices with sizes 3× 3, 10× 10, 100× 100, and 1000× 1000 to determine the growth of
the error as a function of the matrix’s size. Each value is obtained as the average of n = 100
repetitions, and the values of the matrices are generated using a normal distribution with
mean µ = 0 and standard deviation σ = 300.

The numerical relative error is calculated using the L2 distance between the analytically
obtained (ground truth) ME matrix and the numerically obtained one: Error = ||A(M)−
eM

gt ||L2 , where A is a numerical ME algorithm. The ground truth ME is obtained analytically
by calculating the ME of the J matrix to obtain eM

gt = P−1eJ P. While (eM
gt is a closed form,

it is not guaranteed to be exact since the matrix (eM
gt is a product of performing finite

arithmetic. However, matrix (eM
gt is computed as an ME of a diagonal matrix, which is

formed by computing exactly the exponential of a floating point number and is assumed
to be an accurate computation (up to ϵ-machine), and the multiplication with a random
matrix with a small condition number (smaller than 2) is numerically stable [33]. Therefore,
while the matrix (eM

gt is not guaranteed to be exact, it is close enough to the ground truth
for any applied purpose. The results of this analysis are shown in Table 1.

Table 1. Numerical relative error from four numerical ME algorithms and the L-EXPM ME algorithm
of seven stiff cases of matrices for matrix sizes 3× 3, 10× 10, 100× 100, and 1000× 1000. The results
are the average of n = 100 random matrices in each case. Err indicates an error in the computation
due to stack overflow.

Matrix Size Algorithm Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7

3× 3 Naive 2× 10−3 3× 10−3 6× 10−2 8× 10−1 3× 10−3 8× 10−4 1× 10−3

3× 3 Pade 5 × 10−5 6× 10−5 6 × 10−4 9× 10−3 2× 10−5 7× 10−5 1× 10−4

3× 3 Newton 8× 10−3 5× 10−2 3× 10−2 9× 10−2 5× 10−5 9 × 10−7 7× 10−6

3× 3 Lagrange 3× 10−2 1× 10−2 4× 10−2 8× 10−2 1× 10−6 1× 10−6 8 × 10−7

3× 3 L-EXPM 1× 10−4 8 × 10−6 8× 10−4 8 × 10−3 9 × 10−7 1× 10−6 3× 10−7

10× 10 Naive 4× 10−1 3× 10−1 1× 100 8× 100 4× 10−1 8× 10−1 1× 100

10× 10 Pade 1 × 10−4 5× 10−5 2 × 10−3 2× 10−1 8× 10−2 8× 10−2 1× 10−2

10× 10 Newton 2× 10−2 5× 10−1 8× 10−1 3× 100 5× 101 1 × 10−3 3× 10−3

10× 10 Lagrange 2× 10−2 3× 10−1 1× 100 4× 100 7× 101 5× 10−3 2 × 10−3

10× 10 L-EXPM 4× 10−4 1 × 10−6 2 × 10−3 8 × 10−2 6 × 10−2 7× 10−2 5× 10−3

100× 100 Naive 2× 100 8× 10−1 4× 101 6× 102 3× 101 2× 101 8× 101

100× 100 Pade 7× 10−2 5× 10−4 9 × 10−1 3 × 100 2 × 100 1× 101 5× 101

100× 100 Newton 4× 100 1× 103 5× 101 5× 101 3× 102 2 × 100 7 × 100

100× 100 Lagrange 3× 100 1× 103 7× 101 1× 102 8× 102 2 × 100 8× 100

100× 100 L-EXPM 3 × 10−2 3 × 10−4 1× 100 5× 100 8× 100 4× 100 1× 101

1000× 1000 Naive 2× 105 7× 106 Err Err Err 7× 106 Err

1000× 1000 Pade 8× 102 2 × 103 Err Err 3 × 103 6× 102 1 × 104

1000× 1000 Newton 3× 104 Err Err Err Err 1× 103 3× 104

1000× 1000 Lagrange 2× 104 Err Err Err Err 3× 103 6× 104

1000× 1000 L-EXPM 4 × 101 4× 105 Err Err 5× 103 7 × 101 2× 104

Based on the results shown in Table 1, we compare the average relative error across
the seven types of matrices of each algorithm divided by the matrix sizes, as shown in
Figure 2, where each point is the mean value of each row in Table 1. The x-axis is the

Mathematics 2024, 12, 1151 8 of 13

matrix’s size (i.e., dimension), and the y-axis is the numerical error as computed by the L2
norm metric between the analytically and numerically obtained matrices. Unsurprisingly,
all five algorithms present monotonically increasing numerical error with respect to the
input’s matrix size.

Figure 2. Average relative numerical error of the five ME algorithms across the five types of matrices
divided by matrix size. * The values for the (1000× 1000) case are the average of the matrices from
types 1 and 6 (see Table 1) rather than all seven types.

3.2. Control System’s Observability Use Case

One usage of MEs is linear control systems, wherein one records the output of a control
system over time and wishes to obtain the input of the control system, which is known as
the observability problem [34]. Formally, one observes the output from the system:

dx
dt

= Ax, y = Cx, (14)

where A, C ∈ Rn×n over a finite period of time [t0, T], and we aim to compute x(t0).
Analytically, this problem is solved by [35] and requires computing the ME of A and C
(see [34] for more details). Based on the glucagon–glucose dynamics linear control system
for the regulation of artificial pancreas solution in type 1 diabetes [36], we simulated A
and C matrices of sizes 3× 3, 11× 11, 100× 100, and 1000× 1000 that follow the same
distribution. In particular, we introduce Gaussian noise with a mean of 0.01 and standard
deviation of 0.001 for all non-zero values in the matrix to simulate measurement error. This
way, one obtains realistic samples of matrices that one can find in clinical settings. We used
a dedicated server with an Ubuntu 18.04.5 operating system. The server had an Intel Core
i7-9700K CPU and 64 GB RAM . All experiments were conducted in a linear fashion, and
no other programs were executed on the device except for the operating system. This was
to ensure the computation time was measured accurately. Each matrix’s size was computed
with 100 different samples obtained by using the different seeds for the pseudo-random
process. The results are shown as mean ± standard deviation in Table 2.

Taken jointly, the resultsshow that L-EXPM has similar or slightly better numerical
stability compared to current state-of-the-art ME algorithms for stiff matrices. For the more
general case, L-EXPMs show statistically significant (p < 0.05 with paired two-tailed t-test)
better error compared to the Pade algorithm. This outcome comes with a cost of one or two
orders of magnitude more computational time.

Mathematics 2024, 12, 1151 9 of 13

Table 2. Comparison between the Pade approximation algorithm’s and the proposed L-EXPM
algorithm’s errors and computation times (seconds) for the observability task.

Algorithm Metric 3 × 3 10 × 10 100 × 100 1000 × 1000

Pade
Error 5.2× 10−3 ± 2.8× 10−4 9.8× 10−3 ± 1.0× 10−3 6.5× 10−1 ± 8.3× 10−2 8.3× 100 ± 5.1× 10−1

Time 3.1× 10−3 ± 0.2× 10−3 7.0× 10−1 ± 0.4× 10−1 5.8× 101 ± 5.9× 100 3.2× 104 ± 0.7× 104

L-EXPM
Error 4.3× 10−3 ± 7.5× 10−5 6.9× 10−3 ± 7.7× 10−4 2.1× 10−2 ± 4.1× 10−3 7.6× 10−1 ± 1.3× 10−1

Time 5.2× 10−1 ± 0.9× 10−1 1.4× 101 ± 0.2× 101 2.2× 102 ± 0.3× 102 8.5× 105 ± 1.1× 105

4. Matrix Exponential Decision Tree

As shown in Table 1, there is no one ME algorithm that “rules them all” and outper-
forms all other ME algorithms for all cases in terms of numerical error. On top of that, we
have neglected the computation time and resources needed to perform these algorithms on
different matrices. Therefore, we can take advantage of the decision tree (DT) model. DTs
are one of the most popular and efficient techniques in data mining and have been widely
used thanks to their relatively easy interpretation and efficient computation time [37,38].
A DT is a mathematical tree graph wherein the root node has all the data, non-leaf nodes
operate as decision nodes, and the leaf nodes store the model’s output for a given input
that reaches them.

Two types of DTs are important for computational systems: For one, the numerical
error is critical to the result such that the resources and computing time are less significant.
The second case is where the numerical error is less significant, while the time and resources
required to obtain the results need to be minimized.

To find these DTs, we first generate a data set (M) with 1000 matrices with sizes
ranging between 3 and 100 generated for each of the first seven groups and an additional
7000 matrices from the eighth group generated to balance between stiff and non-stiff
matrices (14,000 matrices in total). Afterward, the data set is divided into a training cohort
and a testing cohort such that 80% of each sub-group of the data set is allocated to the
training cohort, and the remaining 20% is allocated to the testing cohort. This process is
repeated five times to obtain a five-fold split [39].

We aim to find a DT that is both computationally optimized and with minimal error
and, as such, offers an optimal decision algorithm for the ME algorithm for any case while
simultaneously taking into consideration computation time and numerical error. Therefore,
we first define the available leaves and decision nodes for the DT. Each leaf node is a
numerical ME algorithm with its own complexity, and each decision node is a discrete
classification function that receives a matrix M and returns a value v ∈ N. The components
used to construct the DT are shown in Table 3.

We define a penalty function as the sum of the worst-case complexity of all the
computational components (vertices, marked by v ∈ V) computed during the DT. In
addition, to avoid over-fitting the optimization on a too-small DT that does not use anything
and uses the algorithm with the least worst-case complexity, a decrease by one order of
magnitude (factor of 10) in the relative error is equal to dividing by a linear factor from the
worst overall complexity. Formally, one can write the optimization problem as follows:

min
DT

(
ΣM∈M

Σv∈VC[v]
log10E

)
, (15)

where M is the training set of matrices. We search for a directed acyclic graph (DAG)
(G = (V, E)) for which for any pair of nodes i ̸= j ∈ N : vi, vj ∈ V for which there is a path
from vi to vj satisfying that the asymptotic complexity of vi is smaller or equal to vj.

In addition, for the minimal error constraint, we compute the outcome for each one of
the decision components shown in Table 3. We then compute the numerical relative error
of each of the leaf components shown in Table 3 and store the index of the algorithm.

Mathematics 2024, 12, 1151 10 of 13

Table 3. The components that are available for the complexity-optimized DT.

Index Component Description
Worst Case
Complexity
(C)

Average Rela-
tive Numeri-
cal Error (E)

Is
Leaf
Node

1 Check form The matrix is diagonal, trigonal, Jordan,
or full O(n2) 0 No

2 Is symmetric The matrix is symmetric or not O(n2) 0 No

3 Large diameter The diameter of the matrix is larger than
some threshold or not O(n3) 0 No

4 Large algebraic multiplicity
There are eigenvalues with algebraic
multiplicity that are larger than some
threshold or not

O(n3) 0 No

5 Large condition number The condition number of the matrix is
larger than some threshold x or not O(n3) 0 No

6 Single eigenvalue Does the matrix have a single eigen-
value

O(n3) 0 No

7 Complex eigenvalues Eigenvalues are complex with a big
imaginary part O(n3) 0 No

8 Close eigenvalues Eigenvalues λi, λj such that |λi − λj| <
const ∧ λi ̸= λj

O(n3) 0 No

9 Diagonal Diagonal matrix exponential O(n) 0.13 Yes

10 Jordan Jordan matrix exponential O(n4) 21.21 Yes

11 Eigenvector algorithms TRED2 [40] and TQL2 [8] O(n4) 18.89 Yes

12 Ill condition algorithms IMPSUB [8] O(n4) 47.05 Yes

13 L-EXPM The proposed L-EXPM algorithm O(n4) 8.45 Yes

14 Eigenvalue-based approximation Lagrange algorithm [8] O(n5) 54.98 Yes

15 Different eigenvalue approximation Newton algorithm [8] O(n5) 52.73 Yes

16 Power series approximation Pade approximation algorithm [8] O(n4) 11.09 Yes

17 Naive Naive algorithm O(n4) 78.20 Yes

Based on both the complexity and numerical error data sets, a genetic programming
approach has been used to obtain the DT model [41,42]. First, an initial population of
DT models is generated as follows: based on the generated numerical related data set,
a DT model is trained using the CART algorithm and the gini dividing metric [43]. In
addition, the grid search method [30] is used on the DT’s depth (ranging between two and
seven levels) to obtain the best depth of the tree. Finally, the Boolean satisfiability-based
post-pruning (SAT-PP) algorithm is used to obtain the smallest DT with the same level
of accuracy [44]. The population of the DT model differs in two parameters: first, the
maximum number of leaves, if the leaf node can be used twice or not, and the minimum
samples for dividing a node [30].

Afterward, in each algorithmic step, each DT model is scored based on Equation (15)
(without the optimization term)—performed as the fitness metric. The scores of all models
are normalized such that the sum of the values equals 1. The top p percent (p is empirically
picked to be 50%) of the population is kept for the next generation. The population
is repopulated based on stochastic mutations of the remaining models. The mutation
function operates as follows: First, two DT models are picked at random with a distribution
corresponding to the fitness score of the models. Both DTs are scanned from the root node
using the BFS algorithm [45] such that each node that they have is similarly allocated to the

Mathematics 2024, 12, 1151 11 of 13

new DT model, and nodes that are different are taken from the first model 33% of the time
and from the second model 33% of the time, and the remaining 34% are pruned.

The obtained DT model is shown in Figure 3, wherein each rectangle node is a decision
node and each circle node is a leaf node, which is identified by its component name as
defined in Table 3.

Input Matrix (M)

Check from

Diagonal Jordan Triagonal Form Full form

Is symmetricFind eigenvalues

IMPSUB L-EXPM
Large algebraic

multiplicity (x=2)

Close

eigenvalues
Pade

approximation

Lagrange Newton

Large algebraic

multiplicity (x=2)

Complex

eigenvalues

L-EXPM
Pade

approximation

Large condition

number
Large diameter

Eigenvectors

algorithm

yesno

yes no yes no

elsewhere

Matrix property computing

ME algorithm

Matrix property

Figure 3. Numerical-accuracy- and computation-complexity-optimized DT for numerical MEs.

5. Conclusions

This study introduces a novel algorithm for numerically calculating matrix exponen-
tials (MEs) that achieves high accuracy on stiff matrices while maintaining computational
and memory efficiency comparable to existing ME algorithms. By combining eigenvalue-
based and series-based approaches, the proposed L-EXPM algorithm demonstrates improved
robustness against stiff matrices compared to individual methods. Although L-EXPM gener-
ally outperforms the Pade approximation algorithm, especially for large matrices, the latter
remains preferable for time-sensitive applications due to its shorter computation time. In
practical applications, like observability in control systems, L-EXPM shows superior accuracy
but with longer computation times than Pade. To address varying matrix characteristics, a
decision tree (DT) model integrating Boolean functions and ME algorithms is proposed, and it
is optimized using machine learning and genetic programming techniques.

This study is not without limitations. First, an analytical boundary for the error,
rather than the numerical one shown in this study, can be theoretically useful. Second,
exploring the influence of different eigenvalue computation methods can further improve
the numerical performance of L-EXPM. Finally, future research should focus on testing
this DT model in diverse engineering contexts, particularly in control systems, to assess its
performance across real-world scenarios.

Author Contributions: T.L.: conceptualization, data curation, methodology, formal analysis, inves-
tigation, supervision, software, visualization, project administration, and writing—original draft.
S.B.-M.: validation and writing—review and editing. All authors have read and agreed to the
published version of the manuscript.

Funding: This research did not receive any specific grant from funding agencies in the public,
commercial, or not-for-profit sectors.

Data Availability Statement: All the data that were used were computed.

Conflicts of Interest: The authors have no conflicts of interest to declare that are relevant to the
content of this article.

Mathematics 2024, 12, 1151 12 of 13

References
1. Dunn, S.M.; Constantinides, A.; Moghe, P.V. Chapter 7—Dynamic Systems: Ordinary Differential Equations. In Numerical Methods

in Biomedical Engineering; Academic Press: Cambridge, MA, USA, 2006; pp. 209–287.
2. Van Loan, C. Computing integrals involving the matrix exponential. IEEE Trans. Autom. Control 1978, 23, 395–404. [CrossRef]
3. Al-Mohy, A.H.; Higham, N.J. Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators.

SIAM J. Sci. Comput. 2011, 33, 488–511. [CrossRef]
4. Aboanber, A.E.; Nahla, A.A.; El-Mhlawy, A.M.; Maher, O. An efficient exponential representation for solving the two-energy

group point telegraph kinetics model. Ann. Nucl. Energy 2022, 166, 108698. [CrossRef]
5. Damgaard, P.; Hansen, E.; Plante, L.; Vanhove, P. Classical observables from the exponential representation of the gravitational

S-matrix. J. High Energy Phys. 2023, 2023, 183. [CrossRef]
6. Datta, B.N. Chapter 5—Linear State-Space Models and Solutions of the State Equations. In Numerical Methods for Linear Control

Systems: Design and Analysis; Academic Press: Cambridge, MA, USA, 2004; pp. 107–157.
7. Fadali, M.S.; Visioli, A. State–space representation. In Digital Control Engineering: Analysis and Design; Academic Press: Cambridge,

MA, USA, 2020; pp. 253–318.
8. Moler, C.; Van Loan, C. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 2003,

45, 3–49. [CrossRef]
9. Ward, R.C. Numerical Computation of the Matrix Exponential with Accuracy Estimate. SIAM J. Numer. Anal. 1977, 14, 600–610.

[CrossRef]
10. Zhou, C.; Wang, Z.; Chen, Y.; Xu, J.; Li, R. Benchmark Buckling Solutions of Truncated Conical Shells by Multiplicative

Perturbation With Precise Matrix Exponential Computation. J. Appl. Mech. 2022, 89, 081004. [CrossRef]
11. Wan, M.; Zhang, Y.; Yang, G.; Guo, H. Two-Dimensional Exponential Sparse Discriminant Local Preserving Projections.

Mathematics 2023, 11, 1722. [CrossRef]
12. Najfeld, I.; Havel, T. Derivatives of the Matrix Exponential and Their Computation. Adv. Appl. Math. 1995, 16, 321–375. [CrossRef]
13. Genocchi, A.; Peano, G. Calcolo Differenziale e Principii di Calcolo Integrale; Fratelli Bocca: Rome, Italy, 1884; Volume 67, pp. XVII–XIX.

(In Italian)
14. Biswas, B.N.; Chatterjee, S.; Mukherjee, S.P.; Pal, S. A Discussion on Euler Method: A Review. Electron. J. Math. Anal. Appl. 2013,

1, 294–317.
15. Hochbruck, M.; Ostermann, A. Exponential Integrators; Cambridge University Press: Cambridge, UK, 2010; pp. 209–286.
16. Butcher, J. A history of Runge-Kutta methods. Appl. Numer. Math. 1996, 20, 247–260. [CrossRef]
17. Wang, H. The Krylov Subspace Methods for the Computation of Matrix Exponentials. Ph.D. Thesis, University of Kentucky,

Lexington, KY, USA, 2015.
18. Dinh, K.N.; Sidje, R.B. Analysis of inexact Krylov subspace methods for approximating the matrix exponential. Math. Comput.

Simulati. 2017, 1038, 1–13. [CrossRef]
19. Druskin, V.; Greenbaum, A.; Knizhnerman, L. Using nonorthogonal Lanczos vectors in the computation of matrix functions.

SIAM J. Sci. Comput. 1998, 19, 38–54. [CrossRef]
20. Druskin, V.L.; Knizhnerman, L.A. Krylov subspace approximations of eigenpairs and matrix functions in exact and computer

arithemetic. Numer. Linear Algebra Appl. 1995, 2, 205–217. [CrossRef]
21. Ye, Q. Error bounds for the Lanczos methods for approximating matrix exponentials. SIAM J. Numer. Anal. 2013, 51, 66–87.

[CrossRef]
22. Pulungan, R.; Hermanns, H. Transient Analysis of CTMCs: Uniformization or Matrix Exponential. Int. J. Comput. Sci. 2018,

45, 267–274.
23. Reibman, A. Trivedi, K. Numerical transient analysis of markov models. Comput. Oper. Res. 1988, 15, 19–36. [CrossRef]
24. Wu, W.; Li, P.; Fu, X.; Wang, Z.; Wu, J.; Wang, C. GPU-based power converter transient simulation with matrix exponential

integration and memory management. Int. J. Electr. Power Energy Syst. 2020, 122, 106186. [CrossRef]
25. Dogan, O.; Yang, Y.; Taspınar, S. Information criteria for matrix exponential spatial specifications. Spat. Stat. 2023, 57, 100776.

[CrossRef]
26. Wahln, E. Alternative Proof of Putzer’s Algorithm. 2013. Available online: http://www.ctr.maths.lu.se/media11/MATM14/2013

vt2013/putzer.pdf (accessed on 17 February 2021).
27. Lanczos, C. An iteration method for the solution of the eigenvalue problem of linear differential and integral operators. J. Res.

Natl. Bur. Stand. 1950, 45, 225–282. [CrossRef]
28. Ojalvo, I.U.; Newman, M. Vibration modes of large structures by an automatic matrix-reduction methods. AIAA J. 1970,

8, 1234–1239. [CrossRef]
29. Barnard, S.T.; Simon, H.D. Fast multilevel implementation of recursive spectral bisection for partitioning unstructured problems.

Concurr. Comput. Pract. Exp. 1994, 6, 101–117. [CrossRef]
30. Liu, R.; Liu, E.; Yang, J.; Li, M.; Wang, F. Optimizing the Hyper-parameters for SVM by Combining Evolution Strategies with a

Grid Search. In Intelligent Control and Automation; Springer: Berlin/Heidelberg, Germany, 2006; Volume 344.
31. Al-mohy, A.H.; Higham, N.J. A New Scaling and Squaring Algorithm for the Matrix Exponential. SIAM J. Matrix Anal. Appl.

2009, 31, 970–989. [CrossRef]

http://doi.org/10.1109/TAC.1978.1101743
http://dx.doi.org/10.1137/100788860
http://dx.doi.org/10.1016/j.anucene.2021.108698
http://dx.doi.org/10.1007/JHEP09(2023)183
http://dx.doi.org/10.1137/S00361445024180
http://dx.doi.org/10.1137/0714039
http://dx.doi.org/10.1115/1.4054714
http://dx.doi.org/10.3390/math11071722
http://dx.doi.org/10.1006/aama.1995.1017
http://dx.doi.org/10.1016/0168-9274(95)00108-5
http://dx.doi.org/10.1016/j.matcom.2017.01.002
http://dx.doi.org/10.1137/S1064827596303661
http://dx.doi.org/10.1002/nla.1680020303
http://dx.doi.org/10.1137/11085935X
http://dx.doi.org/10.1016/0305-0548(88)90026-3
http://dx.doi.org/10.1016/j.ijepes.2020.106186
http://dx.doi.org/10.1016/j.spasta.2023.100776
http://www.ctr.maths.lu.se/media11/MATM14/2013vt2013/putzer.pdf
http://www.ctr.maths.lu.se/media11/MATM14/2013vt2013/putzer.pdf
http://dx.doi.org/10.6028/jres.045.026
http://dx.doi.org/10.2514/3.5878
http://dx.doi.org/10.1002/cpe.4330060203
http://dx.doi.org/10.1137/09074721X

Mathematics 2024, 12, 1151 13 of 13

32. Higham, N.J. The Scaling and Squaring Method for the Matrix Exponential Revisited. SIAM J. Matrix Anal. Appl. 2005,
26, 1179–1193. [CrossRef]

33. Demmel, J.; Dumitriu, I.; Holtz, O.; Kleinberg, R. Fast matrix multiplication is stable. Numer. Math. 2007, 106, 199–224. [CrossRef]
34. Poulsen, N.K. The Matrix Exponential, Dynamic Systems and Control; DTU Compute: Kongens Lyngby, Denmark, 2004.
35. Kailath, T. Linear Systems; Prentice Hall: Upper Saddle River, NJ, USA, 1980.
36. Farman, M.; Saleem, M.U.; Tabassum, M.F.; Ahmad, A.; Ahmad, M.O. A linear control of composite model for glucose insulin

glucagon pump. Ain Shams Eng. J. 2019, 10, 867–872. [CrossRef]
37. Swain, P.H.; Hauska, H. The decision tree classifier: Design and potential. IEEE Trans. Geosci. Electron. 1977, 15, 142–147.

[CrossRef]
38. Stiglic, G.; Kocbek, S.; Pernek, I.; Kokol, P. Comprehensive Decision Tree Models in Bioinformatics. PLoS ONE 2012, 7, e33812.

[CrossRef] [PubMed]
39. Kohavi, R. A Study of Cross Validation and Bootstrap for Accuracy Estimation and Model Select. In Proceedings of the

International Joint Conference on Artificial Intelligence, Montreal, QC, Canada, 20–25 August 1995.
40. Lu, Y.Y. Exponentials of symmetric matrices through tridiagonal reductions. Linear Algerba Its Appl. 1998, 279, 317–324. [CrossRef]
41. Koza, J.R.; Poli, R. Genetic Programming. In Search Methodologies: Introductory Tutorials in Optimization and Decision Support

Techniques; Springer: New York, NY, USA, 2005; pp. 127–164.
42. Alexi, A.; Lazebnik, T.; Shami, L. Microfounded Tax Revenue Forecast Model with Heterogeneous Population and Genetic

Algorithm Approach. Comput. Econ. 2023.. [CrossRef]
43. Grabmeier, J.L.; Lambe, L.A. Decision trees for binary classification variables grow equally with the Gini impurity measure and

Pearson’s chi-square test. Int. J. Bus. Intell. Data Min. 2007, 2, 213–226. [CrossRef]
44. Lazebnik, T.; Bahouth, Z.; Bunimovich-Mendrazitsky, S.; Halachmi, S. Predicting acute kidney injury following open partial

nephrectomy treatment using SAT-pruned explainable machine learning model. BMC Med. Inform. Decis. Mak. 2022, 22, 133.
[CrossRef] [PubMed]

45. Moore, E.F. The shortest path through a maze. In Proceedings of the International Symposium on the Theory of Switching; Harvard
University Press: Cambridge, MA, USA, 1959; pp. 285–292.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1137/04061101X
http://dx.doi.org/10.1007/s00211-007-0061-6
http://dx.doi.org/10.1016/j.asej.2019.04.001
http://dx.doi.org/10.1109/TGE.1977.6498972
http://dx.doi.org/10.1371/journal.pone.0033812
http://www.ncbi.nlm.nih.gov/pubmed/22479449
http://dx.doi.org/10.1016/S0024-3795(98)00017-2
http://dx.doi.org/10.1007/s10614-023-10379-2
http://dx.doi.org/10.1504/IJBIDM.2007.013938
http://dx.doi.org/10.1186/s12911-022-01877-8
http://www.ncbi.nlm.nih.gov/pubmed/35578278

	Introduction and Related Work
	The L-EXPM Algorithm
	Algorithm
	Proof of Soundness and Completeness

	Numerical Algorithm Evaluation
	Artificial Stiff Matrices Analysis
	Control System's Observability Use Case

	Matrix Exponential Decision Tree
	Conclusions
	References

