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Abstract: This paper proposes an optimal tracking control scheme through adaptive dynamic pro-
gramming (ADP) for a class of partially unknown discrete-time (DT) nonlinear systems based on a
radial basis function neural network (RBF-NN). In order to acquire the unknown system dynamics,
we use two RBF-NNs; the first one is used to construct the identifier, and the other one is used
to directly approximate the steady-state control input, where a novel adaptive law is proposed to
update neural network weights. The optimal feedback control and the cost function are derived via
feedforward neural network approximation, and a means of regulating the tracking error is proposed.
The critic network and the actor network were trained online to obtain the solution of the associated
Hamilton–Jacobi–Bellman (HJB) equation within the ADP framework. Simulations were carried out
to verify the effectiveness of the optimal tracking control technique using the neural networks.
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1. Introduction

As is widely known, nonlinear system control is an important topic of control fields,
especially for discrete-time nonlinear systems, and is difficult for traditional control meth-
ods. In recent decades, many different approaches to discrete-time system control have
been proposed, such as adaptive control [1], fuzzy control [2], and PID control [3]. Optimal
tracking control, one of the effective methods for nonlinear systems, has many practical
engineering applications [4–6]. Its purpose is to design a control law that not only allows
the system to track the desired trajectory but also minimizes a specific performance index.
It is of great theoretical significance to explore the optimal tracking optimal control of
nonlinear systems. Although dynamic programming is an effective method for solving
optimal control problems, there is the problem of “curse of dimensionality” when dealing
with relatively complex systems [7,8]. Moreover, it is difficult to solve the HJB equation
derived from the optimal control of nonlinear systems, which has no analytical solution.

On the other hand, neural network control is used as a common control method for
uncertainly nonlinear systems. In 1990, Narendra et al. first proposed an artificial neural
network (ANN) adaptive control method for nonlinear dynamical systems [9]. Through
neural network approximation, the uncertain system can be reconstructed using input
and output data. Since then, multilayer neural networks (MNNs) have been successfully
applied in pattern recognition and control systems [10]. This also has led to the generation
of many types of neural networks, including the RBF-NN. In [11], Poggio et al. first
proved that the RBF-NN is superior in approximating functions. Studies of RBF-NNs
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have also shown that these neural networks have the ability to approximate any nonlinear
function with a compact ensemble and arbitrary accuracy [12,13]. Compared to other
ANNs, the RBF-NN does not have the complex structure of neural networks such as
back propagation (BP) networks or recurrent neural networks (RNNs), and it is easier
to select parameters [11,14,15]. Its good generalization ability, simple network structure,
and avoidance of unnecessarily lengthy computations are advantages that make RBF-NNs
attract attention [15,16]. Many research results have been published on neural network
control for nonlinear systems [17–19].

Benefiting from neural networks and reinforcement learning (RL), the difficult problem
of solving nonlinear HJB partial differential equations is solved. The ADP algorithm was
proposed by Powell to approximate the solution of the HJB equation [20], which combines
the theory and methods of RL, neural networks, adaptive control and optimal control.
As developed, ADP has not only been considered as one of the core methods for solving
the diversity of optimal control problems but also has been successfully applied to both
continuous-time systems [21–23] and discrete-time systems [24–31] to search for solutions
of the HJB equations online. Particularly, several works have attempted to solve the
discrete time nonlinear optimal regulation problem using the ADP algorithm such as robust
ADP [32–35], iterative/invariant ADP [36–39], off-policy RL [40–42] and the Q-Learning
Algorithm [40,43].

In the past decades, many relevant studies have been conducted on the optimal
tracking control of discrete-time nonlinear system using the ADP algorithm. However,
in the existing literature on optimal tracking of nonlinear discrete-time systems, there is
no RBF neural network-based ADP algorithm. In this paper, an optimal tracking control
method based on RBF-NNs for discrete-time partially unknown nonlinear systems is
proposed. Two RBF neural networks are used to approximate the unknown system dynamic
as well as the steady-state control. After transforming the tracking problem into a regulation
problem, the critic network and the actor network are used to obtain the nearly optimal
feedback control, which allows the online learning process to require only current and past
system data.

The contributions of article are as follows: (1) Unlike the classical technique of NN
approximation, we propose a near-optimal tracking control scheme for a class of par-
tially unknown discrete-time nonlinear systems based on RBF-NNs and prove the sta-
bility of the system. (2) Compared with [35,39], we additionally used an RBF-NN to
directly approximate the steady-state controller of the unknown system. It can solve the
requirement for the priori knowledge of the controlled system dynamics and reference
system dynamics. Moreover, we propose a novel adaptive law to update the weight of the
steady-state controller.

The paper is organized as follows. The problem statement is shown in Section 2.
The design of the optimal tracking controller of the system with partially unknown non-
linear dynamics is given in Section 3, which includes the RBF-NN identifier, the RBF-NN
steady-state controller, near optimal feedback controller, and stability analysis. Section 4
provides simulation results to validate the proposed control method and details the method
comparison. Section 5 draws some conclusions.

2. Problem Statement

Consider the following affine nonlinear discrete-time system [31]:

x(k + 1) = f [x(k)] + g[x(k)]u(k) (1)

where x(k) ∈ Rn is the measurable system state and u(k) ∈ Rm is the control input.
Assume that the nonlinear smooth function f [x(k)] ∈ Rn is an unknown drift function,
g[x(k)] ∈ Rn×m is a known function, and ∥g[x(k)]∥F ≤ g1 where the Frobenius norm ∥ · ∥F is
applied. In addition, assume that g[x(k)] has a generalized inverse matrix g[x(k)]+ ∈ Rm×n

such that g[x(k)]g[x(k)]+ = I ∈ Rn×n where I is the identity matrix. Let x(0) be the
initial state.
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The reference trajectory is generated by the following bounded command:

xd(k + 1) = φ(xd(k)) (2)

where xd(k)∈ Rn and φ(xd(k)) ∈ Rn, and xd(k) is the reference trajectory; it need only be a
stable state trajectory or asymptotically stable.

The goal of this paper is to design a controller u(k) that not only ensures the state of
the system (1) tracks the reference trajectory but also minimizes a cost function. For the
optimal tracking control technique, the cost functions are usually considered in quadratic
form [4], that is

J(e(k), u(k)) =
∞

∑
k=0

eT(k)Qe(k) + uT(k)Ru(k) (3)

where Q ∈ Rn×n and R ∈ Rm×m are symmetric positive definite; e(k) = x(k)− xd(k) is
tracking error. For common solutions of tracking problems, the control input consists of
two parts, a steady-state input ud and a feedback input ue [24]. Next, we will discuss how
to obtain each part.

The steady-state controller is used to ensure perfect tracking. This perfect tracking
equation is realized under the condition x(k) = xd(k). For this condition to be fulfilled,
the steady-state part of the control ud(k) must exist to make x(k) equivalent to xd(k).
By substituting xd(k) and ud(k) into system (1), the reference state is

xd(k + 1) = f [xd(k)] + g[xd(k)]ud(k) (4)

where xd(k) and xd(k + 1) are bounded to be tracked by the reference trajectory. If the
system dynamics (1) are known, ud(k) is acquired by

ud(k) = g[xd(k)]+(xd(k + 1)− f [xd(k)]) (5)

where g[xd(k)]+ = (g[xd(k)]T g[xd(k)])−1g[xd(k)]T is the generalized inverse of g[xd(k)]
with g[xd(k)]+g[xd(k)] = I.

Remark 1. In the subsequent discussion, the RBF network can be used to identify the unknown
dynamics of system (1); hence, (5) can be computed.

By using (1) and (4), the tracking error dynamics e(k) are given by

e(k + 1) = f [x(k)] + g[x(k)]u(k)− xd(k + 1)

= fe(k) + ge(k)ue(k)
(6)

where fe(k) = g(e(k) + xd(k))g(xd(k))+(φ(xd(k))− f (xd(k))) + f (e(k) + xd(k))− φ(xd(k)),
ue(k) = u(k)− ud(k), and ge(k) = g[xd(k) + e(k)]. ue(k)∈ Rm is the feedback control input.
By minimizing the cost function, it is designed to stabilize the tracking error dynamics.
For e(k) in the control sequence, the cost function can be expressed as the following discrete
time tracking HJB equation

Je(e(k), ue(k)) =
∞

∑
k=0

eT(k)Qe(k) + uT
e (k)Rue(k)

= eT(k)Qe(k) + uT
e (k)Rue(k) + Je(e(k + 1), ue(k + 1))

= r(k) + Je(e(k + 1), ue(k + 1))

(7)

where r(k) = eT(k)Qe(k)+uT
e (k)Rue(k), Je(e(k), ue(k)) > 0 for ∀e(k), ue(k) ̸=0 and Je(e(k + 1),

ue(k + 1)) denotes the cost function at the next tracking error dynamics e(k + 1). The track-
ing error e(k) is used in the study of the cost function of the optimal tracking control problem.
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In general, this feedback control ue(k) is found by minimizing (7) to solve the ex-
tremum condition in the optimal control framework [4]. This result is

u∗
e (k) = −1

2
R−1ge(k)

∂J(e(k + 1))
∂e(k + 1)

(8)

Then, the standard control input is obtained

u∗(k) = ud(k) + u∗
e (k) (9)

where ud(k) is obtained from (5), and u∗
e (k) is obtained from (8).

As detailed in the subsequent discussion, in order to acquire the unknown dynamics
in system (1), we used the RBF neural networks to reconstruct system dynamics. Moreover,
faced with the problem of unable to find the analytical solution of (7) and the curse of
dimensionality, the ADP algorithm was used to approximately solve the HJB Equation (7).

The main results of this paper are based on the following definitions and assump-
tions [30].

Definition 1. A control law ue is admissible with respect to (7) on the set Ω if ue is continuous on
a compact set Ωu ∈ R for ∀e(k) ∈ Ω, ue(0) = 0, and J(e(0), ue(·)) is finite.

Assumption 1. System (1) is controllable, and the system state x(k) = 0 is in equilibrium under
control u(k) = 0. Input control u(k) = u(x(k)) satisfies u(x(k)) = 0 for x(k) = 0, and the cost
function is a positive definite function for any x(k) and u(k).

Lemma 1. For the tracking error system (6), assume that ue(k) is an admissible control, the internal
dynamics fe(k) is bounded, and

∥ fe(k)∥2 ≤ Γλmin(Q)∥e(k)∥2/2 + (Γλmin(R)− 2g2
1)∥ue(k)∥2/2, (10)

where λmin(R) is the minimum eigenvalue of R, λmin(Q) is the minimum eigenvalue of Q,
and Γ > 2g2

1/λmin(R) is a known positive constant. Then, the tracking error system (6) is
asymptotically stable.

Proof. We consider the following Lyapunov function,

V(k) = eT(k)e(k) + ΓJe(k) (11)

where Je(k) = Je(e(k), ue(k)) is defined in (7). Differencing the Lyapunov function yields

∆V(k) = eT(k + 1)e(k + 1)− eT(k)e(k) + Γ(Je(k + 1)− Je(k)) (12)

Using (6) and (7), we can obtain

∆V(k) =( fe(k) + ge(k)ue(k))T( fe(k) + ge(k)ue(k))

− eT(k)e(k)− Γ(eT(k)Qe(k) + uT
e (k)Rue(k))

(13)

Using the Cauchy–Schwarz inequality yields

∆V(k) ≤ 2∥ fe(k)∥2 − (Γλmin(R)− 2g2
1)∥ue(k)∥2 − Γλmin(Q)∥e(k)∥2 − ∥e(k)∥2 (14)

For the purpose of asymptotically stabilizing the tracking system (6), i.e., ∆V(k) < 0,
it is necessary to satisfy the following

2∥ fe(k)∥2 ≤ Γλmin(Q)∥e(k)∥2 + (Γλmin(R)− 2g2
1)∥ue(k)∥2 (15)
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Thus, ∆V(k) < 0 and the asymptotic stability of the tracking error system (6) are
proved if the bound in (10) is satisfied.

Remark 2. Lemma 1 shows that under the condition that the internal dynamics fe(k) is bounded
to satisfy (10), there exists an admissible control ue(k) that not only stabilizes the tracking error
system (6) on Ω but also guarantees that the cost function Je(k) is finite.

3. Optimal Tracking Controller Design with Partially Unknown Dynamics

In this section, firstly, we use an RBF-NN to approximate the unknown system dy-
namics f [x(k)] and use another RBF-NN to approximate the steady-state controller ud(k).
Secondly, two feedback neural networks are introduced to approximate the cost function
and the optimal feedback control ue(k). Finally, the system stability is proved by selecting
an appropriate Lyapunov function.

3.1. RBF-NN Identifier Design

In this subsection, in order to capture the unknown dynamics of the system (1), an RBF-
NN-based identifier is proposed. Without losses of generality, this unknown dynamics is
assumed to be a smooth function within a compact set. Using an RBF-NN, this unknown
dynamics (1) is identified as

f̂ (x(k)) = ŵ f (k)Th[x(k)] + ∆ f (x) (16)

where ŵ f (k) is the matrix of ideal output weights of the neural network and h[x(k)]
is the vector of radial basis functions, ∆ f (x) is the bounded approximation error, and
||∆ f (x)|| < ε f , where ε f is a positive constant.

For any non-zero approximation error ∆ f (x), there exists optimal weight matrix w f
∗

such that
f (x(k)) = f̂ (x, w∗

f )− ∆ f (x) (17)

where w∗
f is the optimal weight of identifier, and f̂ (x, w∗

f ) = w∗
f (k)

Th[x(k)]. The output
weights are updated, and the hidden weights remain unchanged when training, so the
neural network model identification error is

f̃ (x(k)) = f [x(k)]− f̂ [x(k)]

= f̂ (x, w f
∗)− ∆ f [x(k)]− ŵ f (k)Th[x(k)]

= −w̃ f (k)Th[x(k)]− ∆ f [x(k)]

(18)

where−w̃ f (k) = w f
∗(k)− ŵ f (k).

The error function is defined as the following

E(k + 1) =
1
2
[ f̃ (x(k))]T [ f̃ (x(k))] (19)

Using the gradient descent method, the weights are updated by

∆w f j(k + 1) = −η
∂E

∂w f j

= η( f (x(k))− f̂ (x(k)))h[x(k)]

= η( f̃ (x(k)))h[x(k)]

(20)

and
w f j(k) = w f j(k − 1) + ∆w f j(k) (21)

where η > 0 is the learning rate of the identifier.
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Inspired by the work in [36], we must state the following assumptions before proceeding.

Assumption 2. The neural network identifying error is assumed to have an upper bound, namely

∆ f (x)T∆ f (x) ≤ w̃ f (k)Tw̃ f (k)h[x(k)]Th[x(k)] (22)

3.2. RBF-NN Steady-State Controller Design

We use the RBF-NN to approximate the steady-state control ud(k) directly, and the in-
verse dynamic NN is established to approximate [16,19].

We design the steady-state control ud(k) through the approximation of the RBF-NN

ud(k) = ŵd
T(k)h[xd(k)] (23)

where ŵd is the actual neural network weights; h[xd(k)] is the output of the hidden layers;
and ud(k) is the output of the RBF-NN.

Let the ideal steady-state control u∗
d(k) be

u∗
d(k) = w∗T

d h[xd(k)] + εu (24)

where w∗
d is the optimal neural network weights and εu is the error vector. Assuming

that xd(k + 1) is the reference output of the system at the point k + 1, without considering
external disturbances, the control input u∗

d(k) satisfies

L[xd(k), u∗
d(k)]− xd(k + 1) = 0 (25)

where L[xd(k), u∗
d(k)] = f [xd(k)] + g[xd(k)]u∗

d(k).

Thus, we can define the error em(k) of the approximation state as

em(k + 1) = L[xd(k), ud(k)]− xd(k + 1) (26)

where L[xd(k), ud(k)] = f [xd(k)] + g[xd(k)]ud(k).
(24) subtracted from (23) yields

ud(k)− u∗
d(k) = ŵd

T(k)h[xd(k)]− w∗T
d (k)h[xd(k)]− εu

= w̃d
T(k)h[xd(k)]− εu

(27)

where w̃d(k) = ŵd(k)− w∗
d(k) is weight approximation error.

The weights are updated by the following update law of the weights

ŵd(k + 1) = ŵd(k)− γ[h(xd(k))em(k + 1) + σŵd(k)] (28)

where γ > 0 and σ > 0 are the positive constant.

Assumption 3. Within the set Ωε, the optimal neural network weights w∗ and the approximation
error are bounded.

∥ w∗
d ∥⩽ wm, ||εu|| ⩽ ε l (29)

3.3. Near-Optimal Feedback Controller Design

In this subsection, we present an ADP algorithm based on the Bellman optimality.
The goal is to find the optimal approximate feedback control law that minimizes the
approximate cost function.

First, considering the HJB Equation (7) and the optimal feedback control (8), the cost
function Je(e(k), ue(k)) is rewritten as Vi(e(k)). The initial cost function V0(e(k)) = 0
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may not represent the optimal value function. Then, a single control vector u0
e (k) can be

solved by
V0(e(k)) = min

ue(k)
{eT(k)Qe(k) + uT

e (k)Rue(k) + V0(e(k + 1))}

= eT(k)Qe(k) + (u0
e (k))

T Ru0
e (k)

(30)

Updating the control law yields

u1
e (k) = arg min

ue(k)
{eT(k)Qe(k) + uT

e (k)Rue(k) + V0(e(k + 1))}

= −1
2

R−1gT
e (k)

∂V0(e(k + 1))
∂e(k + 1)

(31)

Hence, for i = 1, 2, . . ., the ADP algorithm can be realized in a continuous iterative process in

Vi(e(k)) = min
ue(k)

{
eT(k)Qe(k) + uT

e (k)Rue(k) + Vi(e(k + 1))
}

= eT(k)Qe(k) + (ui
e(k))

T Rui
e(k) + Vi(e(k + 1))

(32)

and
ui+1

e (k) = arg min
ue(k)

{eT(k)Qe(k) + uT
e (k)Rue(k) + Vi(e(k + 1))}

= −1
2

R−1gT
e (k)

∂Vi(e(k + 1))
∂e(k + 1)

(33)

where index i represents the number of iterations of the control law and the cost function,
i.e., the update count of internal neuron to update the weight parameters, while index
k represents time index of state. Moreover, it is worth noting in the iterative process of
the ADP algorithm that the number of iterations of the cost function and the control law
increases from zero to infinity.

To begin the development of the feedback control policy, we used neural networks to
construct the critic network and the actor network.

The cost function Vi(e(k)) is defined as the critic network.
The output of the critic network is denoted as

V̂i(e(k)) = wT
ciz(ν

T
cie(k)) + εc(k) (34)

where z(νT
cie(k)) is the hidden layer function, wci is the hidden layer weight of the critic

network, νci is the input layer weight of the critic network, and εc(k) is the approxima-
tion error.

So, we define the prediction error of the critic network as

eci(k) = V̂i(e(k))− Vi(e(k)) (35)

The error function of the critic network is defined as

Eci(k) =
1
2

eT
ci(k)eci(k). (36)

Using the gradient descent method, the weights of the critic network are updated,

wci(k + 1) = wci(k)− αc[
∂Eci(k)
∂wci(k)

] (37)

where αc > 0 is the learning rate of the critic network.
The inputs of the actor network is the system error e(k), and the outputs of the actor

network is the optimal feedback control ue(k). The output can be formulated as

ûi
e(k) = wT

aiz(v
T
aie(k)) + εa(k), (38)
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where z(νT
aie(k)) is the hidden layer function, wai is the hidden layer weight of the actor

network, νai is the input layer weight of the actor network, and εa(k) is the approxima-
tion error.

Similar to the critic network, the prediction error of the actor network is defined as

eai(k) = ûi
e(k)− ui

e(k) (39)

where ûi
e(k) is approximation optimal feedback control, and ui

e(k) is the optimal feedback
control at the iterative number i.

The error function of the actor network is defined as

Eai(k) =
1
2

eT
ai(k)eai(k) (40)

The weights of the actor network are also updated in the same way as the critic
network; we use the gradient descent method

wai(k + 1) = wai(k)− βa[
∂Eai(k)
∂wai(k)

], (41)

where βa > 0 is the learning rate of the actor network, and i is the update count of the
internal neuron to update the weight parameters.

3.4. Stability Analysis

In this subsection, we give the stability proof by Lyapunov’s stability theory.

Assumption 4. Radial basis function h(t) = exp
(
− ∥x(t)−c(t)∥2

2b2

)
of the maximum value is

hmax = 1, where c(t) is the center point and b is the width of radial basis function. Assuming the
numbers of neurons is l∈[l f , ld] for any radial basis function h∈[h[x(k)], h[xd(k)]], then

|hi| ⩽ 1, ∥h∥ ⩽
√

l ⩽ l,

hTh = ∥h∥2 ⩽ l
(42)

We can know the maximum value ∥h∥2 of the hidden layer with l neurons is l∈[l f , ld], then we
assume the maximum value ∥h[x(k)]∥2 of the hidden layer for the identifier f̂ (x(k)) is l f , and the
maximum value ∥hd[x(k)]∥2 of the hidden layer for the steady-state controller ud(k) is ld.

Lemma 2. The relationship between (25) and weight approximation error (27) satisfies the following
equation.

w̃d
T(k)h[xd(k)] =

em(k + 1)
Lu

+ εu (43)

where em(k) is the error of the approximation state xd(k), Lu = ∂L
∂u

∣∣∣∣∣
u=ξ

, ξ∈[u∗
d(k), ud(k)],

g1 ⩾
∣∣∣ ∂L

∂u

∣∣∣ > ϵ > 0, g1 and ϵ are positive constants.

Proof. Subtracting w∗
d from both sides of (28), we obtain

w̃d(k + 1) = w̃d(k)− γ[h[xd(k)]em(k + 1) + σŵd(k)] (44)
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Combining (25) and (27) with the mean value theorem, we can obtain

L[xd(k), ud(k)] = L[xd(k)], u∗
d(k) + w̃d

T(k)h[xd(k)]− εu

]
= L[ xd(k), u∗

d(k)] +
[
w̃d

T(k)h[xd(k)]− εu

]
Lu

= xd(k + 1) +
[
w̃d

T(k)h[xd(k)]− εu

]
Lu

(45)

Further combining (45) with (26), we can obtain

em(k + 1) = L[xd(k), ud(k)]− xd(k + 1)

= [w̃d
T(k)h[xd(k)]− εu]Lu

(46)

After rearranging, we can obtain

w̃d
T(k)h[xd(k)] =

em(k + 1)
Lu

+ εu (47)

The proof is completed.

Lemma 3. For simplicity of analysis, εu and em(k + 1) have an inequality relation though using
Assumption 3 and Young’s inequality.

−2εT
uem(k + 1) ⩽ k0∥εu∥2 +

1
k0
∥em(k + 1)∥2 (48)

where k0 is a positive constant.

Theorem 1. For the optimal tracking problem (1)–(3), the RBF-NN identifier (16) is used to
approximate f (x(k)), the steady-state controller ud(k) is approximated by the RBF-NN (23), and the
feedforward networks (34), (38) are used to approximate the cost function J(e(k), u(k)) and the
feedback controller ue(k), respectively. Assume that the parameters satisfy the following inequality

(a) 0 < η ⩽
1
l f

(b) 0 < g1 ⩽ k0

(c) 0 < (1 + σ)ldγ ⩽
1
g1

− 1
k0

(d) 0 < (ld + σ)γ ⩽ 1

(e) ac ≤ 2/∥z(vT
cie(k))∥2

( f ) βa ≤ 2/∥z(νT
aie(k))∥2

(49)

where η is the learning rate of the RBF-NN identifier, σ and γ are the update parameters of the
steady-state controller approximation network weights, ac is the learning rate of the actor network,
βa is the learning rate of the critic network, and z(vT

cie(k)) and z(νT
aie(k)) are hidden layer functions

of the actor network and the critic network. Then, the closed loop system (6) of approximation error
is asymptotically stable when the parameter estimation errors are bounded.

Proof. Considering the following positive definite Lyapunov function candidate

J(k) = J1(k) + J2(k) + J3(k) + J4(k)

=
1
η

w̃ f (k)Tw̃ f (k) +
1
g1

em(k)
Tem(k) +

1
γ

w̃d(k)
Tw̃d(k) + wci(k)Twci(k) + wai(k)Twai(k)

(50)
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where J1(k) = 1
η w̃ f (k)Tw̃ f (k), J2(k) = 1

g1
em(k)

Tem(k)+ 1
γ w̃d(k)

Tw̃d(k), J3(k) = wci(k)Twci(k),
J4(k) = wai(k)Twai(k).

Firstly, differencing it according to the Lyapunov function of J1(k) = 1
η w̃ f (k)Tw̃ f (k)

yields

∆J1(k) = J1(k + 1)− J1(k)

=
1
η

w̃ f (k + 1)Tw̃ f (k + 1)− 1
η

w̃ f (k)Tw̃ f (k)

=
1
η
[w̃ f (k) + η f̃ (x(k))h[x(k)]]T [w̃ f (k) + η f̃ (x(k))h[x(k)]]− 1

η
w̃ f (k)Tw̃ f (k)

=
1
η
[w̃ f (k)Tw̃ f (k)−

1
η

w̃ f (k)Tw̃ f (k) + η2[ f̃ (x(k))T f̃ (x(k))h[x(k)]Th[x(k)]

+ 2η f̃ (x(k))w̃ f (k)Th[x(k)]

= η[[w̃ f (k)Th[x(k)] + ∆ f [x]]T [w̃ f (k)Th[x(k)] + ∆ f [x]]h[x(k)]Th[x(k)]]

+ 2[w̃ f (k)Th[x(k)] + ∆ f [x]]w̃ f (k)Th[x(k)]

= η[w̃ f (k)Tw̃ f (k)h[x(k)]Th[x(k)] + 2w̃ f (k)Th[x(k)]∆ f [x]− 2w̃ f (k)Th[x(k)]

− 2w̃ f (k)Tw̃ f (k)h[x(k)]Th[x(k)] + ∆ f [x]T∆ f [x]h[x(k)]Th[x(k)]

(51)

According to the Assumption 2, Assumption 4 and (42), (51) can be carried out
to obtain

∆J1(k) ⩽ηl2
f ∥ w̃ f (k) ∥2 −2l f ∥ w̃ f (k) ∥2 +ηl2

f ∥ w̃ f (k) ∥2

+ 2ηl f w̃ f (k)Th[x(k)]∆ f [x]− 2w̃ f (k)Th[x(k)]∆ f [x]

⩽ ∥ w̃ f (k) ∥2 (2ηl2
f − 2l f ) + (2l f η − 2)w̃ f (k)Th[x(k)]∆ f [x]

⩽ ∥ w̃ f (k) ∥2 (4l2
f η − 4l f )

(52)

Next, differencing according to the Lyapunov function of J2(k) = 1
g1

em(k)
Tem(k)

+ 1
γ w̃d(k)

Tw̃d(k) yields

∆J2(k) = J2(k + 1)− J2(k)

=
1
g1

[
em(k + 1)Tem(k + 1)− em(k)

Tem(k)
]
− 1

γ
w̃d(k)Tw̃d(k) +

1
γ

w̃d(k + 1)Tw̃d(k + 1)

=
1
γ
⟨w̃d(k)− γ[h[xd(k)]em(k + 1) + σŵd(k)]⟩T⟨w̃d(k)− γ[h[xd(k)]em(k + 1) + σŵd(k)]⟩

− 1
γ

w̃d(k)Tw̃d(k) +
1
g1

[em(k + 1)Tem(k + 1)− em(k)
Tem(k)]

=
1
g1

[
em(k + 1)Tem(k + 1)− em(k)

Tem(k)
]
− 2w̃d(k)Th[xd(k)]em(k + 1)

− 2σw̃d(k)Tŵd(k) + γhT [xd(k)]h[xd(k)]em(k + 1)Tem(k + 1) + γσ2ŵd(k)Tŵd(k)

+ 2γσŵd(k)Th[xd(k)]em(k + 1)

(53)
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where

2σw̃d(k)Tŵd(k) = σw̃d(k)T [w̄d(k) + w∗
d ] + σ[ŵd(k)− ω∗

d ]
Tŵd(k)

= σ ∥ w̃d(k) ∥2 + ∥ ŵd(k) ∥2 +w̃d(k)Tw∗
d − w∗

dŵd(k)T

= σ[∥ w̃d(k) ∥2 + ∥ ŵd(k) ∥2 − ∥ w∗
d ∥2],

γhT [xd(k)]h[xd(k)]em(k + 1)Tem(k + 1) ⩽ γld∥em(k + 1)∥2,

2γσŵd
T(k)h[xd(k)]em(k + 1) ⩽ γσld[∥ ŵd(k) ∥2 +∥em(k + 1)∥2],

γσ2ŵd
T(k)ŵd(k) = γσ2∥ŵd(k)∥2

(54)

Considering (26) and g1 ⩾
∣∣∣ ∂L

∂u

∣∣∣ > ϵ > 0, we can deduce

1
g1

− 2
Lu

⩽
1
g1

− 2
g1

= − 1
g1

< 0 (55)

Recall Lemmas 2 and 3; substituting (54) into (53) yields

∆J2(k) ⩽
[
− 1

g1
+ γ(1 + σ)ld +

1
k0

]
∥em(k + 1)∥2 + σ(γld + γσ − 1) ∥ ŵd(k) ∥2

− 1
g1

∥em(k)∥2 − σ ∥ w̄d(k) ∥2 +σω2
m + k0ε2

l

= −
[

1
g1

− (1 + σ)ldγ − 1
k0

]
∥em(k + 1)∥2 + σ[(ld + σ)γ − 1] ∥ ŵd(k) ∥2

− 1
g1

[
∥em(k)∥2 − β

]
− σ ∥ w̃d(k) ∥2

(56)

where β = g1(σw2
m + k0ε2

l ) is a positive constant.

Next, we consider the following Lyapunov function

J3(k) + J4(k) = wci(k)Twci(k) + wai(k)Twai(k). (57)

Then, differencing it according to the Lyapunov function of (57) yields

∆J3(k) + ∆J4(k) = {wci(k + 1)Twci(k + 1) + wai(k + 1)Twai(k + 1)}
− {wci(k)Twci(k) + wai(k)Twai(k)}

= ac∥eci(k)∥2(− 2 + ac∥z
(
vT

cie(k)
)
∥2)

+ βa ∥ eai(k) ∥2 (−2 + βa ∥ z(vT
aie(k)) ∥2).

(58)

Finally, ∆J(k) is derived from (52), (56), and (58)

∆J(k) = ∆J1(k) + ∆J2(k) + ∆J3(k) + ∆J4(k)

⩽ 4 ∥ w̃ f (k) ∥2 (l2
f η − l f )− σ ∥ w̃d(k) ∥2 −

[
1
g1

− (1 + σ)ldγ − 1
k0

]
∥em(k + 1)∥2

+ σ[(ld + σ)γ − 1] ∥ ŵd(k) ∥2 − 1
g1

[
∥em(k)∥2 − β

]
+ ac∥eci(k)∥2(− 2 + ac∥z

(
vT

cie(k)
)
∥2)

+ βa ∥ eai(k) ∥2 (−2 + βa ∥ z(vT
aie(k)) ∥2).

(59)
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Based on the above analysis, when the parameters are selected to fulfill the following
condition with ∥em(k)∥2 ⩾ β,

0 < η ⩽
1
l f

0 < g1 ⩽ k0

0 < (1 + σ)ldγ ⩽
1
g1

− 1
k0

0 < (ld + σ)γ ⩽ 1

ac ≤ 2/∥z(vT
cie(k))∥2

βa ≤ 2/∥z(νT
aie(k))∥2

(60)

we can obtain ∆J(k) ⩽ 0.

The working process of the proposed control technique is shown in Figure 1. As shown
in Figure 1, with x(k), ud(k) and ui

e(k), the estimated error e(k + 1) can be obtained by
using the RBF-NN identifier and the steady-state controller. Corresponding to the steady-
state controller ud(k), we can obtain the reference trajectory xd(k). Using the ADP algo-
rithm, we can obtain nearly optimal feedback controller ûi

e(k). Then, the actual controller
u(k) = ûi

e(k) + ud(k) and system dynamics x(k + 1) can be obtained. In addition, by using
xd(k) and x(k) the estimated tracking error e(k) can be obtained, e(k + 1) can be further
obtained. Finally, we can reconstruct the system dynamics to track the reference trajectory.

Figure 1. The structure schematic of the proposed technique.

4. Simulation

In this section, we give the simulation results of our method and compare it with
other methods [36]. A discrete-time nonlinear system is introduced to demonstrate the
effectiveness of the proposed tracking control method. The case is derived from [24]. We
assume that the nonlinear smooth function f ∈ Rn is an unknown nonlinear drift function
and g ∈ Rn×m is a known function. The corresponding f [x(k)] and g[x(k)] are given as
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f [x(k)] =
[

f1[x(k)]
f2[x(k)]

]
=

[
− sin(0.5x2(k))x2

1(k)
− cos(1.4x2(k)) sin(0.9x1(k))

]

g[x(k)] =
[
(x1(k))2 + 1.5 0.1

0 0.2((x1(k) + x2(k))2 + 1)

] (61)

The reference trajectory xd(k) for the above system is defined as

xd(k) =
[

0.25 sin(10−3k)
0.25 cos(10−3k)

]
(62)

where u(k) ∈ R2 ∈ [u1(k), u2(k)]T , and time(s) of y-axis is chosen to have a k(1, . . . , 10, 000)
multiplied by ts = 0.001 in the simulation.

4.1. Simulation Result of the Proposed Method

In this subsection, we give the simulation result for our proposed method.
Firstly, in order to deal with the unknown dynamics, we need to use two RBF networks

to obtain the RBF identifier and the RBF steady-state controller. The RBF networks have a
three-layer structure with two input neurons, hidden layers have nine neurons, and output
layer have two neurons. The parameters ci and bj of the radial basis functions are chosen

to be ci =

[
−2 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2
−2 −1.5 −1.0 −0.5 0 0.5 1.0 1.5 2

]
and bj = [b1, b2] = [2, 2], and

the initial weights w0 are chosen to be random numbers between (0, 1). For the RBF
identifier with its weights updating law (21) to update the weights ŵ f , the unknown
function f is identified by the input/output data x(k). For the RBF steady-state controller,
the reference trajectory data xd and the weights updating law (28) are used to update the
weights ŵd to identify the steady-state controller ud. Because g1 ⩾ ∂L

∂u = 1, we can select
g1 = 5. According to 0 < g1 ⩽ k0 of Theorem 1, we can select k0 = 10. For the control
parameters η, because hidden layers have nine neurons, l = 9, 0 < η ⩽ 1

l ⩽ 1
9 , we select

η = 0.1. With control parameters γ, σ, we can know 0 < (1 + σ)9γ ⩽ 1
5 − 1

10 = 1
10 = 0.10

and 0 < (9 + σ)γ ⩽ 1 from Theorem 1 and thus select γ = 0.01, σ = 0.001. The initial state
is set as x(0) = [0, 0]T . We trained the RBF networks with 10,000 steps of acquired data.
Figures 2 and 3 show the RBF-NN identifiers to approximate the tracking curves of the
unknown dynamics f̃∈[ f̃1[x(k)], f̃2[x(k)]]T .

Then, based on the ADP algorithm of Bellman optimality, Equation (6) was used to
obtain the tracking error e and the optimal feedback control ue to train the critic network
and the actor network, respectively. Meanwhile, the obtained standard control inputs
u = ûi

e + ud were used in system (1), which keeps on looping until the value function
Vi(e(k)) converge and the tracking error e(k) is zero, where the performance index is
selected as Q = I and R = I, where I is the identity matrix with appropriate dimen-
sion. For the actor network and the critic network, we used the same parameter settings.
The initial weights of the critic networks and actor networks are randomly chosen between
(−10, 10). The input layer has 2 neurons, the hidden layer has 15 neurons, the output
layer has 2 neurons, and the learning rate is 0.1. The hidden layer uses the function
tansig and the function purelin, and the output layer uses the function trainlm. Though
parameter settings, we trained the actor network and the critic network with 5000 training
steps to reach the given accuracy 1 × 10−9. Figure 4 shows the curves of the system con-
trol u∈[u1, u2]. In Figures 5 and 6, we can see the curves of the state trajectory x and the
reference trajectory xd.
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Figure 2. The unknown function f1(x) and approximation of the unknown function f̃1(x).

Figure 3. The unknown function f2(x) and approximation of the unknown function f̃2(x).

Figure 4. The system control input u1 and the system control input u2.
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Figure 5. The state trajectory x1 and the reference trajectory x1d using our tracking control method.

Figure 6. The state trajectory x2 and the reference trajectory x2d using our tracking control method.

Based on above the results, the simulation results show that this tracking technique
obtains a relatively satisfactory tracking performance for partially unknown discrete-time
nonlinear systems.

4.2. Comparison with Other Methods

In this subsection, we will compare with the research results in [36], which use a BP
neural network to approximate the unknown system dynamics. In the comparison, we use
the same system dynamics and desired tracking trajectory as (61) and (62) with the initial
state x(0) = [0, 0]T and the performance index R = Q = I.

To begin with, an NN identifier is established by a three-layer BP neural network,
which is chosen to have a 4–10–2 structure with four input neurons, eight hidden neurons,
and two output neurons. The feedforward-neuro-controller is also established by a three-
layer BP NN, which is chosen to have a 2–10–2 structure with two input neurons, eight
hidden neurons, and two output neurons. For the NN identifier and the feedforward-
neuro-controller, the parameter settings of the neural networks are identical, where the
hidden layers use the sigmoidal function tansig, the output layers use the linear function
purelin, the learning rate is 0.1, and the initial weights are chosen to be random numbers
between (0, 1).
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For the actor network and the critic network, we also use the same parameter settings.
A 2–15–2 structure is chosen for the critic networks and actor networks, the initial weights
are randomly chosen between (−10, 10), and the learning rate is 0.1. The hidden layer uses
the function tansig and the function purelin, and the output layer uses the function trainlm.
Then, the given accuracy is 1 × 10−9. In Figures 7 and 8, we can see the curves of the state
trajectory x and the reference trajectory xd using tracking control methods for references.

Figure 7. The state trajectory x1 and the reference trajectory x1d using tracking control methods
for references.

Figure 8. The state trajectory x2 and the reference trajectory x2d using tracking control methods
for references.

Comparing the two methods, from Figures 5–8, we can see that our method has better
performance in tracking the reference trajectory.

5. Conclusions

This paper proposes an effective scheme to find the near-optimal tracking controller for
a class of partially unknown discrete-time nonlinear systems based on RBF-NNs. In dealing
with unknown variables, two RBF-NNs are used to approximate the unknown function and
the steady-state controller. Moreover, the ADP algorithm is introduced to obtain the optimal
feedback control for tracking the error dynamics, two feedforward neural networks are
utilized as structures to approximate the cost function and the feedback controller. Finally,
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simulation results show a relatively satisfactory tracking performance, which verifies the
effectiveness of the optimal tracking control technique. In future work, we may consider
completely unknown dynamics and event-triggering conditions.
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