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Abstract: We geometrically derive the explicit form of the unitary representation of the Poincaré group
for vector-valued wave functions and use it to apply speed-of-light boosts to a simple polarization
basis to end up with a Hawton–Baylis photon position operator with commuting components. We
give explicit formulas for other photon boost eigenmodes. We investigate the underlying affine
connections on the light cone in momentum space and find that while the Pryce connection is metric
semi-symmetric, the flat Hawton–Baylis connection is not semi-symmetric. Finally, we discuss
the localizability of photon states on closed loops and show that photon states on the circle, both
unnormalized improper states and finite-norm wave packet smeared-over washer-like regions are
strictly localized not only with respect to Hawton–Baylis operators with commuting components but
also with respect to the noncommutative Jauch–Piron–Amrein POV measure.

Keywords: photon wave function; unitary representation; Poincaré group; boost eigenmodes; posi-
tion operator; POV measure; Riemannian metric; affine connection; semi-symmetric metric connec-
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1. Introduction

In classical relativistic field theory, the electric and magnetic field strengths are com-
bined into a closed two-form F over the Minkowski spacetime. Since F is closed, dF = 0,
it admits a four-vector potential A (a 1-form), so that F = dA. While in classical theory A
is convenient, but not strictly necessary, when we move to quantum theory A is almost
unavoidable. There, when describing the interaction of the electromagnetic field with
charged matter (particles or fields), A has a simple geometrical interpretation as a one-form
connection in a complex line bundle, and F becomes a curvature of this connection (physi-
cists sometimes like to use the term “a non-integrable phase factor” for the fact that we
are dealing with a connection form of a non-zero curvature). This simple and beautiful
geometrical picture becomes, however, somewhat lost when we move to the quantum
theory of an electromagnetic field itself (both first- and second-quantized). (A promising
new way of keeping the geometry alive in quantum field theory (within the algebraic
framework) was also suggested by D. Buchholz et al.—cf. [1] and references therein.) Pho-
tons, the quanta of the electromagnetic field, are treated there as relativistic elementary
particles and as such are described by irreducible unitary representations of the Poincaré
group. The whole machinery of Lie algebras, Casimir operators, Lie groups, induced
representations, and “little groups” is brought forward, and geometry is almost completely
forgotten. Physicists construct one-particle Hilbert spaces and multi-particle Fock spaces
(while the first quantization is a “miracle”, the second quantization is a functor), moving
into the algebra of operators, and this is a whole new world, with little place for differential
geometry. V.S. Varadarajan in his classic monograph Geometry of Quantum Theory, chapter
“Representations in vector bundles and wave equations”, comes very close to fulfilling this
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task; unfortunately, when it comes to photons, the chapter ends with the sentence “We do
not get into these ideas here.” ([2], p. 371).

The group-theoretical analysis of elementary relativistic quantum systems led to the
concept of imprimitivity systems, developed by G.W. Mackey (cf., e.g., ([2], Ch. VI) and
references therein), and to the associated concept of the localization of elementary quantum
particles. A.S. Wightman [3] applied these concepts to the study of the localizability of
quantum mechanical systems and came to a conclusion confirming the previous analysis
of T.D. Newton and E.P Wigner [4], namely, that photons (as well as other particles of
rest mass zero and helicity ≥ 1) are covariantly non-localizable in the strict sense of an
imprimitivity system based on the 3-d Euclidean group acting on R3.

J.M. Jauch and C. Piron [5] developed a concept of “weak localizability”, replacing
a projection-valued measure with POV (positive operator-valued) measures, and A.O.
Amrein [6] proved that there exist photon states which are strictly POV-localized in arbi-
trarily small regions of space, while, more recently, I. and Z. Bialynicki-Birula [7] argued
that photons cannot be sharply localized because of a kind of complementarity between
magnetic and electric energy localization.

Closely related to the problem of a photon’s localization is the problem of the existence
of the photon position operator Q. The problem is not exactly the same, since a given
vector-valued operator may have infinitely many representations in terms of POV measures
(except when Qis commute, and then there is a distinguished projection-valued spectral
measure). It is known [8] that the standard requirements of the covariance with respect
to the Euclidean group and inversions lead to a unique Q—known as the Pryce photon
position operator (the proof of uniqueness provided in this reference has a hole, as it
requires an additional restriction on the form of the operator. But the hole in the proof can
be completed, and no extra assumptions are, in fact, necessary). The trouble is that the
components Qi do not commute, which makes the simple probabilistic interpretation for
the photon’s localization problem impossible (while Qi admits a natural decomposition
with respect to a POV measure, K. Kraus [9] showed that there exists more than one such
measure, so the question appears: which one of them is more natural than others, and
why?). B.S. Skagerstam [10] interpreted the noncommutativity of the components of the
Pryce operators QPR

i in terms of the curvature of a connection in a photon’s momentum
space (Skagerstam is using Jackiw’s concept of “three-cocycle” [11], developed before
under a different name (generalized imprimitivity system) by the present author [12]),
and applied it to the derivation of the Berry phase for a photon [13]. The same idea was
discussed before by I. and Z. Bialynicki-Birula [14], except that in their paper the same
connection was derived independently of the photon’s position operator question.

Abandoning the requirement of a covariance with respect to the 3D rotation group
opens the way towards the construction of a huge family of “position operators” for
photons, including those with commuting components and therefore admitting a unique
spectral decomposition. M. Hawton [15] started a whole series of works in this direction.
The commuting of the components of the position operator implies a flat (curvature-zero)
connection on the positive light cone in momentum space. Connections of this type (no
curvature, but torsion) were long ago investigated by A. Staruszkiewicz [16,17], who
required that the parallel transport preserves the natural (degenerate) metric, the volume
form, and that the connection is semi-symmetric (a constraint on the torsion). Hawton
and Baylis [18] investigated a particular photon position operator QHB with commuting
components, the Hawton–Baylis operator, with axial symmetry. (If the Berry phase is
related to the non-zero curvature of the connection responsible for the parallel transport,
as it is usually assumed, then any such position operator must lead to a vanishing Berry
phase.) Recently, these ideas were further developed by Dobrski et al. [19,20].

The present work started with the realization that there is an apparent discrepancy
between the geometrical picture of the photon wave function as a section of the tangent
or cotangent bundle (whenever a (non-degenerate) metric is available, there is no need
to distinguish between tangent and cotangent bundles. The distinction between the two
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becomes relevant only in premetric formulations of electrodynamics—cf. [21] and references
therein) and the way the Lorentz boosts act on vector-valued functions within the unitary
representation of the Poincaré group considered in all papers dealing with the photon
wave function and with photon position operators (for the photon wave function, see,
e.g., [22], while for photon position operators discussed in a similar context as that taken
in the present paper, see [20] and references therein). In the present paper, we start with a
geometrical description of massive vector fields transforming naturally under the Poincaré
group. We work in momentum space (a good introduction to a photon’s wave mechanics,
in both momentum and position space, as well as to the photon’s localization problem,
can be found in the review article [23] and in the monograph [24] by Ole Keller) and
discuss the natural unitary representation acting on the Hilbert space of sections of the
tangent bundle of the positive mass hyperboloid which is square-integrable with respect to
the natural Lorentz-invariant measure. The natural Riemannian metric appearing there
becomes degenerate in the limit m = 0. For m > 0, taking the positive square root of this
metric, we split the tangent space at each point into two mutually orthogonal parts: the
longitudinal-transversal split with respect to the mass-independent standard Euclidean
metric. This enables us to twist the unitary representation along the longitudinal part. We
obtain an explicit form of the so-obtained irreducible unitary representation and then take
the limit m = 0, which now is finite (though not irreducible). Only then, the Lie algebra of
the Poincaré group acquires the standard form.

We then use the explicit form of the boost unitary operators to obtain a rather unex-
pected result: the polarization basis used for constructing the teleparallel connection by
Hawton and Baylis [18] can be obtained by taking the speed-of-light limit in the z-direction
of simple Hertz-type potentials e1 ∼ p × w and e2 ∼ p × (p × w), w = (0, 0, 1). We then
discuss the Hawton–Baylis connection and the associated photon position operator with
commuting components and compare it to the Pryce connection with non-zero curvature
and torsion. In particular, we find that the Pryce connection is metric semi-symmetric,
while the Hawton–Baylis connection does not have the semi-symmetry property.

In the last part of this paper, we analyze photon states fℓ localized on loops ℓ in a
photon’s position space. They are given as simple superpositions of plane waves localized
at the points of the loop. For the particular case when the loop is a circle on a z = 0 plane,
we show that fl are localized on the circle not only with respect to the Jauch–Piron–Amrein
POV measure F(∆) (what was known before) but also (which came as a surprise) with
respect to QHB.

We construct simple wave packets made of these circle states that provide normalized
photon states localized in arbitrarily small washer-like regions of space, again both with
respect to QHB and F(∆).

Notation 1. We work in the momentum representation, spacetime signature (−+++). Coordi-
nates (p0, p1, p2, p3) = (p0, p), p2 = p2 − (p0)2. We will writeR3 to denote the three-dimensional
real vector space of the momentum vectors p. Greek indices µ, ν, ρ, σ run from 0 to 3. Latin indices
i, j, k, l run from 1 to 3. We use the Greek letter α, also running from 1 to 3, for numbering the basis
vectors in momentum space. Summation over repeated indices is implied. Only positive energies,
p0 > 0, are used. We will use the notation π to denote the dimensionless unit vector in the direction
of the momentum p: π = p/|p|.

2. Massive Vector Field

For m > 0, we denote by V+
m the hyperboloid p2 + m2 = 0, p0 > 0, i.e.,

p0 = +
√

p2 + m2. (1)

Later on, we will be interested in the limit m → 0. The mass hyperboloid V+
m is globally

parametrized by p ∈ R3. In the limit m → 0, V+
m becomes the positive cone V+

0 , and we
remove the origin p = 0.
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2.1. The Tangent Bundle

Let TV+
m be the tangent bundle of V+

m . Let pµ(t) be a (differentiable) path in V+
m , with

(pµ(0)) = (p0 =
√

p2 + m2, p). For each t, we have

p0(t)2 = p(t)2 + m2. (2)

Differentiating at t = 0 and setting vµ = (dpµ(t)/dt)|t=0, we obtain

v0 p0 = v · p, (3)

Therefore, in TV+
m , at p, we can use only the coordinates vi, the coordinate v0 being

given by
v0(p) =

v · p
p0 . (4)

2.2. The Action of the Lorentz Group

Let η = (ηµν) be the matrix η = diag(−1,+1,+1,+1). The inverse matrix η−1 = (ηµν)
has the same matrix elements. Indices are raised and lowered with the matrices η−1 and η,
respectively. In particular, pi = pi and p0 = −p0 (we will never use p0).

Let L↑ be the orthochronous Lorentz group, that is, the group of those 4 × 4 real
matrices L = (Lµ

ν) satisfying η−1LTη = L−1, L0
0 > 0.

The group L↑ acts on V+
m via p 7→ Lp, (Lp)µ = Lµ

ν pν. On the mass hyperboloid
V+

m , p0 is determined by p. Therefore, on V+
m , we can write (Lp)i = Li

j pj + Li
0 p0, where

p0 =
√

p2 + m2. Let p 7→ Lp denote this action:

(Lp)i = Li
j pj + (Li)0 p0. (5)

It induces the action on the tangent bundle TV+
m as follows.

If vµ is a vector tangent to V+
m at p, then (Lv)µ = Lµ

νvν is tangent to V+
m at Lp. Now,

using Equation (4), we obtain

(Lv)i = (Li
j +

Li
0 pj

p0 )vj. (6)

We set

˜D(m)
i
j
(L, p) = Li

j +
Li

0 pj

p0 . (7)

The wave functions of the massive spin-1 particle are sections of the tangent bundle
TV+

m . We denote by Sec(TV+
m ) the space of these sections. If p 7→ f(p) is in Sec(TV+

m ), then
Lf is defined through the formula

(Lf)(Lp) = L(f(p)), (8)

or, in coordinates:
(Lf)i(Lp) = ˜D(m)

i
j
(L, p) f j(p). (9)

Replacing Lp with p and p with L−1p, we obtain

(Lf)i(p) = ˜D(m)
i
j
(L, L−1p) f j(L−1p). (10)

Formula (10) defines the natural linear action of L↑ on Sec(TV+
m ).

It can be verified by a direct calculation that the matrices ˜D(m)(L, p) satisfy the follow-
ing “cocycle relations”:

˜D(m)(L1L2, p) = ˜D(m)(L1, L2p) ˜D(m)(L2, p), (11)
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which is equivalent to
(L1L2)f = L1(L2f), (12)

which means that we have a linear representation of the group L↑ on Sec(TV+
m ). So far, no

restrictions on sections p 7→ f (p) are needed. The minimal assumption is that they are
(Borel) measurable. Notice also that f (p) can be assumed to be real. As long as we are
interested only in pure Lorentz transformations, and not in spacetime translations, there is
no need to complexify TV+

m .

2.3. Riemannian Metric on V+
m

For m > 0, the fibers of TV+
m carry a natural Lorentz-invariant Riemannian structure:

the scalar product v · v′ = v · v′ − v0v′0 is evidently Lorentz-invariant. Substituting the
expression (4), we obtain the coordinate expression for the Riemannian metric g(m)ij(p)

g(m)ij(p) = δij −
pi pj

|p|2 + m2 . (13)

Its inverse is given by

gij
(m)

= δij +
pi pj

m2 . (14)

Since the flat metric η is invariant under the linear action of the Lorentz group, the
induced metric gm is invariant under the induced action. We have

˜D(m)(L, p)T g(m)(Lp) ˜D(m)(L, p) = g(m)(p). (15)

In what follows, we will need the positive square root of g(m). Since, as long as m > 0,
g(m) is positive definite, there exists a unique positive definite square root h(m) = (h(m)i

j)
of g(m). It can be verified that h(m) is given by the following explicit expression:

h(m)
i
j
(p) = δi

j + λ(p)πiπj, (16)

λ(p) =
m
p0 − 1. (17)

We will also need its inverse (h(m))
−1, which is given by

h(m)
−1i

j
(p) = δi

j + µ(p)πiπj, (18)

µ(p) =
p0

m
− 1. (19)

Remark 1. We have two scalar products in R3
p, the standard, Euclidean one, δij, and the one

determined by the metric g(m)ij. In the following, whenever we write the dot product or raise or
lower the space index (i, j, . . .), we will always use the standard Euclidean metric.

2.4. The Hilbert Space and Unitary Representation

We have √
det g(m) =

m
p0 , (20)

Therefore, since g(m) is Lorentz-invariant, d3 p/p0 is a Lorentz-invariant measure on
V+

m . We define the Hilbert space H̃m as the Hilbert space of sections f(p) of TV+
m which are

square-integrable with respect to the scalar product

(f, f′)m =
∫

g(m)ij(p) f̄ i(p) f ′j(p)
d3 p
p0 . (21)
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By construction, the formula

(Ũ(L)f)(p) .
= (Lf)(p) = ˜D(m)(L, L−1p)f(L−1p) (22)

defines a unitary representation of L↑ on H̃m.
The unitary representations of L↑ for different values of m have the same form but

act in Hilbert spaces with different scalar products in the fibers. In order to be able to take
the limit m = 0, it is convenient to use just one standard fiber scalar product, independent
of the value of m, but make the form of the representation m-dependent. To this end, let
Hm be the Hilbert space of sections of TV+

m which are square-integrable with respect to the
standard Hermitian scalar product

< f, f′ >m=
∫

f̄(p) · f′(p)
d3 p
p0 , (23)

where f̄ denotes the complex conjugate (not needed if f is real). Then, the map

h(m): f(p) 7→ h(m)(p)f(p), (24)

where h(m) is given by Equation (16), is an isometry from H̃m to Hm. Correspondingly, we
have a unitary representation L 7→ Um(L) = h(m) ◦ Ũ(L) ◦ h(m)

−1 of L↑ on Hm. It then
follows from the definition that U(L) can be written as

(Um(L) f )(p) = Dm(L, L−1p) f (L−1p), (25)

where
Dm(L, p) = h(m)(Lp) ˜D(m)(L, p)h−1

(m)
(p). (26)

By using Equation (15) and the definition of h(m), we find that the matrices Dm(L, p) are
orthogonal, which makes the property of the unitarity of Um(L) evident (using the terminology
of ([2], p. 175), one says that the cocycles ˜D(m) and Dm are strictly cohomologous).

The Longitudinal-Transversal Split

Assuming p ̸= 0, the eigenvalue equation g(m)f = λf for the real symmetric matrix
g(m) reads

f i(p)− p · f(p)
|p|2 + m2 pi = λ f i(p),

i.e.,

(1 − λ) f i(p) =
p · f(p)
|p|2 + m2 pi. (27)

Thus, either λ = 1, and then p · f(p) = 0, or λ ̸= 1, and then f(p) is proportional to p.
For each p ̸= 0, let P0(p) be the orthogonal projection (in R3 endowed with the Euclidean
metric δij) on the one-dimensional subspace consisting of vectors proportional to p:

P0(p) f(p) = (π · f(p))π. (28)

Then, P0(p) projects onto the eigenspace of g(m)(p) belonging to the eigenvalue
m2/(|p|2 +m2). Let P1(p) = I −P0(p) be the orthogonal projection on the complementary
subspace of vectors corresponding to the eigenvalue 1:

P1(p)f(p) = f(p)−−− (π · f(p))π, (29)

such that

g(m)(p) =
m2

|p|2 + m2 P0(p) + P1(p). (30)
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Then, we immediately obtain

h(m)(p) =
m√

|p|2 + m2
P0(p) + P1(p), (31)

and

h(m)
−1(p) =

√
|p|2 + m2

m
P0(p) + P1(p). (32)

It should be noticed, however, that, as long as m > 0, the split above is not invariant
under the action of the boosts of the Lorentz group on V+

m .

2.5. The Limit m = 0

For m = 0, the matrices ˜D(m)(p) are still given by Equation (7), but now p0 = |p|. It
is less obvious that the matrices Dm given by Equation (26) remain finite in the zero-mass
limit. In Proposition 1 below, we show that, for all L in L↑ and p in V+

m , the limit

D0(L, p) = lim
m=0

Dm(L, p) (33)

exists, and we provide its explicit form.

Proposition 1. D0(L, p) is finite and it is given by the following explicit formula:

D0
i
j(L, p) = Li

j + Li
0πj − π′ iL0

j + π′ iπj(1 − L0
0), (34)

where π′ = Lp
|Lp| . For each L ∈ L↑ and p ̸= 0, the matrix D0(L, p) is orthogonal:

D0(L, p)T = D0(L, p)−1. (35)

The representation
(U0(L)f)(p) .

= D0(L, L−1p)f(L−1p) (36)

of L↑ on the Hilbert space H0 = L2(R3
p, d3 p/|p|)⊗C3 is unitary.

Proof. Substituting Equations (31) and (32) into Equation (26), we obtain for Dm(L, p) the
sum of four terms t1, t2, t3, t4, where

t1(m) =

√
|p|2 + m2√
|Lp|2 + m2

P0(Lp) ˜D(m)(L, p)P0(p), (37)

t2(m) = P1(Lp) ˜D(m)(L, p)P1(p), (38)

t3(m) =
m√

|Lp|2 + m2
P0(Lp) ˜D(m)(L, p)P1(p), (39)

t4(m) =

√
|p|2 + m2

m
P1(Lp) ˜D(m)(L, p)P0(p). (40)

Noticing that the orthogonal projections P0 and P1 do not depend on m, we see that
t1(0) and t2(0) are finite and are given by

t1(0) =
|p|
|Lp|P0(Lp) ˜D(0)(L, p)P0(p), (41)

t2(0) = P1(Lp) ˜D(0)(L, p)P1(p), (42)

while the third term vanishes:
t3(0) = 0. (43)
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We will now show that, surprisingly, the fourth term t4(m) also vanishes in the limit
m = 0. To this end, we first consider the product

DP0(m)
.
= ˜D(m)(L, p)P0(p) (44)

of its last two factors. Using the definitions, we have

DP0(m)i
k =

(
Li

j +
Li

0 pj

p0

)
pj pk
|p|2 =

(
Li

j pj

|p|2 +
Li

0

p0

)
pk. (45)

Setting p′ = Lp, we have Li
j pj = p′i − Li

0 p0; therefore,

DP0(m)i
k =

p′i pk
|p|2 + Li

0

(
1
p0 − p0

|p|2

)
pk =

p′i pk
|p|2 − m2 Li

0 pk
p0|p|2 . (46)

Now, the projection P1(p′) vanishes on the first term p′i pk
|p|2 , as the range of this matrix is

in the longitudinal subspace at p′, and
√

|p|2+m2

m P1(Lp) acting on the second term vanishes
linearly in m. Therefore, t4(0) = 0, and so

D0(L, p) =
|p|
|p′|P0(p′) ˜D(0)(L, p)P0(p) + P1(p′) ˜D(0)(L, p)P1(p). (47)

Since the sub-bundle of longitudinal vectors is invariant under the action of ˜D(0),
we have P1(p′) ˜D(0)(L, p)P0(p) = 0 and P0(p′) ˜D(0)(L, p)P0(p) = ˜D(0)(L, p)P0(p). There-
fore, Equation (47) simplifies to

D0(L, p) = ˜D(0)(L, p) +
|p|
|p′|

˜D(0)(L, p)P0(p)−P0(p′) ˜D(0)(L, p). (48)

We have already calculated the matrix ˜D(0)(L, p)P0(p)—we just set m = 0 in
Equation (46). Now, using the fact that LTηL = η, a straightforward algebra gives us

(P0(p′) ˜D(0)(L, p))i
j
= π′ i(L0

j + πjL0
0), (49)

and leads to Formula (34) in Proposition 1 (notice that ˜D(0)(L, p) gives the first two terms of
the right-hand side of (34)). The matrices D0(L, p) are orthogonal as limits of a continuous
family of orthogonal matrices, and, since the measure d3 p/p0 is Lorentz-invariant, the
representation U0 is unitary.

We notice that for pure space rotations Li
0 = L0

j = 0, L0
0 = 1, we have D0i

j = Li
j.

2.6. The Poincaré Group Lie Algebra

So far, we have only discussed the homogeneous transformations from the Poincaré
group—the Lorentz transformations from L↑. Now, we add translations. They are imple-
mented by complex phase rotations:

(U0(a)f)(p) = eia·pf(p) = ei(a1 p1+a2 p2+a3 p3−a0 p0)f(p). (50)

These transformations are evidently unitary on H0. Having the unitary representation
of the whole group, we will now calculate the self-adjoint infinitesimal generators. For
translations, we define Pµ = −i(dU(a)/daµ)|a=0, obtaining

Pif(p) = pif(p), P0f(p) = |p|f(p). (51)
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The Lie algebra of the orthogonal group SO(4) consists of antisymmetric matrices m̃µν

given by
(m̃µν)

σρ = δσ
µδ

ρ
ν − δσ

ν δ
ρ
µ. (52)

The matrices mµν = m̃µνη then form a basis in the Lie algebra of the Lorentz group

(mµν)
σ

ρ
= δσ

µηνρ − δσ
ν ηµρ. (53)

Defining m = (mi) and n = (ni) through mi = 1
2 ϵijkmjk, ni = m0i, we obtain the

commutation relations

[mi, mj] = −ϵijkmk, [mi, nj] = −ϵijknk, [ni, nj] = ϵijkmk. (54)

Then, the densely defined self-adjoint operators Mi, Ni are given by

Mi = −idU(exp(t mi))/dt|t=0, Ni = −idU(exp(t ni))/dt|t=0. (55)

Using our explicit formulas, we obtain:

M = L + s, (56)

N = K + k, (57)

where
L = −i p × ∂/∂p, K = i|p|∂/∂p, k = π × s, (58)

s = −im. (59)

The commutation relations obtained from the definitions are the standard ones:

[Ni, Pj] = iδijP0, [Ni, P0] = iPi, [Mi, Pj] = iϵijkPk, [Mi, P0] = 0, (60)

[Ni, N j] = −iϵijk Mk, [Mi, N j] = iϵijk Nk, [Mi, Mj] = iϵijk Mk. (61)

Replacing M by L and N by K, we obtain the same commutation relations.

Remark 2. The representation U0 defined by (36) is unitary on the Hilbert space H0 of vector-
valued functions which are square-integrable with respect to the scalar product

< f, f′ >0=
∫

f†(p)f′(p)
d3 p
|p| . (62)

In Section 4, we will use a different scalar product using a non-Lorentz-invariant measure d3 p.
To make the representation U0 unitary with respect to this scalar product, we need to adjust D0 by
introducing an extra scaling factor and defining

D(L, p) =

√
|p|
|Lp|D0(L, p). (63)

The expression for infinitesimal generators for this unitary representation remains the same,
except that in the definition of K we must replace i|p|∂/∂p with i|p|∂/∂p + 1

2 π.
Notice, however, that with the scalar product (62), and with D0 replaced by D, the transversal

components of f(p) cannot be directly interpreted as tangent vectors, since they do not have the
correct transformation properties under boosts.

The unitary space inversion operator Π and antiunitary time inversion operator Θ for
this representation are given by

(Πf)(p) = f(−p), (Θf)(p) = f∗(−p). (64)
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For a general representation of the Poincaré group, one defines the four-dimensional
Pauli–Lubanski pseudovector Wµ as

Wµ =
1
2

ϵνρσµ Pν Mρσ. (65)

We have
W0 = P · M, W = P0 M − P × N. (66)

It follows from the very definition that ηµνPµWν = 0. For mass-zero representations,
Pµ is lightlike, and therefore Wµ is proportional to Pµ:

Wµ = ΛPµ. (67)

The proportionality operator Λ commutes with all the generators and is called the
helicity operator (see, e.g., [25], p. 64). In our case, one finds that for the generators Pµ, L, K,
we have Wµ = 0, and therefore, Λ = 0, while for the generators Pµ, M, N, we have

Λ = π · M = π · s, (68)

or explicitly, using Equation (59),

(Λf)(p) = iπ × f(p). (69)

The spectrum of Λ is discrete and consists of three points λ = ±1 and 0. Therefore, Λ2

is a projection onto the subspace Hph of H0. Hph is a direct sum of eigenspaces H± of Λ
corresponding to eigenvalues λ = ±1. The photon states are represented by vectors in Hph.
The orthogonal complement Hl of Hph in H0 describes a spinless particle. It follows from
these definitions that

Hph = {f ∈ H0 : p · f(p) = 0} (70)

and that
Hl = {f ∈ H0 : f(p) = c(p)p} (71)

for some scalar function c(p). Since Λ commutes with all the generators of the Poincaré
group, they leave the subspaces Hph and Hl invariant.

3. An Application of the Explicit Form: Photon Polarization Vectors Boosted to the
Speed of Light
3.1. Action of Pure Boosts

We are interested in one-parameter subgroups of Lorentz transformations L(w, s),
w ∈ R3, w2 = 1, s ∈ R, defined by

L(w, s) = exp(−s w · n) = exp

(
s

( −w1 0 0 0
−w2 0 0 0
−w3 0 0 0

0 −w1 −w2 −w3

))
. (72)

For the matrix L(w, s)µ
ν, we then obtain (the parameter s is known as rapidity,

s = atanh(β), β = v/c)

L0
i = Li

0 = −wi sinh(s),

Li
j = δi

j + wiwj(cosh(s)− 1), (73)

L0
0 = cosh(s).

For a fixed w, we have the group property:

L(w, s1)L(w, s2) = L(w, s1 + s2). (74)
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In particular, we have L(w, s)−1 = L(w,−s).
For some special sections f(p) of TV+

0 , we are interested in calculating the limits

lim
s→±∞

U0(L(w, s))f. (75)

Having in mind Equation (36), let

D′
0(w, s, p) .

= D0(L(w, s), L(w, s)−1p). (76)

The following proposition shows that the limits

D′
0(w, p)± = lim

s→±∞
D′

0(w, s, p) (77)

exist, and it provides their explicit form.

Proposition 2. For all p not parallel to w, we have

D′
0(w, p)± = 1± πwT − wwT − (π · w)πwT + ππT ± wπT

1 ± π · w
. (78)

where for any two vectors a, b we denote by abT the matrix with components aibj.

Proof. The proof is performed by using a straightforward (though tedious) algebra. From
the definition of D′

0 and Equation (34), we have the following explicit expression for
D0(L, L−1p):

D0(L, L−1p)
i
j(L, p) = Li

j + Li
0π′

j − πiL0
j + πiπ′

j(1 − L0
0), (79)

where now π′ = L−1p
|L−1p| . Substituting L(w, s) for L, we obtain fractions containing cosh(s),

sinh(s), and their squares and products. The terms with sinh(s) cosh(s) cancel out, while
the terms with cosh2(s), sinh2(s) collect so that we can apply the identity cosh2(s) −
sinh2(s) = 1. Dividing the numerators and denominators (which are now linear in cosh(s)
and sinh(s)) by cosh(s), we use the fact that lim

s→±∞
tanh(s) = ±1 to obtain the result.

3.2. The Polarization Basis

Using the Euclidean metric, we will silently rise and lower the space indices with the
Kronecker deltas δij and δij.

Let a be a unit (a · a = 1) vector in R3, and let p be a non-zero vector in R3, with
p not parallel to a. Define the following two vectors ea

1(p), ea
2(p) in R3 as (cf. Ref. [26],

Equation (3.3))

ea
1(p) =

p × a
|p × a| , (80)

ea
2(p) =

p × (p × a)
|p × (p × a)| . (81)

Adding the third vector field e∥ defined as

e∥(p) = π, (82)

we obtain an orthonormal basis, which can be considered as an orthonormal moving frame
in the (real) tangent bundle of the positive light cone in momentum space. The sections ea

1
and ea

2 of the tangent bundle TV+
0 become singular on the straight line determined by a.
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Remark 3. One can check that Λe∥(p) = 0 and that the states ea
1(p)± iea

2(p) are eigenstates of
the helicity operator to the eigenvalue ±1:

Λ(ea
1 ± iea

2) = ±(ea
1 ± iea

2). (83)

Proposition 3. The limits ea
α
± = lim

s→±∞
U0(L(w, t)) ea

α, α = 1, 2, exist, and they are given by

ea
1
± =

±1√
1 − (w · a)2

(
w × a − π · (w × a)

1 ± π · w
(π ± w)

)
, (84)

ea
2
± =

1√
1 − (w · a)2

(
w × (w × a)− π · (w × (w × a))

1 ± π · w
(π ± w)

)
. (85)

Moreover, the vector fields eα
a are invariant under the boosts in the w-direction. We have

(w · N) ea
α = 0, (86)

where N is the boost generator (57).

Proof. We know from Proposition 2 that the limits D′
0(w, p)± exist. On the other hand,

using the definitions of ea
α and L(w, s)−1 = L(w,−s), as well as the fact that lim

s→±∞
tanh(s) = ±1, we obtain

lim
s→±∞

ea
1(L(w, s)−1p) =

±w × a√
1 − (w · a)2

, (87)

lim
w→±∞

ea
2(L(w, w)−1p) =

w × (w × a)√
1 − (w · a)2

. (88)

The result then follows by an application of the matrix of D′
0(w, p)± given by For-

mula (78) to the vectors (87) and (88). The last statement of the proposition is the immediate
consequence of the definitions.

Lorentz-Boost Eigenmodes

Let us take for w the vector
w = (0, 0, 1),

(boost in the direction of the third axis), and for a the vector

a = (0, 1, 0).

We consider the case of lim
w→−∞

. Using the formulas (87) and (88), we obtain the

following two mutually orthogonal unit vector fields:

e1(p) =
1

1 − π3

1 − π3 − (π1)2

−π1π2

(1 − π3)π1

, e2(p) =
1

1 − π3

 π1π2

−(1 − π3) + (π2)2

−(1 − π3)π2

. (89)

These two vector fields are transversal; they define a photon polarization basis (notice
that while each of the original vector fields ea

1 , ea
2 has two singular points on the unit sphere,

in their speed-of-light limits these two singularities merge into just one—the minimum
required by the “hairy ball theorem” of algebraic topology). Together with the third
vector field

e3(p) = π, (90)

which is longitudinal and spans the helicity-zero subspace, they form an orthonormal basis
in TpV+

0 —cf. Figure 1.
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e1.pdf e2.pdf e3.pdf

Figure 1. The vector fields e1(p), e2(p), e3(p) plotted at the unit sphere in momentum space.

It is easily verified that

M3e1 = −ie2, M3e2 = ie1, M3e3 = 0, (91)

and
N3e1 = N3e2 = N3e3 = 0. (92)

Remark 4. The vector fields e1, e2 are real. Introducing their complex combinations

e± =
1√
2
(e2 ± ie1), (93)

we obtain two unit complex vector fields of definite helicity and the third component of angular
momentum:

M3e± = ∓e±, Λe± = ±e±. (94)

Evidently, we also have
N3e± = 0. (95)

The basis eα is naturally embedded into a one-parameter family of Lorentz-boost
eigenmodes (for the scalar wave equation, some of their properties are discussed in Ref. [27])
e(λ)α defined by the formula below:

e(λ)α (p) = exp

(
iλ log

√
|p| − p3

|p|+ p3

)
eα(p), (α = 1, 2, 3), λ ∈ R. (96)

A straightforward verification shows that e(λ)α still satisfies Equation (91), but Equa-
tion (92) is replaced by

N3e(λ)α = λ e(λ)α . (97)

Remark 5. In fact, one can show that every solution of the eigenvalue problem

N3 f = λ f (98)

is of the form

f (p) =
3

∑
α=1

cα(p1, p2)e
(λ)
α (p). (99)
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3.3. The Teleparallel Connection

In the following, we will use the notation, assumptions, and results of Section 3.2.

3.3.1. Stereographic Coordinates on the Light Cone

We will use the moving frame eα(p), (α = 1, 2, 3) on V+
0 to define a teleparallel affine

connection on V+
0 . The frame has a singularity at the points p = (0, 0, t), t > 0, and a natural

rotational covariance with respect to rotations around the third axis. It takes especially
simple form in a coordinate system X = (x, y, ω) using the stereographic projection from
the unit sphere in momentum space (stereographic projection coordinates are also used, in
a similar context, in Refs. [16,17], but the coordinates x, y in these papers are twice our x, y,
as the projection plane in these papers is positioned at the bottom of the unit sphere, and
not through the center).

We set

p1 =
2xω

x2 + y2 + 1
, (100)

p2 =
2yω

x2 + y2 + 1
, (101)

p3 =
x2 + y2 − 1
x2 + y2 + 1

ω, (102)

and the inverse transform

x =
π1

1 − π3 , (103)

y =
π2

1 − π3 , (104)

ω = |p|. (105)

Given a coordinate system Xi and a vector ξ with coordinates ξ i, we have the standard
transformation law to another coordinate system Xi′ :

ξ i′ =
∂Xi′

∂Xi ξ i. (106)

Applying this law to the vectors e1, e2, e3, we obtain their components in stereographic
coordinates ω, x, y (surprisingly, they happen to essentially coincide with the basis E⃗1, E⃗2, E⃗3
considered in (Ref. [19], Equation (2.42)): e1 = −E⃗1, e2 = −E⃗2, e3 = E⃗3. In fact, we have
e1 = ∂̂x, e2 = −∂̂y, e3 = ∂̂ω = ∂ω, where the hat over a vector denotes the unit vector in
its direction):

e1 =

 1+x2+y2

2ω
0
0

, e2 =

 0

− 1+x2+y2

2ω
0

, e3 =

0
0
1

. (107)

The Euclidean metric in stereographic coordinates has the form

g = (gij) =


4ω2

(1+x2+y2)2 0 0

0 4ω2

(1+x2+y2)2 0
0 0 1

, (108)

g−1 = (gij) =


(1+x2+y2)2

4ω2 0 0

0 (1+x2+y2)2

4ω2 0
0 0 1

, (109)
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while the Lorentz-invariant degenerate metric g0ij = δij − πiπj is obtained from gij by
replacing 1 with 0 in the right bottom corner. We can use the metric gij to obtain the
corresponding dual basis e1, e2, e3 in the cotangent bundle:

e1 =

 2ω
1+x2+y2

0
0

, e2 =

 0
− 2ω

1+x2+y2

0

, e3 =

0
0
1

. (110)

The Lorentz-invariant volume form vol = d3 p/|p| becomes

vol =
4ω

(1 + x2 + y2)2 dω dx dy. (111)

3.3.2. The Connection Coefficients

The moving frame eα defines a unique flat affine connection on V0 in which the vector
fields eα are parallel:

∇iek
α

.
= ∂iek

α + Γk
ij ej

α = 0. (112)

The coefficients Γk
ij of this teleparallel connection in the coordinate system (Xi) =

(x, y, ω) are then given by

Γi
k
j = ek

α

∂eα
j

∂Xi , (113)

where eα is the dual basis; thus, ei
αej

α = δ
j
i .

A straightforward calculation then gives the following expressions:

Γ1 =
−2x

a

1 0 0
0 1 0
0 0 0

, Γ2 =
−2y

a

1 0 0
0 1 0
0 0 0

, Γ3 =
1
ω

1 0 0
0 1 0
0 0 0

, (114)

where a = 1+ x2 + y2. Our connection Γ has the properties ∇ig = ∇ig0 = 0 and ∇ivol = 0;
therefore, it should come under the scope of affine connections discussed by Staruszkiewicz
in Refs. [16,17]. However, as we show in the paragraph below, it is not “semi-symmetric”—an
extra condition imposed on the class of connections analyzed by Staruszkiewicz.

The connection Γk
ij given by Equation (114) is not semi-symmetric.

Let M be an n-dimensional manifold with a coordinate system xi. A linear connec-
tion ∇ with connection coefficients Γk

ij is said to be semi-symmetric if its torsion tensor

Tk
ij = Γk

ij − Γk
ji is of the form

Tk
ij = δk

i τj − δk
j τi, (115)

τ being a 1-form. If that is the case, contracting the indices i, k, we obtain τj =
1

n−1 Ti
ij. In

our case, n = 3; therefore,

τj =
1
2

Ti
ij. (116)

For the connection given by Equation (114), we obtain, for instance, τ2 = −y/(1+ x2 + y2).
But for a semi-symmetric connection, we should have, for instance, T1

12 = δ1
1τ2 − δ1

2τ1 = τ2,
while from Equation (114) we have T1

12 = Γ1
12 − Γ1

21 = 0 − 0 = 0. Thus, our connection is
not semi-symmetric.

4. Photon Position Operator with Commuting Components and Axial Symmetry

To discuss photon localization, it is more convenient to work in a representation in
which the scalar product in the Hilbert space of the sections of the tangent bundle TV+

0 is
given by the formula (cf. Remark 2)

( f , f ′) =
∫
R3

f (p)† f ′(p)d3 p. (117)
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Since the measure d3 p is not Lorentz-invariant, the formula for the boost operator now
obtains an extra term (compared to Equation (57)) and takes the form

N = K +
i
2

π + n. (118)

As a consequence, the sections p 7→ eα(p) do not satisfy Equation (92) any longer—but
the sections p 7→ |p|−1/2eα(p) do.

In what follows, we will be using the scalar product (117). We will denote H as the
corresponding Hilbert space: H = L2(R3, d3 p)⊗C3.

The map f 7→ |p|1/2 f is an isometry between the two Hilbert spaces, the space H,
with the scalar product defined with the measure d3 p, and H0, with the scalar product
d3 p/p0.

4.1. Position Operators as Covariant Derivatives

There is a straightforward relation between the position operator and a covariant
derivative concept in vector bundles. Indeed, the main property required from any position
operator Qi is the property of satisfying the canonical commutation relations with the
momentum operators Pi:

[Qj, Pk] = iδk
j I. (119)

In our case, it implies that for any section f(p) of T(V+
0 ) and any scalar function ϕ(p),

we have

−i Qj(ϕf)(p) =
∂ϕ(p)

∂pj
f(p) + ϕ(p)(Qjf)(p). (120)

Thus, the operators −iQi have the Leibniz rule property, the main property defining a
covariant derivative ∇i in a vector bundle (cf., e.g., [28], p. 89, Equation (1.1)). For Qi to be
Hermitian, ∇i must be anti-Hermitian, and for this to be the case, the (linear) connection
determined by ∇i should preserve the fiber scalar product (f(p), f′(p))p = f(p)†f′(p).
Then,

Q = i∇, (121)

or, explicitly,
(Qjf)k(p) = i∂j f k(p) + iΓk

il(p) f l(p). (122)

4.2. The Pryce Connection and Operator—Geometric Construction

There is a standard construction in the differential geometry of vector bundles that
results in a canonical connection adapted to a split of a trivial vector bundle into a direct
sum of its two vector sub-bundles (cf., e.g., [29], p. 319, 4, [30], Exercise 10). We adapt
this standard construction to our purpose as follows. First, using the global coordinates
pi, we realize the tangent bundle TV+

0 as a trivial product bundle V+
0 ×R3. In the trivial

bundle, we have a canonical covariant derivative ∂i =
∂

∂pi . Our trivial bundle is naturally
split into a direct sum of the helicity-zero sub-bundle and the helicity-±1 sub-bundle of
photon states. Let P(p) denote the orthogonal projection on the helicity-zero states

(P(p) f )i(p) = πiπj f j(p). (123)

Then, I − P is the orthogonal projection on the complementary sub-bundle of photon
states. The natural covariant derivative adapted to this splitting is then defined by the
formula (cf. [31], Equation (2); we use the label PR to mean either “Projection” or “Pryce”)

∇PR
i = PdiP + (I − P)∂i(I − P). (124)
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Using the idempotent property P2 = P, we find a simpler form:

∇PR
i = ∂i + [P, ∂i(P)], (125)

while substituting the explicit form (123) of P leads to

(∇PR
i f)j = ∂i f j +

1
|p|

(
π jδik − πkδ

j
i

)
f k, (126)

Thus, the corresponding connection coefficients are given by

ΓPR j
ik = [P, ∂i(P)]jk =

1
|p|

(
π jδik − πkδ

j
i

)
. (127)

4.2.1. The Pryce Connection Is Metric Semi-Symmetric

A metric connection is semi-symmetric—cf., e.g., [32,33] and references therein—if its
connection coefficients Γk

ij are of the form

Γj
ik = Γj

ik + δ
j
i τk − gikτ j, (128)

where Γj
ik are the coefficients of the Levi-Civita connection of the metric, and where τi and

τi = gijτj are the covariant and contravariant components of a vector field, respectively.
In that case, the curvatures of the two connections are related by (for the curvature tensor
components of a connection ∇, we use the convention Rij

k
lξ

l =
(
(∇i∇j −∇j∇i)ξ

)k)

Rij
k

l = Rij
k

l + δk
j τil − δk

i τjl + δilτj
k − δjlτi

k, (129)

where
τij = ∇iτj − τiτj +

1
2

gijτ
2, (130)

and τ2 = gijτiτj.

In our case, gij = δij and the connection coefficients Γj
ik are all zero. Comparing Equa-

tions (128) and (127), we can see that the connection ∇PR is metric semi-symmetric, with

τi = −πi/|p|, . (131)

We then obtain

πij = πji =
1

|p|2

(
(Σ2)ij +

1
2

δij

)
, (132)

where
Σij = −ϵijkπk, (133)

and the curvature tensor simplifies to

RPR
ijkl =

1
|p|2 ΣijΣkl . (134)

From Equation (128), we obtain for the torsion

TPRk
ij = δk

i τj − δk
j τi, (135)

where τi is given by (131).



Mathematics 2024, 12, 1140 18 of 25

4.2.2. The Difference between the Teleparallel and Pryce Connections

The difference between two connections is a tensor. In our case, it is a matter of
straightforward calculations to find this tensor for the teleparallel connection Γ defined by
Equation (114) and the Pryce connection given by Equation (126). We obtain

Γk
ij − ΓPRk

ij = biΣk
j, (136)

where
b =

π × w
|p| − p · w

, w = (0, 0, 1). (137)

4.2.3. The Pryce Operator

We now use Equations (121) and (124). Denoting

X = i
∂

∂p
, (138)

the position operator corresponding to ∇PR is

QPR .
= i∇PR = PXP + (I − P)X(I − P), (139)

or, explicitly,

(QPR
j f)k = i∂j f k +

i
|p|

(
πkδjl − πlδ

k
j

)
f l . (140)

Using Equations (53) and (59), it can be also written as

QPR = X +
(p × s)
|p|2 , (141)

and, in this form, it is known as the Pryce position operator. The following alternative
formula for this operator, expressing it in terms of the Poincaré group generators, is easily
verified and is well known:

QPR =
1
2

(
1

P0 N + N
1

P0

)
, (142)

where Ni are the boost generators (118). It should be mentioned that even though the
bundle TV+

0 is trivial, the non-triviality of its splitting defined by the helicity-related
projection P is reflected in the fact that the adapted connection has a non-zero curvature,
and, as a consequence, the components of the Pryce operator do not commute.

Remark 6. The flat covariant derivative d does not mix the two photon ±1 helicities. As a
consequence, the Pryce operator commutes with the helicity operator Λ and not only with its square
Λ2 = I − P.

Now, using Equation (134), we obtain

([Qi, Qj]f)k = − 1
|p|2 ΣijΣk

l f l , (143)

which is usually written as (see, e.g., [34], Equation (5,9), p. 40) (in Ref. [34], helicity is
defined with the opposite sign)

[Qi, Qj] = iϵijk
pk
|p|3 Λ, (144)

where Λ = iΣ is the helicity operator.
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4.3. The Hawton–Baylis Operator

The teleparallel connection described in Section 3.3 leads to the Hawton–Baylis photon
position operator QHB

i with commuting components

QHB
i = i∇i, (145)

with the defining relations

∇ieα = 0, (i = 1, 2, 3), (α = 1, 2, 3), (146)

where eα are given by Equations (89) and (90). It follows from Equations (145) and (146)
that the states eα(p) are localized at x = 0. To obtain states localized at any point x = a, we
multiply these states by exp(−ip · a).

From Equations (136) and (137), we then obtain (cf. [18], Equation (53) and [19],
Equation (2.49))

QHB
i f = QPR

i f + biΛf. (147)

In particular,
QHB

3 = QPR
3 . (148)

Using this last equality, together with Equations (142) and (118), we recover the fact,
mentioned after Equation (118), that the states ẽα = |p|−1/2eα are invariant under boosts
in the direction of the third axis. Indeed, from the Leibniz property (120) and from (146),
we obtain

QHB
i ẽα = − iπi

2|p| ẽα. (149)

Thus,

QPR
3 ẽα = − iπ3

2|p| ẽα. (150)

On the other hand, using (142) and the Lie algebra commutation relation [N3, P0] =

iP3, QPR
3 can be written as

QPR
3 =

1
|p|N3 − iπ3

2|p| , (151)

which, together with (150), leads to (1/|p|)N3 ẽα = 0, and thus, N3 ẽα = 0. But this reasoning
does not give us a clue as how the basis eα can be obtained by taking the speed-of-light
limit of the simple polarization basis (81). (A brief discussion of an application of the
Hawton–Baylis photon position operator to optical beams (derived via Wigner’s little
group method) can be found in Ref. [35]; cf. also references therein.)

It is straightforward to verify that the operators Qi = QHB
i have axial symmetry:

[M3, Q1] = iQ2, [M3, Q2] = −iQ1, [M3, Q3] = 0. (152)

4.3.1. Photon States Localized on Circles

Since the three components of QHB commute, they can be simultaneously diago-
nalized, and the simultaneous eigenvalue equation QHB

i f = qif has three independent
solutions:

fα,q(p) = exp(−iq · p)eα(p), (q ∈ R3, α = 1, 2, 3). (153)

The states f1,q ± if2,q describe photons localized at q ∈ R3 of helicity ±1, and f3,q is of
helicity 0. However, since the states eα(p) have a rather complicated p-dependence, and
owing to the axial symmetry of QHB, it is natural to look for simple axially symmetric
simultaneous eigenvalue equations for Q = QHB:
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M3 f = 0, (154)

Q3 f = 0, (155)

(Q2
1 + Q2

2) f = R2 f, R > 0. (156)

These would give us states localized on the circle x2 + y2 = R2, z = 0, in the Cartesian
coordinates (x, y, z) in the photon’s position space. To this end, it is convenient to introduce
cylindrical coordinates (ρ, ϕ, p3), ρ =

√
(p2

1 + p2
2). One can then verify that states of the form

f(ρ, ϕ, pz) = F(ρ)

− sin(ϕ)
cos(ϕ)

0

 (157)

are simple solutions of Equations (154) and (155), while Equation (156) imposes a second-
order ordinary differential equation on F(ρ):

ρ2F′′(ρ) + ρF′(ρ) + (R2ρ2 − 1)F(ρ) = 0. (158)

with the following solution finite at the origin [36]:

F(ρ) = cJ1(Rρ), (159)

where J1 is the Bessel function of the first kind and c is a constant—see Figure 2.

20 40 60 80 100

-0.2

0.2

0.4

0.6

Figure 2. Bessel function J1(ρ).

For reasons that will be clear from the next paragraph, we choose for the constant c
the value:

c = −iR. (160)

Loop States

Let ℓ be a closed loop in R3
x defined by a function r(t), 0 ≤ t ≤ 2π. Following

Ref. [31], let us define the state fℓ by

fℓ(p) =
1

2π

∫ 2π

0
e−ip·r(t) dr(t). (161)

Then, fl(p) is a superposition of simultaneous eigenstates of Xi—see Equation (138)—
X-localized in R3

x at the points of the loop ℓ. Therefore, it is X-localized on ℓ. The fact that
the loop is closed, i.e., r(2π) = r(0), implies that the state fℓ(p) is an (improper) element of
Hph, i.e., that

p · fℓ(p) = 0. (162)
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Taking the Fourier transform fℓ(x) of fℓ(p), we obtain

fℓ(x) =
1

(2π)3

∫ 3

R
eipxfℓ(p)d3 p =

1
2π

∫ 2π

0
δ(x − r(t))dr(t), (163)

and it is clear that fℓ(x) has its support on the loop in the position coordinates space—it
vanishes at all points x outside the loop. It is also clear that for two non-intersecting loops
ℓ, ℓ′ the states fℓ and fℓ′ are orthogonal to each other. (Loops may form topologically
inequivalent knots. In this respect, the loop states discussed above are similar to knotted
solutions of Maxwell equations discussed in Ref. [26], Sec. 7.)

As an example, let us take for ℓ the circle in the (x, y) plane of radius R given by the
parametric equations

x = R cos t, y = R sin t, z = 0. (164)

A straightforward calculation in cylindrical coordinates (ρ, ϕ, p4) (in momentum space)
then leads to

fx2+y2=R2(p) = −i
R
ρ

J1(Rρ)

−p2
p1
0

. (165)

where J1 is the Bessel function and ρ =
√
(p1)2 + (p2)2, which coincides with the state f

given by Formula (157).

Amrein’s Washer Photon States

We use Equation (163) for a circle of radius R at z = z0; thus,

x(t) = R cos t,

y(t) = R sin t,

z = z0.

(166)

Thus,

fR,z0 =
1

2π

∫ 2π

0
δ(x − R cos t, y − R sin t, z − z0)

− sin t
cos t

0

dt. (167)

We will use cylindrical coordinates (r, ϕ, z) in position space. In these coordinates,

δ(x − x′, y − y′, z − z′) =
1
r

δ(r − r′)δ(ϕ − ϕ′)δ(z − z′), (168)

while
d3x = rdr dϕ dz. (169)

Thus,

fR,z0(r, ϕ, z) =
1

2π

∫ 2π

0

δ(r − R)
r

δ(z − z0)δ(ϕ − t)

− sin t
cos t

0

dt. (170)

After integrating over dt, we obtain

fR,z0(r, ϕ, z) =
1

2π

δ(r − R)
r

δ(z − z0)

− sin ϕ
cos ϕ

0

. (171)

We now take a continuous superposition of these states for R varying between R1 and
R2 > R1 and z0 varying between z1 and z2 > z1. As a superposition of photon states, it
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will still be a photon state. Let χR1,R2(r) be the function equal to 1 for R1 ≤ r ≤ R2 and
zero otherwise, and, similarly, let χz1,z2 be the function equal to 1 for z1 ≤ z ≤ z2 and zero
otherwise. Taking the integral∫ ∞

−∞
dz
∫ ∞

0
χR1,R2(R)χz1,z2(z)fR,z0(r, ϕ, z) dR dz (172)

we obtain

fR1,R2,z1,z2(r, ϕ, z) =
1

2πr
χR1,R2(r)χz1,z2(z))

− sin ϕ
cos ϕ

0

. (173)

The function is evidently square-integrable with respect to d3x = rdr dϕ dz, and its
probability density is zero everywhere except for the bolt washer-like region R1 ≤ r ≤ R2,
z1 ≤ z ≤ z2—see Figure 3.

Figure 3. Amrein’s washer state (171) is strictly (weakly) localized in the region 1 nm ≤ R ≤
√

2 nm,
1 nm ≤ z ≤ 1.4 nm.

We call it Amrein’s state, as the existence of such states was first proven in 1968 by
A.O. Amrein [6]. These states are also strictly localized with respect to the commuting
position operators QHB

i .

4.4. POV Measure Photon Localization

Every self-adjoint operator admits a spectral decomposition. Usually, we write it as:

A =
∫

λdE(λ). (174)

More generally, given a family of commuting observables, we have a spectral measure
on the common spectrum of these observables. Here, we have operators Xi = i∂/∂pi
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defined on H, with commuting components [Xi, Xj] = 0, and we have a unique spectral
measure on R3 such that

Xi =
∫
R3

xidE(x). (175)

Then, for every Borel set ∆ ⊂ R3, the operator

E(∆) =
∫

∆
dE(x) (176)

is a projection operator on the subspace of states localized in ∆; for any two sets ∆ and ∆′,
the operators E(∆) and E(∆′) commute.

However, the operators Xi do not leave the subspace Hph invariant; therefore,
we introduce

QPR
i = PXiP + (I − P)Xi(I − P), (177)

where (I − P) is the orthogonal projection operator on Hph. Thus, we have

QPR
i =

∫
R3

xidF(x), (178)

where
F(∆) = PE(∆)P + (I − P)E(∆)(I − P). (179)

Now, F(∆) are not projection operators any longer, and for different ∆ they do not
commute. Nevertheless, they are non-negative operators 0 ≤ F(∆) ≤ 1 and∫

R3
dF(x) = I, (180)

Therefore, we have a POV—positive operator-valued—measure. Jauch and Piron [5]
called a photon state f weakly localized in ∆ if F(∆)f = f, and they conjectured the existence
of such states. Amrein [6] provided a rigorous proof of their existence and showed how to
construct them. Our formula (171) provides a rich explicit family of such states. Notice,
however, that the circle states fx2+y2=R2(p), while satisfying

(QHB
1 )2 + (QHB

2 )2) fx2+y2=R2 = R2fx2+y2=R2 , (181)

are not eigenstates of (QPR
1 )2 + (QPR

2 )2. Instead, for any real measurable function ϕ on
R+, they are eigenstates of the eigenvalue ϕ(R2) of the operator Qϕ(x2+y2) defined as

Qϕ(x2+y2)
.
= Pϕ((X1)

2 + (X2)
2)P + (I − P)ϕ((X1)

2 + (X2)
2)(I − P)

=
∫

ϕ(x2 + y2) dF(x),
(182)

where dF(x) is the POV measure defined by Equation (179) (for instance, in Ref [37], the
square root function is proposed).

The circle-localized states fx2+y2=R2 are superpositions of helicity-+1 and helicity-−1
states, in agreement with Theorem 2 of Ref. [6]. Their projections on definite helicity
subspaces, +1 or −1, are still circle-localized with respect to the Hawton–Baylis operator,
but they are not weakly localized in the sense of the POV measure F(∆)—in agreement
with Theorem 1 of Ref. [6].

5. Conclusions

In conclusion, using differential geometric structures on the mass hyperboloid and
on the light cone in momentum space, we derived the explicit form of the unitary repre-
sentation of the Poincaré group for helicity-zero and helicity-±1 massless particles. Using
this explicit form for a boost in the direction of the third axis, we have found that simple
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photon polarization states based on Hertz-type potentials survive the light speed limit and
generate a polarization basis used in the construction of photon position operators with
commuting components. We have compared these operators, as well as the underlying
affine connections, to the classical Pryce operator and connection, and we have found
that the Pryce connection, Equation (125), non-flat but with rotational symmetry, is metric
semi-symmetric, while the Hawton–Baylis connection, flat but only axially symmetric,
Equation (114), does not have this property. We have constructed finite-norm photon states
localized in bolt washer-like regions and proven that they are strictly localized in these
regions with respect to Hawton–Baylis position operators and also with respect to the
Jauch–Piron–Amrein POV measures. They are also z-localized (but not radius-localized)
with respect to the Pryce photon position operator.
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