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Abstract: This paper presents a novel data-driven approach for enhancing time series forecasting
accuracy when faced with missing data. Our proposed method integrates an Echo State Network
(ESN) with ARIMA (Autoregressive Integrated Moving Average) modeling, frequency decomposi-
tion, and online transfer learning. This combination specifically addresses the challenges missing
data introduce in time series prediction. By using the strengths of each technique, our framework
offers a robust solution for handling missing data and achieving superior forecasting accuracy in
real-world applications. We demonstrate the effectiveness of the proposed model through a wind
speed prediction case study. Compared to the existing methods, our approach achieves significant
improvement in prediction accuracy, paving the way for more reliable decisionmaking in wind energy
operations and management.
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1. Introduction

Neural networks, popular nonlinear models, have demonstrated success in wind
speed forecasting. These models often leverage activation functions and the Adam op-
timization algorithm. Multilayer Perceptron and Radial Basis Function networks are
examples of such applications [1]. Additionally, studies have explored Bayesian regulariza-
tion, Levenberg–Marquardt, and recurrent neural networks [2,3]. Beyond neural networks,
various nonlinear models can be used for long-term time series prediction, including rein-
forcement learning [4], fuzzy logic [5], and Support Vector Machines [6]. In recent years,
Long Short-Term Memory (LSTM) networks have emerged as a popular alternative due to
their ability to capture long-term dependencies and nonlinear relationships in time series
data [7]. However, their complex architecture can hinder interpretability, and existing
variants have not shown significant advantages over the standard architecture according
to Greff [8].

An alternative approach is Echo State Network (ESN), a recurrent network similar to
LSTM. ESNs require only one training phase, making them faster to train [9]. They excel at
handling large, complex datasets and are robust to noise in the input data. These charac-
teristics make ESNs a suitable choice for long-term forecasting and dealing with missing
values. Additionally, research has explored deep and multilayer neural networks for time
series forecasting [10], with Bai et al. [11] proposing a double-layer staged training ESN.

The ARIMA (Autoregressive Integrated Moving Average) model is a widely used and
effective tool for time series forecasting, demonstrating its value in wind power generation
forecasting, as shown by Yati et al. [12]. The model’s structure can be determined using
the autocorrelation function, as described in Elsara et al. [13]. Eldali et al. [14] further
improved ARIMA’s accuracy by incorporating aerodynamic atmospheric models. However,
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Yumeng [15] found its limitations in long-term prediction when applied to multivariate
time series. Complex mathematical equations relying on fundamental physical law are
used to forecast future weather conditions. Numerical weather prediction (NWP) models
are fed with a massive amount of current weather data and are solved on supercomputers.
Running high-resolution NWP models can be computationally expensive [16]. NWP
models can predict large-scale weather patterns over longer timeframes (days in advance).
NWP model computations are resource-intensive; the end user (e.g., wind power company)
typically accesses forecasts through weather service providers who handle the heavy lifting.
However, our focus is on the limitations inherent in NWP data themselves, particularly
for short-term wind speed prediction. NWP accuracy can decrease significantly at shorter
horizons crucial for wind speed operations. This is where our proposed method with
transfer learning comes in. By using historical data and incorporating missing data handling
techniques [17], our approach aims to improve the accuracy of short-term wind speed
forecasts, even with potentially incomplete NWP data from traditional sources.

Time series forecasting involves predicting future values over extended periods. Ac-
curacy depends on data quality, method selection, and incorporating relevant external
factors. The presence of missing data in the time series adds another layer of challenge,
impacting both data quality and model selection, as noted by Weina et al. [18]. One limita-
tion of the ARIMA model is its linear nature, potentially contributing to lower accuracy in
predictions. To address this, various methods, categorized as physical and statistical, have
been developed [19]. Statistical methods are generally suited for short-term forecasting,
while physical methods are typically used for long-term forecasting, as indicated by [20].

Missing values in time series data significantly impact prediction accuracy, making
careful handling essential for reliable results [21–23]. To address this, consider techniques
like Domain Adaptation Extreme Learning Machines (DA-ELM) and Transfer Learning
combined with Ensemble Learning (TL-EL). DA-ELM provides robust classification from
limited labeled data in E-nose systems, maintaining ELM’s efficiency [24]. TL-EL tackles
data variability in time series prediction, leveraging older data to enhance the network’s
memory for current predictions [25]. DA-ELM focuses specifically on drift in gas recogni-
tion, while TL-EL offers a broader approach for enhancing time series prediction models.

A primary challenge in time series forecasting lies in the presence of complex patterns
like seasonality and trends. Frequency decomposition is a powerful technique to identify
and isolate these patterns within the data. Decomposing a time series into its frequency
components allows for focused analysis of each component, providing insights into their
behavior and enabling more accurate forecasting. Often, data preprocessing techniques
play a crucial role in improving data quality. Methods like high-frequency low-frequency
decomposition [26], variational mode decomposition [27], and wavelet transform [20] are
widely used. The ARIMA model, specifically, leverages this separation of high and low
frequencies to extract temporal correlations and probability distributions within the time
series [26].

Several studies have explored hybrid approaches to improve forecasting accuracy [28].
In [29], the authors propose combining Empirical Mode Decomposition (EMD) and Local
Mean Decomposition (LMD) to reduce decomposition error and enhance the efficiency
and accuracy of a Stochastic Configuration Network for large datasets. Liu et al. [30]
present four hybrid methods for multi-step wind speed prediction using Adaboost and
Multilayer Perceptron (MLP) neural networks with different training algorithms. While
both approaches aim to improve accuracy, they face tradeoffs: the EMD-LMD method
heavily relies on data availability, while the Adaboost-MLP method requires significant
execution time.

The aim of the paper is to design an effective method to predict time series with
missing values. We propose an effective model named Echo State ARIMA (ES-ARIMA).
This model integrates the ARIMA model as the recurrent layer in an Echo State Network
(ESN), introducing an error feedback mechanism that enhances performance. Unlike
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traditional fusion methods [31] that use ESN solely to compensate for the ARIMA model,
our approach leverages the strengths of both models.

To further improve prediction accuracy, we employ frequency decomposition to
separate high-frequency signals from low-frequency ones, allowing for a focused “fine-
tuning” phase in the short-term data. Additionally, we incorporate online transfer learning,
guided by a specialized performance index, to effectively leverage information from other
time series during training. This work offers the following key contributions:

• Addressing forecasting with missing data: We propose a novel method to address
the challenge of low accuracy in forecasting with missing data. By integrating an
ESN into the ARIMA model, we significantly improve prediction accuracy. To our
knowledge, this is the first time an ARIMA model has been enhanced by an ESN.

• Leveraging frequency decomposition and transfer learning: We utilize frequency de-
composition to account for the specific characteristics of forecasts. Furthermore, we in-
corporate online transfer learning to tackle the accuracy issues caused by missing data.

• Successful application in wind speed prediction: The proposed ES-ARIMA model
demonstrates its effectiveness through successful application in wind speed prediction.

2. Echo State ARIMA Model

The ARIMA model is an extended version of the ARMA (Auto Regressive Moving
Average) model that incorporates an integration component. This model consists of three
stages [26]. Echo State Networks (ESNs) are a type of recurrent neural network. They differ
from traditional ones by utilizing a fixed random connection pattern between neurons.
Only a small fraction of neurons are connected, creating a sparse network. The network
input is added to the activity of each neuron, and the output is a linear combination of their
activities. These activities update with each time step, forming a dynamic system suitable
for tasks like time-series forecasting and signal processing.

Neither ARIMA nor Echo State Networks (ESNs) on their own are sufficient for
effectively modeling time series data with missing values. To address this challenge, we
introduce Echo State ARIMA (ES-ARIMA), a novel method that combines the strengths of
both techniques. ARIMA is powerful at capturing linear trends in data, while ESNs excel at
modeling nonlinear relationships and the dynamic behavior of systems. By incorporating
ARIMA’s predictions into the ESN framework, we provide the network with additional
information, ultimately enhancing the overall accuracy of the forecasts.

2.1. ARIMA Model

(1) Auto Regressive (AR). It expresses the past values of time series {yt} as

yt = a0 + a1yt−1 + ... + apyt−p + ϵt (1)

where ai are the coefficients of the linear AR model, ϵt is white noise. It has zero mean and
independent and identically distributed (i.i.d.)

(2) Moving Average (MA). It expresses the past values of noise ϵt as

yt = ϵt + b1ϵt−1 + ... + bqϵt−q (2)

here, bi indicates the coefficients of MA model.
(3) Integration (I). Stationarity is a critical factor in time series forecasting and a key

parameter for designing the ARIMA model. We calculate the difference as

∆yt = yt − yt−1 (3)

It introduces differentiation to smoothen the time series and make it closer to being stationary.
The zero mean (p, q)-order ARMA model is

(1 − a0)yt = a1yt−1 + ... + apyt−p + ϵt + b1ϵt−1 + ... + bqϵt−q (4)
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Let z be the lag operator

z−1yt = yt−1, z−2yt = yt−2

d-order integration can be defined as

yt = ▽dxt =
(

1 − z−1
)d

xt

(p, q, d)-order ARIMA model is(
1 −

p

∑
k=1

aiz−k

)(
1 − z−1

)d
yt =

(
1 +

q

∑
k=1

bjz−k

)
ϵt (5)

The parameters of the ARIMA model are defined by the vector θ as

θ =
[
a1 · · · ap, b1 · · · bq

]
(6)

We can use least square method to estimate the parameter θ. For the i-th data,

θ(i) =
[
a1(i) · · · ap(i), b1(i) · · · bq(i)

]
, i = 1 · · · N (7)

where n is the data size, the ARIMA model (5) in vector form is

Y = θȲ + E (8)

The objective of the parameter identification is

min
θ

∥Yt − θȲ∥2 (9)

Because (8) is a linear-in-parameter process, the optimal solution of θ is

θ =
[
ȲȲT

]−1
ȲTY (10)

2.2. Echo State Network

Figure 1 illustrates an ESN structure. An ESN architecture consists of three layers:
(1) Input Layer: Receives external data and feeds them into the reservoir layer. (2) Reservoir
Layer: This large layer contains interconnected neurons with fixed weights (a key ESN
feature). These neurons process the input data through a complex nonlinear transformation
and forward the result to the output layer. (3) Output Layer: A linear layer that maps the
transformed data to the desired output.

The mathematical expression of ESN is

xt = ϕ[Winut + Wresxt−1]
yt = Woutxt

(11)

where the input to the ESN at time step t is denoted by ut ∈ Rn, where n is the dimensional-
ity of the input. The output of the network at time step t is denoted by yt ∈ Rm, where m is
the dimensionality of the output. The state of the reservoir layer at time step t is provided
by x(t) ∈ RN . The ESN has a reservoir layer consisting of N neurons, Win ∈ RN×n is the
input weight matrix, Wres ∈ RN×N is the recurrent weight matrix, Wout ∈ Rm×N is the
output weight matrix, and ϕ is an element-wise activation function.
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Figure 1. ESN structure.

The recurrent layer is
xt = (1 − α)xt−1 + αxt (12)

where α is the leaking rate.
The weights Win and Wres are randomly initialized with fixed weights. The weights of

the output layer Wout are adjusted using the least squre algorithm

Wout =
(

XTX + βI
)−1

XYT (13)

where X is the matrix of reservoir states x(t) for all time steps t, Y is the matrix of desired
outputs yt for all time steps t, β is a regularization parameter, and I is the identity matrix.

For time series modeling, Y is the target vector, and X is historical data. This ap-
proach greatly simplifies the training process and reduces the risk of overfitting since
the complexity of the model is largely determined by the size and connectivity of the
reservoir layer.

2.3. Echo State ARIMA Model (ES-ARIMA)

To address forecast lag, where predictions lag behind actual values, the AR and “I”
models are commonly used, which are described in the above Equation (5). AR models can
also correct other errors, like over- or under-prediction, by capturing trends, seasonality,
and other patterns in the data through linear relationships between observations. Addition-
ally, the error feature layer, inspired by the MA model in the above Equation (2), tackles the
issue of random errors or noise in the time series data.

In this paper, we integrate the ARIMA model into the recurrent part of the ESN,
resulting in the ES-ARIMA model. Figure 2 illustrates its structure. ES-ARIMA combines
an ESN with an ARIMA model. ES-ARIMA has two main blocks:

1. ESN section: This section includes elements similar to the ESN diagram, such as
reservoir neurons, input layer, and output layer. It also shows connections between
these elements.

2. ARIMA section: This section depicts elements representing the ARIMA model’s
components, such as Autoregressive (AR) and Moving Average (MA) components,
with arrows indicating the flow of information.

The ES-ARIMA model includes three parts: linear features Ωlin, error features Ωerror,
and nonlinear features ΩNonlinear. They are

• The linear features Ωlin,t at time step t are composed of observations from the input
vector ut; in Figure 1, the input is previous time series yt−1 in dataset D. At the current
time t and previous time t − s,

Ωlin,t = Ut ∪ Ut−s · · · ∪ Ut−(k−1)s (14)
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where Ut = [u1,t, . . . , ul,t]
T is a l-dimensional vector, Ωlin,t has l × k matrix, and s is

the number of skipped steps between consecutive observations. Ωlin,t is used in the
ARIMA model in Figure 2.

Figure 2. Echo state ARIMA model.

• The error features Ωerror is

Ωerror,t = ϵt ∪ ϵt−1 ∪ · · · ∪ ϵt−q (15)

where ϵ and q are defined in (2). It is the MA model in Figure 1. In time series
forecasting, random errors can have a significant impact on the accuracy of predictions,
causing them to deviate from the actual values. By modeling the noises as in (15),
the accuracy of predictions can be improved. Additionally, MA models can help the
ES-ARIMA model to identify the short-term fluctuations in the data.

• The nonlinear feature ΩNonlinear is obtained from the echo state network,

Ωnonlinear = x1 ∪ · · · ∪ xn (16)

where xi is defined in (12). Obviously, ΩNonlinear is the state vector of classical ESN.

The state of ES-ARIMA model Xt is

Xt = c ∪ Ωlin,t ∪ Ωerror,t ∪ ΩNonlinear (17)

where c is a constant.
The output signal of ES-ARIMA ŷt can be expressed as

ŷt = W̄out × Xt (18)

The training of the ES-ARIMA is the same as ARIMA (10) and ESN (13), and the parameter
vector Wout is the combination of θ defined in (6) and Wout defined in (11), i.e.,

W̄out = [Wout, θ] (19)

ES-ARIMA models, like many other statistical models, are susceptible to overfitting.
We use the following method to prevent overfitting:

1. Information Criteria: When choosing the ARIMA order (p, d, q), rely on information
criteria like AIC or BIC instead of simply picking the model with the lowest in-sample
error on the training data. These criteria penalize models for complexity, favoring
simpler models that perform well on unseen data.

2. Limit Model Complexity: Avoid excessively high orders (p, d, q) for the ES-ARIMA
model. Start with a simpler model and increase complexity only if the information
criteria or diagnostics on the residuals suggest a need for more parameters.
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3. Training of ES-ARIMA Model
3.1. Frequency Decomposition

Time series forecasting involves predicting the future values of a series over time,
essentially anticipating its behavior several steps ahead. Frequency decomposition is
a valuable technique that separates a time series into its constituent frequencies. This
decomposition reveals hidden patterns within the data, which are particularly beneficial
for prediction tasks.

High-frequency components capture short-term fluctuations, while low-frequency
components reflect long-term trends. By decomposing the signal, the neural network
can effectively distinguish between these timescales. It can then focus on the relevant
component, whether it is the underlying trend (low frequency) or the short-term volatility
(high frequency). For long-term forecasts, the model prioritizes the information contained
in the low-frequency components.

Predicting the original time series yt directly with models like ESN and ARIMA can
be challenging. However, decomposing the signal into its constituent frequencies makes
each component more suitable for specific prediction methods

G(y) =
y + a

1 + ay
(20)

where |a| ≤ 1, it corresponds to the cutoff frequencies, which can be obtained by applying
the more general lowpass-to-highpass transformation. or short-term predictions. If long-
term forecasting is required, the weight of low frequency will be higher than high frequency.

Low-frequency components are well-suited for linear prediction using ARIMA, while
high-frequency components benefit from nonlinear prediction methods like ESN:

Xt = F × Xt + tanh[WinΩlin,t + WXt−1] (21)

Here, F ∈ R1×l represents the forget weight, allowing the network to combine high- and
low-frequency signals at different times.

Low-frequency signals facilitate long-term memory in ESN. By incorporating the
ARIMA model’s weights as the forgetting rate, the network can selectively choose relevant
information from the ESN, improving its ability to adapt to changes over time. This
essentially allows the model to “forget” outdated information and focus on the most
relevant data for prediction.

As shown in Figure 3, high-frequency signals capture fine details, while low-frequency
signals provide the overall form and structure. We utilize another neural network to fuse
the high-frequency and low-frequency components obtained after decomposition:

ŷh = ES_ARIMAh(yh)
ŷl = ES_ARIMAl(yl)

(22)

where yh is high-frequency signal, yl is low-frequency signal, where ŷh,t and ŷl,t are the
outputs of the low- and high-frequency ES-ARIMA models, respectively.

Finally, a two-layer Multilayer Perceptron (MLP) combines ŷh,t and ŷl,t:

ŷt+1 = W f σ([Vl ŷl,t + Vhŷh,t]) (23)

where Vh, Vh, and W f are the weights, ŷt+1 is the final prediction, and σ is a nonlinear
activation function.
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Figure 3. Frequency decomposition for echo state ARIMA model.

3.2. Transfer Learning

Missing values in time series data can be handled in two ways: dropping them
or imputing them (replacing them with estimated values). While methods like linear
interpolation, spline interpolation, and k-nearest neighbors exist for imputation, they may
not work well for non-randomly distributed missing values. Recent research suggests that
deep learning methods like Long Short-Term Memory (LSTM) networks can handle such
scenarios more effectively.

Many existing prediction methods require sufficient and evenly distributed data. Transfer
learning can be used to address this challenge by transferring knowledge from one time series
(e.g., with complete data) to another (e.g., with missing values). This can improve the accuracy
of machine learning algorithms for time series data with missing values.

Traditional ARIMA models struggle when dealing with uncertainties in training data,
such as missing values. Let us assume the training data Λa has missing values, while
datasets Λb and Λc share similar distributions with Λa. Our goal is to recover Λa using
data from Λb and Λc. If a relationship Ω exists between Λb and Λc, we can express Λa as a
function of them Λa = F[Λb, Λc]. This section proposes a transfer learning approach where
the ESN-ARIMA_a model can utilize the combined dataset Λ = Λa ∪ Λb ∪ Λc.

For an ESN-ARIMA_a model, the training objective is to minimize both the training
error and the number of parameters, as shown in the following equation:

Ja = min
Wa

{
λ∥Wa∥2 +

∥∥∥xa
t Wa − ytarget

a

∥∥∥2
}

(24)

where Wa and xa
t are the weight and the state of the ESN-ARIMA model, ytarget

a is the
desired value.

For an ESN-ARIMAa model, the training objective is to minimize both training error and
parameters, as follows: where 1 > λ > 0, it is the regularization parameter, Ytarget

a ∈ Λa.
When there are missing values in Λa, we use Λb to help us to improve the model

ES-ARIMAa.
This source task Λb uses a pre-trained Echo State Network (ESN) on a different but

related time series forecasting problem of Λa. The pre-trained ESN captures some general
knowledge in Λb that can be beneficial for the target task Λa. The knowledge transfering
from the source task Λb to the target task Λa involves using the weights or activations
learned by the pre-trained ESN as a starting point for training the ESN component within
the ES-ARIMA model. This transfer learning is shown in Figure 4.
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Figure 4. Transfer learning to improve the model ES-ARIMA.

The training index is defined as

Jab = min
Wa ,Wb ,ξa ,ξb

 1
2

∥∥∥Wb
∥∥∥2

+Ca
2 ∑la

i=1∥ξa∥2 + Cb
2 ∑lb

j=1∥ξb∥2

 (25)

where ξa = xa
t Wa − Ytarget

a , ξb = xb
t Wb − Ytarget

b , Ca and Cb are positive constants: they are
the penalty coefficients on the prediction error from source and target domain, and la and lb
are the lengths of datasets Λa and Λb. Wb denotes the output weight vector of the domain
Λb; Ytarget

b is the target dataset B. From (24), we obtain the local solution Wa. From (25), we
will learn Wb using all data from the source domain Λb by leveraging a limited number.

For ES-ARIMA model, Xa
t ∈ R1×N , ξa ∈ R1×la , Ya

t ∈ R1×la denote the states of
reservoir, the prediction error, and the target value in the domain Λa. Xb

t ∈ R1×N ,
ξb ∈ R1×lb , Yb

t ∈ R1×lb denote the states of reservoir, the prediction error, and the tar-
get value in the domain Λb. The corresponding Lagrangian problem of (25) is

L(Wb, ξa, ξb, αa, αb) =
1
2

∥∥∥Wb
∥∥∥2

+ Ca
2 ∑la

i=1∥ξa∥2

+Cb
2 ∑lb

j=1∥ξb∥2 − αa(Xa
i Wb − Ya + ξa)

−αb(XbWb − Yb + ξb)

(26)

where αa and αb are Lagrangian multiplier vectors. The problem (26) can be solved by

∂L
∂Wb = 0 → Wb = xa

t αa + xb
t αb

∂L
∂ξa

= 0 → αa = CaξT
a

∂L
∂ξb

= 0 → αb = CbξT
b

∂L
∂αa

= 0 → xa
t Wb − Ya + ξa = 0

∂L
∂αb

= 0 → xb
t Wb − Yb + ξb = 0

(27)

where xa
t and xb

t are the output matrix of reservoir layer with respect to the data from target
domain Λa and source domain Λb, respectively.

The solution of (27) is

Wb = (I + Cbxb
t xb

t + Caxa
t xa

t )
−1(Cbxb

t Yb + Caxa
t Ya) (28)

Calculating the matrix inverse, as shown in Equation (28), can be computationally
expensive and resource-intensive, especially for real-time applications and large matrices.
This high demand for computational power and memory limits its practical use. To address
this challenge, this paper proposes a novel recursive method for finding the inverse. This
method offers several benefits, including

• Fast convergence: It reaches the solution quickly, making it suitable for real-time ap-
plications.
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• Low computational complexity: It requires fewer calculations compared to traditional
methods, reducing computational burden.

• Improved numerical stability: It produces more accurate results, especially when
dealing with ill-conditioned matrices.

To implement the recursive method, we require the use of the following matrix
inverse lemma:

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (29)

where A ∈ Rn×n, C ∈ Rm∗m, B ∈ Rn×m, D ∈ Rm×n. We define R−1
t = Caxa

t xa
t + Cbxb

t xb
t + I,

Zt = Cbxb
t Yb + Caxa

t Ya, Wb = R−1
t Zt. Then,

R−1
t = Caxa

t xa
t + Cbxb

t xb
t + I

= R−1
t−1 + CaxaT

t xa
t + CbxbT

t xb
t + I

= R−1
t−1 +

[
Ca Cb

][xa
t

xb
t

][
xa

t xb
t
]
+ I

(30)

Then, we can define A = R−1
t , B = R−1

t−1, C = [xa
t (t), xb

t (t)]
T , D = [Ca, Cb] using (29, 30) is

R−1
t = R−1

t−1 + R−1
t−1C([Ca, Cb] + CT R−1

t−1C)−1CT R−1
t−1 + I

= R−1
t−1 +

R−1
t−1CCT R−1

t−1
[Ca ,Cb ]+CT R−1

t−1C
+ I

= R−1
t−1 +

R−1
t−1[x

a
t ,xb

t ]
T [xa

t ,xb
t ]R

−1
t−1

[Ca ,Cb ]+[xa
t ,xb

t ]R
−1
t−1[x

a
t ,xb

t ]
T + I

(31)

If R−1
t = Pt, then Pt = Pt−1 +

Pt−1CCT Pt−1
I+CT Pt−1C . We define Kt = Pt−1C

I+CT R−1
t−1C

as gain vectors,

and then

Pt = Pt−1 + KtCT Pt−1 + I

= Pt−1 + Kt

[
xa

t , xb
t

]
Pt−1 + I

(32)

So, the output weight updates can be performed using

Wt = PtZt = Pt[Zt−1 + xa
t ya

t + xb
t yb

t ]
= [Pt−1 + KtCT Pt−1]Zt−1 + Ptxa

t ya
n + Ptxb

t yb
t

= Wt−1 − Kt(CTWt−1 − ya
t − yb

t )
= Wt−1 − Kt(ea + eb)

(33)

where the error ea = xa
t Wt−1 −Ya and ea = xb

t Wt−1 −Yb can be easily computed. The scheme
of the long-term prediction of time series with missing values using echo state ARIMA
model is shown in Figure 5.

For implementation, the ES-ARIMA algorithm is summarized in Algorithm 1.

Algorithm 1 ARMA-ESN

1: The inputs are the time series ya(k), yb(k) in datasets Λa, Λb. Λa is the target domain.
Λb is the source domain.

2: Initialize two ESN networks, with N hidden neurons, random input weights Win, and
reservoir W for both target and source domains.

3: Use algorithm RLS to obtain AR model weights as ESN forgetting rate.
4: Calculate the hidden matrix Xa and Xb according to (21).
5: Compute the output weights Wout using (33).
6: Return the output weights Wout and predicted output Ya.
7: The outputs are predicted output ya(k + m) and yb(k + m).
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Figure 5. Scheme of the long-term prediction of time series with missing values using echo state
ARIMA model.

Here, several remarks on the proposed method are presented:

1. While the proposed method offers significant advantages in handling missing data and
improving forecasting accuracy, it is important to acknowledge the potential increase
in computational complexity compared to simpler approaches. This is particularly
relevant for large-scale datasets.

2. The potential increase in computational cost needs to be weighed against the signifi-
cant benefits gained in terms of accuracy and robustness, especially for applications
where high-fidelity wind speed prediction is crucial. Further research can explore
optimization techniques to further enhance the scalability of the proposed method for
even larger datasets.

3. The effectiveness of the method can be influenced by the quality of the data, partic-
ularly the extent and pattern of missing data. High percentage of missing values,
especially if randomly distributed, could hinder the model’s ability to learn the un-
derlying patterns in the data. One ideal approach might involve a combination of the
method with data preprocessing techniques specifically tailored to the characteristics
of the missing data.

4. While the proposed model offers significant improvements in accuracy by combining
multiple techniques (ESN, ARIMA, frequency decomposition, and transfer learning),
this complexity might come at the cost of interpretability. Understanding the exact
contributions of each component to the final prediction can be challenging. Further
research can explore additional methods for enhancing interpretability, such as visu-
alization techniques or model-agnostic interpretable machine learning approaches.
This will enable deeper understanding of the internal workings of the model and
potentially lead to further improvements in its performance.

5. We acknowledge that the proposed method’s success is tied to the availability of
sufficient historical data. However, the framework incorporates techniques that can
use even smaller datasets effectively. Additionally, the transfer learning component
allows the model to potentially benefit from knowledge learned from related domains,
even if the target domain has limited data. While the ideal scenario involves abundant
high-quality data, our approach offers advantages over existing methods by achieving
a good baseline level of accuracy and capturing essential trends even with limited
data availability.

4. Applications

To demonstrate the effectiveness of our Echo State ARIMA (ES-ARIMA) model for
handling such data, we apply the proposed approach to real-world wind speed systems.

In recent decades, wind speed has emerged as a key solution to address the challenges
of climate change and the growing demand for electricity. Its cleaner and more sustain-
able nature has propelled it to become one of the most important clean energy sources
globally [32–34]. However, the efficiency of wind power generation is hampered by the
inherent variability and uncertainty of wind speed and direction [35].
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Wind speed forecasting, a crucial application of time series prediction, plays a vital role
in mitigating these challenges. The existing prediction models can be broadly categorized
into four types: physics-based, statistical, neural network, and fusion models. Each type is
suitable for different time scales, with statistical models commonly employed for short-term
forecasting and physical models favored for long-term predictions [20]. These time scales
range from very short-term (seconds to 30 min) to very long-term (beyond 72 h).

This study utilizes three datasets from diverse geographical regions: Kaggle [36],
Germany [37], and California [38]. We employ 75% of each dataset for training multiple
ARIMA models and the remaining 25% for testing. These datasets contain 18,000 records.
We used the first 15,000 records for training the model and the remaining 3000 records
for testing.

The dataset details are (1) Time Period: the date range covered by the data is one
year. (2) Features: the datasets include wind speed, wind direction, temperature, pressure,
and humidity. (3) Target variable: wind speed. (4) Time Step: hourly. We aggregate these
hourly values to create a daily time series. (5) Missing Values: approximately 30%.

• Kaggle Dataset: It contains hourly values from 7 wind farms spanning from July
2009 to June 2012. We use data from the first wind farm between 1 July 2009 and
31 December 2010.

• California Dataset: It records hourly energy production from 5 wind farms, including
geothermal, biomass, biogas, mini-hydraulic, total wind, solar photovoltaic, and solar
thermal. We use data from 1 September 2011 to 31 August 2012.

• Germany Dataset: This dataset encompasses data from four wind farms: Tennet,
50 Hertz, TransnetBW, and Amprion. The data are from 1 January 2011 to
31 December 2011.

We use the following min–max normalization to scale the data to a similar range,
leading to faster training and convergence of neural networks,

ynorm(i) =
yi − min(y)

max(y)− min(y)
(34)

where yi is each datum of the time series, min(y) is the minimum of the data y, and max(y)
is the maximum of the data y.

For long-term prediction of time series,

y∗t+m = f
(
y∗t−1, y∗t−2, · · ·

)
(35)

where m ≥ 1, in this paper, we select m = 2, i.e., for daily records of wind speed. We
consider 48 h forecasts in the simulations because

1. While short-term forecasts are most valuable for real-time operations, including 48 h
forecasts, this showcases the proposed method’s ability to handle a wider range of
prediction horizons.

2. Research suggests that incorporating information from longer time frames can some-
times improve the accuracy of shorter-term forecasts. By including 48 h data in the
training process, we might be capturing underlying patterns that benefit the overall
performance, even for the crucial short-term predictions.

The model is
yt+m = ARIMA(yt−1, yt−2, · · · ) (36)

Time series forecasting is

y∗t+m+1 ≈ yt+m+1 = ARIMA
(
y∗t , y∗t−1, · · ·

)
(37)

Wind speed plays a critical role in determining electricity generation by wind turbines.
However, wind speed datasets often exhibit limitations. High wind speeds, crucial for
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accurate forecasting, occur only for a small fraction of the year (around 0.1%). This imbal-
ance can negatively impact prediction accuracy for high wind speeds compared to regular
wind speeds.

To demonstrate the effectiveness of our transfer learning approach, we utilize the
Kaggle dataset. It contains hourly wind speed data from 7 wind farms between July 2009
and June 2012. Despite the missing data, the wind speed data across the different farms
exhibit substantial similarity due to their geographic proximity. This similarity is ideal for
applying transfer learning techniques. These techniques can leverage knowledge gained
from one dataset (source domain) to improve predictions for another (target domain). The
histogram of wind speed data from different farms is illustrated in Figure 6.

Figure 6. The histogram of wind speed.

The equation for the ES-ARIMA model is shown in (17). To determine the appropriate
ARIMA model structure, we need to analyze the stationarity of the data and obtain the
value of d. We use the Augmented Dickey–Fuller (ADF) test [39] for stationarity analysis.
The results are presented in Table 1.

Table 1. Dickey–Fuller testing results of the datasets.

Serie ADF
Statistic p-Value 1% 5% 10% H0 d

Kaggle1 −2.2 0.2 −3.4 −2.9 −2.6 not sta-
tionary 0

Kaggle2 −7.9 0.041 −3.4 −2.9 −2.61 stationary 1

Germany −2.9 0.045 −3.4 −2.8 −2.5 stationary 0

California1 −1.2 0.66 −3.4 −2.8 −2.5 not sta-
tionary 0

California2 −9.7 0.086 −3.4 −2.8 −2.5 stationary 1

Critical values of 1%, 5%, and 10% are used for the ADF hypothesis test. If the
hypothesis is accepted, the ARIMA model contains a unit root, indicating non-stationarity.
For the Kaggle dataset, the initial test with zero differentiation produces a value of −2.153.
This value is less than all critical values, indicating the time series needs differencing.
After one differentiation, the hypothesis is accepted, making the Kaggle set stationary with
d = 1.
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ACF (Autocorrelation Function) and PAF (Partial Autocorrelation Function) are crucial
tools for selecting the appropriate ARIMA model order (p, d, q). By analyzing their patterns,
we can identify and address autocorrelations in our time series data, leading to a more
accurate model. Figure 7 shows the ACF/PAF plots for the three datasets. Table 2 displays
the ARIMA parameters obtained from ACF/PAF analysis and the ADF test. So, the optimal
ARIMA models for the datasets are Kaggle—ARIMA(1,1,2), Germany—ARIMA(1,0,4),
and California—ARIMA(0,1,2).

Figure 7. ACF/PAF analysis of the three datasets. (a) ACF analysis of Kaggle Farm 1 data; (b) PAF
analysis of Kaggle Farm 1 data; (c) ACF analysis of California data; (d) PAF analysis of California
data; (e) ACF analysis of Germany TenneTTSO data; (f) PAF analysis of Germany TenneTTSO data.

Table 2. ARIMA model parameters obtained with the tests of ACF, PAF, and the augmented Dickey–
Fuller test.

Serie p d q

Germany 1,2 0 1,2,3,4,5

California 1,2,3,4,5,6 1 0

Kaggle 1,2 1 1,2,3

The prediction results using the ES-ARIMA model are shown in Figure 8.
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In frequency decomposition, the transfer function of the filters is

G(y) =
y + 0.17

1 + 0.17y
(38)

where 0.17 corresponds to the cutoff frequencies.
Figure 9 depicts the prediction results with frequency decomposition and ES-ARIMA.

While these results are better than using only ES-ARIMA, missing data still affect the accuracy.

Figure 8. The prediction of Kaggle using ES-ARIMA: Farm 6.

Figure 9. The prediction of Kaggle using frequency decomposition: Farm 6.

We aim to enhance prediction accuracy by leveraging transfer learning. This technique
allows the model to identify patterns and relationships common across different datasets,
leading to more accurate and robust predictions. Our objective is to forecast data in Farm 6
by utilizing information from other farms (source domain).
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As shown in Figure 10, transfer learning generally delivers favorable results when
source and target domains exhibit high similarity. However, low similarity can lead to
lower performance, as illustrated in Figure 9.

Despite the limitations in this case, transfer learning still outperforms directly sup-
plementing Farm 6 data with data from Farm 5. This highlights the potential of transfer
learning to improve predictions even with low similarity between source and target do-
mains. By utilizing knowledge from related datasets, transfer learning can help to mitigate
the impact of missing data in the target domain.

Figure 10. The prediction of using transfer learning: Farm 5.

Comparisons

ARIMA Models vs. Neural Networks:
ARIMA Models: These models are widely used for time series forecasting and excel

at identifying patterns and trends in historical data. However, they may struggle with
complex relationships or nonlinear data.

Neural Networks: These powerful machine learning techniques can learn complex
patterns and relationships, even in nonlinear data. They often outperform ARIMA models
in terms of accuracy but require more computational power and data for training.

Comparison with Other Forecasting Methods:
We compared our ES-ARIMA model with several classical methods:

• Multilayer Perceptron (MLP): A type of artificial neural network.
• Classical Echo State Network (ESN): A type of recurrent neural network.
• ARIMA: The standard ARIMA model.
• T-ARIMA: ARIMA with classical transfer learning.
• ARIMA: classical ARIMA model

Evaluation Metrics:
The following metrics were used to compare forecasting errors:

MAE =
∑n

i |y∗i −yi|
n

SMAPE = 1
n ∑n

i
|y∗i −yi|

(y∗i +yi)/2

RMSE =

√
∑n

i (y∗i −yi)
2

n

R2 = 1 − ∑n
i (y∗i −yi)

2

∑n
i (yi−ȳ)2 , ȳ = 1

n ∑n
i yi

(39)
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where Mean Absolute Error (MAE): Average absolute difference between predicted and
actual values. Symmetric Mean Absolute Percentage Error (SMAPE): Error metric less sen-
sitive to outliers than other measures. Root Mean Squared Error (RMSE): Square root of the
average squared difference between predicted and actual values. R-squared (R2): Propor-
tion of variance in the predicted values that can be explained by the independent variable
(closer to 1 indicates better fit). However, high R2 could be overfitting the training data.

Results and Discussion:
Tables 3–5 present the comparison results for the three datasets (California, Germany,

and Kaggle).

Table 3. Comparison of forecasting errors with California data.

Models MAE SMAPE RMSE R-Squared

MLP 1.23 0.42 4.84 0.82

ESN 2.46 1.63 5.37 0.79

T-ARIMA 1.67 0.87 2.26 0.89

ARIMA 1.92 1.21 3.65 0.83

ES-ARIMA 0.61 0.07 1.26 0.93

Table 4. Comparison of forecasting errors with Germany data.

Models MAE SMAPE RMSE R-Squared

MLP 0.26 0.72 0.39 0.91

ESN 0.487 0.73 0.763 0.85

T-ARIMA 0.73 0.58 0.81 0.81

ARIMA 0.82 0.71 0.57 0.89

ES-ARIMA 0.073 0.14 0.069 0.95

Table 5. Comparison of forecasting errors with Kaggle data.

Models MAE SMAPE RMSE R-Squared

MLP 1.82 0.95 3.78 0.83

ESN 1.45 1.64 2.97 0.87

T-ARIMA 1.82 0.92 2.93 0.88

ARIMA 1.51 1.14 2.87 0.92

ES-ARIMA 1.24 0.26 2.73 0.91

• California: The multiple ARIMA model significantly outperforms the single ARIMA
model, with improvements exceeding 50% in all metrics (e.g., 74.37% improvement
in MAE).

• Germany: The multiple ARIMA model exhibits an average improvement of 89%
compared to the single ARIMA model.

• Kaggle: The ES-ARIMA model achieves an average improvement of 35.68% in SMAPE,
RMSE, and R2 compared to the other models.

The proposed ES-ARIMA models with frequency decomposition and transfer learning
outperform the other classical models for long-term prediction with missing data. The ES-
ARIMA model achieves significant improvements over ESN and classical ARIMA models,
particularly for the Germany dataset (nearly 90% improvement).

The comparative tables show that the proposed ES-ARIMA models significantly
reduce prediction errors compared to the other methods. These models achieve lower MAE,
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SMAPE, and RMSE values, while exhibiting R2 values closer to 1, indicating a superior fit
to the data.

5. Conclusions

This paper proposes a novel approach to improve the accuracy of time series forecast-
ing with missing data (an average improvement of 50%). By combining an Echo State
Network (ESN) with frequency decomposition and transfer learning, we demonstrate
significant improvements in prediction accuracy. Frequency decomposition addresses the
specific characteristics of a time series, while online transfer learning mitigates the impact
of missing data. The proposed model’s effectiveness is demonstrated in a wind speed
forecasting case study, highlighting its practical value.

While the proposed model demonstrates effectiveness in the wind speed prediction
case study, we are currently conducting further validation efforts to assess its generalizabil-
ity to other domains and datasets. These efforts involve applying the model to diverse time
series forecasting problems, analyzing its performance across different data characteristics.
We may also investigate techniques from explainable AI to make the neural network pre-
dictions more interpretable, allowing for better understanding of the factors influencing
wind speed forecasts.
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