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Abstract: The problem of dividing a pie between two persons is considered. An arbitration procedure
for dividing the pie is proposed, in which the arbitrator is a random number generator. In this
procedure, the arbitrator makes an offer to the players at each step, and the players can either accept
or reject the arbitrator’s offer. If there is no consensus, negotiations move on to the next step. At the
same time, the arbitrator punishes the rejecting player by reducing the amount of the resource in
favor of the consenting player. A subgame perfect equilibrium is found in the process.
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1. Introduction

A classic problem in negotiation theory is the problem of fair resource sharing, which
is called the pie cutting or the pie sharing problem. The pie sharing problem is relevant to
various situations, such as splitting rent among housemates, resolving disputes over land
ownership, and allocating work among co-workers. There is a multitude of books [1,2]
and surveys [3–5] dealing with this topic. The situation involves representing a pie as an
interval [0, 1], with each of the n agents possessing a value function over the pie. The main
aim of the pie-sharing procedure is to divide the pie fairly. The key factors in fairly dividing
a pie, as discussed in the literature, are envy-freeness and proportionality. An envy-free
allocation ensures that each participant views their share as equal to or better than others’.
Meanwhile, a proportional allocation guarantees that each participant receives at least 1/n
of the value they place on the pie.

One of the popular approaches to the pie sharing problem is the Rubinstein sequential
bargaining game approach [6]. In this approach, it is assumed that the players take turns
suggesting to each other ways to divide a unit size pie, and the process ends as soon as
all the players accept some kind of offer. Players can endlessly insist on a solution that is
beneficial to themselves. To prevent this from happening, a discounting factor δ < 1 is
introduced, i.e., the pie size at the first step is one; at the second step, it is δ < 1; at the third
step, δ2, etc. A subgame perfect equilibrium is chosen as the solution to this game using
the backward induction method.

Subsequently, this model was supplemented and improved. In [7], the authors built
a model of multilateral negotiations with a majority rule. There, they demonstrated that
a subgame perfect equilibrium exists in a discounted model in the class of stationary
strategies. In this case, the player’s choices are made with equal probabilities.
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In [8], a model was proposed in which the players making offers were selected with
different probabilities, as well as with different discount coefficients. The uniqueness of the
subgame perfect equilibrium in a game with a linear utility functions was proved.

In [9], the resource-sharing game was expanded to quadratic utility functions. A
multidimensional model of sequential bargaining was presented in [10]. The asymptotic
uniqueness of the equilibrium was proved in [11].

The final decision in bargaining is not necessarily made by the majority rule. The
paper [12,13] examines a model of pie sharing by generating a random offer and accepting
the offer through consensus. In [14,15], optimal strategies are considered in the tender
competition model, and consensus models are explored in [16–18].

A general approach to constructing game-theoretic problems using the theory of
mechanism design and the theory of active systems is examined in [19,20].

In [21,22], Rubinstein’s scheme is used to solve the problem of negotiating the time
and venue of the meeting. For the general case, the existence and uniqueness of the
subgame perfect equilibrium in the model with unimodal functions is proved. In [23,24],
the equilibrium was found explicitly.

Depending on the scope of the model, utility functions can take an arbitrary form.
For example, in [25], the problem of water resource allocation is considered using a utility

function of the form uj(x) =
k
∑

i=1
β

j
iui(xi), where ui(x) are increasing concave functions.

In this paper, we propose a multi-step pie-sharing procedure for two persons, in which
the arbitrator makes offers to the players, and the players can agree with this offer or reject
it. If there is no consensus, negotiations move on to the next step. The arbitrator, on the
other hand, punishes the rejecting player by reducing the amount of the resource in favor
of the consenting player. A subgame perfect equilibrium exists in this case.

The article is organized as follows. In Section 2, we describe the classic pie sharing
problem using utility functions, which are the sizes of a player’s piece of the pie that
are discounted over time. Section 3 presents a new design in the pie-sharing procedure,
in which, when a player is punished, their share is changed in favor of the other player.
In Section 4, a class of threshold strategies is introduced, and the equilibrium in this
game is found in the class of threshold strategies. Section 5 suggests a matrix method for
determining the type of optimal strategies at each step. Section 6 relates the results of
the computer simulation of the pie division in the case where one of the players uses an
equilibrium strategy and the other player deviates from the equilibrium strategy.

2. Two-Person Cake-Cutting Problem

Let us consider the problem of dividing a unit-size pie between two persons. We
assume that a sequential bargaining design is used for the solution [1]. With this approach,
the players take turns suggesting to each other ways to divide a unit-size pie and the
process ends once one of them accepts the other’s offer. For the sake of certainty, let the
first player make the offer at the first step and at further odd steps, and the second player
at even steps. At each step, the resource is discounted and the discounting factor is δ < 1.

To find a solution, we introduce the utility functions of the players, i.e., if bargaining
results in a decision x ∈ [0, 1], then the players get utilities expressed by the functions
u1(x) = x, x ∈ [0, 1] and u2(x) = 1 − x, x ∈ [0, 1], respectively. We assume that the players
take turns offering solutions and the consent of both participants is required to make the
decision. At the same time, the utilities get discounted over time, i.e., after each bargaining
session, the utility functions of both players will decrease proportionally to δ. Thus, if
the players have not come to a decision before time t, then at time t, their utilities are
represented by functions δt−1ui(x), i = 1, 2.

In this case, the problem is equivalent to the problem of sharing the pie between two
persons. Indeed, if x is construed as a share of the pie, then the second participant gets the
rest of the pie 1 − x. Figure 1 shows utility graphs of u1(x) and u2(x) and their graphs in
the next step, i.e., δu1(x) and δu2(x).
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Let us assume that player 2 knows the solution x that player 1 will choose in the next
step. To ensure that a decision is made, she/he needs to offer the first player a solution
y such that their utility u1(y) is not less than the utility in the next step, i.e., δu1(x) (see
Figure 1). This leads to the inequality y ≥ δx, and the utility of player 2 herself/himself is
maximized at y = δx. Thus, her/his optimal response to the first player’s strategy x will
be x2 = δx. Next, we assume that the first player knows the second player’s strategy x2
in the next step. Then, in order for her/his offer at this step to be accepted by player 2,
she/he must propose a solution y such that the utility of the second player u2(y) is not
less than her/his utility at the next step, i.e., δu2(x2), which is equivalent to the inequality
1 − y ≥ δ(1 − δx) or y ≤ 1 − δ(1 − δx).

-
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Figure 1. Players’ utilities.

It follows that the best response of the first player at this step is x1 = 1 − δ(1 − δx).
The solution x produces an equilibrium in the bargaining if x1 = x or x = 1 − δ(1 − δx),
wherefore

x∗ =
1

1 + δ
,

which coincides with the classical solution.

3. Bargaining over a Time-Varying Resource

This paper proposes a new bargaining design for the pie sharing problem. There
are still two players who want to divide a unit-size pie between themselves, but now an
arbitrator is introduced into the game. The bargaining solution is x ∈ [0, 1]. The utility
functions of players 1 and 2 are equal, respectively, to the following:{

u1(x) = x x ∈ [0, 1],
u2(x) = 1 − x x ∈ [0, 1].

Utility functions will not change under this approach. Instead, the resource itself will change.
Negotiations are sequential in time. At each step, the arbitrator makes an offer to

the players. Her/his offer at step t αt is modeled by a random variable having a uniform
distribution on the unit interval αt ∈ [0, 1]. The players, on the other hand, agree to this
offer (action A) or reject it (action R). If both players agree at step t, the game ends and the
players get payoffs of {

u1 = αt,
u2 = 1 − αt.

If at least one of the players rejects the offer, the game moves on to the next step, and the
interval is reduced by δ times, the penalty being imposed on the rejecting player. Here,
δ < 1 is the discount factor.
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The punishment is carried out as follows (see Figure 2). If the first player refuses
(situation (R, A)), the initial interval [0, 1] is changed in the next step to the interval [0, δ].
Thus, the maximum utility of player 1 becomes smaller. If the second player refuses
(the situation (A, R)), the initial interval [0, 1] is changed to the interval [1 − δ, 1], i.e., the
maximum utility of player 2 becomes smaller.

Figure 2. The game tree at the first step.

At subsequent steps, the situation recurs (see Figure 3), where, at step t, the interval
for the offers has the form [at, bt]. If the first player rejects the offer at step t + 1, the interval
[at, bt] takes the form [at, at(1 − δ) + btδ]. If the second player refuses, the interval [at, bt]
takes the form [atδ + bt(1 − δ), bt].

Figure 3. Game tree.

In the situation (R, R), when both players refuse, we suppose that the players are
penalized equally, and the interval [at, bt] becomes [(at + bt)/2 − δ/2, (at + bt)/2 + δ/2].

For clarity, we substitute δ = 0.9. Large values of δ show that players are patient and
are willing to play the game for a long time. If the first player refuses, the interval becomes
[0, 0.9]. If the second player refuses, then the interval at the second move becomes [0.1, 1].
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Let us now substitute δ = 0.1. Small values indicate that the players are impatient
and wish to finish the game as quickly as possible. If the first player refuses, the interval
becomes [0, 0.1]. If the second player refuses, the interval at the second move is [0.9, 1].

Each of the players is interested in maximizing their utility function. Based on the form
of these functions, the first player wants to settle on an offer close to 1, and the second player
would like to settle on an offer close to 0. The interval for the offers changes over time,
so the players’ strategies must be time-dependent. Let us denote the players’ strategies
as {S1

t , S2
t }, t = 1, 2, .... The equilibrium strategies of the players {S1∗

t , S2∗
t }, t = 1, 2, ... are

defined by the conditions

u1(S1
t , S2∗

t ) ≤ u1(S1∗
t , S2∗

t ), u2(S1∗
t , S2

t ) ≤ u2(S1∗
t , S2∗

t ), ∀S1∗
t , S2∗

t , t = 1, 2, ...

4. Threshold Strategies

We look for a solution in the class of threshold strategies of the following form:

S1 =

{
A, if α ≥ s1,
R, if α < s1,

S2 =

{
A, if α ≤ s2,
R, if α > s2.

For the first player, the strategy is determined by a threshold s1 ∈ [0, 1]. If the referee’s
offer is α ≥ s1, the first player accepts the offer; otherwise, she/he rejects it.

The second player’s strategy is determined by the threshold s2 ∈ [0, 1]. The second
player accepts the arbitrator’s offer if α ≤ s2 and rejects is otherwise. Let us assume
s1 ≤ s2. This assumption can be made without any loss of generality; if we suppose
s1 > s2, then the second player could change their strategy by adjusting the thresh-
old to s1. Depending on the step number t, we denote the strategy profile by {s1

t , s2
t },

t = 1, 2, 3, . . . . These numbers indicate the extreme values that players will agree on.
The recurrence relations for the thresholds depending on the step number are as

follows. Suppose at step t of the game the negotiation interval is [at, bt]. At the next step,
depending on the players’ decision, the negotiation interval will change.

If the situation (A, R) occurs, then the boundaries of the interval at the next step can
be found by the formula {

at+1 = atδ + bt(1 − δ),
bt+1 = bt.

(1)

If the players’ solution is (R, A), then the boundaries are found by the formula{
at+1 = at,
bt+1 = at(1 − δ) + btδ.

(2)

In the matrix form, relations (1) and (2) can be written, respectively, as

(at+1, bt+1) = (at, bt)(AR), (at+1, bt+1) = (at, bt)(RA),

where the matrices (AR) and (RA) have the form

(AR) =
(

δ 0
1 − δ 1

)
, (RA) =

(
1 1 − δ
0 δ

)
. (3)

Lemma 1. At step n, if the history of the game is

(A, R)i1 , (R, A)i2 , . . . , (A, R)ik ,

where i1 + i2 + · · ·+ ik = n, ij ⩾ 0, j = 1, . . . k, then the boundaries of the negotiation interval
can be expressed as

(an, bn) = (0, 1) · (AR)i1 · (RA)i2 · · · · · (AR)ik ,
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where the matrices (AR) and (RA) have the form (3).

Seeking to find the optimal behavior of the players, we use mathematical induction.
Suppose that at step n the players decided to end the game and accept the arbitrator’s
offer. If the interval for negotiation was [an, bn], then the average value for the first player’s
chosen offer will be Hn = (an + bn)/2.

Let us find the optimal strategies of the players at the previous step n− 1. Suppose that
at this step the negotiation interval is [an−1, bn−1], and let the players choose the threshold
strategies with thresholds s1, s2. Then, the first player’s payoff is

Hn−1(s1, s2) =
1

bn−1 − an−1

 s1∫
an−1

2an−1 + δ(bn−1 − an−1)

2
da+

+

s2∫
s1

ada +

bn−1∫
s2

2bn−1 − δ(bn−1 − an−1)

2
da

 =

=
1

bn−1 − an−1

(
(s2)2 − (s1)2

2
+ (s1 − an−1)

2an−1 + δ(bn−1 − an−1)

2
+

+(bn−1 − s2)
2bn−1 − δ(bn−1 − an−1)

2

)
(4)

The saddle point of function (4) has the form

s1∗ = an−1 +
δ(bn−1 − an−1)

2
, s2∗ = bn−1 −

δ(bn−1 − an−1)

2
.

Substituting it into the payoff function (4), we obtain

Hn−1(s1∗, s2∗) =
an−1 + bn−1

2
.

Thus, under optimal behavior, the payoff at each step t represents the midpoint of the
interval [at, bt]. Applying induction, we obtain the following proposition.

Proposition 1. A subgame perfect equilibrium in a negotiation game with a time-varying resource
has the following form:

S1
t =

{
A, if αt ≥ s1

t ,
R, if αt < s1

t ,
S2

t =

{
A, if αt ≤ s2

t ,
R, if αt > s2

t .

where thresholds s1
t , s2

t are defined by the relations

s1∗
t = at +

δ(bt − at)

2
, s2∗

t = bt −
δ(bt − at)

2
. (5)

Note that according to (5), the length of the interval [s1
t , s2

t ] at step t is equal to

s2∗
t − s1∗

t = (bt − at)(1 − δ).

If the arbitrator’s offer falls within this interval, the players stop playing. The probability
of this event is 1 − δ. This event recurs at each negotiation step. Thus, the probability of
taking a final decision within finite time under optimal behavior

(1 − δ) + δ(1 − δ) + δ2(1 − δ) + ...
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equals 1.

Remark 1. According to (5), the optimal strategies in the first step are of the form s1∗
1 = δ/2,

s2∗
1 = 1 − δ/2. If the arbitrator’s offer is α ≤ δ/2, the second player accepts the offer while the

first player rejects it. In this case, the game moves on the next step, player 1 is penalized, and the
negotiation interval becomes [0, δ].

If the arbitrator’s offer is α ≥ 1 − δ/2, the first player accepts the offer, while the
second player rejects it. In this case, the game moves on to the next step, but now player 2
is penalized and the negotiation interval becomes [1 − δ, 1].

If the arbitrator’s offer falls within the interval [δ/2, 1 − δ/2], the negotiation ends,
and the players accept the offer.

5. Optimal Strategies

According to Lemma 1, if the history of the game has the form

(A, R)i1 . . . , (R, A)ik ,

where i1 + · · ·+ ik = n, ij ⩾ 0, j = 1, . . . k, then the boundaries of the negotiation interval at
step n are calculated by the formula

(an, bn) = (0, 1) · (AR)i1 · · · (RA)ik . (6)

In this case, some of the powers of ij may be zero. Note that the eigenvalues of the
matrices (AR) and (RA) are equal to 1 and δ. In this case, these matrices can be represented
in the form

(AR) = T1ΛT−1
1 , (RA) = T2ΛT2,

where

T1 =

(
0 1
1 −1

)
, T−1

1 =

(
1 1
1 0

)
, T2 = T−1

2 =

(
1 1
0 −1

)
, Λ =

(
1 0
0 δ

)
.

Then, (6) can be rewritten in the form

(an, bn) = (0, 1) · T1Λi1 T−1
1 · · · T2Λik T2.

Denoting

T3 = T−1
1 T2 =

(
1 0
1 1

)
and noticing that T2T1 = T−1

3 , we find the boundaries of the negotiation interval at step n
for history

(an, bn) = (0, 1) · T1Λi1 T3Λi2 T−1
3 · · ·Λik T2. (7)

It follows from statement 1 that the thresholds for optimal strategies at step n in matrix
form have the form

(s1
n, s2

n) = (an, bn) · D = (an, bn)

(
1 − δ

2
δ
2

δ
2 1 − δ

2

)
.

Proposition 2. At the n-th step of the game, when the negotiation history has the form

(A, R)i1 . . . , (R, A)ik ,

where i1 + · · ·+ ik = n, ij ⩾ 0, j = 1, . . . k, the thresholds of equilibrium strategies have the form

(s∗1
n , s2∗

n ) = (0, 1) · T1Λi1 T3Λi2 T−1
3 · · ·Λik T2 · D,
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where the matrix D has the form

D =

(
1 − δ

2
δ
2

δ
2 1 − δ

2

)
.

For example, if during the bargaining process the situation (A, R) occurred twice,
the situation (R, A) three times, and then again the situation (A, R) two times, then the
boundaries of the negotiation interval at step 7 have the following form:

(a7, b7) = (0, 1) · T1Λ2T3Λ3T−1
3 Λ2T−1

1 =

(0, 1)
(

0 1
1 −1

)(
1 0
0 δ2

)(
1 0
1 1

)(
1 0
0 δ3

)(
1 0
−1 1

)(
1 0
0 δ2

)(
1 1
1 0

)
,

whence we get
a7 = 1 − δ2 + δ5 − δ7, b7 = 1 − δ2 + δ5.

The optimal thresholds that players should use are found from the relations

(s1∗
7 , s2∗

7 ) = (1 − δ2 + δ5 − δ7, 1 − δ2 + δ5)

(
1 − δ

2
δ
2

δ
2 1 − δ

2

)
,

and, consequently,

s1∗
7 = 1 − δ2 + δ5 − δ7(1 − δ

2
), s2∗

7 = 1 − δ2 + δ5 − δ8

2
.

6. Numerical Simulation

Suppose that both players use optimal strategies. The number of games in the ex-
periment is 1000. The notations are n for the average number of moves per game, U1 for
the average payoff of the first player, and U2 for the average payoff of the second player.
For both payoffs, the confidence interval with a reliability of 0.99 is given in parentheses.
Table 1 shows the numerical simulation results.

Consider the line at δ = 0.9999. The discount factor close to one shows the players’
willingness to bargain for a long time, and, indeed, the average number of moves in the
game is 11,420.83. In this case, the payoffs of both players and the confidence intervals are
close to the value 0.5.

If, for example, δ = 0.6, then we observe a decrease in the average number of moves
in the game to 2.45, i.e., the players will not bargain for a long time. At the same time, for
both players, the mean payoffs are 0.5, but the confidence intervals for the mean increases.
For the first player, the confidence interval widens to [0.4881, 0.5449], and for the second
player to [0.4550, 0.5230].

Table 2 shows the results of numerical simulations for the situation where the first
player uses an equilibrium strategy and the second player uses a strategy with a constant
threshold s2 that does not change throughout the game. A column is added to the table to
show the strategy of the second player in the game.

Consider the case for δ = 0.9999. The second player’s strategy s2 = 0.2 indicates that
the player wants to obtain a large payoff, namely, 0.8. With such a large value of δ, the
game lasts, on average, 5083.11 moves. However, we see that the second player obtains a
payoff of 0.498, while the first player obtains a larger payoff, namely, 0.502. This shows the
effectiveness of the first player’s optimal strategy. If the second player uses a less greedy
strategy s2 = 0.5, their payoff will still be less than the first player’s, namely, 0.498.

Now, consider the case of smaller value δ = 0.6. When the second player uses the
greedy strategy s2 = 0.2, the average number of moves in the game is 4.57. Note that this is
almost twice as large as it is when both players use optimal strategies. However, the second
player’s payoff is 0.44, and even the right-hand boundary of the confidence interval does
not go beyond 0.5. The use of a less greedy strategy s2 = 0.5 by the second player will only
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reduce their payoff from 0.44 to 0.39. Thus, we see that the second player’s unwillingness
to use the optimal strategy can lead to a significant decrease in their payoff.

Table 1. Both players use optimal strategies.

δ n U1 U2

0.9999 11,420.83 0.5, [0.4996, 0.5005] 0.5, [0.4995, 0.5004]
0.9 9.29 0.5, [0.4915, 0.52] 0.5, [0.4799, 0.5085]
0.8 5.28 0.5, [0.4887, 0.5173] 0.5, [0.4740, 0.5156]
0.6 2.45 0.51, [0.4881, 0.5449] 0.49, [0.4550, 0.5230]
0.2 1.25 0.52, [0.482, 0.5642] 0.48, [0.4628, 0.5360]

Table 2. The second player uses a suboptimal strategy.

δ s2 n U1 U2

0.9999 0.2 5083.11 0.5026, [0.5023, 0.5029] 0.4974, [0.4971, 0.4977]
0.9999 0.4 2868.93 0.503, [0.5028, 0.5035] 0.497, [0.496, 0.497]
0.9999 0.5 1459.61 0.502, [0.5019, 0.5023] 0.498, [0.497, 0.498]

0.8 0.2 8.21 0.63, [0.606, 0.646] 0.37, [0.354, 0.394]
0.8 0.4 4.60 0.64, [0.612, 0.653] 0.36, [0.347, 0.388]
0.8 0.5 3.24 0.66, [0.644, 0.682] 0.34, [0.318, 0.356]

0.6 0.2 4.57 0.56, [0.531, 0.581] 0.44, [0.412, 0.469]
0.6 0.4 3.34 0.58, [0.564, 0.613] 0.41, [0.387, 0.436]
0.6 0.5 2.30 0.61, [0.584, 0.643] 0.39, [0.356, 0.416]

0.2 0.2 1.53 0.57, [0.534, 0.612] 0.43, [0.388, 0.467]
0.2 0.4 1.49 0.52, [0.479, 0.563] 0.48, [0.436, 0.521]
0.2 0.5 1.54 0.515, [0.475, 0.556] 0.485, [0.444, 0.525]

7. Conclusions

In this paper, a new design is proposed in the two-person pie sharing problem involv-
ing an arbitrator. This is a multi-step procedure, and the solution is reached by consensus.
The arbitrator is represented by a random number generator, which is easy to implement
in practice. The procedure is fair for both players, and both players are on equal terms. It is
demonstrated that deviations from the optimal strategy lead to a decrease in payoff.

This method is described for the two-person pie sharing problem. We plan to transfer
this scheme to the case of several players and other utility functions. It is also possible to
apply this procedure to the problems of resource allocation and contests.
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