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Abstract: This article designs an observer for the joint estimation of the state and the unknown input
for a class of nonlinear fractional-order systems (FOSs) such that one portion satisfies the Lipschitz
condition and the other does not necessarily satisfy such a condition. Firstly, by reconstructing system
dynamics, the observer design is transformed equivalently into the tracking problem between the
original nonlinear FOSs and the designed observer. Secondly, the parameterized matrices of the
desired observer are derived by use of the property of the generalized inverse matrices and the
linear matrix inequality (LMI) technique combined with the Schur complement lemma. Moreover, an
algorithm is presented to determine the desired observer for the nonlinear FOSs effectively. Finally, a
numerical example is reported to verify the correctness and efficiency of the proposed algorithm.

Keywords: nonlinear fractional-order systems (FOSs); observer design; joint estimation of states and
unknown inputs
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1. Introduction

Fractional calculus, a generalization of integer calculus with more than three centuries
of history, has attracted increasingly more interesting attention in many scientific and
engineering fields. Because many real-world physical systems can be well described by
fractional-order systems (FOSs), such systems have been successfully employed in many
applications, for example, secure communication [1–4], electrical networks [5,6], biological
systems [7–9], and so forth. Stability and stabilization play a fundamental role in modern
control theory, and so do FOSs. For linear FOSs, the bounded real lemma for linear singular
FOSs with the order 1 ≤ α < 2 was derived in [10], the robust stability and stabilization
for linear multi-order FOSs with interval uncertainties were tackled in [11] and the robust
H∞ stabilization of linear FOSs with gain parametrization was presented in [12]. On the
other hand, for nonlinear FOSs, the Mittag–Leffler stability criterion was proposed for
nonlinear FOSs in [13], the state and output feedback stabilization controllers of nonlinear
FOSs with the lower triangular structure were given in [14], and the stability and stabiliza-
tion of uncertain incommensurate nonlinear FOSs were studied in [15]. Furthermore, the
back-stepping-method-based controller [16] and the linear feedback controller [17] were
presented for the control of chaotic FOSs with the lower triangular form, respectively.

With the development of stability theory, the control problem of FOSs has recently
gained increasingly more attention and has been extensively investigated in interdisci-
plinary areas. Notice that one aspect highly relevant to the observer is the stabilization of
FOSs. Designing state observers is crucial, essentially when we do not have access to all the
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states of the considered system, or when the system output measurements do not provide
complete information on the internal system states. For these reasons, observer design
theory has caught much attention; see, for example, [18–22] for linear FOSs and [23–25] for
nonlinear FOSs, and the references therein. The state and the unknown input were simulta-
neously estimated for commensurate linear FOSs with a single input and a single output
in [18]. The fractional-order H∞-like observer was presented to improve the nonasymptotic
and robust behavior of linear FOSs in [19]. The event-triggered controller was proposed
based on the fractional-order observer to deal with the measurement difficulties of the
full-state for linear FOSs in [20]. An admissible leader-following consensus protocol was
given on the basis of the designed observer for linear singular multi-agent FOSs with
the order 0 < α < 2 [21]. Moreover, the full-order observer was designed for nonlinear
FOSs which satisfy the Lipschitz condition with unknown inputs [23]. The full-order and
reduced-order observers were presented for imperfect nonlinear FOSs in [24]. The robust
proportional-integral observer was proposed for the synchronization of nonlinear chaotic
FOSs [25].

The observer design for both states’ and unknown inputs’ simultaneous estimation of
FOSs may be traced back to [26], where the H∞ and sliding mode observer was developed
for linear time-invariant FOSs with an initial memory effect. An interesting application
of the simultaneous estimation of both the states and unknown inputs of FOSs is in the
physiological description of the brain’s portions. Subsequent research on the simultaneous
estimation of both the states and unknown inputs of linear FOSs can be found in [18],
in which the high-order sliding mode observer was designed to avoid the peaking phe-
nomenon. Nevertheless, observers presented in [23–25] were designed by reconstructing
the state, but the unknown input was not estimated. To the best of the authors’ knowledge,
the simultaneous estimation of both the states and unknown inputs of nonlinear FOSs,
especially for the nonlinear term without Lipschitz constraints, is still open. Motivated
by the above discussion, this paper is devoted to designing the observer to estimate both
the states and the unknown inputs simultaneously for a class of nonlinear FOSs with
multiple inputs and multiple outputs. Compared with the aforementioned literature, the
contributions of this paper are summarized as follows.

1. The fractional-order observer is designed to estimate both the states and the unknown
inputs simultaneously for a class of nonlinear FOSs.

2. The nonlinear FOSs investigated are not essential to satisfy the Lipschitz condition,
where the nonlinear functions may be uncertain, time-varying and disturbance terms.

3. An algorithm is presented to calculate the parameters of the desired observer based on
the Mtttag–Leffler stability theory combined with the linear matrix inequality (LMI)
and the property of generalized inverse matrices.

The rest of this paper is arranged as follows. Caputo fractional-order derivative,
Mittag–Leffler stability and some reasonable assumptions on the nonlinear functions are
presented in Section 2. The parameterized matrices of the observer are tackled in Section 3.
A numerical example is presented to verify the correctness and effectiveness of the obtained
results in Section 4. Section 5 concludes the article.

2. Preliminaries and Problem Formulation

There are three mainly used definitions of fractional-order derivatives named Riemann–
Liouville derivative, Grünward–Letnikov derivative and Caputo derivative. In this article,
only Caputo derivative is used since this Laplace transform allows for using initial values
of classical integer-order derivatives with clear physical interpretations.

Consider the following nonlinear fractional-order system (FOS):

Dα
t x(t) = Ax(t) + Bu(t) +F ((x,u),y),

y(t) = Cx(t) +Du(t),
(1)
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where x(t) ∈ Rn is the state, u(t) ∈ Rm denotes the unknown input and y(t) ∈ Rp

represents the measured output. A, B, C and D are real constant matrices with appropriate
dimensions. The nonlinear vector function F ((x,u),y) ∈ Rn is consisted of the following
two portions:

F ((x,u),y) = Fl((x,u),y) +UFu((x,u),y), (2)

where Fl((x,u),y) ∈ Rn satisfies the Lipschitz condition, while Fu((x,u),y) ∈ Rq does
not satisfy the Lipschitz condition. U is a real constant matrix and is assumed to be of a full
column rank. The following lemmas play an important role in obtaining the main results
of this article.

Lemma 1 ([14]). Let α ∈ (0, 1], x(t) = (x1(t),x2(t), . . . ,xn(t))T ∈ Rn and xi(t)(i =
1, 2, . . . , n) be continuous and derivable functions. For any time constant t ≥ 0, there exists
a positive definite matrix P ∈ Rn×n such that

Dα
t (x

T(t)Px(t)) ≤ (Dα
t x(t))

TPx(t) + x
T(t)PDα

t x(t) (3)

Lemma 2 ([13]). Consider the following FOS under the definition of Caputo derivative:

Dα
t x(t) = F (t,x(t)). (4)

Let x(t) = 0 be the equilibrium for system (4). If the nonlinear function F (t,x(t)) satisfies the
Lipschitz condition, then FOS (4) is Mittag–Leffler-stable if there exists a Lyapunov function
V(t,x(t)) such that

ϵ1(∥x(t)∥) ≤ V(t,x(t)) ≤ ϵ2(∥x(t)∥), (5)

Dα
t V(t,x(t)) ≤ −ϵ3(∥x(t)∥), (6)

where t ≥ 0, α ∈ (0, 1], ϵ1, ϵ2, ϵ3 are class-K functions.

Lemma 3 ([27]). For any matrices X and Y with appropriate dimensions, and the constant λ, we
have that

XTY+YTX ≤ λXTX+
1
λ
YTY. (7)

The main task of the article is to present an observer to estimate the state x(t) and the
unknown input u(t) simultaneously on the ground of the measured output y(t). To begin
with, we present the following assumptions:

Hypothesis 1. Suppose that the nonlinear vector function Fl((x,u),y) satisfies the Lipschitz
condition with respect to (x,u), that is, there exists the Lipschitz constant µ such that

∥Fl(ζ,y)−Fl(ζ̂,y)∥ ≤ µ∥ζ − ζ̂∥, ∀y(t) ∈ Rp, (8)

where ζ(t) = [xT(t) u
T(t)]T ∈ Rn+m and µ denotes a positive real scalar.

Hypothesis 2. [D CU] is assumed to be of a full column rank, that is

rank[D CU] = m + q. (9)

Remark 1. It is easy to see that the nonlinear FOS (2) contains two parts, such that one satisfies
the Lipschitz condition, while the other does not satisfy such a condition. Consequently, the FOS
investigated here is more general than the systems studied in [23–25].
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Remark 2. To properly estimate both the state and the unknown input based on the measured output,
the dimension of the measured output is no less than the sum of the dimension of the unknown input
and the nonlinear function that does not meet the Lipschitz condition, that is, p ≥ m + q.

3. Observer Design

For a nonlinear FOS (1), we introduce the following notation: E = [In 0n×m],
A = [A B], C = [C D]. As a consequence, (1) and (2) can be rewritten as follows:

EDα
t ζ(t) = Aζ(t) +Fl(ζ,y) +UFu(ζ,y),

y(t) = Cζ(t).
(10)

Obviously, the estimation problem of both the state and the unknown input for (1) is now
converted into the tracking problem of ζ(t) in (10).

In the sequel, we present the following observer for a nonlinear FOS (1):

Dα
t z(t) = Fz(t) +Gy(t) +HFl(ζ̂,y),

ζ̂(t) = z(t) + Jy(t),
(11)

where ζ̂(t) is the estimation of ζ(t); F, G, H and J are unknown matrices to be determined
such that ζ̂(t) can track ζ(t) asymptotically.

Firstly, we present the following fundamental lemma.

Lemma 4. For fractional-order observer (11), the estimation state ζ̂(t) can asymptotically track the
state ζ(t) if

(1) {
HE + JC = In+m,
HU = 0.

(12)

(2) {
F = HA−KC,
K = G− FJ.

(13)

(3)The fractional-order tracking error system

Dα
t e(t) = Fe(t) +H[Fl(e(t) + ζ(t),y(t))−Fl(ζ(t),y(t))] (14)

is Mittag–Leffler-stable for all ζ(t) and y(t).

Proof. It follows from the estimation error e(t) = ζ̂(t)− ζ(t) that

e(t) = z(t) + (JC− In+m)ζ(t). (15)

Let H be an arbitrary matrix with the dimension (n + m)× m such that

HE + JC = In+m. (16)

Consequently, (15) is equal to

e(t) = z(t)−HEζ(t), (17)

which yields

Dα
t e(t) = Dα

t z(t)− Dα
t HEζ(t). (18)
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Substituting (10) and (11) into (18), we have that

Dα
t e(t) = Fz(t) +GCζ(t) +HFl(ζ̂,y)−HAζ(t)−HFl(ζ,y)−HUFu(ζ,y)

= Fe(t) + FHEζ(t) +GCζ(t)−HAζ(t) +H[Fl(ζ̂,y)−Fl(ζ,y)]−HUFu(ζ,y) (19)

= Fe(t) + (FHE +GC−HA)ζ(t) +H[Fl(ζ̂,y)−Fl(ζ,y)]−HUFu(ζ,y).

On the basis of (1), we obtain

FHE +GC−HA = F+ (G− FJ)C−HA. (20)

Moreover, by (1) and (2), (19) is represented as

Dα
t e(t) = Fe(t) +H[Fl(ζ̂,y)−Fl(ζ,y)]

= Fe(t) +H[Fl(e(t) + ζ(t),y(t))−Fl(ζ(t),y(t))]. (21)

Consequently, if (3) holds, then ζ̂(t) can estimate ζ(t) effectively, which ends the proof.

Secondly, we discuss the solvability of (12) presented in Lemma 4.

Lemma 5. If Hypothesis 2 holds, then (12) in Lemma 4 can always be satisfied, in which H and J
are determined as

H = V1 + ΥV2, (22)

J = O1 + ΥO2, (23)

where

L =

[
E U
C 0p×q

]
,

V1 =
[
In+m 0

]
L†

[
In
0

]
, V2 = (In×p −LL†)

[
In
0

]
,

O1 =
[
In+m 0

]
L†

[
0
Ip

]
, O2 = (In×p −LL†)

[
0
Ip

]
.

Moreover, Υ is an arbitrary matrix with the dimension (n + m) × (n + r) and L† denotes the
generalized inverse of L, that is, L† = (LTL)−1LT .

Proof. In view of (12) in Lemma 4, we obtain

[H J]L = [In+m 0]. (24)

By [28], [H J] in (24) has a solution if and only if (iff)

rank
[

L
In+m 0

]
= rank(L). (25)

If U is of a full column rank with q, the left-hand side of (25) can be determined as

rank
[

L
In+m 0

]
= rank

 E U
C 0

In+m 0

 = n + m + rank
[
U
0

]
= n + m + d. (26)

Additionally, on the basis of Hypothesis 2, the right-hand side of (25) can be written as
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rank(L) = rank
[

In 0 U
C D 0

]
= rank

[
In 0
−C Ip

][
In 0 U
C D 0

]
= rank

[
In 0 U
0 D −CU

]
= n + rank

[
D −CU

]
= n + m + q.

(27)

Consequently, condition (25) is satisfied, and the solution to (24) can be presented by [28] as

[H J] = [In+m 0]L† + Υ(In+m −LL†), (28)

which completes the proof.

Additionally, let T = V1A and S = V2A. By (22), F defined in (13) of Lemma 4 can be
represented as

F = HA−KC = T+ ΥS−KC. (29)

Substituting (29) into (21) yields

Dα
t e(t) = Fe(t) +H[Fl(e(t) + ζ(t),y(t))−Fl(ζ(t),y(t))]

= (T+ ΥS−KC)e(t) + (V1 + ΥV2)[Fl(e(t) + ζ(t),y(t))

−Fl(ζ(t),y(t))].

(30)

As can be seen from (29) and (30), the fractional-order error system is Mittag–Leffler-stable
if Υ and K can be determined. To this end, we present the following lemma.

Lemma 6. Consider the desired observer (11). Fractional-order nonlinear error system (30) is
Mittag–Leffler-stable if there exist matrices P = PT > 0, Υ, K and positive scalars λ1 and λ2
such that

TTP+ PT+ STΥTP+ PΥS−CTKTP− PKC

+
1

λ1
PV1VT

1 P+
1

λ2
PΥV2VT

2 ΥTP+ µ2(λ1 + λ2)I < 0,
(31)

where µ denotes the Lipschitz constant that has been defined in (8).

Proof. Choose the Lyapunov function

V(e) = eT(t)Pe(t), (32)

where P = PT > 0 is a positive-definite matrix. Taking the fractional-order derivative yields

Dα
t e(t) ≤eT(t)(PT+ PΥS− PKC+TTP+ STΥTP−CTKTP)e(t)

+ eT(t)(PV1 + PΥV2)F̄l + F̄T
l (V

T
1 P+VT

2 ΥTP)e(t),
(33)

where F̄l represents Fl(e(t) + ζ(t),y(t))−Fl(ζ(t),y(t)). By use of Lemma 3, we obtain

eT(t)(PV1 + PΥV2)F̄l + F̄T
l (V

T
1 P+VT

2 ΥTP)e(t)

≤ 1
λ1

eT(t)PV1VT
1 Pe(t) + λ1F̄T

l Fl +
1

λ2
eT(t)PΥV2VT

2 ΥTPe(t) + λ2F̄T
l Fl .

(34)
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Substituting (34) and (8) into (33) yields

Dα
t e(t) ≤ eT(t)Φe(t) + (λ1 + λ2)F̄T

l Fl

≤ eT(t)[Φ + µ2(λ1 + λ2)I]e(t),
(35)

where

Φ = TTP+ PT+ STΥTP+ PΥS−CTKTP− PKC+
1

λ1
PV1VT

1 P+
1

λ2
PΥVT

2 ΥTP.

Therefore, on the basis of Lemma 2, if (31) is satisfied, then e(t) is Mittag–Leffler-stable.

Finally, we present the main theorem to determine the desired observer.

Theorem 1. Assume that Hypotheses 1 and 2 hold. The estimation error e(t) = ζ̂(t)− ζ(t) defined
between (10) and (11) is Mittag–Leffler-stable if there exist matrices P = PT > 0, X, Y and positive
scalars λ1, λ2 such that the following LMI holds:TTP+ STYT −CTXT + PT+YS−XC+ µ2(λ1 + λ2)I PV1 YV2

VT
1 P −λ1 I 0

VT
2 YT 0 −λ2 I

 < 0, (36)

where µ denotes the Lipschitz constant defined in (8), Y = PΥ, and X = PK. The matrices H, J
and F of the designed observer (11) are determined by (22), (23) and (29), respectively. Moreover,

G = K+ FJ. (37)

Proof. To solve the inequality given in (31) by the LMI approach, we now introduce
the notions

Y = PΥ, (38)

and

X = PK. (39)

Thus, inequality (31) is equal to

TTP+ PT+ STYT +YS−CTXT −XC

+
1

λ1
PV1VT

1 P+
1

λ2
YV2VT

2 YT + µ2(λ1 + λ2)I < 0.
(40)

By use of the Schur complement lemma, (33) can be transformed into the LMI (36) directly.

Based on the above results, an algorithm is presented to calculate the parameterized
matrices of the proposed observer (11) for a nonlinear FOS (1).

4. Simulation Results

Example 1. Consider the nonlinear FOS (1) with the following parameters:

A =


−10 1 2 0
−50 −2 50 0

0 0 −20 1
2 0 −20 −5

, B =


1
1
2
1

, C =

[
1 0 0 0
0 1 0 0

]
, D =

[
0.5
2

]
,
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F ((x,u),y) =


0

tx3(t)x4(t)
0

2cos(x1(t))

 =


0
0
0

2cos(x1(t))

+


0
1
0
0

w(t),

with w(t) = tx3(t)x4(t). Based on Theorem 1, we have that

P =


0.9927 −0.1831 −0.0015 0.0009 0.0915
−0.1831 0.3062 −0.0058 0.0036 0.3661
−0.0015 −0.0058 0.1287 −0.0940 0.0029
0.0009 0.0036 −0.0940 0.1241 −0.0018
0.0915 0.3661 0.0029 −0.0018 0.8554

, X =


−0.0906 8.5733
−11.6095 0.9393

0.1296 0.0211
0.0471 −0.0236

−15.4693 4.1274


and Y = 0, λ1 = 1.0363, λ2 = 1.0278. Furthermore, the parameterized matrices of the designed
observer are derived as

F =


−1.0086 −9.5927 0 0 −15.6897
6.7961 −6.2521 0 0 6.8938
−0.1905 −0.7619 −20.0000 1.0000 0.3810

0 0 −20.0000 −5.0000 0
17.0880 −1.3006 0 0 −2.0573

,

G =


−2 1
−8 4
4 0
2 0
4 −2

, H =


1 0 0 0
4 0 0 0
0 0 1 0
1 0 0 1
−2 0 0 0

, J =


0 0
−4 1
0 0
0 0
2 0

.

We used a MATLAB procedure (FDE12), which solves an initial value problem for a nonlinear
differential equation of fractional-order (FDE). The code implemented the predictor corrector PECE
method of Adama–Bashforth–Moulton type to obtain the simulation results. To properly show the
effectiveness of the desired observer for the joint estimation of both states and unknown inputs,
the input was selected as 100cos(10t) and the order was fixed as α = 0.9 with the initial state
x0 = (10,−20, 2,−10). The simulation results are shown in Figures 1–5, which indicate that the
state and input of nonlinear FOSs can be tracked effectively by the designed observer.

0 0.5 1 1.5 2 2.5 3 3.5 4

time t/s

-2

-1.5

-1

-0.5

0

0.5

1

Figure 1. The estimation of state x1(t).
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0 0.5 1 1.5 2 2.5 3 3.5 4

time t/s

-50

-40

-30

-20

-10

0

10

20

30

40

Figure 2. The estimation of state x2(t).

0 0.5 1 1.5 2 2.5 3 3.5 4

time t/s

-1

-0.5

0

0.5

1

1.5

2

Figure 3. The estimation of state x3(t).

0 0.5 1 1.5 2 2.5 3 3.5 4

time t/s

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Figure 4. The estimation of state x4(t).



Mathematics 2024, 12, 1139 10 of 12

0 0.5 1 1.5 2 2.5 3 3.5 4

time t/s

-100

-50

0

50

100

150

Figure 5. The estimation of state u(t).

Remark 3. As can be seen from the simulation results, compared with [23–25], Algorithm 1
presented for the observer design is efficient for the joint estimation of the state and the unknown
input for a class of nonlinear FOSs, where one portion satisfies the Lipschitz condition and the other
does not necessarily satisfy such a condition.

Algorithm 1 Observer Design Algorithm for the Nonlinear FOS

1. Determine the matrix U based on the nonlinear FOS (1);
2. Calculate L, L†, O1, O2, V1 and V2 by Lemma 5;
3. Compute X, Y, P, λ1 and λ2 by (36) in Theorem 1;
4. Substitute X, Y and P derived in Step 3 into (38) and (39), and derive Υ and K,

respectively;
5. Substitute V1, V2 acquired in Step 2 and Υ derived in Step 4 into (22), and determine H;
6. Substitute O1, O2 obtained in Step 2 and Υ obtained in Step 4 into (23), and calculate J;
7. Substitute V1, V2 gained in Step 2 into T = V1A and S = V2A, and then compute T

and S;
8. Substitute Υ and K derived in Step 4 and T and S derived in Step 7 into (29), and

obtain F;
9. Substitute K obtained in Step 4, J obtained in Step 6 and F obtained in Step 8 into (37),

and then determine G.

5. Conclusions

This article designed an observer for a class of nonlinear FOSs that do not essentially
satisfy the Lipschitz condition to estimate both the states and unknown inputs simultane-
ously. The parameterized matrices of the designed observer were derived based on the
LMI technique and the property of the generalized inverse matrices combined with the
Mittag–Leffler stability. The algorithm to determine the parameters of the desired observer
effectively is presented. The simulation results of a numerical example are presented to
verify the efficiency of the obtained algorithm.

In the future, we will study the simultaneous estimation of the state and the unknown
input for variable-order nonlinear FOSs and the robustness of the designed observer.
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