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Abstract: Consideration is given to a reaction–diffusion free boundary value problem with one or
two turning points arising in oil price modeling. First, an exact (analytical) solution to the reduced
problem (i.e., no diffusion term) was obtained for some given parameters. The space–time Chebyshev
pseudospectral and superconsistent Chebyshev collocation method is proposed for both reaction
diffusion (RDFBP) and reduced free boundary value problem. Error bounds on the discrete L2–norm
and Sobolev norm (Hp) are presented. Adaptively graded intervals were introduced and used
according to the value of turning points to avoid the twin boundary layers phenomena. Excellent
convergent (spectrally) and stable results for some special turning points were obtained for both
reduced and RDFBP equations on an adaptively graded interval and this has been documented for
the first time.
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1. Introduction

Oil can be considered a major commodity in the world economy. There are many
factors, such as interest rates and net demand, that may influence the behavior of oil prices.
Over the last ten years, new factors have affected the behavior of oil prices. Some of these
factors have a direct impact, such as the COVID-19 global lockdown that obviously reduced
the demand on oil [1], which caused a historical futures price as, on 20 April 2020, the price
of WTI-MAY 2020 futures contract closed at −37.68 per barrel [2]. Other factors have an
indirect impact, such as the growing issue of climate change, which results in increasing
antipathy towards oil among investors. In addition to these factors, the Russia–Ukraine war
forced all parties to use oil prices as a weapon. These factors have increased the complexity
of the oil prices’ behavior and created a dramatic change in futures prices.

Let us now pay attention to the modeling of oil prices; to do this, analyzing oil price
over the last ten years is necessary. In particular, from this, one can see that oil price shows
a bi-model character, which suggests a strong tendency to gather around one range of
high oil prices and one range of low prices, resulting in two distinct peaks in its frequency
distribution. Since no system of affine equations could not provide a finite number of non-
unique fixed-point solutions, Goard and AbaOud [3] proposed such a kind of nonlinear
model to model the bi-modal character of crude oil price data, which also include external
stochastic driving force, representing the unpredictable effect of many neglected influences
that will enable transitions to occur between the two basins of attraction as follows:

dp = A(p, t)dt + B(p, t)dZ = α(β1 − p)(β2 − p)(β3 − p)dt + σpγdZ (1)
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where p(= pt) is the price of oil at time t. A(p, t) = α(β1 − p)(β2 − p)(β3 − p) and
B(p, t) = σpγ (σ and γ are constants) represent the drift and diffusion term, respectively.
Here, also, dZ is an increment in the Wiener process Z under a real probability measure,
and where α > 0, β1, β2 and β3 are the stable low-fixed, unstable middle-fixed and stable
high-fixed points, respectively. Regarding the model in Equation (1), there are several
studies on various forms of it. For example, if we consider A(p, t) = µp and B(p, t) = σp,
we obtain the well-known geometric Brownian motion (GBM) model [4], which can be
considered one of the earliest-used and simplest models to describe the movement of
commodity prices. Later, Brennan and Schwartz [5] and Gabillon [6] assumed that the
future movement of commodity prices follows the GBM and derives a closed-form solution
for futures prices of oil under different assumptions. These assumptions include using
constant parameters such as the interest rate, convenience yield and cost of physical oil.
Other groups of authors suggest a mean reversion property for commodity prices, and this
suggestion is considered to capture the effect of supply and demand in the commodity.

For A(p, t) = µ(β1 − p) and B(p, t) = σp, we obtain a well-known model known as
the Ornstein–Uhlenbeck model. Later, this model was used by Bjerksund and Ekern [7] to
price European call options. Along the same line, Schwartz [8] proposed a mean-reverting
model for oil prices, namely A(p, t) = µ(β1 − ln(p)) and B(p, t) = σp, and derived a
closed formula for futures prices. AbaOud and Goard [9] proposed two one-factor models
with 3/4 power in the diffusion term, namely B(p, t) = σp

3
4 , and empirically showed that

their proposed models outperform other well-known models in capturing the behavior of
oil prices.

Various extensions of one-factor models are also possible. These include two- and three-
factor models. In the two-factor models, the convenience yield (see, for example, Gibson
and Schwartz [10], and Schwartz [8]) and long-run mean (see, for example, Gabillon [6],
Pilipovic [11] and Schwartz and Smith [12]) are the most popular choices for the second
factor. In the three-factor models, some authors used interest rate as an additional factor
to the spot price and convenience (see, for example, Schwartz [8]). Other authors used
long-term spot price return as an additional factor to the spot price and convenience (see,
for example, Cortazar and Schwartz [13]).

If we allow the possibility of a nonzero market price of risk, λ(p, t), then associated oil
process and risk-neutral development should be as follows:

dp = [α(β1 − p)(β2 − p)(β3 − p)− λ(p, t)σpγ]dt + σpγdZ, (2)

where Z is a Wiener process under an equivalent risk-neutral probability measure under
which p becomes a martingale. In the book by Wilmott [14], the reaction–diffusion free
boundary value problem or variable coefficient linear parabolic partial differential equation
that predicts the future prices of oil under the risk-free neutral process as follows:

dp = α(β1 − p)(β2 − p)(β3 − p)dt + σpγdZ, (3)

can be given as follows:

Fτ =
σ2 p2γ

2
Fpp + α(β1 − p)(β2 − p)(β3 − p)Fp, (4)

with
F(p, 0) = p(initial condition for time variable), (5)

where no boundary conditions are imposed (its daily price determined by the stock market).
To ensure that the solution is independent on any dimension, we need to nondimensionalize
the equation, defining the dimensionless variable and parameters as follows:

u =
F
β1

, y =
p

β1
and t = ταβ2

1. (6)
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Then, (4) can be written in the dimensionless form as follows:

∂u
∂t

= Γy2γ ∂2u
∂y2 + (1 − y)(q2 − y)(q3 − y)

∂u
∂y

, where Γ =
σ2β

2γ−4
1

2α
(7)

with
u(y, 0) = y. (8)

Literature reviews reveal that there is no numerical study to find the approximate
solution to Equations (6) and (7). This is mainly due to the lack of boundary condition in y
direction. In this paper, both the Chebyshev pseudospectral and superconsistent Chebyshev
collocation methods [15–22] are implemented in both space and time to approximate the
solution to Equations (6) and (7). These methods are spectrally highly accurate methods,
even for a small number of grid points. The method considered here can be regarded as
a global method because the computation at any given point depends not only on the
information from neighboring points but also on the information from the entire domain.
In this method, the use of an orthogonal basis is more convenient and produces more
accurate results. We also note that, recently, this method has been used extensively for
a variety of different well-known ordinary or partial differential equations. The authors
reported excellent stable and convergence results [20–26].

The major contributions of this paper are as follows:

1. Finding the exact (analytical) solution to the reduced problem (Γ = 0 in Equation (7))
for given q2 and q3;

2. Constructing a scheme based on both the Chebyshev pseudospectral method and
the superconsistent Chebyshev collocation method in time and space directions for
the solution to the reduced problem of Equation (7) and RDFBP Equation (7) on the
graded interval and compare with an analytic (exact) solution;

3. The theory of error estimate and convergence analysis for a fully discrete solution is
derived for the Chebyshev pseudospectral method;

4. We also discuss the convergence rates for the pseudospectral solutions.

The importance of this paper is twofold; firstly, this is the first paper application of the
space–time Chebyshev pseudospectral method to the variable coefficient reaction diffusion
free boundary value problem; secondly, the authors in financial mathematics can easily use
our approximation to predict the future price of crude oil.

The outline of this paper is organized as follows. In Section 2, we present the exact
(analytical) solution to the reduced problem. In Section 3, we define the pseudospectral
method briefly, with some important preliminaries. Error estimates for interpolating
orthogonal polynomials are presented in Section 4, numerical examples are discussed in
detail in Section 5, and the conclusion of our study is given in the last section.

2. Analytic Exact Solution to Reduced Problem of Equation (7)

For Γ = 0, the equation reduces to the following:

∂u
∂t

= (1 − y)(q2 − y)(q3 − y)
∂u
∂y

, u(0, y) = y, (9)

where q2 and q3 are positive constants such that 1 ≤ q2 ≤ q3. We now have three passible cases.

1. For q2 = q3 = 1, Equation (9) can be rewritten as follows:

∂u
∂t

= (1 − y)3 ∂u
∂y

, u(0, y) = y. (10)
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Solving (10) by the method of characteristics gives the following:

u(t, y) = F

[
2ty2 − 4ty + 2t + 1

2(y − 1)2

]
, (11)

implementation of the initial condition, u(0, y) = y = F
[

1
2(y−1)2

]
; so, then, we find

the following:

u(t, y) = 1 +
y − 1√

2ty2 − 4ty + 2t + 1
. (12)

2. For 1 < q2 = q3, Equation (7) yields the following:

∂u
∂t

= (1 − y)(q2 − y)2 ∂u
∂y

, u(0, y) = y. (13)

Solving (13) by the method of characteristics achieves the following:

(t, y) = F

[
−
−tyq2

2 + tq3
2 + 2tyq2 − 2tq2

2 + ln(y − 1)y − ln(y − 1)q2 − ln(−q2 + y)y + ln(−q2 + y)q2 − ty + tq2 − q2 + 1

(q2 − 1)2(−q2 + y)

]
. (14)

When we say that the analytic (exact) inverse is not possible, we mean that a closed-
form solution like Equation (12) is not possible in this case. Nevertheless, we have a
pseudospectral solution concerning this case, which will be given in the next section.

3. For 1 < q2 < q3, using the method of characteristic provides the following:

u(t, y) = F
[
−t − ln(y−q2)

(q2−1)(q3−q2)
+ ln(y−q3)

(q3−1)(q3−q2)
+ ln(y−1)

(q2−1)(q3−1)

]
= I

[
(y−q3)

1
(q3−1)(q3−q2) (y−1)

1
(q2−1)(q3−1) e−t

(y−q2)
1

(q2−1)(q3−q2)

]
.

(15)

Hence, the application of the initial condition yields the following:

u(0, y) = y = I

 (y − q3)
1

(q3−1)(q3−q2) (y − 1)
1

(q2−1)(q3−1)

(y − q2)
1

(q2−1)(q3−q2)

. (16)

If we let
(y − q3)

1
(q3−1)(q3−q2) (y − 1)

1
(q2−1)(q3−1)

(y − q2)
1

(q2−1)(q3−q2)

= Σ, (17)

then
(y − q3)

(q2−1)(y − 1)(q3−q2)

(y − q2)
(q1−1)

= Σ(q3−1)(q3−q2)(q2−1). (18)

For a given rational value of q2 and q3, we can solve the value of y, so we can identify
the function in (15), and the solution to Equation (7) can be obtained.

4. For y = 1 or y = q2 or y = q3, in this case, for example y = 1;

∂u
∂t

(t, 1) = 0, hence u(t, 1) = C, (19)

But, from the initial condition, we have u(t, 1) = 1; based on the same discussion, we can
find u(t, q2) = q2 and u(t, q3) = q3.

It is not possible to obtain the exact analytic solution to Equation (7); there are several
methods to find the approximate solution. In [3], the authors applied a regular perturbation
method to obtain the approximate analytic solution to the problem, where the perturbation
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parameter ε appears in Equation (7). Since perturbation methods rely on there being a
dimensionless parameter in a problem that is relatively small: ε≪1, the solution has a
limited range of validity. Therefore, we propose here a pseudospectral method to obtain
the approximate analytical solution. We note here that there is no limited range of validity
for the method that we have suggested in this paper.

3. Time–Space Chebyshev Pseudospectral Method

We assume that the solution to the problem in (7) can be expressed by the finite linear
combination of the product of Chebyshev polynomials in both dimensionless time and
price space, i.e., the following:

IMu(t, x) =
M

∑
i=1

M

∑
j=0

CijTi(t)Tj(x), (20)

where Ti(ζ) and Tj(y) are the Chebyshev polynomials in time and price directions and Cij
the discrete expansion coefficient, and can be calculated easily as follows:

Cij =
1

ηiηj

(
M

∑
p=0

M

∑
q=0

Ti
(
tp
)
Tj
(
xq
)
ω
(
ζp
)
ω
(
yq
)
u
(
ζp, xq

))
, (21)

where ηi,ηj are the discrete normalization constants and ω is the weight function. By
substituting (21) into (20) and arrange the terms using the properties of Chebyshev polyno-
mials [21], we obtain the following:

IMu(t, x) =
M

∑
i=1

M

∑
j=0
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l(z) = ωl

M
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i=1
j=0

1
ηi

Ti(zi)Ti(zi) =
(−1)l+1(1 − z2)

cl M2(z − zl)

∂

∂z
TM(z), (23)

where above z is generic variable as z = [t, y] and

cl =

{
2, l = 0 and M,
1, 0 < l < M.

This formula, based on Chebyshev–Gauss points, was also used in this study. But,
in this scheme, the inverse mentioned above is not valid (21) and (22), so we apply the
collocation method directly; even if the determinant of the resulting matrix is very big,
we are able obtain convergent results easily and comparable them with the Chebyshev
pseudospectral method.

If we set the following:

ΞM
1 (t) =

[
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IMu(t, y) =
(

ΞM
1 (t)⊗ ΞM

0 (x)
)T

U, (25)

where U is the M(M + 1)-vector:

U = [U10, . . . , U1M|U20, . . . , U2M| . . .|UM0, . . . , UMM]T (26)
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since
d
dt

(
ΞM

1

)T
(t) =

(
ΞM

1

)T
(t)D(1)

[2:M+1,2:M+1]. (27)

This is actually derived from the expansion of derivatives [20,27], where D(1)
M is called

the differential or derivative matrix, with M being its dimension and given by [20,21,27]
the following:

D(1)
ij =


P′(zi)

Q(zj)(zi−zj)
, i ̸= j,

r
∑

l=0,l ̸=i

(
zi − zj

)−1, i = j.
(28)

Therefore,

∂
∂t IMu(t, x) =

(
∂
∂t
(
ΞM

1
)T

(t)⊗
(
ΞM

0
)T

(x)
)

U =
((

ΞM
1
)T

(t)D(1)
[2:M+1,2:M+1] ⊗

(
ΞM

0
)T

(x)
)

U

=
(
ΞM

1 (t)⊗ ΞM
0 (x)

)T
(

D(1)
[2:M+1,2:M+1] ⊗ IM+1

)
U,

(29)

where IM+1 is the (M + 1)X (M + 1) identity matrix.
Similarly, we find the following:

∂

∂x
IMu(t, x) =

(
ΞM

1 (t)⊗ ΞM
0 (x)

)T(
IM ⊗ D(1)

[1:M+1,1:M+1]

)
U. (30)

We can now transform the space [0, A] and time [0, T] to [−1, 1]

t =
1
2

T +
1
2

Tt∗, y =
1
2

A +
1
2

Ax. (31)

Using this transformation in Equations (7) and (8), we obtain the following:

2
T

∂u
∂t∗

− 2
A
(1 − G(x))(q2 − G(x))(q3 − G(x))

∂u
∂x

− 4
A2 ΓG(x)2γ ∂2u

∂x2 = 0, (32)

where G(x) = 1
2 A + 1

2 Ax and the initial condition; also, we omit the star expression in the
dimensionless t direction as follows:

u(0, x) =
1
2

A +
1
2

Ax.

We now use Equations (25)–(30) to substitute into (32); as a result, we obtain the following:

2
T
(
ΞM

1 (t)⊗ ΞM
0 (x)

)T
(

D(1)
[2:M+1,2:M+1] ⊗ IM+1

)
U

− 2
A (1 − G(x))(q2 − G(x))(q3 − G(x))

(
ΞM

1 (t)⊗ ΞM
0 (x)

)T
(

IM ⊗ D(1)
[1:M+1,1:M+1]

)
U

− 4
A2 εG(x)2γ(ΞM

1 (t)⊗ ΞM
0 (x)

)T
(

IM ⊗ D(2)
[1:M+1,1:M+1]

)
U = 0

(33)

and the initial condition (
ΞM

1 (−1)⊗ ΞM
0 (x)

)T
V =

1
2

A +
1
2

Ax, (34)

where V = [V00, . . . , V0M]T. Now, using the Chebyshev–Gauss collocation points, we obtain
a system of linear equation, the important points at this stage, and the best collocation
points, such that the solution to the equation is stable and consistent. We solved this major
problem, which can be seen in the numerical solution section.
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4. Error Analysis

In this section, we will find the error bound for the numerical solution. To do this, we
need the following definitions.

Definition 1. Let Ω and open subset of R and if ω ≥ 0 is a weight function that is a locally
integrable function, we write f ∈ Lq(Ω, ω

)
, 1 ≤ q < ∞, if f : Ω = [a, b] → C is measurable

on Ω and the norm is defined by the following:

∥ f ∥Lq(Ω, ω) =

 b∫
a

| f (t)|pω(t)dt


1
q

< ∞. (35)

For p ∈ N, the Sobolev space W p,q
ω

(
Ω
)

is defined by the following:

Wp,q
ω

(
Ω
)
=
{

f ∈ Lq(Ω, ω
)

: ∆(α) f ∈ Lq(Ω, ω
)
∀|α| ≤ p

}
, (36)

where the derivatives are in the distribution sense. When this space is endowed with the norm

∥ f ∥Wp,q
ω (Ω) = ∑

|α|≤p

∥∥∥∆(α) f
∥∥∥

Wp,q
ω (Ω)

. (37)

Wp,q
ω

(
Ω
)

is a Banach space. For q = 2, this space is denoted by Hp
w
(
Ω
)
.

Theorem 1. Let u(t, x) ∈ Hp
ω [−1, 1], then there exists a constant C, such that the following

inequality holds:

∥u(t, x)− IMu(t, x)∥L2
ω [−1,1] ≤ CM−p∥u(t, x)∥Hp

ω [−1,1] (38)

Proof. Since we are looking for the approximate solution obtained from Chebyshev
expansion, that is the following:

PMu(t, x) = uM(t, x) =
M

∑
j=0

M

∑
i=1

aijTi(t)Tj(x), (39)

where the coefficient follows from the orthogonality of Chebyshev polynomials as follows:

aij =
1

ηiηj

1∫
−1

1∫
−1

uM(t, x)Ti(t)Tj(x)ωi(t)ωj(x)dxdt. (40)

Now, using the Chebyshev differential equation, we find Chebyshev operators [20]:

n2F(z)ω(z) =
∂

∂z

(
−
(

1 − z2
)1/2 ∂

∂z
F(z)

)
= ∆l F(z)ω(z), l = 1, 2. (41)

where, above ∆1 and ∆2, are the Chebyshev operators in direction time and space such that
∆1∆2 = ∆ and n = 0, 1, 2,. . .. Since Chebyshev polynomials satisfy this property, we can
rewrite (40) in terms of (41) as follows:

aij =
1

ηiηj

1∫
−1

Ti(t)ωi(t)Rj(t) dt, Rj(t) =
1∫

−1

uM(t, x)
j2

∂

∂x

(
−
(

1 − x2
)1/2 ∂

∂x
Tj(x)

)
dx. (42)
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Take the following:

Rj(t) =
1∫

−1

uM(t, x)
j2

∂

∂x

(
−
(

1 − x2
)1/2 ∂

∂x
Tj(x)

)
dx. (43)

By integrating the parts above, we find the following:

Rj(t) = 1
j2 [−uM (t, x)

(
1 − x2)1/2 ∂

∂x Tj(x)|x=1
x=−1

+
1∫

−1

∂
∂x uM(t, x)

(
1 − x2)1/2 ∂

∂x Tj(x)dx

]
= 1

j2

1∫
−1

∂
∂x uM(t, x)

(
1 − x2)1/2 ∂

∂x Tj(x)dx.

(44)

By integrating the parts again and using (41), we find the following:

Rj(t) = 1
j2

∂
∂x uM (t, x)

(
1 − x2)1/2Tj(x)|x=1

x=−1

− 1
j2

1∫
−1

Tj(x) ∂
∂x

((
1 − x2) 1

2 ∂
∂x uM(t, x)

)
dx

= 1
j2

1∫
−1

Tj(x) ∂
∂x

(
−
(
1 − x2) 1

2 ∂
∂x uM(t, x)

)
dx

= 1
j2

1∫
−1

∆1uM(t, x)T j(x)ω(x)dx.

(45)

By substituting into (43), we achieve the following:

aij =
1

ηiηj j2

1∫
−1

1∫
−1

∆1uM(t, x)Ti(t)Tj(x)ω(t)ω(x)dxdt. (46)

We can do same in time direction and obtain the following:

aij =
1

ηiηji2 j2

1∫
−1

1∫
−1

∆1∆2uM(t, x)Ti(t)Tj(x)ω(t)ω(x)dxdt

= 1
ηiηji2 j2

1∫
−1

1∫
−1

∆uM(t, x)Ti(t)Tj(x)ω(t)ω(x)dxdt.
(47)

This can be repeated m − times, which provides the following:

aij =
1

ηiηj(ij)
4m

1∫
−1

1∫
−1

∆muM(t, x)Ti(t)Tj(x)ω(t)ω(x)dxdt. (48)

From Cauchy–Schwarz, we obtain the following:

∣∣aij
∣∣2 ≤ C

(ij)4m ∥∆muM(x, t)∥2
L2

ω [−1,1], (49)

since ∥∆um(x, t)∥2
L2

ω
≤ ∥um(x, t)∥2

H4
ω

by definition, then we obtain, from the above,
the following: ∣∣aij

∣∣2 ≤ C

(ij)4m ∥uM(x, t)∥2
H4m

ω [−1,1] (50)
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This inequality can be extended to an infinite number of sums, in which case, the
inequality becomes as follows:

∣∣aij
∣∣2 ≤ C

(ij)4m ∥u(x, t)∥2
H4m

ω [−1,1]. (51)

The difference between the Chebyshev spectral solution and Chebyshev pseudospec-
tral solution is called the aliasing error:

RMu = IMu − PMu. (52)

It is not difficult to see that the aliasing error is only affected by the truncation error.
Applying the Pythagoras theorem, we obtain the following:

∥u − IMu∥2
L2

ω [−1,1] ≤ ∥u − PMu∥2
L2

ω [−1,1] + ∥RMu∥2
L2

ω [−1,1], (53)

where RMu is defined as follows:

RMu =
M

∑
i=1

M

∑
j=0

1
ηiηj

[
∞

∑
l>M

∞

∑
k>M

[Ti(t), Tl(t)]ω
[
Tj(x), Tk(x)

]
ω

aij

]
Ti(t)Tj(x), (54)

where

[
Tj(z), Tk(z)

]
ω
=

M

∑
l=0

Tj(zl), Tk(zl)ωk =

1∫
−1

Tj(z).Tk(z)ω(z)dz =


0, j ̸= k,

π, i = 0, M and j = k,
π
2 , i = 1, 2, ... M − 1 and j = k.

(55)

Hence, it is clear that RMu = 0 because Ti(t), Tl(t) are orthogonal with respect to
the weight function and i ̸= j (because of the range of summation). Therefore, we obtain
the following:

∥u − IMu∥2
L2

ω [−1,1] = ∥u − PMu∥2
L2

ω [−1,1], (56)

since

u − PMu =
∞

∑
i=M+1

∞

∑
j=M+1

aijTi(t)Tj(x), (57)

or

∥u − PMu∥2
L2

ω [−1,1] =
∞
∑

i=M+1

∞
∑

j=M+1

∥∥aijTi(t)Tj(x)
∥∥2

L2
ω [−1,1] =

∞
∑

i=M+1

∞
∑

j=M+1
ηiηj

∣∣aij
∣∣2

≤
∞
∑

i=M+1

∞
∑

j=M+1
ηiηj

C
(ij)4m ∥um(x, t)∥2

H4m
ω

≤ C∥um(x, t)∥2
H4m

ω

∞
∑

i=M+1

∞
∑

j=M+1
ηiηj

1
(ij)4m ≤ CM−8m∥u(x, t)∥2

H4m
ω

.

(58)

Therefore, we achieve the following:

∥u − PMu∥L2
ω [−1,1] ≤ CM−4m∥u(x, t)∥H4m

ω [−1,1] (59)

If we rename p = 4m above, the inequality becomes as follows:

∥u − PMu∥L2
ω [−1,1] ≤ CM−p∥u(x, t)∥Hp

ω [−1,1] (60)

Finally, by using Equation (53), we obtain the truncation terror bound for our colloca-
tion method as follows:

∥u − IMu∥L2
ω [−1,1] ≤ CM−p∥u(x, t)∥Hp

ω [−1,1] (61)
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Hence, the theorem is proved. □

Similarly, we can prove that∥∥∥∥∂su
∂zs − ∂s

∂zs IMu
∥∥∥∥

L2
ω [−1,1]

≤ CM−p
∥∥∥∥∂su

∂zs

∥∥∥∥
Hp

ω [−1,1]
= CM−p∥u(x, t)∥Hp+s

ω [−1,1], z = [t, x]. (62)

Let us now find the truncation error for our Equation (32):

R(t, x) =

 2
T

(
∂

∂t∗ (u − IMu)
)
− 2

A (1 − G(x))(q2 − G(x))(q3 − G(x))
(

∂
∂x (u − IMu)

)
− 4

A2 εG(x)2γ
(

∂2

∂x2 (u − IMu)
) 2

≤ 8
T2

(
∂

∂t∗ (u − IMu)
)2

+ 16
A2 [(1 − G(x))(q2 − G(x))(q3 − G(x))]

2(
∂

∂x (u − IMu)
)2

+ 4
(

4
A2 εG(x)2γ

)2(
∂2

∂x2 (u − IMu)
)2

.

(63)

Through the double integration of both sides with respect to t∗ and x on [−1, 1]x[−1, 1],
and using the Minkowski inequality, we obtain the following:

E ≤ C
(

δ1M−p∥u(x, t)∥
Hp+1

ω [−1,1]
+ δ2M−p∥u(x, t)∥

Hp+2
ω [−1,1]

)
. (64)

5. Numerical Results and Discussion

First, we solve the reduced problem (9), where analytical solution is possible, then we
demonstrate how the numerical solution develop and converge the exact solution, to do
this we select q2 = 1 + ε and q3 = 1 + 2ε, in this case analytical (exact) solution is given by

u(t, y) = 1 + ε

1 +
(y − q2)√

(q2 − y)2 − e−2ε2t(1 − y)(q3 − y)

 (65)

In Figures 1–3, we compared the exact solution with the semi-analytical solution
obtained from the space–time pseudospectral Chebyshev method for ε = 0.2, (t, y)ϵ[0, 10]×
[0, 10]. We focused on the effect of turning points; in this case, y = 1, 1.2 and 1.4 are the
turning points and u(t, 1) = 1, u(t, 1.2) = 1.2 and u(t, 1.4) = 1.4 are the solutions. In
Figure 1a, we used 24 × 24 Chebyshev points; we saw that the numerical solution increases
with an increase in the value of y, but the exact solution reaches its maximum around y = 2.
Beyond this point, solutions show steady behavior. When we increased the number of
points to 28 × 28, the numerical solution again deviated from the exact solution in the initial
phase and after y > 2, as documented in Figure 1b. In Figure 2, we checked the numerical
solution at t = 2, and saw that the difference between the exact and approximate solutions
is less than 10−2 for y < 4. This suggests the use of the adaptively graded interval. The
other interesting point in the present problem is the boundary layer formation. In Figure 3,
we showed the twin boundary layer where we used equally distributed collocation points
in both dimensionless time and space directions. We then considered the graded interval
(t, y)ϵ[0, 5]× [0, 5], [0, 10]× [0, 5] and [0, 10]× [0, 5], then we covered (t, y)ϵ[0, 10]× [0, 10]
again. Figure 4 shows both the exact solution and approximate analytical solution on
graded interval at t = 3; we see excellent convergence of our numerical method to the exact
solution. Indeed, we see from Figure 5 that the error, which is the difference of approximate
solution to exact solution, is bounded by |e| ≤ 3.5 × 10−5. But when we increase the value
of t, the error also increases. Next, we solved the full problem, in which case the exact
solution was not possible. Figure 6a,b show the effect of the second-order derivative on
the future price of oil for fixed Γ = 0.05 and Γ = 0.25, respectively. Figure 6a represents
the development of the future price of oil with dimensionless price direction for t = 0.625;
we see that increasing the value of Γ would cause an initial increase in the value of the
future price of oil, but it would eventually reduce the future price of oil. We observed
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similar behavior at dimensionless time t = 4.35, as shown in Figure 6b, where q2 = 1.2 and
q3 = 1.4, and we achieved the exact solution for Γ = 0 (Equation (65)). In this case, we also
checked the development of the future of oil prices with dimensionless time variable for
fixed y = 0.625 and y = 4.35 in Figure 7a,b, respectively. As we expected, increasing the
value of Γ would cause an increase in the value of the future price of oil initially (Figure 7a)
but, later in time, it would decrease the value of the future price of oil (Figure 7b). Let us
see how the solution turns out with the value of y. If y < 1, the future price of oil increases
with the value of the space variable; if y > 1, the future price of oil decreases while the
space variable increases. This can also be seen in Figure 7a,b; we also observed, depending
on the value of the turning points, that the solution can turn three times. This is why we
need more and more collocation points to obtain enough accuracy, but more collocation
points make the matrix ill-conditioned. Hence, in this study, we balanced these two factors.

Figure 1. (a,b) Comparison of pseudospectral solution with exact solution at t = 5 for q2 = 1.2
and q3 = 1.4 in (a) 24 collocation points and in (b) 28 collocation points.

Next, we solved the full problem, in which case the exact solution was not possible. For
this example, we selected parameters q2 = 1.75 and q3 = 2. Figure 8a–c show the effect of
the second-order derivative on the future price of oil for a fixed value of the dimensionless
time variable as t = 2, 0.5 and 3.5. We find exactly the same behavior as before; the value of
Γ initially increases, which means an increase in the price of oil, but later reverses, and the
price of oil decreases. In Figure 9a–c, we fix the value–space variable as y = 0.2, 2 and 3.5
and the development of the future price of oil with dimensionless time. We see, again, an
increase in the value of Γ and a decrease in the value of the oil price. Overall, we only
selected a few turning points here; however, for every given turning point, we can select
a graded interval for which our method converges and becomes stable. Specifically, we
selected here γ = 1/2, but when we increase this value at a certain stage, it will be very
difficult to find the graded interval.
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Figure 2. Comparison of pseudospectral solution with exact solution at t = 2 for q2 = 1.2 and q3 = 1.4
and 32 collocation points.

Figure 3. Demonstration of twin boundary layer formation in pseudospectral solution.
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Figure 4. Approximate analytical solution on graded interval at t = 3 for q2 = 1.3 and q3 = 1.4.

Figure 5. Difference between approximate and exact solution at t = 3.

Let us check the paper of Funaro [17], where he considered the superconsisted Cheby-
shev collocation method. First, he suggested that we start with zeros of χn =

(
1 − x2)T′

n(x),
then define the operator L = ε ∂2

∂x2 + β ∂
∂x so that

εχ
′′
n(zi) + βχ′

n(zi) = 0, i = 1, 2, ...n − 1. (66)

We considered some simplified cases of our problem and applied the collocation points
obtained from Equation (6); we did not find any significant difference between the Cheby-
shev pseudospectral solution with Chebyshev collocation points and the superconsisted
Chebyshev pseudospectral method with collocation points from (66).
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Figure 6. The effect of Γ on the future price of oil for (a) t = 0.625 (b) t = 4.35.

Figure 7. The effect of Γ on the future price of oil for (a) y = 0.625 (b) y = 4.35.
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Figure 8. The effect of Γ on the future price of oil at (a). (a) t = 2 (b) t = 0.5 (c) t = 3.3 for
q2 = 1.75 and q3 = 2.
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Figure 9. The effect of Γ on the future price of oil at (a). (a) y = 2 (b) y = 0.5 (c) y = 3.3 for
q2 = 1.75 and q3 = 2.

6. Conclusions

In this study, consideration was given to the reaction–diffusion free boundary value
problem (singularly perturbed RDFBP) and we showed the following:

1. For the Γ = 0 (i.e., first-order hyperbolic equation or reduced equation) case, we ob-
tained the exact (analytical) solution for a variety of parameters involved in modeling;

2. We used the pseudospectral Chebyshev collocation method to obtain the approxi-
mate analytical solution to the reduced problem on the graded interval and spectral
convergence of the method observed for the solution;

3. We used the above method for the approximate analytical solution to the RDFBP
problem (for the existence of the solution, see, for example, Freidman [28] or
E. Süli et al. [29]) and the effect of the second-order term on the future price of
oil, discussed in detail.

As far as the literature is concerned, these problems have never been solved before. In
future studies, we will consider the RBFBF with mixed-boundary condition problems.
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